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Abstract. Global climatologies of the seawater CO2 chemistry variables are necessary to assess the marine car-
bon cycle in depth. The climatologies should adequately capture seasonal variability to properly address ocean
acidification and similar issues related to the carbon cycle. Total alkalinity (AT) is one variable of the seawater
CO2 chemistry system involved in ocean acidification and frequently measured. We used the Global Ocean Data
Analysis Project version 2.2019 (GLODAPv2) to extract relationships among the drivers of theAT variability and
AT concentration using a neural network (NNGv2) to generate a monthly climatology. The GLODAPv2 quality-
controlled dataset used was modeled by the NNGv2 with a root-mean-squared error (RMSE) of 5.3 µmol kg−1.
Validation tests with independent datasets revealed the good generalization of the network. Data from five ocean
time-series stations showed an acceptable RMSE range of 3–6.2 µmol kg−1. Successful modeling of the monthly
AT variability in the time series suggests that the NNGv2 is a good candidate to generate a monthly climatol-
ogy. The climatological fields of AT were obtained passing through the NNGv2 the World Ocean Atlas 2013
(WOA13) monthly climatologies of temperature, salinity, and oxygen and the computed climatologies of nutri-
ents from the previous ones with a neural network. The spatiotemporal resolution is set by WOA13: 1◦× 1◦ in
the horizontal, 102 depth levels (0–5500 m) in the vertical and monthly (0–1500 m) to annual (1550–5500 m)
temporal resolution. The product is distributed through the data repository of the Spanish National Research
Council (CSIC; https://doi.org/10.20350/digitalCSIC/8644, Broullón et al., 2019).
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1 Introduction

Because of its interaction with the atmospheric carbon diox-
ide, the marine carbon cycle has fundamental significance
for the Earth’s climate (Tanhua et al., 2013). The oceanic ca-
pacity to dissolve and store atmospheric CO2 and the sub-
sequent chemical speciation have resulted in approximately
30 % less anthropogenic CO2 in the atmosphere (Le Quéré
et al., 2018) than it would otherwise have. One unfortunate
byproduct of this process is ocean acidification (Doney et al.,
2009). As the ocean absorbs anthropogenic CO2, the sea-
water pH decreases – being the main change in the ocean
chemistry which defines ocean acidification. Combined with
other climate change effects (e.g., temperature increase and
deoxygenation), this process could have severe consequences
for marine ecosystems (Orr et al., 2005; Fabry et al., 2008;
Hoegh-Guldberg and Bruno, 2010; Kroeker et al., 2013) and,
consequently, for life on our planet.

Detailed spatiotemporal knowledge about the marine car-
bon cycle is necessary to understand and evaluate the con-
sequences of climate change. There are four variables of the
seawater CO2 chemistry more frequently measured in carbon
chemistry campaigns: total alkalinity (AT), total dissolved
inorganic carbon (TCO2, also known as DIC or CT), par-
tial pressure of CO2 (pCO2) and pH. AT is a key variable
in the framework of ocean acidification because of what it is
associated with: the oceanic capacity to buffer pH changes.
Dickson (1981) defined AT as

AT =[HCO−3 ] + 2[CO2−
3 ] + [B(OH)−4 ] + [OH−]

+ [HPO2−
4 ] + 2[PO3−

4 ] + [SiO(OH)−3 ] + [HS−]

+ 2[S2−
] + [NH3] − [H+] − [HSO−4 ] − [HF]

− [H3PO4]. (1)

The global AT distribution is a result of physical and
biogeochemical processes that change the concentration of
species in Eq. (1) (Wolf-Gladrow et al., 2007). Processes
that change salinity are the most influential. The strong lin-
ear correlation between salinity and AT is well documented
(e.g., Millero et al., 1998; Friis et al., 2013; Takahashi et
al., 2014). In the surface layer, precipitation and evapora-
tion are the primary processes that control the AT distribu-
tion. Rivers and submarine groundwater discharge can affect
marine AT locally, with the degree controlled by runoff and
the riverine AT (Hoppema, 1990; Anderson, 2004; Schnei-
der et al., 2007; Cooper et al., 2008). The formation and
dissolution of carbonate minerals also contribute to AT vari-
ability (Fry et al., 2015). Upwelling areas that overlie zones
of relatively shallow subsurface carbonate dissolution can
also have elevated surface AT (Millero et al., 1998; Fine et
al., 2017). Organic matter cycling can also contribute to AT
changes. This mechanism can be reflected through the con-
sumption and regeneration of nutrients and oxygen (Brewer
and Goldman, 1976; Wolf-Gladrow et al., 2007). Finally, hy-

drothermal vents could modify the concentration of AT lo-
cally (Chen, 2002).

In addition to the spatial variability, most of the drivers
mentioned above generate seasonal AT variability. Phyto-
plankton blooms (i.e., primary production) and the season-
ality in upwelling and river flows are some of the most re-
markable processes associated with the time variability of
AT. Even though AT is the variable of the seawater CO2
chemistry system with the least seasonal variability (Lee et
al., 2006, estimated a range from near 0 up to 80 µmol kg−1),
it is important to account for such changes because of the
strong connection of AT with oceanic anthropogenic carbon
storage (Renforth and Henderson, 2017) and to buffer sea-
water pH changes. A monthly AT climatology that captures
most of the spatiotemporal variability can be used as ini-
tial and/or boundary conditions in biogeochemical models,
in evaluating the CaCO3 pump (e.g., Carter et al., 2014) or in
computing the ocean inventory of anthropogenic CO2 (e.g.,
Steinfeldt et al., 2009).

High-quality data are a crucial first requirement to ad-
dress the problem. Ocean time-series data represent excellent
records to study the seasonality of the ocean carbon cycle as
well as its interannual trends (e.g., Bates et al., 2014). Un-
fortunately, there are only a few time series that include suf-
ficiently precise measurements of the seawater CO2 chem-
istry at seasonal resolution. Alternately, various global data
products have been released for public usage in recent years.
The main ones for the surface ocean are the Surface Ocean
CO2 Atlas (SOCAT; Bakker et al., 2016) and the Lamont-
Doherty Earth Observatory database (LDEO; Takahashi et
al., 2016). These two are complementary, offer annual up-
dates and include tens of millions of pCO2 measurements in
the global ocean. For the interior ocean, a comprehensive and
global database and data product was recently made public:
Global Ocean Data Analysis Project version 2 2019 (GLO-
DAPv2) (Olsen et al., 2019). This quality-controlled collec-
tion contains thousands of measured seawater data, including
CO2 chemistry variables, over the full water column from
more than 700 globally distributed cruises over the past four
decades and updates the previous version (Key et al., 2015;
Olsen et al., 2016).

The logical next step is to generate a globally consistent
climatology for the different seawater CO2 chemistry vari-
ables that captures seasonal variability. Different approaches
have been used to fill spatial and temporal gaps in AT ob-
servations to generate a global monthly climatology (Lee et
al., 2006; Takahashi et al., 2014). These studies only cover
the surface ocean. However, a robust climatology extended to
deeper depths is necessary to assess more than surface ocean.

