Articles | Volume 15, issue 8
https://doi.org/10.5194/essd-15-3673-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-3673-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Global oceanic diazotroph database version 2 and elevated estimate of global oceanic N2 fixation
Zhibo Shao
State Key Laboratory of Marine Environmental Science and College of Ocean
and Earth Sciences, Xiamen University, Xiamen, Fujian, China
Yangchun Xu
State Key Laboratory of Marine Environmental Science and College of Ocean
and Earth Sciences, Xiamen University, Xiamen, Fujian, China
Hua Wang
State Key Laboratory of Marine Environmental Science and College of Ocean
and Earth Sciences, Xiamen University, Xiamen, Fujian, China
Weicheng Luo
State Key Laboratory of Marine Environmental Science and College of Ocean
and Earth Sciences, Xiamen University, Xiamen, Fujian, China
Lice Wang
State Key Laboratory of Marine Environmental Science and College of Ocean
and Earth Sciences, Xiamen University, Xiamen, Fujian, China
Yuhong Huang
State Key Laboratory of Marine Environmental Science and College of Ocean
and Earth Sciences, Xiamen University, Xiamen, Fujian, China
Nona Sheila R. Agawin
Marine Ecology and Systematics (MarES) Research Group, University of the
Balearic Islands, Palma de Mallorca, Spain
Ayaz Ahmed
Environment and Life Science Research Centre, Kuwait Institute for
Scientific Research, Salmiya, Kuwait
Mar Benavides
Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, UM 110, 13288,
Marseille, France
Turing Center for Living Systems, Aix-Marseille University, 13009 Marseille,
France
Mikkel Bentzon-Tilia
Department for Biotechnology and Biomedicine, Technical University of
Denmark, Lyngby, Denmark
Ilana Berman-Frank
Department of Marine Biology, Leon H. Charney School of Marine Sciences,
University of Haifa, Haifa, Israel
Hugo Berthelot
Ifremer, DYNECO, Plouzané, France
Isabelle C. Biegala
Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, UM 110, 13288,
Marseille, France
Mariana B. Bif
Monterey Bay Aquarium Research Institute, Moss Landing, California, USA
Antonio Bode
Oceanographic Center of A Coruña, Spanish Institute of Oceanography
(IEO-CSIC), A Coruña, Spain
Sophie Bonnet
Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, UM 110, 13288,
Marseille, France
Deborah A. Bronk
Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, USA
Mark V. Brown
Climate Change Cluster, University of Technology Sydney, Sydney, NSW,
Australia
Lisa Campbell
Department of Oceanography, Texas A&M University, College Station, Texas,
USA
Douglas G. Capone
Department of Biological Sciences, Marine and Environmental Biology Section,
University of Southern California, Los Angeles, California, USA
Edward J. Carpenter
College of Science and Engineering, San Francisco State University, San
Francisco, California, USA
Nicolas Cassar
Division of Earth and Ocean Sciences, Nicholas School of the Environment,
Duke University, Durham, North Carolina, USA
CNRS, Université de Brest, IRD, Ifremer, LEMAR, Plouzané, France
Bonnie X. Chang
Vesta, PBC, Southampton, New York, USA
Dreux Chappell
College of Marine Science, University of South Florida, Tampa, Florida, USA
Yuh-ling Lee Chen
Department of Oceanography, National Sun Yat-sen University, Kaohsiung,
Taiwan
Matthew J. Church
Flathead Lake Biological Station, University of Montana, Polson, Montana,
USA
Francisco M. Cornejo-Castillo
Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
Amália Maria Sacilotto Detoni
Institute of Marine Sciences of Andalucía (ICMAN), Consejo Superior de
Investigaciones Científicas (CSIC), Campus Río San Pedro, Puerto
Real, Spain
Scott C. Doney
Department of Environmental Sciences, University of Virginia,
Charlottesville, Virginia, USA
Cecile Dupouy
Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, UM 110, 13288,
Marseille, France
Marta Estrada
Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
Camila Fernandez
CNRS Observatoire océanologique, Banyuls-sur-mer, France
Center for Oceanographic Research COPAS Coastal, Universidad de
Concepción, Vigo, Chile
Bieito Fernández-Castro
Ocean and Earth Science, National Oceanography Centre, University of
Southampton, Southampton, UK
Debany Fonseca-Batista
Department of Oceanography, Dalhousie University, Halifax, Nova Scotia,
Canada
Rachel A. Foster
Department of Ecology, Environment, and Plant Sciences, Stockholm
University, Stockholm, Sweden
Ken Furuya
Institute of Plankton Eco-engineering, Soka University, Hachioji, Tokyo,
Japan
Nicole Garcia
Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, UM 110, 13288,
Marseille, France
Kanji Goto
Graduate School of Environmental Science, Hokkaido University, Kita-Ku,
Sapporo, Japan
Jesús Gago
Spanish Institute of Oceanography (IEO-CSIC), Centro Oceanografico de Vigo, Concepción,
Spain
Mary R. Gradoville
Columbia River Inter-Tribal Fish Commission, Portland, Oregon, USA
M. Robert Hamersley
Environmental Studies, Soka University of America, Aliso Viejo, California,
USA
Britt A. Henke
Ocean Sciences Department, University of California at Santa Cruz, Santa
Cruz, California, USA
Cora Hörstmann
Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, UM 110, 13288,
Marseille, France
Amal Jayakumar
Department of Geosciences, Princeton University, Princeton, New Jersey, USA
Zhibing Jiang
Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou,
Zhejiang, China
Shuh-Ji Kao
State Key Laboratory of Marine Environmental Science and College of Ocean
and Earth Sciences, Xiamen University, Xiamen, Fujian, China
David M. Karl
Department of Oceanography, University of Hawai'i at Mānoa, Honolulu,
Hawaii, USA
Leila R. Kittu
Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel,
Düstern, Kiel, Germany
Angela N. Knapp
Department of Earth, Ocean, & Atmospheric Science, Florida State
University, Tallahassee, Florida, USA
Sanjeev Kumar
Geosciences Division, Physical Research Laboratory, Ahmedabad, India
Julie LaRoche
Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
Hongbin Liu
Department of Ocean Science, The Hong Kong University of Science and
Technology, Hong Kong SAR, China
Jiaxing Liu
Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
Caroline Lory
French National Research Institute for Sustainable Development, IRD,
Marseille, France
Carolin R. Löscher
Department of Biology, DIAS, University of Southern Denmark, Odense, Denmark
Emilio Marañón
Centro de Investigación Mariña da Universidade de Vigo (CIM-UVigo),
Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo,
Campus Lagoas-Marcosende, Vigo, Spain
Lauren F. Messer
Division of Biological and Environmental Sciences, Faculty of Natural
Sciences, University of Stirling, Stirling, Scotland, UK
Matthew M. Mills
Earth System Science, Stanford University, Stanford, California, USA
Wiebke Mohr
Max Planck Institute for Marine Microbiology, Bremen, Germany
Pia H. Moisander
Department of Biology, University of Massachusetts Dartmouth, Dartmouth,
Massachusetts, USA
Claire Mahaffey
Department of Earth, Ocean and Ecological Sciences, University of Liverpool,
Liverpool, UK
Robert Moore
Department of Oceanography, Dalhousie University, Halifax, Nova Scotia,
Canada
Beatriz Mouriño-Carballido
Centro de Investigación Mariña da Universidade de Vigo (CIM-UVigo),
Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo,
Campus Lagoas-Marcosende, Vigo, Spain
Margaret R. Mulholland
Department of Ocean and Atmospheric Sciences, Old Dominion University,
Norfolk, Virginia, USA
Shin-ichiro Nakaoka
Center for Global Environmental Research, National Institute for
Environmental Studies, Tsukuba, Japan
Joseph A. Needoba
OHSU-PSU School of Public Health, Oregon Health and Science University
Portland, Portland, Oregon, USA
Eric J. Raes
Flourishing Oceans, Minderoo Foundation, Broadway, Nedlands, WA, Australia
Eyal Rahav
Israel Oceanographic and Limnological Research, National Institute of
Oceanography, Haifa, Israel
Teodoro Ramírez-Cárdenas
Centro Oceanográfico de Málaga, Instituto Español de
Oceanografía (IEO, CSIC), Fuengirola, Spain
Christian Furbo Reeder
Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, UM 110, 13288,
Marseille, France
Lasse Riemann
Department of Biology, University of Copenhagen, Helsingør, Denmark
Virginie Riou
Analytical, Environmental and Geo-Chemistry & Earth System Sciences,
Vrije Universiteit Brussel, Brussels, Belgium
Julie C. Robidart
National Oceanography Centre, Southampton, UK
Vedula V. S. S. Sarma
CSIR-National Institute of Oceanography, Regional Cente Waltair,
Visakhapatnam, India
Takuya Sato
Institute for Chemical Research, Kyoto University, Kyoto, Japan
Himanshu Saxena
Geosciences Division, Physical Research Laboratory, Ahmedabad, India
Corday Selden
Department of Marine and Coastal Sciences, Rutgers University, New Brunswick
New Jersey, USA
Justin R. Seymour
Climate Change Cluster, University of Technology Sydney, Sydney, New South
Wales, Australia
Dalin Shi
State Key Laboratory of Marine Environmental Science and College of Ocean
and Earth Sciences, Xiamen University, Xiamen, Fujian, China
Takuhei Shiozaki
Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba,
Japan
Arvind Singh
Geosciences Division, Physical Research Laboratory, Ahmedabad, India
Rachel E. Sipler
Climate Change Cluster, University of Technology Sydney, Sydney, NSW,
Australia
Research Centre for Indian Ocean Ecosystem, Tianjin University of Science
and Technology, Tianjin, China
College of Marine Science and Technology, China University of Geosciences
(Wuhan), Wuhan, Hubei, China
Koji Suzuki
Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
Kazutaka Takahashi
Graduate School of Agricultural and Life Sciences, The University of Tokyo,
Tokyo, Japan
Yehui Tan
Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
Weiyi Tang
Department of Geosciences, Princeton University, Princeton, New Jersey, USA
Jean-Éric Tremblay
Québec-Océan and Takuvik, Department of Biology, Laval University,
Québec, Canada
Kendra Turk-Kubo
Ocean Sciences Department, University of California at Santa Cruz, Santa
Cruz, California, USA
Zuozhu Wen
State Key Laboratory of Marine Environmental Science and College of Ocean
and Earth Sciences, Xiamen University, Xiamen, Fujian, China
Angelicque E. White
Department of Oceanography, University of Hawai'i at Mānoa, Honolulu,
Hawaii, USA
Samuel T. Wilson
School of Natural and Environmental Sciences, Newcastle University,
Newcastle upon Tyne, UK
Takashi Yoshida
Graduate school of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, Japan
Jonathan P. Zehr
Ocean Sciences Department, University of California at Santa Cruz, Santa
Cruz, California, USA
Run Zhang
State Key Laboratory of Marine Environmental Science and College of Ocean
and Earth Sciences, Xiamen University, Xiamen, Fujian, China
Yao Zhang
State Key Laboratory of Marine Environmental Science and College of Ocean
and Earth Sciences, Xiamen University, Xiamen, Fujian, China
State Key Laboratory of Marine Environmental Science and College of Ocean
and Earth Sciences, Xiamen University, Xiamen, Fujian, China
Related authors
Zhibo Shao and Ya-Wei Luo
Biogeosciences, 19, 2939–2952, https://doi.org/10.5194/bg-19-2939-2022, https://doi.org/10.5194/bg-19-2939-2022, 2022
Short summary
Short summary
Non-cyanobacterial diazotrophs (NCDs) may be an important player in fixing N2 in the ocean. By conducting meta-analyses, we found that a representative marine NCD phylotype, Gamma A, tends to inhabit ocean environments with high productivity, low iron concentration and high light intensity. It also appears to be more abundant inside cyclonic eddies. Our study suggests a niche differentiation of NCDs from cyanobacterial diazotrophs as the latter prefers low-productivity and high-iron oceans.
Shreya Mehta, Jitender Kumar, Sipai Nazirahmed, Himanshu Saxena, Jyotiranjan S. Ray, Sanjeev Kumar, Indrani Karunasagar, and Arvind Singh
EGUsphere, https://doi.org/10.5194/egusphere-2025-3925, https://doi.org/10.5194/egusphere-2025-3925, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We tested how different minerals affect ocean chemistry to help remove carbon dioxide from the atmosphere. In coastal waters of the Arabian Sea, we found that man-made minerals like periclase and hydrated lime were much more effective than natural ones. Our results also reveal a new way to track unwanted side effects that reduce efficiency. This research helps identify safer and more effective methods for ocean-based climate solutions.
Montserrat Roca-Martí, Madeline Healey, Colleen E. McBride, Rachel Sipler, Emmanuel Devred, Carolina Cisternas-Novoa, Elisa Romanelli, Kyoko Ohashi, and Stephanie S. Kienast
EGUsphere, https://doi.org/10.5194/egusphere-2025-3671, https://doi.org/10.5194/egusphere-2025-3671, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We studied a historically large spring phytoplankton bloom in the Labrador Sea to quantify how much carbon reaches the deep ocean. Despite high productivity, only a small fraction of organic carbon sank below the ocean's productive layer, suggesting a limited role of the dominant phytoplankton species (Phaeocystis) in carbon export. Our findings highlight the need for long-term observations to better assess the ocean’s role in carbon sequestration.
Yannick Bras, Evelyn Freney, Mar Benavides, Estelle Bigeard, Gabriel Dulaquais, Céline Dimier, Laetitia Bouvier, Mickaël Ribeiro, Cécile Guieu, Sophie Bonnet, and Karine Sellegri
EGUsphere, https://doi.org/10.5194/egusphere-2025-3580, https://doi.org/10.5194/egusphere-2025-3580, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
In marine regions, sea spray aerosols may act as ice nucleating particles to promote the formation of ice crystals in the atmosphere. Here, we study the ice nucleating properties of the seawater and of generated sea spray measured during a ship campaign in contrasted waters, including hydrothermal-influenced waters. We report that the majority of particles were of biological origin, and that their variability closely followed the local biological activity.
