Articles | Volume 11, issue 3
Earth Syst. Sci. Data, 11, 1109–1127, 2019
https://doi.org/10.5194/essd-11-1109-2019
Earth Syst. Sci. Data, 11, 1109–1127, 2019
https://doi.org/10.5194/essd-11-1109-2019

  31 Jul 2019

31 Jul 2019

A global monthly climatology of total alkalinity: a neural network approach

Daniel Broullón et al.

Related authors

Weekly reconstruction of pH and total alkalinity in an upwelling-dominated coastal ecosystem through neural networks (ATpH-NN): The case of Ría de Vigo (NW Spain) between 1992 and 2019
Daniel Broullón, Fiz F. Pérez, and María Dolores Doval
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-33,https://doi.org/10.5194/bg-2021-33, 2021
Preprint under review for BG
Short summary
A global monthly climatology of oceanic total dissolved inorganic carbon: a neural network approach
Daniel Broullón, Fiz F. Pérez, Antón Velo, Mario Hoppema, Are Olsen, Taro Takahashi, Robert M. Key, Toste Tanhua, J. Magdalena Santana-Casiano, and Alex Kozyr
Earth Syst. Sci. Data, 12, 1725–1743, https://doi.org/10.5194/essd-12-1725-2020,https://doi.org/10.5194/essd-12-1725-2020, 2020
Short summary

Related subject area

Oceanography – Chemical
Feasibility of reconstructing the summer basin-scale sea surface partial pressure of carbon dioxide from sparse in situ observations over the South China Sea
Guizhi Wang, Samuel S. P. Shen, Yao Chen, Yan Bai, Huan Qin, Zhixuan Wang, Baoshan Chen, Xianghui Guo, and Minhan Dai
Earth Syst. Sci. Data, 13, 1403–1417, https://doi.org/10.5194/essd-13-1403-2021,https://doi.org/10.5194/essd-13-1403-2021, 2021
Short summary
OceanSODA-ETHZ: a global gridded data set of the surface ocean carbonate system for seasonal to decadal studies of ocean acidification
Luke Gregor and Nicolas Gruber
Earth Syst. Sci. Data, 13, 777–808, https://doi.org/10.5194/essd-13-777-2021,https://doi.org/10.5194/essd-13-777-2021, 2021
Short summary
Coastal Ocean Data Analysis Product in North America (CODAP-NA) – An internally consistent data product for discrete inorganic carbon, oxygen, and nutrients on the U.S. North American ocean margins
Li-Qing Jiang, Richard A. Feely, Rik Wanninkhof, Dana Greeley, Leticia Barbero, Simone Alin, Brendan R. Carter, Denis Pierrot, Charles Featherstone, James Hooper, Chris Melrose, Natalie Monacci, Jonathan Sharp, Shawn Shellito, Yuan-Yuan Xu, Alex Kozyr, Robert H. Byrne, Wei-Jun Cai, Jessica Cross, Gregory C. Johnson, Burke Hales, Chris Langdon, Jeremy Mathis, Joe Salisbury, and David W. Townsend
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-402,https://doi.org/10.5194/essd-2020-402, 2021
Revised manuscript accepted for ESSD
Short summary
An updated version of the global interior ocean biogeochemical data product, GLODAPv2.2020
Are Olsen, Nico Lange, Robert M. Key, Toste Tanhua, Henry C. Bittig, Alex Kozyr, Marta Álvarez, Kumiko Azetsu-Scott, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Sara Jutterström, Camilla S. Landa, Siv K. Lauvset, Patrick Michaelis, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Anton Velo, Rik Wanninkhof, and Ryan J. Woosley
Earth Syst. Sci. Data, 12, 3653–3678, https://doi.org/10.5194/essd-12-3653-2020,https://doi.org/10.5194/essd-12-3653-2020, 2020
Short summary
ARIOS: a database for ocean acidification assessment in the Iberian upwelling system (1976–2018)
Xosé Antonio Padin, Antón Velo, and Fiz F. Pérez
Earth Syst. Sci. Data, 12, 2647–2663, https://doi.org/10.5194/essd-12-2647-2020,https://doi.org/10.5194/essd-12-2647-2020, 2020
Short summary

Cited articles

Anderson, L. G., Jutterström, S., Kaltin, S., Jones, E. P., and Björk, G.: Variability in river runoff distribution in the Eurasian Basin of the Arctic Ocean, J. Geophys. Res., 109, 1–8, https://doi.org/10.1029/2003JC001773, 2004. 
Artioli, Y., Blackford, J. C., Butenschön, M., Holt, J. T., Wakelin, S. L., Thomas, H., Borges, A. V., and Allen, I.: The carbonate system in the North Sea: sensitivity and model validation, J. Mar. Syst., 102–104, 1–13, https://doi.org/10.1016/j.jmarsys.2012.04.006, 2012. 
Bates, N., Astor, Y., Church, M., Currie, K., Dore, J., Gonaález-Dávila, M., Lorenzoni, L., Muller-Karger, F., Olafsson, J., and Santa-Casiano, M.: A Time-Series View of Changing Ocean Chemistry Due to Ocean Uptake of Anthropogenic CO2 and Ocean Acidification, Oceanography, 27, 126–141, https://doi.org/10.5670/oceanog.2014.16, 2014. 
Beale, M. H., Hagan, T. M., and Demuth, H. B.: Deep Learning Toolbox, User's Guide, Release 2018a, The MathWorks, Inc., Natick, Massachusetts, United States, available at: https://es.mathworks.com/help/pdf_doc/deeplearning/nnet_ug.pdf, last access: 20 August 2018. 
Download
Short summary
In this work, we are contributing to the knowledge of the consequences of climate change in the ocean. We have focused on a variable related to this process: total alkalinity. We have designed a monthly climatology of total alkalinity using artificial intelligence techniques, that is, a representation of the average capacity of the ocean in the last decades to decelerate the consequences of climate change. The climatology is especially useful to infer the evolution of the ocean through models.