In this study, we present a global monthly climatology for
AT in a 1◦× 1◦ grid in the upper 57 standard depth lev-
els (between 0 and 1500 m) of the World Ocean Atlas 2013
(WOA13) and an annual one in the following 45 depth levels
(1550–5500 m) designed using a neural network approach.
Other studies have demonstrated the capacity of these tech-
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niques to reconstruct global pCO2 variability at monthly res-
olution over the last few decades (e.g., Landschützer et al.,
2013, 2014). Our AT climatology uses available high-quality
measurements and the neural network ability to capture nat-
ural variability. We were able to reduce the errors obtained
by the previous efforts to build a monthly AT climatology
(Lee et al., 2006; Takahashi et al., 2014) and to extend the
climatology through the water column.

2 Methodology

2.1 Neural network design

A feed-forward neural network was configured to compute
AT globally at monthly resolution. It was selected based on
the ability to learn the relationships between AT and the vari-
ables related to its spatiotemporal variability as shown in
Velo et al. (2013).

Feed-forward neural networks are composed of layers: the
input layer, a variable number of hidden layers and the out-
put layer (Fig. 1). The input layer is a matrix representing the
entry to the network of the data from which the outputs will
be obtained. The hidden and output layers are composed of
neurons. The number of these elements in the hidden layers
is adjustable and in the output layer is dependent on the num-
ber of network outputs. The neurons are formed by a series
of weights, a bias, a summation and a transfer function (Rus-
sell and Norvig, 2010). They are the connections between the
layers. A neuron receives all outputs from the previous layer
and multiplies them by a matrix of weights. These results
are summed and a bias is added. Finally, the transfer func-
tion is applied over the sum, and an output is obtained from
each neuron.

The ability of the network to produce a reasonable out-
put stems from a training process. Given a set of inputs and
their targets, the network is trained to learn the relationships
between both sets. The training process is possible due to a
backpropagation training algorithm (Rumelhart et al., 1986).
Generally, the network is initialized with random values of
weights and biases, and an output is obtained. This output
is compared with the target through a cost function, which
typically is the mean squared error. Then the algorithm back-
propagates this error through the network and iteratively ad-
justs the weights and biases to minimize the cost function.
The minimization is commonly based on the Levenberg–
Marquardt algorithm (Levenberg, 1944; Marquardt, 1963).
Once the network is trained, output values can be obtained
from a set of inputs with unknown targets. The more accu-
rate and generalized the training data, the more accurate the
output values.

The feed-forward neural network used in this study has a
two-layer architecture. The first layer has a sigmoid trans-
fer function and the second layer a linear transfer function
(Fig. 1). This choice of functions allows both the linear
and nonlinear relationships between AT and its predictors to

be represented. This network configuration can approximate
most functions arbitrarily well (Hagan et al., 2014). In the At-
lantic Ocean, this arrangement has been shown to accurately
estimate AT from diverse predictors (Velo et al., 2013).

The GLODAPv2 discrete data were used to train the net-
work. Input variables (left hand in Fig. 1) were selected
based on their potential influence on AT following Velo et
al. (2013). They include the sampling position (coordinates
and depth), temperature, salinity, nutrients (phosphate, ni-
trate and silicate) and dissolved oxygen. Position was in-
cluded to help the network learn characteristic patterns as-
sociated with this input when the other variables cannot fully
explain the AT variability. Takahashi et al. (2014) and Lee et
al. (2006) showed how the relations between AT and the pre-
dictor variables used in these studies are different depending
on the ocean area. The periodicity of the input longitude was
represented by the equations used by Zeng et al. (2014):

clongitude= cos
( π

180
· longitude

)
, (2)

slongitude= sin
( π

180
· longitude

)
. (3)

Our approach only uses measured inputs from GLODAPv2,
that is, those input data derived from the same rosette sample
bottle as the AT value. Other studies with a similar approach
take the inputs from reanalysis products or satellite data (e.g.,
Landschützer et al., 2013), which are inherently less accurate
than direct measurements. The relations created by the net-
work in the training procedure are likely to be more realistic
using in situ-measured values for the input variables.

The samples where all input variables and AT were
measured were selected from GLODAPv2 (https:
//www.nodc.noaa.gov/ocads/oceans/GLODAPv2_2019/,
last access: 14 June 2019). From these, we removed the data
where quality control (QC) was not done in all the variables
(for a neural network trained with all data see Broullón et al.,
2018). However, we keep all data from the Mediterranean
Sea to adequately represent this sea in the climatology. The
final dataset contained 251 687 samples. “GLODAPv2”
hereinafter refers to the subset used in this study unless
otherwise indicated.

Two different training techniques were tested: the
Levenberg–Marquardt method (lm) and the Bayesian reg-
ularization (br) (both detailed in Hagan et al., 2014). In
a similar study, Velo et al. (2013) demonstrated that these
techniques give the best network performance among those
which they tested. Except for the number of neurons, the two
algorithms were implemented with the default options of the
MATLAB functions trainlm and trainbr (detailed in Beale
et al., 2018). These two functions prevent overfitting in dif-
ferent ways. The trainlm function usually needs to be fed
with the data divided in three sets: a training set to obtain
the relationships between variables, a validation set to pre-
vent overfitting and a test set to compare different networks.
Here, the training was stopped when the error in the vali-
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Figure 1. Neural network configuration. The notation is in agreement with Hagan et al. (2014). p: input matrix; W: weight matrix; b: bias
matrix;

∑
: sum; f : transfer function; a: output matrix. The superscripts indicate the number of the layer. The cLongitude and sLongitude

variables represent the cosine and the sine of longitude respectively (see Eqs. 2 and 3). The dimensions of the matrices are for an individual
sample. Modified from Hagan et al. (2014).

dation set increased during six consecutive iterations of the
training process to avoid overfitting. This process is known
as early stopping (Hagan et al., 2014). The final values of the
network weights and biases are those reached before the first
of these iterations. The trainbr function adds a regularization
parameter to the cost function to make the fit smoother in or-
der to avoid overfitting. The validation set is not present in
this technique. The end of the training is based on network
convergence through parameter stabilization by an automatic
process known as automated Bayesian regularization (Hagan
et al., 2014; Beale et al., 2018). See Beale et al. (2018) and
references therein for a detailed description of the two func-
tions tested.

The number of network neurons is problem dependent
with no fixed criterion for establishment. It is related to
the complexity of the input–output mapping, the amount of
training data available and their noise (Gardner and Dorling,
1998). Using too few neurons will not enable one to learn
complex relations. Using too many neurons could overfit the
data; that is, the network might model the uncertainty of the
data used in the training. We determined the optimal num-
ber of neurons through a trade-off between the root-mean-
squared error (RMSE) of the computed values and the gener-
alization of the network. This last concept refers to network
performance when a set of unused inputs is passed through
the network to obtain an output. If the RMSE in this set is
of the same order of magnitude as the RMSE in the training
set, there is no substantial overfitting and the network gener-
alizes well.