Brandon M. Stephens, Montserrat Roca-Martí, Amy E. Maas, Vinícius J. Amaral, Samantha Clevenger, Shawnee Traylor, Claudia R. Benitez-Nelson, Philip W. Boyd, Ken O. Buesseler, Craig A. Carlson, Nicolas Cassar, Margaret Estapa, Andrea J. Fassbender, Yibin Huang, Phoebe J. Lam, Olivier Marchal, Susanne Menden-Deuer, Nicola L. Paul, Alyson E. Santoro, David A. Siegel, and David P. Nicholson
Biogeosciences, 22, 3301–3328, https://doi.org/10.5194/bg-22-3301-2025, https://doi.org/10.5194/bg-22-3301-2025, 2025
Short summary
Short summary
The ocean’s mesopelagic zone (MZ) plays a crucial role in the global carbon cycle. This study combines new and previously published measurements of organic carbon supply and demand collected in August 2018 in the MZ of the subarctic North Pacific Ocean. Supply was insufficient to meet demand in August, but supply entering into the MZ in the spring of 2018 could have met the August demand. Results suggest observations over seasonal timescales may help to close MZ carbon budgets.
Niek Kusters, Sjoerd Groeskamp, Bieito Fernandez Castro, and Hans van Haren
EGUsphere, https://doi.org/10.5194/egusphere-2025-3165, https://doi.org/10.5194/egusphere-2025-3165, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
This study compares both microstructure shear and thermistor data, and finds very weak dissipations rates down to O(10-12) W kg-1. The direct microstructure observations are compared to a finescale parameterization and Thorpe sorting method, for which we find good comparison. Insights into the relative roles between isoneutral and dianeutral mixing are obtained by using the triple decomposition framework.
Yosuke Niwa, Yasunori Tohjima, Yukio Terao, Tazu Saeki, Akihiko Ito, Taku Umezawa, Kyohei Yamada, Motoki Sasakawa, Toshinobu Machida, Shin-Ichiro Nakaoka, Hideki Nara, Hiroshi Tanimoto, Hitoshi Mukai, Yukio Yoshida, Shinji Morimoto, Shinya Takatsuji, Kazuhiro Tsuboi, Yousuke Sawa, Hidekazu Matsueda, Kentaro Ishijima, Ryo Fujita, Daisuke Goto, Xin Lan, Kenneth Schuldt, Michal Heliasz, Tobias Biermann, Lukasz Chmura, Jarsolaw Necki, Irène Xueref-Remy, and Damiano Sferlazzo
Atmos. Chem. Phys., 25, 6757–6785, https://doi.org/10.5194/acp-25-6757-2025, https://doi.org/10.5194/acp-25-6757-2025, 2025
Short summary
Short summary
This study estimated regional and sectoral emission contributions to the unprecedented surge of atmospheric methane for 2020–2022. The methane is the second most important greenhouse gas, and its emissions reduction is urgently required to mitigate global warming. Numerical modeling-based estimates with three different sets of atmospheric observations consistently suggested large contributions of biogenic emissions from South Asia and Southeast Asia to the surge of atmospheric methane.
Beata Bukosa, Sara Mikaloff-Fletcher, Gordon Brailsford, Dan Smale, Elizabeth D. Keller, W. Troy Baisden, Miko U. F. Kirschbaum, Donna L. Giltrap, Lìyǐn Liáng, Stuart Moore, Rowena Moss, Sylvia Nichol, Jocelyn Turnbull, Alex Geddes, Daemon Kennett, Dóra Hidy, Zoltán Barcza, Louis A. Schipper, Aaron M. Wall, Shin-Ichiro Nakaoka, Hitoshi Mukai, and Andrea Brandon
Atmos. Chem. Phys., 25, 6445–6473, https://doi.org/10.5194/acp-25-6445-2025, https://doi.org/10.5194/acp-25-6445-2025, 2025
Short summary
Short summary
We used atmospheric measurements and inverse modelling to estimate New Zealand's carbon dioxide (CO2) emissions and removals from 2011 to 2020. Our study reveals that New Zealand's land absorbs more CO2 than previously estimated, particularly in areas dominated by indigenous forests. Our results highlight gaps in current national CO2 estimates and methods, suggesting a need for further research to improve emissions reports and refine approaches to track progress toward climate mitigation goals.
Yuzo Miyazaki, Yunhan Wang, Eri Tachibana, Koji Suzuki, Youhei Yamashita, and Jun Nishioka
EGUsphere, https://doi.org/10.5194/egusphere-2025-2689, https://doi.org/10.5194/egusphere-2025-2689, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
It is essential to understand how biologically productive oceanic regions during spring phytoplankton blooms after sea ice melting contribute to the sea-to-air emission flux of atmospheric organic aerosols (OAs) in the subarctic oceans. Our shipboard measurements highlight the preferential formation of N-containing secondary water-soluble OAs associated with the predominant diatoms including ice algae during the bloom after sea ice melting/retreat in the subarctic ocean.
Li-Qing Jiang, Amanda Fay, Jens Daniel Müller, Lydia Keppler, Dustin Carroll, Siv K. Lauvset, Tim DeVries, Judith Hauck, Christian Rödenbeck, Luke Gregor, Nicolas Metzl, Andrea J. Fassbender, Jean-Pierre Gattuso, Peter Landschützer, Rik Wanninkhof, Christopher Sabine, Simone R. Alin, Mario Hoppema, Are Olsen, Matthew P. Humphreys, Kumiko Azetsu-Scott, Dorothee C. E. Bakker, Leticia Barbero, Nicholas R. Bates, Nicole Besemer, Henry C. Bittig, Albert E. Boyd, Daniel Broullón, Wei-Jun Cai, Brendan R. Carter, Thi-Tuyet-Trang Chau, Chen-Tung Arthur Chen, Frédéric Cyr, John E. Dore, Ian Enochs, Richard A. Feely, Hernan E. Garcia, Marion Gehlen, Lucas Gloege, Melchor González-Dávila, Nicolas Gruber, Yosuke Iida, Masao Ishii, Esther Kennedy, Alex Kozyr, Nico Lange, Claire Lo Monaco, Derek P. Manzello, Galen A. McKinley, Natalie M. Monacci, Xose A. Padin, Ana M. Palacio-Castro, Fiz F. Pérez, Alizée Roobaert, J. Magdalena Santana-Casiano, Jonathan Sharp, Adrienne Sutton, Jim Swift, Toste Tanhua, Maciej Telszewski, Jens Terhaar, Ruben van Hooidonk, Anton Velo, Andrew J. Watson, Angelicque E. White, Zelun Wu, Hyelim Yoo, and Jiye Zeng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-255, https://doi.org/10.5194/essd-2025-255, 2025
Preprint under review for ESSD
Short summary
Short summary
This review article provides an overview of 60 existing ocean carbonate chemistry data products, encompassing a broad range of types, including compilations of cruise datasets, gap-filled observational products, model simulations, and more. It is designed to help researchers identify and access the data products that best support their scientific objectives, thereby facilitating progress in understanding the ocean's changing carbonate chemistry.
Tom Reich, Natalia Belkin, Guy Sisma-Ventura, Hagar Hauzer, Maxim Rubin-Blum, Ilana Berman-Frank, and Eyal Rahav
EGUsphere, https://doi.org/10.5194/egusphere-2025-1445, https://doi.org/10.5194/egusphere-2025-1445, 2025
Short summary
Short summary
Dark carbon fixation by chemoautotrophs take a vital part in marine primary productivity. Measured rates can be seen all the way down to the dark layers of the ocean and integrated in our study site come close to the magnitude of photosynthesis. It can also explain about ~35 % of the missing organic carbon supply needed by deep microbial communities. By using oceanographic observations and analysis this paper highlights the significant of this overlooked parameter.
Anna Pedersen, Carolin R. Löscher, and Steffen M. Olsen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1218, https://doi.org/10.5194/egusphere-2025-1218, 2025
Short summary
Short summary
The North Atlantic plays a crucial role in absorbing atmospheric CO2, but its air-sea CO2 flux varies across time and space. Using historical climate model simulations, we investigate how physical and oceanic processes drive the variability. Our results show that sea ice, temperature, salinity, wind stress, and ocean circulation shape CO2 exchange, with short-term fluctuations playing a dominant role. Understanding these complex interactions is key to predicting future ocean carbon uptake.
Hisatomo Waga, Amane Fujiwara, Wesley J. Moses, Steven G. Ackleson, Daniel Koestner, Maria Tzortziou, Kyle Turner, Alana Menendez, Toru Hirawake, Koji Suzuki, and Sei-Ichi Saitoh
EGUsphere, https://doi.org/10.2139/ssrn.4967119, https://doi.org/10.2139/ssrn.4967119, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
The present study developed a satellite remote sensing algorithm for estimating phytoplankton size structure from space using machine learning approaches in optically complex Pacific Arctic waters. One of the key findings is that more complex machine learning approaches do not always produce more effective performance compared with the simple ones. This study demonstrated the benefits of utilizing machine learning approaches for developing satellite remote sensing algorithms.
Huailin Deng, Koji Suzuki, Ichiro Yasuda, Hiroshi Ogawa, and Jun Nishioka
Biogeosciences, 22, 1495–1508, https://doi.org/10.5194/bg-22-1495-2025, https://doi.org/10.5194/bg-22-1495-2025, 2025
Short summary
Short summary
Iron (Fe) and nitrate are vital for primary production in the North Pacific. Sedimentary Fe is carried by North Pacific Intermediate Water to the North Pacific, but the nutrient return path and its effect on phytoplankton are unclear. By combining Fe and macronutrient fluxes with phytoplankton composition, this study firstly revealed that Fe supply from the subsurface greatly controls diatom abundance and identified the nutrient return path in the subarctic gyre and Kuroshio–Oyashio transition area.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Hongmei Li, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Carla F. Berghoff, Henry C. Bittig, Laurent Bopp, Patricia Cadule, Katie Campbell, Matthew A. Chamberlain, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Thomas Colligan, Jeanne Decayeux, Laique M. Djeutchouang, Xinyu Dou, Carolina Duran Rojas, Kazutaka Enyo, Wiley Evans, Amanda R. Fay, Richard A. Feely, Daniel J. Ford, Adrianna Foster, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul K. Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Xin Lan, Siv K. Lauvset, Nathalie Lefèvre, Zhu Liu, Junjie Liu, Lei Ma, Shamil Maksyutov, Gregg Marland, Nicolas Mayot, Patrick C. McGuire, Nicolas Metzl, Natalie M. Monacci, Eric J. Morgan, Shin-Ichiro Nakaoka, Craig Neill, Yosuke Niwa, Tobias Nützel, Lea Olivier, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Zhangcai Qin, Laure Resplandy, Alizée Roobaert, Thais M. Rosan, Christian Rödenbeck, Jörg Schwinger, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Roland Séférian, Shintaro Takao, Hiroaki Tatebe, Hanqin Tian, Bronte Tilbrook, Olivier Torres, Etienne Tourigny, Hiroyuki Tsujino, Francesco Tubiello, Guido van der Werf, Rik Wanninkhof, Xuhui Wang, Dongxu Yang, Xiaojuan Yang, Zhen Yu, Wenping Yuan, Xu Yue, Sönke Zaehle, Ning Zeng, and Jiye Zeng
Earth Syst. Sci. Data, 17, 965–1039, https://doi.org/10.5194/essd-17-965-2025, https://doi.org/10.5194/essd-17-965-2025, 2025
Short summary
Short summary
The Global Carbon Budget 2024 describes the methodology, main results, and datasets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2024). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Maxim Rubin-Blum, Eyal Rahav, Guy Sisma-Ventura, Yana Yudkovski, Zoya Harbuzov, Or M. Bialik, Oded Ezra, Anneleen Foubert, Barak Herut, and Yizhaq Makovsky
Biogeosciences, 22, 1321–1340, https://doi.org/10.5194/bg-22-1321-2025, https://doi.org/10.5194/bg-22-1321-2025, 2025
Short summary
Short summary
Chemotones, transition zones in chemosynthetic ecosystems, alter geochemical cycles and biodiversity. We studied seep chemotones, which are heavily burrowed by ghost shrimp. To investigate if burrowing affects habitat functionality, we surveyed the seafloor with deep-sea vehicles, analyzed sediment, and explored microbial communities in burrows. We found chemosynthetic biofilms, linking them to macromolecule turnover and nutrient cycling. This process may play a crucial role in deep-sea cycles.
Julieta Schneider, Ulf Riebesell, Charly André Moras, Laura Marín-Samper, Leila Kittu, Joaquín Ortíz-Cortes, and Kai George Schulz
EGUsphere, https://doi.org/10.5194/egusphere-2025-524, https://doi.org/10.5194/egusphere-2025-524, 2025
Short summary
Short summary
Ocean Alkalinity Enhancement (OAE) is an approach to sequester additional atmospheric CO2 in the ocean and may alleviate ocean acidification. A large-scale mesocosm experiment in Norway tested Ca- and Si-based OAE, increasing total alkalinity (TA) by 0–600 µmol kg-1 and measuring CO2 gas exchange. While TA remained stable, we found mineral-type and/or pCO2/pH effects on coccolithophorid calcification, net community production and zooplankton respiration, providing insights for future OAE trials.
