Articles | Volume 11, issue 3
https://doi.org/10.5194/essd-11-1109-2019
https://doi.org/10.5194/essd-11-1109-2019
31 Jul 2019
 | 31 Jul 2019

A global monthly climatology of total alkalinity: a neural network approach

Daniel Broullón, Fiz F. Pérez, Antón Velo, Mario Hoppema, Are Olsen, Taro Takahashi, Robert M. Key, Toste Tanhua, Melchor González-Dávila, Emil Jeansson, Alex Kozyr, and Steven M. A. C. van Heuven

Related authors

Weekly reconstruction of pH and total alkalinity in an upwelling-dominated coastal ecosystem through neural networks (ATpH-NN): The case of Ría de Vigo (NW Spain) between 1992 and 2019
Daniel Broullón, Fiz F. Pérez, and María Dolores Doval
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-33,https://doi.org/10.5194/bg-2021-33, 2021
Publication in BG not foreseen
Short summary
A global monthly climatology of oceanic total dissolved inorganic carbon: a neural network approach
Daniel Broullón, Fiz F. Pérez, Antón Velo, Mario Hoppema, Are Olsen, Taro Takahashi, Robert M. Key, Toste Tanhua, J. Magdalena Santana-Casiano, and Alex Kozyr
Earth Syst. Sci. Data, 12, 1725–1743, https://doi.org/10.5194/essd-12-1725-2020,https://doi.org/10.5194/essd-12-1725-2020, 2020
Short summary

Related subject area

Chemical oceanography
A consistent ocean oxygen profile dataset with new quality control and bias assessment
Viktor Gouretski, Lijing Cheng, Juan Du, Xiaogang Xing, Fei Chai, and Zhetao Tan
Earth Syst. Sci. Data, 16, 5503–5530, https://doi.org/10.5194/essd-16-5503-2024,https://doi.org/10.5194/essd-16-5503-2024, 2024
Short summary
CO2 and hydrography acquired by autonomous surface vehicles from the Atlantic Ocean to the Mediterranean Sea: data correction and validation
Riccardo Martellucci, Michele Giani, Elena Mauri, Laurent Coppola, Melf Paulsen, Marine Fourrier, Sara Pensieri, Vanessa Cardin, Carlotta Dentico, Roberto Bozzano, Carolina Cantoni, Anna Lucchetta, Alfredo Izquierdo, Miguel Bruno, and Ingunn Skjelvan
Earth Syst. Sci. Data, 16, 5333–5356, https://doi.org/10.5194/essd-16-5333-2024,https://doi.org/10.5194/essd-16-5333-2024, 2024
Short summary
A 20-year (1998–2017) global sea surface dimethyl sulfide gridded dataset with daily resolution
Shengqian Zhou, Ying Chen, Shan Huang, Xianda Gong, Guipeng Yang, Honghai Zhang, Hartmut Herrmann, Alfred Wiedensohler, Laurent Poulain, Yan Zhang, Fanghui Wang, Zongjun Xu, and Ke Yan
Earth Syst. Sci. Data, 16, 4267–4290, https://doi.org/10.5194/essd-16-4267-2024,https://doi.org/10.5194/essd-16-4267-2024, 2024
Short summary
A machine-learning reconstruction of sea surface pCO2 in the North American Atlantic Coastal Ocean Margin from 1993 to 2021
Zelun Wu, Wenfang Lu, Alizée Roobaert, Luping Song, Xiao-Hai Yan, and Wei-Jun Cai
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-309,https://doi.org/10.5194/essd-2024-309, 2024
Revised manuscript accepted for ESSD
Short summary
High-resolution global shipping emission inventory by Shipping Emission Inventory Model (SEIM)
Wen Yi, Xiaotong Wang, Tingkun He, Huan Liu, Zhenyu Luo, Zhaofeng Lv, and Kebin He
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-258,https://doi.org/10.5194/essd-2024-258, 2024
Revised manuscript accepted for ESSD
Short summary

Cited articles

Anderson, L. G., Jutterström, S., Kaltin, S., Jones, E. P., and Björk, G.: Variability in river runoff distribution in the Eurasian Basin of the Arctic Ocean, J. Geophys. Res., 109, 1–8, https://doi.org/10.1029/2003JC001773, 2004. 
Artioli, Y., Blackford, J. C., Butenschön, M., Holt, J. T., Wakelin, S. L., Thomas, H., Borges, A. V., and Allen, I.: The carbonate system in the North Sea: sensitivity and model validation, J. Mar. Syst., 102–104, 1–13, https://doi.org/10.1016/j.jmarsys.2012.04.006, 2012. 
Bates, N., Astor, Y., Church, M., Currie, K., Dore, J., Gonaález-Dávila, M., Lorenzoni, L., Muller-Karger, F., Olafsson, J., and Santa-Casiano, M.: A Time-Series View of Changing Ocean Chemistry Due to Ocean Uptake of Anthropogenic CO2 and Ocean Acidification, Oceanography, 27, 126–141, https://doi.org/10.5670/oceanog.2014.16, 2014. 
Beale, M. H., Hagan, T. M., and Demuth, H. B.: Deep Learning Toolbox, User's Guide, Release 2018a, The MathWorks, Inc., Natick, Massachusetts, United States, available at: https://es.mathworks.com/help/pdf_doc/deeplearning/nnet_ug.pdf, last access: 20 August 2018. 
Download
Short summary
In this work, we are contributing to the knowledge of the consequences of climate change in the ocean. We have focused on a variable related to this process: total alkalinity. We have designed a monthly climatology of total alkalinity using artificial intelligence techniques, that is, a representation of the average capacity of the ocean in the last decades to decelerate the consequences of climate change. The climatology is especially useful to infer the evolution of the ocean through models.
Altmetrics
Final-revised paper
Preprint