The training procedure was carried out in MATLAB. We
tested 16, 32, 64, 128 and 256 neurons in the hidden layer
based on the results of Velo et al. (2013). For each number of
neurons, we trained 10 networks always using the same 90 %
of GLODAPv2 for training (Fig. 2, first level). The remaining
10 % was used as an independent test set (Fig. 2, first level).
Both subsets contained samples randomly distributed in the
ocean to evaluate the maximum possible relationships be-

Figure 2. Division of the data for the training of the network and
its testing. The percentages in each level are relative to the previ-
ous one.

tween the input variables and AT through all oceanographic
regimes, that is, to capture most of the variability in all the
variables and not restricting the sets to specific areas. Each
of the 10 networks starts the training procedure with ran-
dom weight and bias values and a division of the training
dataset into two portions: 85 % for training and 15 % for val-
idation (Fig. 2, second level). The different starting points of
the training process in the highly dimensional weight-error
space make the minimization of the cost function different
for each network. As each network is different, keeping all
the sets allow one to determine which network best general-
izes in the same test set. The selected network is the one that
produces the lowest RMSE in the training data (Fig. 2, first
level) and in the test data, considering a nonsignificant dif-
ference between both RMSEs to prevent overfitting. The net-
work derived from this process will be referred to as NNGv2.

2.2 Comparison of methods

The relations proposed by Lee et al. (2006) and Takahashi et
al. (2014) to generate a monthly surface climatology of AT
from different predictors were applied over GLODAPv2. Lee
et al. (2006) grouped AT data (< 20–30 m depth) into five
oceanographic regimes and obtained a best fit to a quadratic
function of sea surface temperature (SST) and sea surface
salinity (SSS) in each basin. Takahashi et al. (2014) divided
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the global ocean into 33 hydrographic provinces and ex-
pressed the potential alkalinity (PALK=AT+NO−3 ,< 50 m
depth) as a linear regression of salinity in 27 of them. PALK
was used instead of AT for the purpose of eliminating sea-
sonal biological effects, and the interprovince variation re-
flected differences in CaCO3 production in the mixed layer
as well as the contributions of lateral and vertical mixing of
waters. The analysis was carried out in the areas defined in
the two studies.

The recent methods to compute AT proposed by Carter et
al. (2018) and Bittig et al. (2018) (LIARv2 and CANYON-B
respectively) were also compared to the one proposed here.
LIARv2 is based on multilinear regressions (MLRs) includ-
ing the same predictors used in the present study, exclud-
ing phosphate (sample position; salinity, S; potential tem-
perature, θ ; nitrate, N; apparent oxygen utilization, AOU;
and silicate, Si). This method is composed of 16 equations
with a different combination of the input variables, always
maintaining the salinity input in each one. The computa-
tions with LIARv2 were obtained by the equation with the
lowest uncertainty estimate in each sample that this method
determines (Carter et al., 2018). CANYON-B is based on
a Bayesian neural network derived from GLODAPv2 data
including position, time, salinity, temperature and dissolved
oxygen as predictors. The two methods were applied on the
GLODAPv2 dataset and analyzed in the areas defined by Lee
et al. (2006) and Takahashi et al. (2014).

2.3 Validation

To illuminate the complexity of neural networks, several
methods to determine the contribution of each predictor vari-
able in the output were proposed in different studies (see
Gevrey et al., 2003 and Olden et al., 2004). We used the
connection weight approach (Olden and Jackson, 2002) to
evaluate if the network properly associates the AT variabil-
ity with the predictor variables. This method was proposed to
be the most accurate (Olden et al., 2004). It uses the weights
obtained in the training stage to extract the influence of each
predictor variable in fitting the AT values. The expression
followed was

Ci =

H∑
k=1

wik ·wk, (4)

where Ci is the relative importance of the predictor variable
i, H is the number of neurons in the hidden layer, wik is the
weight of the connection between the variable i and the neu-
ron k of the hidden layer, and wk is the weight of the connec-
tion between the neuron k of the hidden layer and the final
output, that is, the computed AT. Finally, the absolute value
of Ci was expressed as a percentage of the sum of all Ci .

In addition to the test in the GLODAPv2 independent set,
the network potential was tested on five ocean time series
in different oceanographic regimes that were not included

in GLODAPv2: Hawaii Ocean Time-series (HOT), Bermuda
Atlantic Time-series Study (BATS), European Station for
Time-series in the Ocean at the Canary Islands (ESTOC),
Kyodo North Pacific Ocean Time-series (KNOT) and K2.
Data of all time series used in this study were obtained
from https://www.nodc.noaa.gov/ocads/oceans/time_series_
moorings.html (last access: 4 June 2019).

GLODAPv2 contains quality-controlled measurements in
all ocean basins from the 1970s until 2017 (Olsen et al.,
2019). However, winter data are scarce to absent in some
high-latitude regions because adverse weather conditions
prevents field activities in that season (Fig. S1 in the Sup-
plement). In surface ocean, this temporal bias can be avoided
with the help of the subsurface data from seasons with suf-
ficient samples. Vázquez-Rodríguez et al. (2012) demon-
strated how the subsurface ocean layer in the Atlantic Ocean
can retain the footprint of the water mass formation from
the preceding winter in the following months and, there-
fore, of the surface conditions. The winter relationships be-
tween inputs and AT needed to produce an all-season surface
climatology are mostly preserved in this subsurface layer.
The validity of this hypothesis was tested in other regions
(Fig. S1) following Vázquez-Rodríguez et al. (2012). These
areas were chosen based on the nonavailability of AT data in
two or more consecutive months in the same oceanographic
regime as the colored area in Fig. S1.

To reinforce the previous test and to assess the ability
of the neural network in overcoming the lack of winter
data in other depths, a neural network (NNGv2_nowinter)
was trained excluding all winter data in GLODAPv2 (GLO-
DAPv2_nowinter) and tested in the excluded and indepen-
dent winter dataset (GLODAPv2_winter). The procedure to
create and to train the network was the same as described
previously.

2.4 Climatology

Finally, we generated a 1◦× 1◦ global (monthly: 0–1500 m;
annual: 1550–5500 m) climatology of AT from the objec-
tively analyzed climatological fields of temperature, salin-
ity and oxygen (see Appendix A for oxygen climatology)
from WOA13 (Locarnini et al., 2013; Zweng et al., 2013;
Garcia et al., 2014a) and the nutrients which resulted from
passing the previous fields through CANYON-B (Appendix
A). This choice of nutrients was made to extend the monthly
resolution up to 1500 m, since WOA13 only offers it up to
500 m (Garcia et al., 2014b). This final product was com-
pared with the monthly sea surface climatologies of AT of
Lee et al. (2006) and Takahashi et al. (2014). Furthermore,
the annual mean was compared with the annual mapped cli-
matology by Lauvset et al. (2016) since it also comes from
GLODAPv2. The availability in Lauvset et al. (2016) of the
climatologies of the variables used as inputs in the network
was used to test how the network represents the climatology
of AT and to evaluate the sources of the possible differences.
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3 Results and discussion

3.1 Neural network analysis

The lowest RMSE was reached in the training and in the test
sets when 128 neurons were used (Fig. S2). The same RMSE
values for both sets (5.3 µmol kg−1; Figs. 3 and S2) showed
that no overfitting occurred and that the network general-
izes well. The two training techniques did not show signif-
icant differences. The Levenberg–Marquardt algorithm was
selected for its higher computing speed.