Takuya Sato, Tamaha Yamaguchi, Kiyotaka Hidaka, Sayaka Sogawa, Takashi Setou, Taketoshi Kodama, Takuhei Shiozaki, and Kazutaka Takahashi
Biogeosciences, 22, 625–639, https://doi.org/10.5194/bg-22-625-2025, https://doi.org/10.5194/bg-22-625-2025, 2025
Short summary
Short summary
Gamma A is a widespread non-cyanobacterial diazotroph that plays a crucial role in marine ecosystems, but its controlling factors are still largely unknown. This study, for the first time, quantified microzooplankton grazing on Gamma A and revealed the significance of grazing pressure on Gamma A distribution around the Kuroshio region. It highlights the importance of top-down controls on Gamma A abundance and the associated nitrogen cycle.
Michael Morando, Jonathan D. Magasin, Shunyan Cheung, Matthew M. Mills, Jonathan P. Zehr, and Kendra A. Turk-Kubo
Earth Syst. Sci. Data, 17, 393–422, https://doi.org/10.5194/essd-17-393-2025, https://doi.org/10.5194/essd-17-393-2025, 2025
Short summary
Short summary
Nitrogen is crucial in ocean food webs, but only some microbes can fix N2 gas into a bioavailable form. Most are known only by their nifH gene sequence. We created a software workflow for nifH data and ran it on 944 ocean samples, producing a database (DB) that captures the global diversity of N2-fixing marine microbes and the environmental factors that influence them. The workflow and DB can standardize analyses of past and future nifH datasets to enable insights into marine communities.
Tatsuki Tokoro, Shin-Ichiro Nakaoka, Shintaro Takao, Shu Saito, Daisuke Sasano, Kazutaka Enyo, Masao Ishii, Naohiro Kosugi, Tsuneo Ono, Kazuaki Tadokoro, and Yukihiro Nojiri
EGUsphere, https://doi.org/10.5194/egusphere-2024-3792, https://doi.org/10.5194/egusphere-2024-3792, 2025
Short summary
Short summary
We studied how landwater from the mainland of Japan affects the ocean's carbon cycle using decades of Total Alkalinity (TA) data from the Northwest Pacific. Statistical analysis revealed landwater as a major TA source, reducing coastal acidification by 65 %, but with minimal impact on atmospheric CO2 absorption. Future work aims to refine results with depth-specific data and apply findings to global models.
Isabell Schlangen, Elizabeth Leon-Palmero, Annabell Moser, Peihang Xu, Erik Laursen, and Carolin Regina Löscher
EGUsphere, https://doi.org/10.5194/egusphere-2024-3680, https://doi.org/10.5194/egusphere-2024-3680, 2024
Short summary
Short summary
We explored nitrogen fixation in the Arctic Ocean, revealing its key role in supporting coastal productivity, especially near melting glaciers. By combining molecular data, rate measurements, and environmental analysis, we identified dominant microbes like symbiotic unicellular cyanobacteria and linked high nitrogen fixation to glacial melt. Our findings suggest that climate-driven changes may expand niches for these microbes, reshaping nitrogen cycles and Arctic productivity in the future.
Julika Zinke, Gabriel Pereira Freitas, Rachel Ann Foster, Paul Zieger, Ernst Douglas Nilsson, Piotr Markuszewski, and Matthew Edward Salter
Atmos. Chem. Phys., 24, 13413–13428, https://doi.org/10.5194/acp-24-13413-2024, https://doi.org/10.5194/acp-24-13413-2024, 2024
Short summary
Short summary
Bioaerosols, which can influence climate and human health, were studied in the Baltic Sea. In May and August 2021, we used a sea spray simulation chamber during two ship-based campaigns to collect and measure these aerosols. We found that microbes were enriched in air compared to seawater. Bacterial diversity was analysed using DNA sequencing. Our methods provided consistent estimates of microbial emission fluxes, aligning with previous studies.
Sebastian I. Cantarero, Edgart Flores, Harry Allbrook, Paulina Aguayo, Cristian A. Vargas, John E. Tamanaha, J. Bentley C. Scholz, Lennart T. Bach, Carolin R. Löscher, Ulf Riebesell, Balaji Rajagopalan, Nadia Dildar, and Julio Sepúlveda
Biogeosciences, 21, 3927–3958, https://doi.org/10.5194/bg-21-3927-2024, https://doi.org/10.5194/bg-21-3927-2024, 2024
Short summary
Short summary
Our study explores lipid remodeling in response to environmental stress, specifically how cell membrane chemistry changes. We focus on intact polar lipids in a phytoplankton community exposed to diverse stressors in a mesocosm experiment. The observed remodeling indicates acyl chain recycling for energy storage in intact polar lipids during stress, reallocating resources based on varying growth conditions. This understanding is essential to grasp the system's impact on cellular pools.
Lennart Thomas Bach, Aaron James Ferderer, Julie LaRoche, and Kai Georg Schulz
Biogeosciences, 21, 3665–3676, https://doi.org/10.5194/bg-21-3665-2024, https://doi.org/10.5194/bg-21-3665-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is an emerging marine CO2 removal method, but its environmental effects are insufficiently understood. The OAE Pelagic Impact Intercomparison Project (OAEPIIP) provides funding for a standardized and globally replicated microcosm experiment to study the effects of OAE on plankton communities. Here, we provide a detailed manual for the OAEPIIP experiment. We expect OAEPIIP to help build scientific consensus on the effects of OAE on plankton.
Weiyi Tang, Jeff Talbott, Timothy Jones, and Bess B. Ward
Biogeosciences, 21, 3239–3250, https://doi.org/10.5194/bg-21-3239-2024, https://doi.org/10.5194/bg-21-3239-2024, 2024
Short summary
Short summary
Wastewater treatment plants (WWTPs) are known to be hotspots of greenhouse gas emissions. However, the impact of WWTPs on the emission of the greenhouse gas N2O in downstream aquatic environments is less constrained. We found spatially and temporally variable but overall higher N2O concentrations and fluxes in waters downstream of WWTPs, pointing to the need for efficient N2O removal in addition to the treatment of nitrogen in WWTPs.
Jakob Rønning, Zarah J. Kofoed, Mats Jacobsen, and Carolin R. Löscher
EGUsphere, https://doi.org/10.5194/egusphere-2023-2884, https://doi.org/10.5194/egusphere-2023-2884, 2024
Preprint archived
Short summary
Short summary
In our study, we assessed the impact of olivine on marine primary producers of ocean-based solutions. The experiments revealed no negative effects on carbon fixation rates. Additions of the alkaline minerals did not establish growth inhibition; instead, they showed slight growth increases with species-specific responses. Ni exposure from olivine did not inhibit growth. However, limitations include the absence of responses in natural settings.
Mathilde Dugenne, Marco Corrales-Ugalde, Jessica Y. Luo, Rainer Kiko, Todd D. O'Brien, Jean-Olivier Irisson, Fabien Lombard, Lars Stemmann, Charles Stock, Clarissa R. Anderson, Marcel Babin, Nagib Bhairy, Sophie Bonnet, Francois Carlotti, Astrid Cornils, E. Taylor Crockford, Patrick Daniel, Corinne Desnos, Laetitia Drago, Amanda Elineau, Alexis Fischer, Nina Grandrémy, Pierre-Luc Grondin, Lionel Guidi, Cecile Guieu, Helena Hauss, Kendra Hayashi, Jenny A. Huggett, Laetitia Jalabert, Lee Karp-Boss, Kasia M. Kenitz, Raphael M. Kudela, Magali Lescot, Claudie Marec, Andrew McDonnell, Zoe Mériguet, Barbara Niehoff, Margaux Noyon, Thelma Panaïotis, Emily Peacock, Marc Picheral, Emilie Riquier, Collin Roesler, Jean-Baptiste Romagnan, Heidi M. Sosik, Gretchen Spencer, Jan Taucher, Chloé Tilliette, and Marion Vilain
Earth Syst. Sci. Data, 16, 2971–2999, https://doi.org/10.5194/essd-16-2971-2024, https://doi.org/10.5194/essd-16-2971-2024, 2024
Short summary
Short summary
Plankton and particles influence carbon cycling and energy flow in marine ecosystems. We used three types of novel plankton imaging systems to obtain size measurements from a range of plankton and particle sizes and across all major oceans. Data were compiled and cross-calibrated from many thousands of images, showing seasonal and spatial changes in particle size structure in different ocean basins. These datasets form the first release of the Pelagic Size Structure database (PSSdb).
Nir Haim, Vika Grigorieva, Rotem Soffer, Boaz Mayzel, Timor Katz, Ronen Alkalay, Eli Biton, Ayah Lazar, Hezi Gildor, Ilana Berman-Frank, Yishai Weinstein, Barak Herut, and Yaron Toledo
Earth Syst. Sci. Data, 16, 2659–2668, https://doi.org/10.5194/essd-16-2659-2024, https://doi.org/10.5194/essd-16-2659-2024, 2024
Short summary
Short summary
This paper outlines the process of creating an open-access surface wave dataset, drawing from deep-sea research station observations located 50 km off the coast of Israel. The discussion covers the wave monitoring procedure, from instrument configuration to wave field retrieval, and aspects of quality assurance. The dataset presented spans over 5 years, offering uncommon in situ wave measurements in the deep sea, and addresses the existing gap in wave information within the region.
Han Zhang, Guangming Mai, Weicheng Luo, Meng Chen, Ran Duan, and Tuo Shi
Biogeosciences, 21, 2529–2546, https://doi.org/10.5194/bg-21-2529-2024, https://doi.org/10.5194/bg-21-2529-2024, 2024
Short summary
Short summary
We report taxon-specific biogeography of N2-fixing microbes (diazotrophs) driven by Kuroshio intrusion (Kl) into the South China Sea. We show that the composition and distribution of distinct diazotrophic taxa shift with Kl-induced variations in physicochemical parameters of seawater and that Kl shapes diazotrophic community primarily as a stochastic process. This study thus has implications for the distribution of diazotrophs in a future warming ocean, as Kls are projected to intensify.
Nico Lange, Björn Fiedler, Marta Álvarez, Alice Benoit-Cattin, Heather Benway, Pier Luigi Buttigieg, Laurent Coppola, Kim Currie, Susana Flecha, Dana S. Gerlach, Makio Honda, I. Emma Huertas, Siv K. Lauvset, Frank Muller-Karger, Arne Körtzinger, Kevin M. O'Brien, Sólveig R. Ólafsdóttir, Fernando C. Pacheco, Digna Rueda-Roa, Ingunn Skjelvan, Masahide Wakita, Angelicque White, and Toste Tanhua
Earth Syst. Sci. Data, 16, 1901–1931, https://doi.org/10.5194/essd-16-1901-2024, https://doi.org/10.5194/essd-16-1901-2024, 2024
Short summary
Short summary
The Synthesis Product for Ocean Time Series (SPOTS) is a novel achievement expanding and complementing the biogeochemical data landscape by providing consistent and high-quality biogeochemical time-series data from 12 ship-based fixed time-series programs. SPOTS covers multiple unique marine environments and time-series ranges, including data from 1983 to 2021. All in all, it facilitates a variety of applications that benefit from the collective value of biogeochemical time-series observations.
Zuozhu Wen, Ruotong Jiang, Tianli He, Thomas Browning, Haizheng Hong, and Dalin Shi
EGUsphere, https://doi.org/10.5194/egusphere-2024-775, https://doi.org/10.5194/egusphere-2024-775, 2024
Preprint withdrawn
Short summary
Short summary
The isotope effect of biological N2 fixation is a key parameter for understanding the nitrogen cycle, however, little is known about its regulatory mechanisms. Here we show for the first time that CO2 exerts important controls on the N isotopic composition in diazotrophic cyanobacteria Trichodesmium and Crocosphaera, through the controls on nitrogenase enzyme efficiency. This study provides insights into understanding the fluctuations of δ15N records, and thus the past nitrogen cycle.
Astrid Müller, Hiroshi Tanimoto, Takafumi Sugita, Prabir K. Patra, Shin-ichiro Nakaoka, Toshinobu Machida, Isamu Morino, André Butz, and Kei Shiomi
Atmos. Meas. Tech., 17, 1297–1316, https://doi.org/10.5194/amt-17-1297-2024, https://doi.org/10.5194/amt-17-1297-2024, 2024
Short summary
Short summary
Satellite CH4 observations with high accuracy are needed to understand changes in atmospheric CH4 concentrations. But over oceans, reference data are limited. We combine various ship and aircraft observations with the help of atmospheric chemistry models to derive observation-based column-averaged mixing ratios of CH4 (obs. XCH4). We discuss three different approaches and demonstrate the applicability of the new reference dataset for carbon cycle studies and satellite evaluation.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Matthew D. Eisaman, Sonja Geilert, Phil Renforth, Laura Bastianini, James Campbell, Andrew W. Dale, Spyros Foteinis, Patricia Grasse, Olivia Hawrot, Carolin R. Löscher, Greg H. Rau, and Jakob Rønning
State Planet, 2-oae2023, 3, https://doi.org/10.5194/sp-2-oae2023-3-2023, https://doi.org/10.5194/sp-2-oae2023-3-2023, 2023
Short summary
Short summary
Ocean-alkalinity-enhancement technologies refer to various methods and approaches aimed at increasing the alkalinity of seawater. This chapter explores technologies for increasing ocean alkalinity, including electrochemical-based approaches, ocean liming, accelerated weathering of limestone, hydrated carbonate addition, and coastal enhanced weathering, and suggests best practices in research and development.
Maria D. Iglesias-Rodríguez, Rosalind E. M. Rickaby, Arvind Singh, and James A. Gately
State Planet, 2-oae2023, 5, https://doi.org/10.5194/sp-2-oae2023-5-2023, https://doi.org/10.5194/sp-2-oae2023-5-2023, 2023
Short summary
Short summary
Recent concern about the repercussions of rising atmospheric CO2 as a key heat-trapping agent have prompted ocean experts to discuss ocean alkalinity enhancement (OAE) as a CO2 removal approach but also as a potential way to mitigate ocean acidification. This chapter provides an overview of best practice in OAE laboratory experimentation by identifying key criteria to achieve high-quality results and providing recommendations to contrast results with other laboratories.