Samples with residuals (differences between measured
and computed AT) beyond ± 3 RMSE (3 times RMSE;
threshold selected to show samples with large residuals) are
1 % of the GLODAPv2 dataset. The spatial distribution of
these samples (Fig. S3) shows that they are confined to cer-
tain areas, mainly in the ocean surface (Fig. 4). Most are in
the Northern Hemisphere (Figs. S3 and 4). Specifically, 40 %
are from latitudes north of 60◦ N (Table S1). In this area, 5 %
of GLODAPv2 samples have residuals beyond ± 3 RMSE
and 75 % of these samples are from the upper 100 m (Ta-
ble S2). In these depth and latitude ranges, the samples with
high residuals make up 13 % of the GLODAPv2 samples
here and they typically have salinities lower than 34 (Ta-
ble S3; Fig. S3). A monthly analysis in the previously indi-
cated ranges shows that the largest number of samples with
residuals beyond ± 3 RMSE are from the summer months.
About 12 %–20 % of all GLODAPv2 samples from this sea-
son in this area have residuals higher than ± 3 RMSE (Ta-
ble S4).

The previous results show that the Arctic Ocean is the re-
gion with the largest RMSE, although the network computes
most of the measured AT in this area well. However, the
low availability of winter data, the ice–sea dynamics, and the
transport of AT by the rivers (Fig. S4) could alter the pres-
ence of the surface winter conditions in the summer subsur-
face layer shown by Vázquez-Rodríguez et al. (2012) in other
areas and generate a temporal bias in the climatology. The
high discharge of high-AT waters by the rivers in the sum-
mer (Cooper et al., 2008; Shiklomanov et al., 2018; Fig. S5)
generates the greatest errors and shows how the network fails
to model riverine AT.

In further detail, many of the samples with residuals be-
yond ± 3 RMSE are located in the Beaufort Sea (66–80◦ N,
140–180◦W). Here, Takahashi et al. (2014) also found a
large RMSE of 60.5 µmol kg−1 (40.7 µmol kg−1 applying
their regressions on GLODAPv2) for their SSS–PALK re-
lations in the upper 50 m of the water column. This area is
specifically complex to model surface AT because of signif-
icant river runoff having high and possibly variable AT con-
centrations (Figs. S4 and S5; Anderson et al., 2004; Cooper
et al., 2008). The Labrador Sea also presents high errors be-
cause of the introduction of river runoff from Arctic Ocean
transported through the Canadian Arctic Archipelago (An-
derson et al., 2004). Therefore, in spite of the good reproduc-

tion of AT for the most samples, one should be cautious with
the results in these zones and for the entire Arctic Ocean.

When the GLODAPv2 data where QC was not done are
analyzed, the North Sea also shows many samples with large
residuals. Those samples shallower than 100 m and close to
the coasts surrounding this sea do not have an accurately
computed AT (Fig. S4). Some studies have shown the com-
plexity of the processes occurring in this shallow sea where
the high river runoff also has elevated levels of AT (Fig. S4;
e.g., Hoppema, 1990; Artioli et al., 2012). Hence, the same
caveats as for the Arctic Ocean should be made.

In general, the network mainly fails to compute AT
in some samples of areas with rivers carrying significant
amounts of AT to the ocean. The inclusion of predictors re-
lated to riverine AT (and probably to ice melt) could improve
the computation in these areas. Although one should be cau-
tious, these zones still should be considered and be repre-
sented in the climatology since most of the samples have a
well-computed AT.

In the global ocean surface layer, the RMSE obtained with
the neural network approach is lower than that obtained by
previous studies on generation of monthly climatologies (Ta-
bles 1 and 2). In the past, relationships between SST and SSS
with AT by Lee et al. (2006) have been shown to produce
the lowest RMSE (area-weighted RMSE of 8.1 µmol kg−1)
in theAT computation to create a monthly climatology. How-
ever, applying the relations of that study to GLODAPv2,
the obtained weighted RMSE is higher than the ones from
NNGv2, LIARv2 and CANYON-B (Table 1). The NNGv2
approach obtained the best fit in all the areas defined in the
study of Lee et al. (2006) (Table 1). The newest methods in
AT computation improve the results of Lee et al. (2006) in all
the areas except for equatorial upwelling Pacific (CANYON-
B) and subtropics (LIARv2) (Table 1).

Similar to the previous case, the error analysis in the areas
defined in Takahashi et al. (2014) also shows a lower error
of the NNGv2 in most of the areas (20 of 26; Table 2). The
weighted RMSE shows that NNGv2 and CANYON-B are
the best methods to compute AT in the 0–50 m depth range
in GLODAPv2. Although the analysis by area shows non-
significant differences in general between these two meth-
ods, there are seven areas with more than 300 samples where
NNGv2 computes AT with one or more units of RMSE less
than CANYON-B. The AT computed in some zones de-
fined in the Arctic and subarctic (Beaufort Sea and Labrador
Sea) presents the highest RMSEs in all the approaches (Ta-
ble 2), probably due to the high riverine AT discharge as dis-
cussed before.

In depths below those previously analyzed, the error is pro-
gressively reduced for NNGv2, LIARv2 and CANYON-B
(Table 3). Although NNGv2 shows the lowest RMSE in all
the depth ranges analyzed, the differences with CANYON-
B are nonsignificant. Nonetheless, LIARv2 shows higher er-
rors than NNGv2 (between 1.3 and 2.6 µmol kg−1 higher; Ta-
ble 3).
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Figure 3. Regression between AT computed by NNGv2 and AT from GLODAPv2. The graph is divided in pixels. The color of each pixel
is determined by the number of points inside it. Each pixel has a size of 4 by 4 µmol kg−1. Note the logarithmic scale to account for the large
amount of data. The training data chart contains the data in the first level training set (see Fig. 2). The testing data chart contains the data in
the first level test set (see Fig. 2).

Figure 4. The absolute differences between GLODAPv2 AT and NNGv2 AT. (a) Samples in the layer 0–30 m. (b) Samples in the layer
2950–3050 m.

The previous analyses show how the newest methods
to compute AT (LIARv2, CANYON-B and NNGv2) pro-
duce lower errors than the previous ones used to gener-
ate a monthly climatology (Lee at al., 2006; Takahashi et
al., 2014). The nonlinear nature of the neural networks is
probably the main reason for the best results obtained with
CANYON-B and NNGv2. Furthermore, these methods have
the advantage of obtaining the computed AT anywhere in the
ocean in only one step. No patches or smoothing are needed
between different zones in the climatology as they are in pre-
vious studies. Finally, the NNGv2 has been chosen to gener-
ate the climatology because of both the previous reasons and
the inclusion of data of recent cruises (Olsen et al., 2019) in
the training and testing steps of the neural network approach.

The NNGv2 seems to qualitatively associate the AT vari-
ability with the predictor variables in coherence with the pro-
cesses that contribute to it. The relative importance of these
variables depicted in Fig. 5 shows that salinity is the most in-
fluential variable, followed by nutrients. In the surface layer,

where AT variability is the largest, different studies showed
how changes in salinity are highly correlated with this vari-
ability (Millero et al., 1998; Takahashi et al., 2014). The or-
ganic matter cycle also has a significant component in theAT
variability (Kim and Lee, 2009). The formation and degrada-
tion of organic matter is reflected through both oxygen and
nutrients variations. NNGv2 seems to capture the AT vari-
ability because of the organic matter cycle giving a second
place in importance to nutrients. The third group of variables
in the ranking of importance is comprised by position and
temperature. The depth variable could be associated with the
AT variability accounting for the variation produced by the
CaCO3 cycle and the processes acting through the global
ocean circulation. The horizontal sampling position variables
could help to separate the different relations shown by previ-
ous studies in different ocean areas (Lee et al., 2006; Taka-
hashi et al., 2014). Finally, temperature has also been asso-
ciated with the AT variability as a proxy of both the CaCO3
and the organic matter cycles (Lee et al., 2006).

www.earth-syst-sci-data.net/11/1109/2019/ Earth Syst. Sci. Data, 11, 1109–1127, 2019



1116 D. Broullón et al.: A global monthly climatology of total alkalinity

Table 1. RMSE obtained by the relations of Lee et al. (2006), NNGv2, LIARv2 and CANYON-B over GLODAPv2. The lowest RMSE
in each area defined in Lee et al. (2006) is shown in bold. To be consistent with the surface layer defined in Lee et al. (2006) the samples
evaluated here are from above 20 m (subtropics) and 30 m (the rest).

RMSE (µmol kg−1)

Areas defined in Lee et al. (2006) Lee et al. (2006) NNGv2 LIARv2 CANYON-B n

North Atlantic 15.1 11.4 13.8 11.8 3571
North Pacific 15.5 6.3 7.4 7.0 2529
Equatorial upwelling Pacific 7.2 5.0 5.0 13.5 280
Subtropics 18.9 14.1 19.1 14.4 4874
Southern Ocean 9.1 4.5 5.1 5.2 4842
Weighted RMSE 14.4 9.2 11.7 9.9 16 096

Table 2. RMSE obtained by the relations of Takahashi et al. (2014), NNGv2, LIARv2 and CANYON-B over GLODAPv2. The lowest RMSE
in each area defined in Takahashi et al. (2014) is shown in bold. To be consistent with the surface layer defined in Takahashi et al. (2014) the
samples evaluated here are from above 50 m.

RMSE (µmol kg−1)

Areas defined in Takahashi
Takahashi et al. (2014) et al. (2014) NNGv2 LIARv2 CANYON-B n

West GIN Seas 27.8 8.7 15.6 9.7 679
East GIN Seas 10.1 7.2 9.2 7.3 729
High Arctic 35.6 12.5 20.8 18.0 747
Beaufort Sea 40.7 22.6 37.7 25.9 631
Labrador Sea 33.6 29.7 32.4 29.8 487
Subarctic Atlantic 9.8 6.9 7.2 8.1 896
North Atlantic Drift 7.6 6.6 7.6 6.3 1527
Central Atlantic 22.4 15.7 21.4 16.0 3489
South Atlantic Transition Zone 6.8 5.7 6.7 5.8 328
Antarctic (Atlantic) 7.8 5.7 5.9 6.2 684
Kuroshio-Alaska Gyre 15.3 6.4 7.8 6.9 1284
North Central Pacific 12.3 6.7 6.8 7.5 1203
Okhotsk Sea 6.0 8.9 4.0 7.1 20
Central Tropical North Pacific 7.0 5.4 5.7 5.7 1926
Tropical East North Pacific 14.5 5.4 5.7 20.8 306
Central South Pacific 9.0 4.7 4.5 5.1 2051
East Central South Pacific 9.6 4.3 6.2 7.6 174
Subpolar South Pacific 8.4 4.0 4.5 4.7 419
Antarctic (Pacific) 5.3 3.1 3.2 4.5 596
Main North Indian 7.0 4.9 5.5 5.0 578
Red Sea 6.6 11.4 53.9 8.0 17
Bengal Basin 9.1 7.6 8.3 6.3 97
Main South Indian 8.9 7.1 8.0 6.3 2613
South Indian Transition 3.8 2.6 3.4 3.5 231
Antarctic (Indian) 7.3 3.5 3.7 4.5 1384
Circumpolar Southern Ocean 8.8 4.2 4.3 5.0 2290
Weighted RMSE 13.4 8.1 10.2 8.9 25386

3.2 Time-series validation

The network can compute AT well at five different ocean
time-series stations. Low RMSEs (Table 4) and high coeffi-
cients of determination (r2) (data not shown) were obtained.
The bias is relatively low in the three time series with the

highest number of data (HOT, BATS and ESTOC). The AT
computed by the NNGv2 in KNOT and K2 is slightly higher
than the measured one, probably because of the influence in
the AT variability of some variable not included as an input
of the network (although an offset in the measurements of
any of the inputs could also give this result). Summed to the
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Table 3. RMSE at different depth ranges obtained with NNGv2,
LIARv2 and CANYON-B. Th lowest RMSE in each depth range is
shown in bold.

RMSE (µmol kg−1)

Depth range (m) NNGv2 LIARv2 CANYON-B

50–200 5.7 7.4 6.1
200–500 4.1 6.8 4.4
500–1000 4.0 5.3 4.2
> 1000 3.8 6.1 4.0

Figure 5. The relative importance of the predictor variables for
NNGv2. lat: latitude; clon: Eq. (3); slon: Eq. (4); temp: temperature;
sal: salinity; phosp: phosphate; nit: nitrate; sil: silicate; oxy: oxygen.

previous test, the statistics obtained in this independent test
with a good seasonal time resolution show the good general-
ization of the NNGv2.

The LIARv2 and CANYON-B methods to compute AT
also model the time-series data quite well (Table 4). Signif-
icant differences among the three methods are obtained in
HOT and ESTOC. In HOT, NNGv2 and CANYON-B reach
a better fit of AT than LIARv2, suggesting that a nonlinear
technique is more adequate to model AT in this area (Ta-
ble 4). CANYON-B presents a higher bias in ESTOC than
the other two methods, suggesting that here the inclusion of
nutrients as predictors results in an accurate computation of
AT. The error obtained in BATS, ESTOC, K2 and KNOT
does not have significant differences between methods. Fi-
nally, LIARv2 and CANYON-B also have a considerable
bias in K2 and KNOT (Table 4) that reinforces the two rea-
sons suggested previously for NNGv2.

The ability of NNGv2 to capture surface AT variability is
exemplified in Fig. 6 for BATS. The other largest time se-
ries also show a good agreement between the computed and
the measured seasonal AT in the same depth range (RMSE
HOT: 5 µmol kg−1; RMSE ESTOC: 2.6 µmol kg−1). In gen-

Table 4. RMSE and bias between measured AT in HOT, BATS,
ESTOC, KNOT and K2, as well as the computed AT with NNGv2,
LIARv2 and CANYON-B. The comparison was done for all the
samples where all the input variables for NNGv2 and the AT were
measured in the same water sample.

RMSE (bias) (µmol kg−1)

Time series NNGv2 LIARv2 CANYON-B n

HOT 5.8 (−0.4) 6.6 (−0.6) 5.8 (−0.6) 4006
BATS 6.2 (−0.1) 6.3 (0.1) 6.0 (−0.4) 3033
ESTOC 3.0 (−0.8) 3.4 (0.7) 3.2 (2.2) 1700
KNOT 4.5 (−6.9) 4.8 (−6.6) 4.5 (−7.2) 1234
K2 3.3 (−3.4) 3.0 (−3.0) 3.0 (−3.3) 561

eral, AT’s measured in each month of the year are well mod-
eled by NNGv2 (inner charts in Fig. 6). The same holds for
other depth layers (Fig. 7b, c, e and f). Only some extreme
values are not fully captured, but almost all the trends be-
tween months are well represented. The differences may be
caused by bias in measured AT or some of the input vari-
ables; they may also be due to an under-/overestimation of
the network. Furthermore, the time-series areas are not fully
represented in all months in GLODAPv2, so NNGv2 might
not represent seasonality well. However, the network com-
putes AT in any month with a very low error. This shows
again the potential of the generalization of a well-designed
neural network.