Weiyi Tang, Bess B. Ward, Michael Beman, Laura Bristow, Darren Clark, Sarah Fawcett, Claudia Frey, François Fripiat, Gerhard J. Herndl, Mhlangabezi Mdutyana, Fabien Paulot, Xuefeng Peng, Alyson E. Santoro, Takuhei Shiozaki, Eva Sintes, Charles Stock, Xin Sun, Xianhui S. Wan, Min N. Xu, and Yao Zhang
Earth Syst. Sci. Data, 15, 5039–5077, https://doi.org/10.5194/essd-15-5039-2023, https://doi.org/10.5194/essd-15-5039-2023, 2023
Short summary
Short summary
Nitrification and nitrifiers play an important role in marine nitrogen and carbon cycles by converting ammonium to nitrite and nitrate. Nitrification could affect microbial community structure, marine productivity, and the production of nitrous oxide – a powerful greenhouse gas. We introduce the newly constructed database of nitrification and nitrifiers in the marine water column and guide future research efforts in field observations and model development of nitrification.
Yifan Guan, Gretchen Keppel-Aleks, Scott C. Doney, Christof Petri, Dave Pollard, Debra Wunch, Frank Hase, Hirofumi Ohyama, Isamu Morino, Justus Notholt, Kei Shiomi, Kim Strong, Rigel Kivi, Matthias Buschmann, Nicholas Deutscher, Paul Wennberg, Ralf Sussmann, Voltaire A. Velazco, and Yao Té
Atmos. Chem. Phys., 23, 5355–5372, https://doi.org/10.5194/acp-23-5355-2023, https://doi.org/10.5194/acp-23-5355-2023, 2023
Short summary
Short summary
We characterize spatial–temporal patterns of interannual variability (IAV) in atmospheric CO2 based on NASA’s Orbiting Carbon Observatory-2 (OCO-2). CO2 variation is strongly impacted by climate events, with higher anomalies during El Nino years. We show high correlation in IAV between space-based and ground-based CO2 from long-term sites. Because OCO-2 has near-global coverage, our paper provides a roadmap to study IAV where in situ observation is sparse, such as open oceans and remote lands.
Martine Lizotte, Bennet Juhls, Atsushi Matsuoka, Philippe Massicotte, Gaëlle Mével, David Obie James Anikina, Sofia Antonova, Guislain Bécu, Marine Béguin, Simon Bélanger, Thomas Bossé-Demers, Lisa Bröder, Flavienne Bruyant, Gwénaëlle Chaillou, Jérôme Comte, Raoul-Marie Couture, Emmanuel Devred, Gabrièle Deslongchamps, Thibaud Dezutter, Miles Dillon, David Doxaran, Aude Flamand, Frank Fell, Joannie Ferland, Marie-Hélène Forget, Michael Fritz, Thomas J. Gordon, Caroline Guilmette, Andrea Hilborn, Rachel Hussherr, Charlotte Irish, Fabien Joux, Lauren Kipp, Audrey Laberge-Carignan, Hugues Lantuit, Edouard Leymarie, Antonio Mannino, Juliette Maury, Paul Overduin, Laurent Oziel, Colin Stedmon, Crystal Thomas, Lucas Tisserand, Jean-Éric Tremblay, Jorien Vonk, Dustin Whalen, and Marcel Babin
Earth Syst. Sci. Data, 15, 1617–1653, https://doi.org/10.5194/essd-15-1617-2023, https://doi.org/10.5194/essd-15-1617-2023, 2023
Short summary
Short summary
Permafrost thaw in the Mackenzie Delta region results in the release of organic matter into the coastal marine environment. What happens to this carbon-rich organic matter as it transits along the fresh to salty aquatic environments is still underdocumented. Four expeditions were conducted from April to September 2019 in the coastal area of the Beaufort Sea to study the fate of organic matter. This paper describes a rich set of data characterizing the composition and sources of organic matter.
Yong Zhang, Yong Zhang, Shuai Ma, Hanbing Chen, Jiabing Li, Zhengke Li, Kui Xu, Ruiping Huang, Hong Zhang, Yonghe Han, and Jun Sun
Biogeosciences, 20, 1299–1312, https://doi.org/10.5194/bg-20-1299-2023, https://doi.org/10.5194/bg-20-1299-2023, 2023
Short summary
Short summary
We found that increasing light intensity compensates for the negative effects of low phosphorus (P) availability on cellular protein and nitrogen contents. Reduced P availability, increasing light intensity, and ocean acidification act synergistically to increase cellular contents of carbohydrate and POC and the allocation of POC to carbohydrate. These regulation mechanisms in Emiliania huxleyi could provide vital information for evaluating carbon cycle in marine ecosystems under global change.
Tsukasa Dobashi, Yuzo Miyazaki, Eri Tachibana, Kazutaka Takahashi, Sachiko Horii, Fuminori Hashihama, Saori Yasui-Tamura, Yoko Iwamoto, Shu-Kuan Wong, and Koji Hamasaki
Biogeosciences, 20, 439–449, https://doi.org/10.5194/bg-20-439-2023, https://doi.org/10.5194/bg-20-439-2023, 2023
Short summary
Short summary
Water-soluble organic nitrogen (WSON) in marine aerosols is important for biogeochemical cycling of bioelements. Our shipboard measurements suggested that reactive nitrogen produced and exuded by nitrogen-fixing microorganisms in surface seawater likely contributed to the formation of WSON aerosols in the subtropical North Pacific. This study provides new implications for the role of marine microbial activity in the formation of WSON aerosols in the ocean surface.
Adam Francis, Raja S. Ganeshram, Robyn E. Tuerena, Robert G. M. Spencer, Robert M. Holmes, Jennifer A. Rogers, and Claire Mahaffey
Biogeosciences, 20, 365–382, https://doi.org/10.5194/bg-20-365-2023, https://doi.org/10.5194/bg-20-365-2023, 2023
Short summary
Short summary
Climate change is causing extensive permafrost degradation and nutrient releases into rivers with great ecological impacts on the Arctic Ocean. We focused on nitrogen (N) release from this degradation and associated cycling using N isotopes, an understudied area. Many N species are released at degradation sites with exchanges between species. N inputs from permafrost degradation and seasonal river N trends were identified using isotopes, helping to predict climate change impacts.
Darren C. McKee, Scott C. Doney, Alice Della Penna, Emmanuel S. Boss, Peter Gaube, Michael J. Behrenfeld, and David M. Glover
Biogeosciences, 19, 5927–5952, https://doi.org/10.5194/bg-19-5927-2022, https://doi.org/10.5194/bg-19-5927-2022, 2022
Short summary
Short summary
As phytoplankton (small, drifting photosynthetic organisms) drift with ocean currents, biomass accumulation rates should be evaluated in a Lagrangian (observer moves with a fluid parcel) as opposed to an Eulerian (observer is stationary) framework. Here, we use profiling floats and surface drifters combined with satellite data to analyse time and length scales of chlorophyll concentrations (a proxy for biomass) and of velocity to quantify how phytoplankton variability is related to water motion.
Emily J. Zakem, Barbara Bayer, Wei Qin, Alyson E. Santoro, Yao Zhang, and Naomi M. Levine
Biogeosciences, 19, 5401–5418, https://doi.org/10.5194/bg-19-5401-2022, https://doi.org/10.5194/bg-19-5401-2022, 2022
Short summary
Short summary
We use a microbial ecosystem model to quantitatively explain the mechanisms controlling observed relative abundances and nitrification rates of ammonia- and nitrite-oxidizing microorganisms in the ocean. We also estimate how much global carbon fixation can be associated with chemoautotrophic nitrification. Our results improve our understanding of the controls on nitrification, laying the groundwork for more accurate predictions in global climate models.
Zuozhu Wen, Thomas J. Browning, Rongbo Dai, Wenwei Wu, Weiying Li, Xiaohua Hu, Wenfang Lin, Lifang Wang, Xin Liu, Zhimian Cao, Haizheng Hong, and Dalin Shi
Biogeosciences, 19, 5237–5250, https://doi.org/10.5194/bg-19-5237-2022, https://doi.org/10.5194/bg-19-5237-2022, 2022
Short summary
Short summary
Fe and P are key factors controlling the biogeography and activity of marine N2-fixing microorganisms. We found lower abundance and activity of N2 fixers in the northern South China Sea than around the western boundary of the North Pacific, and N2 fixation rates switched from Fe–P co-limitation to P limitation. We hypothesize the Fe supply rates and Fe utilization strategies of each N2 fixer are important in regulating spatial variability in community structure across the study area.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Luke Gregor, Judith Hauck, Corinne Le Quéré, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Ramdane Alkama, Almut Arneth, Vivek K. Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Henry C. Bittig, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Wiley Evans, Stefanie Falk, Richard A. Feely, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Lucas Gloege, Giacomo Grassi, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Atul K. Jain, Annika Jersild, Koji Kadono, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Keith Lindsay, Junjie Liu, Zhu Liu, Gregg Marland, Nicolas Mayot, Matthew J. McGrath, Nicolas Metzl, Natalie M. Monacci, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Naiqing Pan, Denis Pierrot, Katie Pocock, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Carmen Rodriguez, Thais M. Rosan, Jörg Schwinger, Roland Séférian, Jamie D. Shutler, Ingunn Skjelvan, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Toste Tanhua, Pieter P. Tans, Xiangjun Tian, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Anthony P. Walker, Rik Wanninkhof, Chris Whitehead, Anna Willstrand Wranne, Rebecca Wright, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-2022, https://doi.org/10.5194/essd-14-4811-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2022 describes the datasets and methodology used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, the land ecosystems, and the ocean. These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Flavienne Bruyant, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Lise Artigue, Lucas Barbedo de Freitas, Guislain Bécu, Simon Bélanger, Pascaline Bourgain, Annick Bricaud, Etienne Brouard, Camille Brunet, Tonya Burgers, Danielle Caleb, Katrine Chalut, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Marine Cusa, Fanny Cusset, Laeticia Dadaglio, Marty Davelaar, Gabrièle Deslongchamps, Céline Dimier, Julie Dinasquet, Dany Dumont, Brent Else, Igor Eulaers, Joannie Ferland, Gabrielle Filteau, Marie-Hélène Forget, Jérome Fort, Louis Fortier, Martí Galí, Morgane Gallinari, Svend-Erik Garbus, Nicole Garcia, Catherine Gérikas Ribeiro, Colline Gombault, Priscilla Gourvil, Clémence Goyens, Cindy Grant, Pierre-Luc Grondin, Pascal Guillot, Sandrine Hillion, Rachel Hussherr, Fabien Joux, Hannah Joy-Warren, Gabriel Joyal, David Kieber, Augustin Lafond, José Lagunas, Patrick Lajeunesse, Catherine Lalande, Jade Larivière, Florence Le Gall, Karine Leblanc, Mathieu Leblanc, Justine Legras, Keith Lévesque, Kate-M. Lewis, Edouard Leymarie, Aude Leynaert, Thomas Linkowski, Martine Lizotte, Adriana Lopes dos Santos, Claudie Marec, Dominique Marie, Guillaume Massé, Philippe Massicotte, Atsushi Matsuoka, Lisa A. Miller, Sharif Mirshak, Nathalie Morata, Brivaela Moriceau, Philippe-Israël Morin, Simon Morisset, Anders Mosbech, Alfonso Mucci, Gabrielle Nadaï, Christian Nozais, Ingrid Obernosterer, Thimoté Paire, Christos Panagiotopoulos, Marie Parenteau, Noémie Pelletier, Marc Picheral, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Llúcia Ribot Lacosta, Jean-François Rontani, Blanche Saint-Béat, Julie Sansoulet, Noé Sardet, Catherine Schmechtig, Antoine Sciandra, Richard Sempéré, Caroline Sévigny, Jordan Toullec, Margot Tragin, Jean-Éric Tremblay, Annie-Pier Trottier, Daniel Vaulot, Anda Vladoiu, Lei Xue, Gustavo Yunda-Guarin, and Marcel Babin
Earth Syst. Sci. Data, 14, 4607–4642, https://doi.org/10.5194/essd-14-4607-2022, https://doi.org/10.5194/essd-14-4607-2022, 2022
Short summary
Short summary
This paper presents a dataset acquired during a research cruise held in Baffin Bay in 2016. We observed that the disappearance of sea ice in the Arctic Ocean increases both the length and spatial extent of the phytoplankton growth season. In the future, this will impact the food webs on which the local populations depend for their food supply and fisheries. This dataset will provide insight into quantifying these impacts and help the decision-making process for policymakers.
Xiaofeng Dai, Mingming Chen, Xianhui Wan, Ehui Tan, Jialing Zeng, Nengwang Chen, Shuh-Ji Kao, and Yao Zhang
Biogeosciences, 19, 3757–3773, https://doi.org/10.5194/bg-19-3757-2022, https://doi.org/10.5194/bg-19-3757-2022, 2022
Short summary
Short summary
This study revealed the distinct distribution patterns of six key microbial functional genes and transcripts related to N2O sources and sinks in four estuaries spanning the Chinese coastline, which were significantly constrained by nitrogen and oxygen concentrations, salinity, temperature, and pH. The community structure of the nosZ clade II was distinctly different from those in the soil and marine OMZs. Denitrification may principally control the N2O emissions patterns across the estuaries.
Zhibo Shao and Ya-Wei Luo
Biogeosciences, 19, 2939–2952, https://doi.org/10.5194/bg-19-2939-2022, https://doi.org/10.5194/bg-19-2939-2022, 2022
Short summary
Short summary
Non-cyanobacterial diazotrophs (NCDs) may be an important player in fixing N2 in the ocean. By conducting meta-analyses, we found that a representative marine NCD phylotype, Gamma A, tends to inhabit ocean environments with high productivity, low iron concentration and high light intensity. It also appears to be more abundant inside cyclonic eddies. Our study suggests a niche differentiation of NCDs from cyanobacterial diazotrophs as the latter prefers low-productivity and high-iron oceans.