The NNGv2 also has the capacity to increase the number
of AT data in the time series. In many samples, AT was not
measured but the other input variables needed for the NNGv2
are available. Therefore, the computed AT has a higher tem-
poral and spatial resolution than observations only. This en-
ables the computation of more reliable trends than with the
less frequently measured AT and allows the identification of
possible high-frequency changes. The improvement in reso-
lution is especially visible in the longer time series: HOT and
BATS (Fig. 7). In the former we increased the number of AT
data from 4006 to 14907 and in the latter from 3033 to 11 342
(Fig. 7b and e).

3.3 Subsurface layer hypothesis

We found that the optimal depth range of the subsurface layer
defined by Vázquez-Rodríguez et al. (2012) for the North At-
lantic Ocean (100–200 m) must be modified in other regions.
In the area analyzed in the Indian Ocean (Fig. S1), the sub-
surface layer hypothesis is verified in the same depth range
of that study. However, the other areas (Fig. S1) show that
the range of the subsurface layer is 50–100 m. The different
strengths of deep mixing and convection in winter could ex-
plain this fact.

The properties analyzed in the four areas defined in Fig. S1
show, as expected, a higher monthly variability in the ocean
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Figure 6. Comparison of measured and computed AT with NNGv2 for the depth range 0–10 m at time-series station BATS. The RMSE
in that depth range for the whole time period is 5.6 µmol kg−1. The years 1996–1997 and 2007–2008 are amplified to show the monthly
variations because they are the years with AT measurements in all the months.

Figure 7. (a, d) Computed AT for the upper 550 m of the water column at the BATS and HOT time-series stations. (b, e) Difference between
measured and computed AT. Colored dots show samples where AT was measured. Black dots show samples where AT was not measured
but the network inputs were. (c, f) Difference between measured and computed AT interpolated with Data-Interpolating Variational Analysis
(DIVA; Troupin et al., 2010). This figure was made with Ocean Data View (Schlitzer, 2016).
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surface than in the subsurface layers. The seasonal variability
depicted in Fig. 8 will likely be typical of a larger region
within a similar oceanographic regime for each defined area.
The surface winter conditions of the analyzed properties are
quite similar to those in the subsurface layer during, at least,
one of the four consecutive months following winter in all
areas (Fig. 8).

The optimal number of neurons in the network trained
with the GLODAPv2_nowinter dataset to reinforce the sub-
surface layer hypothesis and to assess the layers below sur-
face ocean was 100. The reduction of the number of neu-
rons compared to the previous networks was because this
new dataset contains less data. Thus, maintaining or increas-
ing the number of neurons used for NNGv2 would produce
overfitting. NNGv2_nowinter provides statistics in the GLO-
DAPv2_nowinter dataset similar to those of the NNGv2 in
GLODAPv2 dataset (5.5 vs. 5.3 µmol kg−1 respectively). But
of greater importance are the statistics which resulted from
the GLODAPv2_winter dataset, which reinforce the subsur-
face layer hypothesis (Table 5). The low error reached in this
independent winter dataset and the low differences with that
from NNGv2 in each depth layer (Table 5) show how the net-
work is able to obtain the winter relations in any depth from
the function fitted with data from other seasons. Therefore,
the lack of winter data in different regions does not automat-
ically mean that the climatology will be biased towards the
more sampled seasons.

3.4 Climatology

The monthly climatology of AT is based on the relations
obtained in the training procedure of NNGv2 applied to
the WOA13 and CANYON-B-derived monthly climatolog-
ical fields (Appendix A). We have demonstrated that the
AT computed by NNGv2 agrees reasonably with the mea-
sured AT when the inputs associated with it are passed
through the network; i.e., the relations obtained from GLO-
DAPv2 in the training stage are robust. Therefore, the AT
patterns in the climatology are forced by the patterns of the
WOA13 variables and CANYON-B-derived ones used as in-
puts. The climatology can be found in a netCDF file at the
data repository of the Spanish National Research Council
(CSIC; https://doi.org/10.20350/digitalCSIC/8644; Broullón
et al., 2019) together with a video of the monthly variation
at the surface and in three longitudinal sections of the three
main oceans.

The distribution of the surface annual mean AT (Fig. 9)
is similar to that shown in previous climatologies (e.g., Lee
et al., 2006; Takahashi et al., 2014; Lauvset et al., 2016).
Not surprisingly, there is a high correlation with the salin-
ity distribution and, consequently, with the evaporation–
precipitation patterns. The largest values in the surface layer
occur in the Mediterranean Sea, Red Sea, and in the subtrop-
ical gyres of the Atlantic and South Pacific Ocean, with all
of them prevailing throughout the year in the monthly clima-

Figure 8. Monthly variability of temperature, salinity,
NO= 9*NO3 +O2 and PO= 135*PO4+O2 (defined ac-
cording to Broecker, 1974) for different ocean basins. All variables
were averaged for each area defined in Fig. S1. Temperature
and salinity were obtained from WOA13 objectively analyzed
monthly climatologies, oxygen was obtained filtering the WOA13
objectively analyzed monthly climatology (see Appendix A),
nitrate and phosphate were obtained by applying CANYON-B to
the previous variables (see Appendix A), and AT was obtained
from the present climatology (see Sect. 3.4). Each zone is displaced
in each graph for a certain constant quantity of the variable for a
better visualization; that is, the data shown are not the real values.
Indian Ocean: 100–200 m; South Atlantic, South Pacific and North
Pacific: 50–100 m.
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Table 5. RMSE and bias obtained with NNGv2 and NNGv2 in dif-
ferent depth ranges and datasets of GLODAPv2. Units are micro-
moles per kilogram (µmol kg−1).

Depth NNGv2_
range (m) Dataset Statistic NNGv2 nowinter

0–50
No winter

RMSE 11.0 11.0
bias −0.2 0.1

Winter
RMSE 4.8 5.8
bias −0.4 −0.4

50–150
No winter

RMSE 6.2 6.2
bias −0.2 0.0

Winter
RMSE 4.6 5.4
bias 0.1 0.4

150–500
No winter

RMSE 4.3 4.4
bias −0.3 0.0

Winter
RMSE 4.0 4.4
bias 0.3 0.8

500–1000
No winter

RMSE 4.0 4.0
bias −0.2 0.0

Winter
RMSE 3.8 4.1
bias 0.1 0.5

1000–2000
No winter

RMSE 3.8 3.8
bias −0.2 −0.1

Winter
RMSE 3.5 3.9
bias 0.2 0.6

2000–3000
No winter

RMSE 3.8 3.8
bias −0.2 0.1

Winter
RMSE 3.4 4.0
bias 0.0 0.4

tology. At depth, these maxima are all present at least up to
150 m (Fig. 9). Below 700 m, the Pacific and Indian Ocean
show higher AT concentrations than the younger waters of
the Atlantic (Fig. 9). Furthermore, features such as the high-
AT Mediterranean water entering the Atlantic Ocean are cap-
tured in the climatology (Fig. 9, 1000 m chart, black circle).
In general, the patterns agree with the main ocean processes
responsible for the AT variability as explained previously.