Natalia Belkin, Tamar Guy-Haim, Maxim Rubin-Blum, Ayah Lazar, Guy Sisma-Ventura, Rainer Kiko, Arseniy R. Morov, Tal Ozer, Isaac Gertman, Barak Herut, and Eyal Rahav
Ocean Sci., 18, 693–715, https://doi.org/10.5194/os-18-693-2022, https://doi.org/10.5194/os-18-693-2022, 2022
Short summary
Short summary
We studied how distinct water circulations that elevate (cyclone) or descend (anticyclone) water from the upper ocean affect the biomass, activity and diversity of planktonic microorganisms in the impoverished eastern Mediterranean. We show that cyclonic and anticyclonic eddies differ in their community composition and production. Moreover, the anticyclone may be a potential bio-invasion and dispersal vector, while the cyclone may serve as a thermal refugee for native species.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Christian Furbo Reeder, Ina Stoltenberg, Jamileh Javidpour, and Carolin Regina Löscher
Ocean Sci., 18, 401–417, https://doi.org/10.5194/os-18-401-2022, https://doi.org/10.5194/os-18-401-2022, 2022
Short summary
Short summary
The Baltic Sea is predicted to freshen in the future. To explore the effect of decreasing salinity on N2 fixers, we followed the natural salinity gradient in the Baltic Sea from the Kiel Fjord to the Gotland Basin and identified an N2 fixer community dominated by Nodularia and UCYN-A. A salinity threshold was identified at a salinity of 10, with Nodularia dominating at low and UCYN-A dominating at higher salinity, suggesting a future expansion of Nodularia N2 fixers and a retraction of UCYN-A.
Julie Dinasquet, Estelle Bigeard, Frédéric Gazeau, Farooq Azam, Cécile Guieu, Emilio Marañón, Céline Ridame, France Van Wambeke, Ingrid Obernosterer, and Anne-Claire Baudoux
Biogeosciences, 19, 1303–1319, https://doi.org/10.5194/bg-19-1303-2022, https://doi.org/10.5194/bg-19-1303-2022, 2022
Short summary
Short summary
Saharan dust deposition of nutrients and trace metals is crucial to microbes in the Mediterranean Sea. Here, we tested the response of microbial and viral communities to simulated dust deposition under present and future conditions of temperature and pH. Overall, the effect of the deposition was dependent on the initial microbial assemblage, and future conditions will intensify microbial responses. We observed effects on trophic interactions, cascading all the way down to viral processes.
Céline Ridame, Julie Dinasquet, Søren Hallstrøm, Estelle Bigeard, Lasse Riemann, France Van Wambeke, Matthieu Bressac, Elvira Pulido-Villena, Vincent Taillandier, Fréderic Gazeau, Antonio Tovar-Sanchez, Anne-Claire Baudoux, and Cécile Guieu
Biogeosciences, 19, 415–435, https://doi.org/10.5194/bg-19-415-2022, https://doi.org/10.5194/bg-19-415-2022, 2022
Short summary
Short summary
We show that in the Mediterranean Sea spatial variability in N2 fixation is related to the diazotrophic community composition reflecting different nutrient requirements among species. Nutrient supply by Saharan dust is of great importance to diazotrophs, as shown by the strong stimulation of N2 fixation after a simulated dust event under present and future climate conditions; the magnitude of stimulation depends on the degree of limitation related to the diazotrophic community composition.
Hyewon Heather Kim, Jeff S. Bowman, Ya-Wei Luo, Hugh W. Ducklow, Oscar M. Schofield, Deborah K. Steinberg, and Scott C. Doney
Biogeosciences, 19, 117–136, https://doi.org/10.5194/bg-19-117-2022, https://doi.org/10.5194/bg-19-117-2022, 2022
Short summary
Short summary
Heterotrophic marine bacteria are tiny organisms responsible for taking up organic matter in the ocean. Using a modeling approach, this study shows that characteristics (taxonomy and physiology) of bacteria are associated with a subset of ecological processes in the coastal West Antarctic Peninsula region, a system susceptible to global climate change. This study also suggests that bacteria will become more active, in particular large-sized cells, in response to changing climates in the region.
Zhuo Chen, Jun Sun, Ting Gu, Guicheng Zhang, and Yuqiu Wei
Ocean Sci., 17, 1775–1789, https://doi.org/10.5194/os-17-1775-2021, https://doi.org/10.5194/os-17-1775-2021, 2021
Short summary
Short summary
We investigated the spatial distribution pattern and diversity of phytoplankton communities in the western Pacific Ocean (WPO) in the autumn of 2016, 2017, and 2018. The regions with strong vertical stratification were more favorable for cyanobacteria, whereas weak vertical stratification was more conducive to diatoms and dinoflagellates. It is clear that physical processes control phytoplankton community structure by driving the balance of chemical elements.
Helen E. Phillips, Amit Tandon, Ryo Furue, Raleigh Hood, Caroline C. Ummenhofer, Jessica A. Benthuysen, Viviane Menezes, Shijian Hu, Ben Webber, Alejandra Sanchez-Franks, Deepak Cherian, Emily Shroyer, Ming Feng, Hemantha Wijesekera, Abhisek Chatterjee, Lisan Yu, Juliet Hermes, Raghu Murtugudde, Tomoki Tozuka, Danielle Su, Arvind Singh, Luca Centurioni, Satya Prakash, and Jerry Wiggert
Ocean Sci., 17, 1677–1751, https://doi.org/10.5194/os-17-1677-2021, https://doi.org/10.5194/os-17-1677-2021, 2021
Short summary
Short summary
Over the past decade, understanding of the Indian Ocean has progressed through new observations and advances in theory and models of the oceanic and atmospheric circulation. This review brings together new understanding of the ocean–atmosphere system in the Indian Ocean, describing Indian Ocean circulation patterns, air–sea interactions, climate variability, and the critical role of the Indian Ocean as a clearing house for anthropogenic heat.
Puthenveettil Narayana Menon Vinayachandran, Yukio Masumoto, Michael J. Roberts, Jenny A. Huggett, Issufo Halo, Abhisek Chatterjee, Prakash Amol, Garuda V. M. Gupta, Arvind Singh, Arnab Mukherjee, Satya Prakash, Lynnath E. Beckley, Eric Jorden Raes, and Raleigh Hood
Biogeosciences, 18, 5967–6029, https://doi.org/10.5194/bg-18-5967-2021, https://doi.org/10.5194/bg-18-5967-2021, 2021
Short summary
Short summary
Upwelling in the coastal ocean triggers biological productivity and thus enhances fisheries. Therefore, understanding the phenomenon of upwelling and the underlying mechanisms is important. In this paper, the present understanding of the upwelling along the coastline of the Indian Ocean from the coast of Africa all the way up to the coast of Australia is reviewed. The review provides a synthesis of the physical processes associated with upwelling and its impact on the marine ecosystem.
Pascal Perolo, Bieito Fernández Castro, Nicolas Escoffier, Thibault Lambert, Damien Bouffard, and Marie-Elodie Perga
Earth Syst. Dynam., 12, 1169–1189, https://doi.org/10.5194/esd-12-1169-2021, https://doi.org/10.5194/esd-12-1169-2021, 2021
Short summary
Short summary
Wind blowing over the ocean creates waves that, by increasing the level of turbulence, promote gas exchange at the air–water interface. In this study, for the first time, we measured enhanced gas exchanges by wind-induced waves at the surface of a large lake. We adapted an ocean-based model to account for the effect of surface waves on gas exchange in lakes. We finally show that intense wind events with surface waves contribute disproportionately to the annual CO2 gas flux in a large lake.
Cynthia Evelyn Bluteau, Peter S. Galbraith, Daniel Bourgault, Vincent Villeneuve, and Jean-Éric Tremblay
Ocean Sci., 17, 1509–1525, https://doi.org/10.5194/os-17-1509-2021, https://doi.org/10.5194/os-17-1509-2021, 2021
Short summary
Short summary
In 2018, the Canadian Coast Guard approved a science team to sample in tandem with its ice-breaking and ship escorting operations. This collaboration provided the first mixing observations during winter that covered the largest spatial extent of the St. Lawrence Estuary and the Gulf of St. Lawrence ever measured in any season. Contrary to previous assumptions, we demonstrate that fluvial nitrate inputs from upstream (i.e., Great Lakes) are the most significant source of nitrate in the estuary.
France Van Wambeke, Vincent Taillandier, Karine Desboeufs, Elvira Pulido-Villena, Julie Dinasquet, Anja Engel, Emilio Marañón, Céline Ridame, and Cécile Guieu
Biogeosciences, 18, 5699–5717, https://doi.org/10.5194/bg-18-5699-2021, https://doi.org/10.5194/bg-18-5699-2021, 2021
Short summary
Short summary
Simultaneous in situ measurements of (dry and wet) atmospheric deposition and biogeochemical stocks and fluxes in the sunlit waters of the open Mediterranean Sea revealed complex physical and biological processes occurring within the mixed layer. Nitrogen (N) budgets were computed to compare the sources and sinks of N in the mixed layer. The transitory effect observed after a wet dust deposition impacted the microbial food web down to the deep chlorophyll maximum.
Frédéric Gazeau, France Van Wambeke, Emilio Marañón, Maria Pérez-Lorenzo, Samir Alliouane, Christian Stolpe, Thierry Blasco, Nathalie Leblond, Birthe Zäncker, Anja Engel, Barbara Marie, Julie Dinasquet, and Cécile Guieu
Biogeosciences, 18, 5423–5446, https://doi.org/10.5194/bg-18-5423-2021, https://doi.org/10.5194/bg-18-5423-2021, 2021
Short summary
Short summary
Our study shows that the impact of dust deposition on primary production depends on the initial composition and metabolic state of the tested community and is constrained by the amount of nutrients added, to sustain both the fast response of heterotrophic prokaryotes and the delayed one of phytoplankton. Under future environmental conditions, heterotrophic metabolism will be more impacted than primary production, therefore reducing the capacity of surface waters to sequester anthropogenic CO2.
Jia-Jang Hung, Ching-Han Tung, Zong-Ying Lin, Yuh-ling Lee Chen, Shao-Hung Peng, Yen-Huei Lin, and Li-Shan Tsai
Biogeosciences, 18, 5141–5162, https://doi.org/10.5194/bg-18-5141-2021, https://doi.org/10.5194/bg-18-5141-2021, 2021
Short summary
Short summary
We report measured active and passive fluxes and their controlling mechanisms in the northern South China Sea (NSCS). The total fluxes were higher than most reports in open oceans, indicating the significance of NSCS in atmospheric CO2 uptake and in storing that CO2 in the ocean’s interior. Winter cooling and extreme events enhanced nutrient availability and elevated fluxes. Global warming may have profound impacts on reducing ocean’s uptake and storage of CO2 in subtropical–tropical oceans.
Carolin R. Löscher
Biogeosciences, 18, 4953–4963, https://doi.org/10.5194/bg-18-4953-2021, https://doi.org/10.5194/bg-18-4953-2021, 2021
Short summary
Short summary
The Bay of Bengal (BoB) is classically seen as an ocean region with low primary production, which has been predicted to decrease even further. Here, the importance of such a trend is used to explore what could happen to the BoB's low-oxygen core waters if primary production decreases. Lower biological production leads to less oxygen loss in deeper waters by respiration; thus it could be that oxygen will not further decrease and the BoB will not become anoxic, different to other low-oxygen areas.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Hyewon Heather Kim, Ya-Wei Luo, Hugh W. Ducklow, Oscar M. Schofield, Deborah K. Steinberg, and Scott C. Doney
Geosci. Model Dev., 14, 4939–4975, https://doi.org/10.5194/gmd-14-4939-2021, https://doi.org/10.5194/gmd-14-4939-2021, 2021
Short summary
Short summary
The West Antarctic Peninsula (WAP) is a rapidly warming region, revealed by multi-decadal observations. Despite the region being data rich, there is a lack of focus on ecosystem model development. Here, we introduce a data assimilation ecosystem model for the WAP region. Experiments by assimilating data from an example growth season capture key WAP features. This study enables us to glue the snapshots from available data sets together to explain the observations in the WAP.
Kai G. Schulz, Eric P. Achterberg, Javier Arístegui, Lennart T. Bach, Isabel Baños, Tim Boxhammer, Dirk Erler, Maricarmen Igarza, Verena Kalter, Andrea Ludwig, Carolin Löscher, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Elisabeth von der Esch, Bess B. Ward, and Ulf Riebesell
Biogeosciences, 18, 4305–4320, https://doi.org/10.5194/bg-18-4305-2021, https://doi.org/10.5194/bg-18-4305-2021, 2021
Short summary
Short summary
Upwelling of nutrient-rich deep waters to the surface make eastern boundary upwelling systems hot spots of marine productivity. This leads to subsurface oxygen depletion and the transformation of bioavailable nitrogen into inert N2. Here we quantify nitrogen loss processes following a simulated deep water upwelling. Denitrification was the dominant process, and budget calculations suggest that a significant portion of nitrogen that could be exported to depth is already lost in the surface ocean.
Yosuke Niwa, Yousuke Sawa, Hideki Nara, Toshinobu Machida, Hidekazu Matsueda, Taku Umezawa, Akihiko Ito, Shin-Ichiro Nakaoka, Hiroshi Tanimoto, and Yasunori Tohjima
Atmos. Chem. Phys., 21, 9455–9473, https://doi.org/10.5194/acp-21-9455-2021, https://doi.org/10.5194/acp-21-9455-2021, 2021
Short summary
Short summary
Fires in Equatorial Asia release a large amount of carbon into the atmosphere. Extensively using high-precision atmospheric carbon dioxide (CO2) data from a commercial aircraft observation project, we estimated fire carbon emissions in Equatorial Asia induced by the big El Niño event in 2015. Additional shipboard measurement data elucidated the validity of the analysis and the best estimate indicated 273 Tg C for fire emissions during September–October 2015.
Nadia Burgoa, Francisco Machín, Ángel Rodríguez-Santana, Ángeles Marrero-Díaz, Xosé Antón Álvarez-Salgado, Bieito Fernández-Castro, María Dolores Gelado-Caballero, and Javier Arístegui
Ocean Sci., 17, 769–788, https://doi.org/10.5194/os-17-769-2021, https://doi.org/10.5194/os-17-769-2021, 2021
Short summary
Short summary
The circulation patterns in the confluence of the North Atlantic subtropical and tropical gyres delimited by the Cape Verde Front were examined during a field cruise in summer 2017. The collected hydrographic data, O2 and inorganic nutrients along the perimeter of a closed box embracing the Cape Verde Frontal Zone allowed for the independent estimation of the transport of these properties.
Astrid Müller, Hiroshi Tanimoto, Takafumi Sugita, Toshinobu Machida, Shin-ichiro Nakaoka, Prabir K. Patra, Joshua Laughner, and David Crisp
Atmos. Chem. Phys., 21, 8255–8271, https://doi.org/10.5194/acp-21-8255-2021, https://doi.org/10.5194/acp-21-8255-2021, 2021
Short summary
Short summary
Over oceans, high uncertainties in satellite CO2 retrievals exist due to limited reference data. We combine commercial ship and aircraft observations and, with the aid of model calculations, obtain column-averaged mixing ratios of CO2 (XCO2) data over the Pacific Ocean. This new dataset has great potential as a robust reference for XCO2 measured from space and can help to better understand changes in the carbon cycle in response to climate change using satellite observations.
Yangyang Zhao, Khanittha Uthaipan, Zhongming Lu, Yan Li, Jing Liu, Hongbin Liu, Jianping Gan, Feifei Meng, and Minhan Dai
Biogeosciences, 18, 2755–2775, https://doi.org/10.5194/bg-18-2755-2021, https://doi.org/10.5194/bg-18-2755-2021, 2021
Short summary
Short summary
In situ oxygen consumption rates were estimated for the first time during destruction of coastal hypoxia as disturbed by a typhoon and its reinstatement in the South China Sea off the Pearl River estuary. The reinstatement of summer hypoxia was rapid with a comparable timescale with that of its initial disturbance from frequent tropical cyclones, which has important implications for better understanding the intermittent nature of coastal hypoxia and its prediction in a changing climate.
Siqi Wu, Moge Du, Xianhui Sean Wan, Corday Selden, Mar Benavides, Sophie Bonnet, Robert Hamersley, Carolin R. Löscher, Margaret R. Mulholland, Xiuli Yan, and Shuh-Ji Kao
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-104, https://doi.org/10.5194/bg-2021-104, 2021
Preprint withdrawn
Short summary
Short summary
Nitrogen (N2) fixation is one of the most important nutrient sources to the ocean. Here, we report N2 fixation in the deep, dark ocean in the South China Sea via a highly sensitive new method and elaborate controls, showing the overlooked importance of N2 fixation in the deep ocean. By global data compilation, we also provide an easy measured basic parameter to estimate deep N2 fixation. Our study may help to expand the area limit of N2 fixation studies and better constrain global N2 fixation.
Philippe Massicotte, Rainer M. W. Amon, David Antoine, Philippe Archambault, Sergio Balzano, Simon Bélanger, Ronald Benner, Dominique Boeuf, Annick Bricaud, Flavienne Bruyant, Gwenaëlle Chaillou, Malik Chami, Bruno Charrière, Jing Chen, Hervé Claustre, Pierre Coupel, Nicole Delsaut, David Doxaran, Jens Ehn, Cédric Fichot, Marie-Hélène Forget, Pingqing Fu, Jonathan Gagnon, Nicole Garcia, Beat Gasser, Jean-François Ghiglione, Gaby Gorsky, Michel Gosselin, Priscillia Gourvil, Yves Gratton, Pascal Guillot, Hermann J. Heipieper, Serge Heussner, Stanford B. Hooker, Yannick Huot, Christian Jeanthon, Wade Jeffrey, Fabien Joux, Kimitaka Kawamura, Bruno Lansard, Edouard Leymarie, Heike Link, Connie Lovejoy, Claudie Marec, Dominique Marie, Johannie Martin, Jacobo Martín, Guillaume Massé, Atsushi Matsuoka, Vanessa McKague, Alexandre Mignot, William L. Miller, Juan-Carlos Miquel, Alfonso Mucci, Kaori Ono, Eva Ortega-Retuerta, Christos Panagiotopoulos, Tim Papakyriakou, Marc Picheral, Louis Prieur, Patrick Raimbault, Joséphine Ras, Rick A. Reynolds, André Rochon, Jean-François Rontani, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Yuan Shen, Guisheng Song, Dariusz Stramski, Eri Tachibana, Alexandre Thirouard, Imma Tolosa, Jean-Éric Tremblay, Mickael Vaïtilingom, Daniel Vaulot, Frédéric Vaultier, John K. Volkman, Huixiang Xie, Guangming Zheng, and Marcel Babin
Earth Syst. Sci. Data, 13, 1561–1592, https://doi.org/10.5194/essd-13-1561-2021, https://doi.org/10.5194/essd-13-1561-2021, 2021
Short summary
Short summary
The MALINA oceanographic expedition was conducted in the Mackenzie River and the Beaufort Sea systems. The sampling was performed across seven shelf–basin transects to capture the meridional gradient between the estuary and the open ocean. The main goal of this research program was to better understand how processes such as primary production are influencing the fate of organic matter originating from the surrounding terrestrial landscape during its transition toward the Arctic Ocean.
Gerd Krahmann, Damian L. Arévalo-Martínez, Andrew W. Dale, Marcus Dengler, Anja Engel, Nicolaas Glock, Patricia Grasse, Johannes Hahn, Helena Hauss, Mark Hopwood, Rainer Kiko, Alexandra Loginova, Carolin R. Löscher, Marie Maßmig, Alexandra-Sophie Roy, Renato Salvatteci, Stefan Sommer, Toste Tanhua, and Hela Mehrtens
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-308, https://doi.org/10.5194/essd-2020-308, 2021
Preprint withdrawn
Short summary
Short summary
The project "Climate-Biogeochemistry Interactions in the Tropical Ocean" (SFB 754) was a multidisciplinary research project active from 2008 to 2019 aimed at a better understanding of the coupling between the tropical climate and ocean circulation and the ocean's oxygen and nutrient balance. On 34 research cruises, mainly in the Southeast Tropical Pacific and the Northeast Tropical Atlantic, 1071 physical, chemical and biological data sets were collected.
Le Xie, Wei Wei, Lanlan Cai, Xiaowei Chen, Yuhong Huang, Nianzhi Jiao, Rui Zhang, and Ya-Wei Luo
Earth Syst. Sci. Data, 13, 1251–1271, https://doi.org/10.5194/essd-13-1251-2021, https://doi.org/10.5194/essd-13-1251-2021, 2021
Short summary
Short summary
Viruses play key roles in marine ecosystems by killing their hosts, maintaining diversity and recycling nutrients. In the global viral oceanography database (gVOD), 10 931 viral abundance data and 727 viral production data, along with host and other oceanographic parameters, were compiled. It identified viral data were undersampled in the southeast Pacific and Indian oceans. The gVOD can be used in marine viral ecology investigation and modeling of marine ecosystems and biogeochemical cycles.
Emilio Marañón, France Van Wambeke, Julia Uitz, Emmanuel S. Boss, Céline Dimier, Julie Dinasquet, Anja Engel, Nils Haëntjens, María Pérez-Lorenzo, Vincent Taillandier, and Birthe Zäncker
Biogeosciences, 18, 1749–1767, https://doi.org/10.5194/bg-18-1749-2021, https://doi.org/10.5194/bg-18-1749-2021, 2021
Short summary
Short summary
The concentration of chlorophyll is commonly used as an indicator of the abundance of photosynthetic plankton (phytoplankton) in lakes and oceans. Our study investigates why a deep chlorophyll maximum, located near the bottom of the upper, illuminated layer develops in the Mediterranean Sea. We find that the acclimation of cells to low light is the main mechanism involved and that this deep maximum represents also a maximum in the biomass and carbon fixation activity of phytoplankton.
Fuminori Hashihama, Hiroaki Saito, Taketoshi Kodama, Saori Yasui-Tamura, Jota Kanda, Iwao Tanita, Hiroshi Ogawa, E. Malcolm S. Woodward, Philip W. Boyd, and Ken Furuya
Biogeosciences, 18, 897–915, https://doi.org/10.5194/bg-18-897-2021, https://doi.org/10.5194/bg-18-897-2021, 2021
Short summary
Short summary
We investigated the nutrient assimilation characteristics of deep-water-induced phytoplankton blooms across the subtropical North and South Pacific Ocean. Nutrient drawdown ratios of dissolved inorganic nitrogen to phosphate were anomalously low in the western North Pacific, likely due to the high phosphate uptake capability of low-phosphate-adapted phytoplankton. The anomalous phosphate uptake might influence the maintenance of chronic phosphate depletion in the western North Pacific.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone Alin, Luiz E. O. C. Aragão, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp, Selma Bultan, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Wiley Evans, Liesbeth Florentie, Piers M. Forster, Thomas Gasser, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Luke Gregor, Nicolas Gruber, Ian Harris, Kerstin Hartung, Vanessa Haverd, Richard A. Houghton, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Koji Kadono, Etsushi Kato, Vassilis Kitidis, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Gregg Marland, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Adam J. P. Smith, Adrienne J. Sutton, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Guido van der Werf, Nicolas Vuichard, Anthony P. Walker, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Xu Yue, and Sönke Zaehle
Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, https://doi.org/10.5194/essd-12-3269-2020, 2020
Short summary
Short summary
The Global Carbon Budget 2020 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Tim Rixen, Greg Cowie, Birgit Gaye, Joaquim Goes, Helga do Rosário Gomes, Raleigh R. Hood, Zouhair Lachkar, Henrike Schmidt, Joachim Segschneider, and Arvind Singh
Biogeosciences, 17, 6051–6080, https://doi.org/10.5194/bg-17-6051-2020, https://doi.org/10.5194/bg-17-6051-2020, 2020
Short summary
Short summary
The northern Indian Ocean hosts an extensive oxygen minimum zone (OMZ), which intensified due to human-induced global changes. This includes the occurrence of anoxic events on the Indian shelf and affects benthic ecosystems and the pelagic ecosystem structure in the Arabian Sea. Consequences for biogeochemical cycles are unknown, which, in addition to the poor representation of mesoscale features, reduces the reliability of predictions of the future OMZ development in the northern Indian Ocean.
Yanhong Lu, Shunyan Cheung, Ling Chen, Shuh-Ji Kao, Xiaomin Xia, Jianping Gan, Minhan Dai, and Hongbin Liu
Biogeosciences, 17, 6017–6032, https://doi.org/10.5194/bg-17-6017-2020, https://doi.org/10.5194/bg-17-6017-2020, 2020
Short summary
Short summary
Through a comprehensive investigation, we observed differential niche partitioning among diverse ammonia-oxidizing archaea (AOA) sublineages in a typical subtropical estuary. Distinct AOA communities observed at DNA and RNA levels suggested that a strong divergence in ammonia-oxidizing activity among different AOA groups occurs. Our result highlights the importance of identifying major ammonia oxidizers at RNA level in future studies.
Amal Jayakumar and Bess B. Ward
Biogeosciences, 17, 5953–5966, https://doi.org/10.5194/bg-17-5953-2020, https://doi.org/10.5194/bg-17-5953-2020, 2020
Short summary
Short summary
Diversity and community composition of nitrogen-fixing microbes in the three main oxygen minimum zones of the world ocean were investigated using nifH clone libraries. Representatives of three main clusters of nifH genes were detected. Sequences were most diverse in the surface waters. The most abundant OTUs were affiliated with Alpha- and Gammaproteobacteria. The sequences were biogeographically distinct and the dominance of a few OTUs was commonly observed in OMZs in this (and other) studies.
Samuel T. Wilson, Alia N. Al-Haj, Annie Bourbonnais, Claudia Frey, Robinson W. Fulweiler, John D. Kessler, Hannah K. Marchant, Jana Milucka, Nicholas E. Ray, Parvadha Suntharalingam, Brett F. Thornton, Robert C. Upstill-Goddard, Thomas S. Weber, Damian L. Arévalo-Martínez, Hermann W. Bange, Heather M. Benway, Daniele Bianchi, Alberto V. Borges, Bonnie X. Chang, Patrick M. Crill, Daniela A. del Valle, Laura Farías, Samantha B. Joye, Annette Kock, Jabrane Labidi, Cara C. Manning, John W. Pohlman, Gregor Rehder, Katy J. Sparrow, Philippe D. Tortell, Tina Treude, David L. Valentine, Bess B. Ward, Simon Yang, and Leonid N. Yurganov
Biogeosciences, 17, 5809–5828, https://doi.org/10.5194/bg-17-5809-2020, https://doi.org/10.5194/bg-17-5809-2020, 2020
Short summary
Short summary
The oceans are a net source of the major greenhouse gases; however there has been little coordination of oceanic methane and nitrous oxide measurements. The scientific community has recently embarked on a series of capacity-building exercises to improve the interoperability of dissolved methane and nitrous oxide measurements. This paper derives from a workshop which discussed the challenges and opportunities for oceanic methane and nitrous oxide research in the near future.