The seasonal amplitude of sea surface AT (Fig. 10) is gen-
erally in agreement with that obtained by Lee et al. (2006).
The highest amplitudes are in the north equatorial zone, in
the Arctic Ocean and in coastal zones, i.e., at locations where
there are rivers with a large water discharge (like the Ama-
zon, Congo, La Plata or Arctic rivers). The seasonal ampli-
tude of the surface salinity (Fig. S6) can explain most of the
variability in the seasonal amplitude of AT. In areas with a
large seasonal amplitude of salinity (more than 1 unit; mainly
the Arctic Ocean and coastal zones near rivers with high dis-
charge), this variable linearly explains 79 % of the seasonal

Figure 9. Annual mean climatology of AT at three depths. The
black circle in the 1000 m panel points out the area of influence
of the Mediterranean water in the Atlantic Ocean. This figure was
made with Ocean Data View (Schlitzer, 2016).

amplitude AT variability. However, the seasonal amplitude
in the Arctic Ocean should be taken with caution due to the
difficulty in accurately modeling this complex zone, as dis-
cussed previously. Despite the presence of high levels of AT
in some river mouths in the melting months, the AT carried
by the rivers could not be represented in the climatology, and
this can enhance the seasonal cycle due to an underestimated
value in low-salinity waters with high riverine AT. On the
other hand, in areas with a low seasonal amplitude of salinity
(less than 1 unit; mainly oceanic areas and coastal regions
without rivers with high discharge), about 62 % of variability
is linearly explained. This result shows the importance of the
inclusion of other predictors besides salinity in the network
and the nonlinearity of the method proposed in this study to
explain nearly all the AT variability.

The seasonal amplitude of AT is progressively reduced at
depth (Fig. S7) as a result of the reduction of the variabil-
ity of the variables which influence the variability of the AT.
The seasonality disappears almost completely below 400 m
depth, although some patches of variability are present likely
because of a conjunction of the error of the network and the
seasonal variability in the climatological input variables. In
addition, these patches could also come from the learning
stage since the training data of AT present monthly varia-
tions of up to ∼ 15 µmol kg−1 for some areas, even at depths
greater than 1000 m.

Although it was shown that the neural network can ac-
curately compute AT in both GLODAPv2 and time-series
datasets, the quality of WOA13 data (and that of the input
climatologies generated in this study) also determines the ro-
bustness of the climatology. Unfortunately, WOA13 does not
offer uncertainty fields associated with the objectively ana-
lyzed climatologies to compute a coherent estimation of the
uncertainty in the AT climatology. Therefore, the climato-
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Figure 10. Seasonal amplitude of sea surface AT. This figure was made with Ocean Data View (Schlitzer, 2016).

logical values offered in this study should be evaluated by
comparing them with observations in a monthly average over
many years. This can only be done at the locations of time se-
ries with representative amounts of data; Fig. 11 shows this
analysis at the surface. At both the BATS and HOT time se-
ries, the differences between the averaged measured AT and
the climatology are quite low. The comparisons are better
when AT is computed by NNGv2 using as inputs the mea-
sured values in the time series (data not shown), showing the
importance of the quality of the input variables.

The previous results hold true also for other depth lay-
ers. A comparison of monthly profiles up to about 500 m
(BATS) and 1000 m (HOT) between the AT climatology ob-
tained from WOA13 and CANYON-B-derived climatologi-
cal fields and the one from the averaging of the time-series
data shows low differences (Fig. S8). In BATS, the RMSE
of this comparison ranges between 1.4 and 3.6 µmol kg−1

(mean RMSE of 2.2 µmol kg−1) and the bias between −0.2
and 4.3 µmol kg−1 for all months. In HOT, the RMSE of this
comparison ranges between 3.6 and 9.7 µmol kg−1 (mean
RMSE of 6.3 µmol kg−1) and the bias between −1.7 and
3.1 µmol kg−1 for all months. The climatological measured
data are for the periods between 1991 and 2015 (BATS) and
between 1989 and 2018 (HOT), and WOA13 data are sup-
posed to cover a larger range. Despite this time difference,
the AT climatology represents quite accurately the measured
values averaged in each month.

Compared to the other climatologies, the surface annual
mean AT of this study is closer to that of Lee et al. (2006)
(Table 6). This is likely because temperature and salinity
are included as nonlinear predictors of AT. In Takahashi et
al. (2014), AT derives from the linear regression between
PALK and one predictor (salinity), and in the Lauvset et
al. (2016) study DIVA (Data-Interpolating Variational Anal-

ysis; Troupin et al., 2010) was used. Furthermore, the trans-
fer of our climatology to the coarser grid of Takahashi et
al. (2014) for the comparisons may enhance dissimilarities.

The comparison of the monthly values of our climatology
and the other climatologies available at the same time fre-
quency (Table 7) shows the greatest similarity of ours and
that of Lee et al. (2006). The reasons given above may also
hold here. In addition, part of the differences between the
comparisons may originate from the different versions of the
WOA used in each study (Lee et al., 2006: temperature and
salinity from WOA01; Takahashi et al., 2014: salinity from
WOA09 and nitrate from WOA94; this study: temperature,
salinity and oxygen (filtered) from WOA13 and nutrients de-
rived from CANYON-B (Appendix A)).

In general, the surface spatial patterns of the differences
between the annual mean of ourAT climatology and the three
other ones under consideration are not correlated (Fig. S9).
Compared to Takahashi et al. (2014), the largest differences
are in the Beaufort Sea and in three zonal bands: 54–60◦ S,
8–28◦ N and 40–60◦ N (Fig. S9a). The Pacific Ocean has the
highest dissimilarities in these three bands. In general, the
Atlantic Ocean and the Indian Ocean have the smallest dif-
ferences. The largest differences in these two ocean basins
are mainly located close to the river mouths. This result
shows how the different parametrizations of the AT diverge
highly at low salinities. On the other hand, the major differ-
ences with Lee et al. (2006) (Fig. S9b) are surrounding North
America’s Pacific coast, the area of influence of the Amazon
river, the zone between both the Niger and the Congo rivers,
and the North Sea. In the open ocean there are some wide
areas where the differences are remarkably high. They are
mainly in the South Pacific. It should also be noted that the
transition zone between areas 1 (subtropics) and 2 (equatorial
upwelling Pacific) defined in the study of Lee et al. (2006)
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Figure 11. Monthly variation of AT at BATS (0–10 m) and HOT (0–30 m) time-series locations of climatological measured data (red line)
and the monthly climatology of AT computed with NNGv2 (black line). The shading represents the standard deviation of the average of the
measured data.

Table 6. Comparison of four annual mean surface climatologies of AT. * The domain analyzed is the same as Lee et al. (2006) for coherency
reasons.

Lauvset Takahashi Lee et
RMSE (µmol kg−1) r2 NNGv2 et al. (2016)* et al. (2014) al. (2006)

NNGv2 0.94 0.93 0.97
Lauvset et al. (2016)* 12.9 0.90 0.92
Takahashi et al. (2014) 14.4 17.8 0.93
Lee et al. (2006) 7.7 14.4 12.4

Table 7. Comparison between the three monthly climatologies of AT.