Tamar Guy-Haim, Maxim Rubin-Blum, Eyal Rahav, Natalia Belkin, Jacob Silverman, and Guy Sisma-Ventura
Biogeosciences, 17, 5489–5511, https://doi.org/10.5194/bg-17-5489-2020, https://doi.org/10.5194/bg-17-5489-2020, 2020
Short summary
Short summary
The availability of nutrients in oligotrophic marine ecosystems is limited. Following jellyfish blooms, large die-off events result in the release of high amounts of nutrients to the water column and sediment. Our study assessed the decomposition effects of an infamous invasive jellyfish in the ultra-oligotrophic Eastern Mediterranean Sea. We found that jellyfish decomposition favored heterotrophic bacteria and altered biogeochemical fluxes, further impoverishing this nutrient-poor ecosystem.
Lennart Thomas Bach, Allanah Joy Paul, Tim Boxhammer, Elisabeth von der Esch, Michelle Graco, Kai Georg Schulz, Eric Achterberg, Paulina Aguayo, Javier Arístegui, Patrizia Ayón, Isabel Baños, Avy Bernales, Anne Sophie Boegeholz, Francisco Chavez, Gabriela Chavez, Shao-Min Chen, Kristin Doering, Alba Filella, Martin Fischer, Patricia Grasse, Mathias Haunost, Jan Hennke, Nauzet Hernández-Hernández, Mark Hopwood, Maricarmen Igarza, Verena Kalter, Leila Kittu, Peter Kohnert, Jesus Ledesma, Christian Lieberum, Silke Lischka, Carolin Löscher, Andrea Ludwig, Ursula Mendoza, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Joaquin Ortiz Cortes, Jonna Piiparinen, Claudia Sforna, Kristian Spilling, Sonia Sanchez, Carsten Spisla, Michael Sswat, Mabel Zavala Moreira, and Ulf Riebesell
Biogeosciences, 17, 4831–4852, https://doi.org/10.5194/bg-17-4831-2020, https://doi.org/10.5194/bg-17-4831-2020, 2020
Short summary
Short summary
The eastern boundary upwelling system off Peru is among Earth's most productive ocean ecosystems, but the factors that control its functioning are poorly constrained. Here we used mesocosms, moored ~ 6 km offshore Peru, to investigate how processes in plankton communities drive key biogeochemical processes. We show that nutrient and light co-limitation keep productivity and export at a remarkably constant level while stoichiometry changes strongly with shifts in plankton community structure.
Cited articles
Agawin, N. S. R., Tovar-Sánchez, A., De Zarruk, K. K., Duarte, C. M.,
and Agustí, S.: Variability in the abundance of Trichodesmium and nitrogen fixation
activities in the subtropical NE Atlantic, J. Plankton Res., 35,
1126–1140, https://doi.org/10.1093/plankt/fbt059, 2013.
Ahmed, A., Gauns, M., Kurian, S., Bardhan, P., Pratihary, A., Naik, H.,
Shenoy, D. M., and Naqvi, S. W. A.: Nitrogen fixation rates in the eastern
Arabian Sea, Estuarine, Coast. Shelf Sci., 191, 74–83, https://doi.org/10.1016/j.ecss.2017.04.005, 2017.
Barthel, K.-G., Schneider, G., Gradinger, R., and Lenz, J.: Concentration of
live pico- and nanoplankton by means of tangential flow filtration, J. Plankton Res., 11, 1213–1221, https://doi.org/10.1093/plankt/11.6.1213, 1989.
Benavides, M., Agawin, N. S. R., Arístegui, J., Peene, J., and Stal, L.
J.: Dissolved organic nitrogen and carbon release by a marine unicellular
diazotrophic cyanobacterium, Aquat. Microb. Ecol., 69, 69–80, https://doi.org/10.3354/ame01621 2013a.
Benavides, M., Bronk, D. A., Agawin, N. S. R., Pérez-Hernández, M.
D., Hernández-Guerra, A., and Arístegui, J.: Longitudinal
variability of size-fractionated N2 fixation and DON release rates
along 24.5∘ N in the subtropical North Atlantic, J. Geophys. Res.-Oceans, 118, 3406–3415, https://doi.org/10.1002/jgrc.20253, 2013b.
Benavides, M., Santana-Falcón, Y., Wasmund, N., and Aristegui, J.:
Microbial uptake and regeneration of inorganic nitrogen off the coastal
Namibian upwelling system, J. Marine Syst., https://doi.org/10.1016/j.jmarsys.2014.05.002, 2014.
Benavides, M., Moisander, P. H., Berthelot, H., Dittmar, T., Grosso, O., and
Bonnet, S.: Mesopelagic N2 fixation related to organic matter
composition in the Solomon and Bismarck Seas (Southwest Pacific), Plos One,
10, 12, https://doi.org/10.1371/journal.pone.0143775, 2015.
Benavides, M., Bonnet, S., Hernandez, N., Martinez-Perez, A. M., Nieto-Cid,
M., Alvarez-Salgado, X. A., Banos, I., Montero, M. F., Mazuecos, I. P.,
Gasol, J. M., Osterholz, H., Dittmar, T., Berman-Frank, I., and Aristegui,
J.: Basin-wide N2 fixation in the deep waters of the Mediterranean
Sea, Global Biogeochem. Cycles, 30, 952–961, https://doi.org/10.1002/2015gb005326, 2016a.
Benavides, M., Moisander, P. H., Daley, M. C., Bode, A., and Aristegui, J.:
Longitudinal variability of diazotroph abundances in the subtropical North
Atlantic Ocean, J. Plankton Res., 38, 662–672, https://doi.org/10.1093/plankt/fbv121, 2016b.
Benavides, M., Berthelot, H., Duhamel, S., Raimbault, P., and Bonnet, S.:
Dissolved organic matter uptake by Trichodesmium in the Southwest Pacific, Sci. Rep.-UK, 7, 41315, https://doi.org/10.1038/srep41315, 2017.
Benavides, M., Bonnet, S., Berman-Frank, I., and Riemann, L.: Deep into
oceanic N2 fixation, Front. Marine Sci., 5, 108, https://doi.org/10.3389/fmars.2018.00108, 2018a.
Benavides, M., Shoemaker, K. M., Moisander, P. H., Niggemann, J., Dittmar, T., Duhamel, S., Grosso, O., Pujo-Pay, M., Hélias-Nunige, S., Fumenia, A., and Bonnet, S.: Aphotic N2 fixation along an oligotrophic to ultraoligotrophic transect in the western tropical South Pacific Ocean, Biogeosciences, 15, 3107–3119, https://doi.org/10.5194/bg-15-3107-2018, 2018b.
Benavides, M., Conradt, L., Bonnet, S., Berman-Frank, I., Barrillon, S.,
Petrenko, A., and Doglioli, A.: Fine-scale sampling unveils diazotroph
patchiness in the South Pacific Ocean, ISME Commun., 1, 3, https://doi.org/10.1038/s43705-021-00006-2, 2021.
Benavides, M., Bonnet, S., Le Moigne, F. A. C., Armin, G., Inomura, K.,
Hallstrøm, S., Riemann, L., Berman-Frank, I., Poletti, E., Garel, M.,
Grosso, O., Leblanc, K., Guigue, C., Tedetti, M., and Dupouy, C.: Sinking
Trichodesmium fixes nitrogen in the dark ocean, ISME J., 16, 2398–2405,
https://doi.org/10.1038/s41396-022-01289-6, 2022a.
Benavides, M., Caffin, M., Duhamel, S., Foster, R. A., Grosso, O., Guieu,
C., Van Wambeke, F., and Bonnet, S.: Anomalously high abundance of
Crocosphaera in the South Pacific Gyre, FEMS Microbiol. Lett., 369, fnac039, https://doi.org/10.1093/femsle/fnac039, 2022b.
Bentzon-Tilia, M., Severin, I., Hansen, L. H., and Riemann, L.: Genomics and
Ecophysiology of Heterotrophic Nitrogen-Fixing Bacteria Isolated from
Estuarine Surface Water, mBio, 6, e00929-15, https://doi.org/10.1128/mbio.00929-15,
2015a.
Bentzon-Tilia, M., Traving, S. J., Mantikci, M., Knudsen-Leerbeck, H.,
Hansen, J. L., Markager, S., and Riemann, L.: Significant N2 fixation
by heterotrophs, photoheterotrophs and heterocystous cyanobacteria in two
temperate estuaries, ISME J., 9, 273–285, https://doi.org/10.1038/ismej.2014.119, 2015b.
Berthelot, H., Bonnet, S., Camps, M., Grosso, O., and Moutin, T.: Assessment
of the dinitrogen released as ammonium and dissolved organic nitrogen by
unicellular and filamentous marine diazotrophic cyanobacteria grown in
culture, Front. Mar. Sci., 2, 80, https://doi.org/10.3389/fmars.2015.00080, 2015.
Berthelot, H., Benavides, M., Moisander, P. H., Grosso, O., and Bonnet, S.:
High-nitrogen fixation rates in the particulate and dissolved pools in the
Western Tropical Pacific (Solomon and Bismarck Seas), Geophys. Res. Lett.,
44, 8414–8423, https://doi.org/10.1002/2017gl073856, 2017.
Berthelot, H., Duhamel, S., L'Helguen, S., Maguer, J.-F., Wang, S.,
Cetiniæ, I., and Cassar, N.: NanoSIMS single cell analyses reveal the
contrasting nitrogen sources for small phytoplankton, ISME J., 13,
651–662, https://doi.org/10.1038/s41396-018-0285-8, 2019.
Bhavya, P. S., Kumar, S., Gupta, G. V. M., Sudheesh, V., Sudharma, K. V.,
Varrier, D. S., Dhanya, K. R., and Saravanane, N.: Nitrogen uptake dynamics
in a tropical eutrophic estuary (Cochin, India) and adjacent coastal waters,
Estuar. Coasts, 39, 54–67, https://doi.org/10.1007/s12237-015-9982-y, 2016.
Biegala, I. and Raimbault, P.: High abundance of diazotrophic
picocyanobacteria (<3 µm) in a Southwest Pacific coral
lagoon, Aquat. Microb. Ecol., 51, 45–53, https://doi.org/10.3354/ame01185, 2008.
Bif, M. and Yunes, J.: Distribution of the marine cyanobacteria
Trichodesmium and their association with iron-rich particles in the South Atlantic Ocean,
Aquat. Microb. Ecol., 78, 107–119, https://doi.org/10.3354/ame01810, 2017.
Bird, C., Martinez, M. J., O'Donnell, A. G., and Wyman, M.: Spatial
distribution and transcriptional activity of an uncultured clade of
planktonic diazotrophic ã-proteobacteria in the Arabian Sea, Appl. Environ. Microbiol., 71, 2079–2085, https://doi.org/10.1128/AEM.71.4.2079-2085.2005, 2005.
Blais, M., Tremblay, J. É., Jungblut, A. D., Gagnon, J., Martin, J.,
Thaler, M., and Lovejoy, C.: Nitrogen fixation and identification of
potential diazotrophs in the Canadian Arctic, Global Biogeochem. Cycles,
26, 1–13, https://doi.org/10.1029/2011gb004096, 2012.
Bombar, D., Moisander, P. H., Dippner, J. W., Foster, R. A., Voss, M.,
Karfeld, B., and Zehr, J. P.: Distribution of diazotrophic microorganisms
and nifH gene expression in the Mekong River plume during intermonsoon, Mar.
Ecol. Prog. Ser., 424, 39–55, https://doi.org/10.3354/meps08976, 2011.
Bombar, D., Taylor, C. D., Wilson, S. T., Robidart, J. C., Rabines, A.,
Turk-Kubo, K. A., Kemp, J. N., Karl, D. M., and Zehr, J. P.: Measurements of
nitrogen fixation in the oligotrophic North Pacific Subtropical Gyre using a
free-drifting submersible incubation device, J. Plankton Res.,
37, 727–739, https://doi.org/10.1093/plankt/fbv049, 2015.
Bombar, D., Paerl, R. W., and Riemann, L.: Marine non-cyanobacterial
diazotrophs: moving beyond molecular detection, Trends Microbiol., 24,
916–927, https://doi.org/10.1016/j.tim.2016.07.002, 2016.
Bonnet, S., Dekaezemacker, J., Turk-Kubo, K. A., Moutin, T., Hamersley, R.
M., Grosso, O., Zehr, J. P., and Capone, D. G.: Aphotic N2 Fixation in
the Eastern Tropical South Pacific Ocean, PLoS ONE, 8, e81265, https://doi.org/10.1371/journal.pone.0081265, 2013.
Bonnet, S., Rodier, M., Turk-Kubo, K. A., Germineaud, C., Menkes, C.,
Ganachaud, A., Cravatte, S., Raimbault, P., Campbell, E., Quéroué,
F., Sarthou, G., Desnues, A., Maes, C., and Eldin, G.: Contrasted
geographical distribution of N2 fixation rates and nifH phylotypes in the
Coral and Solomon Seas (southwestern Pacific) during austral winter
conditions, Global Biogeochem. Cycles, 29, 1874–1892, https://doi.org/10.1002/2015gb005117, 2015.
Bonnet, S., Caffin, M., Berthelot, H., and Moutin, T.: Hot spot of N2 fixation in the western tropical South Pacific pleads for a spatial
decoupling between N2 fixation and denitrification, P. Natl. Acad. Sci. USA, 114, E2800–E2801, https://doi.org/10.1073/pnas.1619514114, 2017.
Bonnet, S., Caffin, M., Berthelot, H., Grosso, O., Benavides, M., Helias-Nunige, S., Guieu, C., Stenegren, M., and Foster, R. A.: In-depth characterization of diazotroph activity across the western tropical South Pacific hotspot of N2 fixation (OUTPACE cruise), Biogeosciences, 15, 4215–4232, https://doi.org/10.5194/bg-15-4215-2018, 2018.