Lee et al. (2006) Takahashi et Lee et al. (2006)
vs. NNGv2 al. (2014) vs. NNGv2 vs. Takahashi et al. (2014)

Month RMSE RMSE RMSE
(µmol kg−1) r2 (µmol kg−1) r2 (µmol kg−1) r2

January 10.9 0.95 16.0 0.92 14.2 0.92
February 10.5 0.95 16.4 0.90 14.7 0.91
March 11.1 0.95 16.4 0.90 14.3 0.91
April 11.2 0.95 17.8 0.89 15.0 0.91
May 11.4 0.94 17.2 0.89 13.8 0.92
June 11.4 0.94 17.5 0.89 14.3 0.91
July 11.5 0.94 31.3 0.78 14.8 0.91
August 12.8 0.93 19.0 0.90 14.8 0.91
September 11.2 0.95 17.3 0.92 14.9 0.91
October 11.3 0.95 14.5 0.93 13.1 0.93
November 10.7 0.95 15.7 0.92 12.8 0.93
December 10.8 0.95 16.3 0.92 13.9 0.92

generates a discontinuity in the difference map. Finally, the
largest differences with Lauvset et al. (2016) (Fig. S9c) are
less localized. The Arctic Ocean and the Pacific sector of the
Southern Ocean are the areas where there is a large spatial
continuity in the differences.

An important cause of the differences between the clima-
tologies stems from the use of different inputs to generate
them. As an example, this can be seen when the climatolo-
gies of Lauvset et al. (2016) are used as input variables to
compute AT with NNGv2 instead of the WOA13 data. In the
surface layer, a considerable reduction of the RMSE (12.9 to
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9.9 µmol kg−1) and an increase of the r2 from 0.94 to 0.96
are obtained. In the deeper layers, the differences are pro-
gressively decreasing. The values of the RMSE of the com-
parisons below 250 m are in the range of 4 to 6 µmol kg−1,
and the improvement caused by the input usage is reduced
to around 1 µmol kg−1. This last result shows an increasing
similarity between Lauvset et al. (2016) climatologies and
those used in the present study with increasing depth. How-
ever, and to be consistent, it is recommended to use the AT
climatology corresponding with the other inputs used in the
studies that arise from these products (e.g., biogeochemical
modeling studies).

4 Data availability

The climatologies of AT, oxygen and nutrients (see Ap-
pendix A) and the NNGv2 designed in this study are avail-
able at the data repository of the Spanish National Research
Council (CSIC; https://doi.org/10.20350/digitalCSIC/8644,
Broullón et al., 2019).

5 Conclusions

A neural network to compute AT anywhere in the ocean has
been presented. As evaluated by the RMSE between the mea-
sured and the computed data, the neural network approach
presented in this study offers increased precision compared
to most of the approaches in previous studies. Furthermore,
the global relationship between AT and input variables was
obtained from a higher number of quality-controlled data
than before in the generation of a monthly climatology, with
a greater temporal and spatial resolution. We have demon-
strated how one single global algorithm is able to compute
AT satisfactorily for the entire global ocean. This has enabled
us to generate a monthly climatology without the need to use
smoothing techniques between different oceanic areas.

The validation using different independent datasets
demonstrates the good network generalization. In addition,
the spatiotemporal AT variability is well captured by the net-
work as shown in time-series validation. Therefore, the ob-
tained climatology using WOA13 inputs and those of oxygen
and nutrient climatologies created in this study should reflect
this variability due to the good network performance in the
independent datasets.

We offer this global monthly climatology of AT to the sci-
entific community for advancing the understanding of the
ocean carbon cycle. Our new climatology may be particu-
larly useful as input to modeling efforts. It is worthwhile to
mention that the network offered here is also useful to ob-
tain AT values for samples where the inputs for the neural
network are present.

www.earth-syst-sci-data.net/11/1109/2019/ Earth Syst. Sci. Data, 11, 1109–1127, 2019
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Appendix A

The relevance of a well-represented seasonal variability in
the predictor variables used to create the monthly AT cli-
matology is very important to obtain a well-represented AT
seasonal variability. Analyzing the variability in the WOA13
variables, we have found some remarkable aspects that have
led us to modify and generate new climatologies for some of
the predictor variables.

When the variability in WOA13 climatologies is compared
with the one in time series with enough measured data to ob-
tain climatological values, a strange variability is observed in
the former. In general, the monthly climatologies of oxygen
and nutrients present some high peaks of seasonal variabil-
ity at different depths in relation to the neighboring depths
around all of the ocean. These peaks also occur at time se-
ries locations showing a discrepancy regarding the measured
climatological seasonal variability (Figs. A1 and A2).

The profile of oxygen seasonal variability at ESTOC
clearly shows this fact at depths around 750 and 1200 m
(Fig. A1). The same happens at ICELAND around 800 m,
although with a smaller magnitude (Fig. A1). To avoid the
disruptions in the profiles of oxygen seasonal variability, we
applied a fifth-order one-dimensional median filter through
the depth dimension to the WOA13 oxygen monthly clima-
tology. In general, the results show a reduction of the peaks,
and the trends and magnitude of the profiles are more similar
to those of the measured data (Fig. A1).

Figure A1. Profiles of oxygen seasonal amplitude at different time-
series locations obtained from WOA13 oxygen monthly climatol-
ogy (WOA13 original), from WOA13 original after a median fil-
tering (WOA13 filter depth) and from measured data averaged by
month (Measured). It should be considered that profiles at ESTOC,
ICELAND and IRMINGER do not come from a quantity of data as
high as those of HOT and BATS and cannot be considered a pure
climatology. Units of seasonal amplitude are micromoles per kilo-
gram (µmol kg−1).

In the case of nutrients, we took advantage of the recent
publication of the CANYON-B method (Bittig et al., 2018)
which allows one to compute phosphate, nitrate and silicate
from temperature, salinity, oxygen, position and time. There-
fore, the monthly climatologies of temperature and salinity
from WOA13 and the one of oxygen created in this study
were used as inputs of CANYON-B to obtain monthly cli-
matologies of nutrients up to 1500 m (this depth is the max-
imum depth up to which WOA13 offers monthly climatolo-
gies of temperature, salinity and oxygen). In general, the re-
sults show a reduction of the peaks shown by WOA13 and a
higher similarity with the measured profiles (Fig. A2).

The monthly climatologies of oxygen and nutrients from
WOA13 probably present the mentioned disruptions of the
seasonal variability because of a combination of low data
availability in certain areas and the method used for map-
ping. Therefore, the monthly climatology of AT obtained us-
ing as inputs of the NNGv2 the climatologies created here
should represent a more realistic seasonal variability than if
all WOA13 ones were used.

Figure A2. Profiles of nutrient seasonal amplitude at differ-
ent time-series locations obtained from WOA13 monthly clima-
tologies (WOA13 original), CANYON-B-derived climatologies
(CANYON-B) and from measured data averaged by month (Mea-
sured). It should be considered that profiles at ESTOC, ICELAND
and IRMINGER do not come from a quantity of data as high as
those of HOT and BATS and cannot be considered a pure climatol-
ogy.
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