Bonnet, S., Guieu, C., Taillandier, V., Boulart, C., Bouruet-Aubertot, P.,
Gazeau, F., Scalabrin, C., Bressac, M., Knapp, A., Cuypers, Y.,
González-Santana, D., Forrer, H., Grisoni, J. M., Grosso, O., Habasque,
J., Jardin-Camps, M., Leblond, N., Le Moigne, F., Lebourges-Dhaussy, A., and
Tilliette, C.: Natural iron fertilization by shallow hydrothermal sources
fuels diazotroph blooms in the ocean, Science, 380,
812–817, https://doi.org/10.1126/science.abq4654, 2023.
Böttjer, D., Dore, J. E., Karl, D. M., Letelier, R. M., Mahaffey, C.,
Wilson, S. T., Zehr, J., and Church, M. J.: Temporal variability of nitrogen
fixation and particulate nitrogen export at Station ALOHA, Limnol. Oceanogr., 62, 200–216, https://doi.org/10.1002/lno.10386,
2017.
Breitbarth, E., Mills, M. M., Friedrichs, G., and LaRoche, J.: The Bunsen
gas solubility coefficient of ethylene as a function of temperature and
salinity and its importance for nitrogen fixation assays, Limnol. Oceanogr.-Methods, 2, 282–288, https://doi.org/10.4319/lom.2004.2.282, 2004.
Cabello, A. M., Turk-Kubo, K. A., Hayashi, K., Jacobs, L., Kudela, R. M.,
and Zehr, J. P.: Unexpected presence of the nitrogen-fixing symbiotic
cyanobacterium UCYN-A in Monterey Bay, California, J. Phycol., 56,
1521–1533, https://doi.org/10.1111/jpy.13045, 2020.
Campbell, L., Carpenter, E., Montoya, J., Kustka, A., and Capone, D.: Picoplankton community structure within and outside a Trichodesmium bloom in the southwestern Pacific Ocean, Vie Milieu, 55, 185–195, 2005.
Capone, D. G.: Determination of nitrogenase activity in aquatic samples
using the acetylene reduction procedure, in: Handbook of Methods in Aquat. Microb. Ecol., edited by: Kemp, P. F., Cole, J. J., Sherr, B. F., and
Sherr, E. B., Lewis Publishers, Boca Raton, FL, 621–631, 1993.
Capone, D. G. and Montoya, J. P.: Nitrogen fixation and denitrification,
Meth. Microbiol., 30, 501–515, https://doi.org/10.1016/S0580-9517(01)30060-0, 2001.
Capone, D. G., Burns, J. A., Montoya, J. P., Subramaniam, A., Mahaffey, C.,
Gunderson, T., Michaels, A. F., and Carpenter, E. J.: Nitrogen fixation by
Trichodesmium spp.: An important source of new nitrogen to the tropical and subtropical
North Atlantic Ocean, Global Biogeochem. Cycles, 19, GB2024, https://doi.org/10.1029/2004GB002331, 2005.
Caputo, A., Nylander, J. A. A., and Foster, R. A.: The genetic diversity and
evolution of diatom-diazotroph associations highlights traits favoring
symbiont integration (vol. 366, fny297, 2019), Fems Microbiol. Lett.,
366, fny297, https://doi.org/10.1093/femsle/fnz120, 2019.
Cassar, N., Tang, W., Gabathuler, H., and Huang, K.: Method for High
Frequency Underway N2 Fixation Measurements: Flow-Through Incubation
Acetylene Reduction Assays by Cavity Ring Down Laser Absorption Spectroscopy
(FARACAS), Anal. Chem., 90, 2839–2851, https://doi.org/10.1021/acs.analchem.7b04977, 2018.
Cerdan-Garcia, E., Baylay, A., Polyviou, D., Woodward, E. M. S., Wrightson,
L., Mahaffey, C., Lohan, M. C., Moore, C. M., Bibby, T. S., and Robidart, J.
C.: Transcriptional responses of Trichodesmium to natural inverse gradients
of Fe and P availability, ISME J., 16, 1055–1064, https://doi.org/10.1038/s41396-021-01151-1,
2021.
Chang, B. X., Jayakumar, A., Widner, B., Bernhardt, P., Mordy, C. W.,
Mulholland, M. R., and Ward, B. B.: Low rates of dinitrogen fixation in the
eastern tropical South Pacific, Limnol. Oceanogr., 64, 1913–1923,
https://doi.org/10.1002/lno.11159, 2019.
Chen, L. Y.-L., Chen, H.-Y., Lin, Y.-H., Yong, T.-C., Taniuchi, Y., and Tuo,
S.-H.: The relative contributions of unicellular and filamentous diazotrophs
to N2 fixation in the South China Sea and the upstream Kuroshio, Deep-Sea Res. Pt. I, 85, 56–71, https://doi.org/10.1016/j.dsr.2013.11.006, 2014.
Chen, M. M., Lu, Y. Y., Jiao, N. Z., Tian, J. W., Kao, S. J., and Zhang, Y.:
Biogeographic drivers of diazotrophs in the western Pacific Ocean, Limnol.
Oceanogr., 64, 1403–1421, https://doi.org/10.1002/lno.11123,
2019.
Cheung, S., Liu, K., Turk-Kubo, K. A., Nishioka, J., Suzuki, K., Landry, M.
R., Zehr, J. P., Leung, S., Deng, L., and Liu, H.: High biomass turnover
rates of endosymbiotic nitrogen-fixing cyanobacteria in the western Bering
Sea, Limnol. Oceanogr. Lett., 7, 501–509, https://doi.org/10.1002/lol2.10267, 2022.
Cheung, S. Y., Nitanai, R., Tsurumoto, C., Endo, H., Nakaoka, S., Cheah, W.,
Lorda, J. F., Xia, X. M., Liu, H. B., and Suzuki, K.: Physical forcing
controls the basin-scale occurrence of nitrogen-fixing organisms in the
North Pacific Ocean, Global Biogeochem. Cycles, 34, 9, https://doi.org/10.1029/2019GB006452, 2020.
Church, M. J. and Zehr, J.: Time series measurements of nifH gene abundances for
several cyanobacteria in the subtropical North Pacific Ocean, Zenodo
[data set], https://doi.org/10.5281/zenodo.4728253, 2020.
Church, M. J., Jenkins, B. D., Karl, D. M., and Zehr, J. P.: Vertical
distributions of nitrogen-fixing phylotypes at Stn ALOHA in the oligotrophic
North Pacific Ocean, Aquat. Microb. Ecol., 38, 3–14, https://doi.org/10.3354/ame038003, 2005a.
Church, M. J., Short, C. M., Jenkins, B. D., Karl, D. M., and Zehr, J. P.:
Temporal Patterns of Nitrogenase Gene (nifH) Expression in the Oligotrophic
North Pacific Ocean, Appl. Environ. Microbiol., 71, 5362–5370,
https://doi.org/10.1128/aem.71.9.5362-5370.2005, 2005b.
Church, M. J., Björkman, K. M., Karl, D. M., Saito, M. A., and Zehr, J.
P.: Regional distributions of nitrogen-fixing bacteria in the Pacific Ocean,
Limnol. Oceanogr., 53, 63–77, https://doi.org/10.4319/lo.2008.53.1.0063, 2008.
Confesor, K. A., Selden, C. R., Powell, K. E., Donahue, L. A., Mellett, T.,
Caprara, S., Knapp, A. N., Buck, K. N., and Chappell, P. D.: Defining the
Realized Niche of the Two Major Clades of Trichodesmium: A Study on the West
Florida Shelf, Front. Marine Sci., 9, 821655, https://doi.org/10.3389/fmars.2022.821655, 2022.
Cornejo-Castillo, F. M., Cabello, A. M., Salazar, G., Sánchez-Baracaldo,
P., Lima-Mendez, G., Hingamp, P., Alberti, A., Sunagawa, S., Bork, P., de
Vargas, C., Raes, J., Bowler, C., Wincker, P., Zehr, J. P., Gasol, J. M.,
Massana, R., and Acinas, S. G.: Cyanobacterial symbionts diverged in the
late Cretaceous towards lineage-specific nitrogen fixation factories in
single-celled phytoplankton, Nat. Commun., 7, 11071, https://doi.org/10.1038/ncomms11071, 2016.
Cornejo-Castillo, F. M., Munoz-Marin, M. D. C., Turk-Kubo, K. A.,
Royo-Llonch, M., Farnelid, H., Acinas, S. G., and Zehr, J. P.: UCYN-A3, a
newly characterized open ocean sublineage of the symbiotic N2-fixing
cyanobacterium Candidatus Atelocyanobacterium thalassa, Environ. Microbiol.,
21, 111–124, https://doi.org/10.1111/1462-2920.14429, 2019.
Dabundo, R., Lehmann, M. F., Treibergs, L., Tobias, C. R., Altabet, M. A.,
Moisander, P. H., and Granger, J.: The contamination of commercial
15N2 gas stocks with 15N-labeled nitrate and ammonium and
consequences for nitrogen fixation measurements, PLoS One, 9, e110335,
https://doi.org/10.1371/journal.pone.0110335, 2014.
Dekaezemacker, J., Bonnet, S., Grosso, O., Moutin, T., Bressac, M., and
Capone, D. G.: Evidence of active dinitrogen fixation in surface waters of
the eastern tropical South Pacific during El Nino and La Nina events and
evaluation of its potential nutrient controls, Global Biogeochem. Cycles,
27, 768–779, https://doi.org/10.1002/gbc.20063, 2013.
Delmont, T. O., Pierella Karlusich, J. J., Veseli, I., Fuessel, J., Eren, A.
M., Foster, R. A., Bowler, C., Wincker, P., and Pelletier, E.: Heterotrophic
bacterial diazotrophs are more abundant than their cyanobacterial
counterparts in metagenomes covering most of the sunlit ocean, ISME
J., 16, 927–936, https://doi.org/10.1038/s41396-021-01135-1, 2021.
Detoni, A. M. S., Ciotti, Á. M., Calil, P. H. R., Tavano, V. M., and
Yunes, J. S.: Trichodesmium latitudinal distribution on the shelf break in the
southwestern Atlantic Ocean during spring and autumn, Global Biogeochem. Cycles, 30, 1738–1753, https://doi.org/10.1002/2016gb005431,
2016.
Detoni, A. M. S., Subramaniam, A., Haley, S. T., Dyhrman, S. T., and Calil,
P. H. R.: Cyanobacterial diazotroph distributions in the western South
Atlantic, Front. Marine Sci., 9, 856643, https://doi.org/10.3389/fmars.2022.856643, 2022.
Deutsch, C., Sarmiento, J. L., Sigman, D. M., Gruber, N., and Dunne, J. P.:
Spatial coupling of nitrogen inputs and losses in the ocean, Nature, 445,
163–167, https://doi.org/10.1038/nature05392, 2007.
Dugenne, M., Gradoville, M., Church, M., Wilson, S., Sheyn, U., Harke, M.,
Björkman, K., Hawco, N., Hynes, A., Ribalet, F., Karl, D., DeLong, E.,
Dyhrman, S., Armbrust, E., John, S., Eppley, J., Harding, K., Stewart, B.,
Cabello, A., and Zehr, J.: Nitrogen Fixation in Mesoscale Eddies of the
North Pacific Subtropical Gyre: Patterns and Mechanisms, Global Biogeochem. Cycles, 37, e2022GB00738, https://doi.org/10.1029/2022GB007386, 2023.
Dupouy, C., Benielli-Gary, D., Neveux, J., Dandonneau, Y., and Westberry, T. K.: An algorithm for detecting Trichodesmium surface blooms in the South Western Tropical Pacific, Biogeosciences, 8, 3631–3647, https://doi.org/10.5194/bg-8-3631-2011, 2011.
Estrada, M., Delgado, M., Blasco, D., Latasa, M., Cabello, A. M.,
Benítez-Barrios, V., Fraile-Nuez, E., Mozetiè, P., and Vidal, M.:
Phytoplankton across tropical and subtropical regions of the Atlantic,
Indian and Pacific oceans, PLoS One, 11, e0151699, https://doi.org/10.1371/journal.pone.0151699, 2016.
Farnelid, H., Bentzon-Tilia, M., Andersson, A. F., Bertilsson, S., Jost, G.,
Labrenz, M., Jürgens, K., and Riemann, L.: Active nitrogen-fixing
heterotrophic bacteria at and below the chemocline of the central Baltic
Sea, ISME J., 7, 1413–1423, https://doi.org/10.1038/ismej.2013.26, 2013.
Farnelid, H., Turk-Kubo, K., Muñoz-Marín, M. C., and Zehr, J. P.:
New insights into the ecology of the globally significant uncultured
nitrogen-fixing symbiont UCYN-A, Aquat. Microb. Ecol., 77, 125–138,
https://doi.org/10.3354/ame01794, 2016.
Fernández, A., Mouriño-Carballido, B., Bode, A., Varela, M., and Marañón, E.: Latitudinal distribution of Trichodesmium spp. and N2 fixation in the Atlantic Ocean, Biogeosciences, 7, 3167–3176, https://doi.org/10.5194/bg-7-3167-2010, 2010.
Fernandez, C., González, M. L., Muñoz, C., Molina, V., and Farias,
L.: Temporal and spatial variability of biological nitrogen fixation off the
upwelling system of central Chile (35–38.5∘ S), J. Geophys. Res.-Oceans, 120, 3330–3349, https://doi.org/10.1002/2014jc010410, 2015.
Fernández-Castro, B., Mouriño-Carballido, B., Marañón, E.,
Chouciño, P., Gago, J., Ramírez, T., Vidal, M., Bode, A., Blasco,
D., Royer, S.-J., Estrada, M., and Simó, R.: Importance of salt
fingering for new nitrogen supply in the oligotrophic ocean, Nat.
Commun., 6, 8002, https://doi.org/10.1038/ncomms9002,
2015.
Filella, A., Riemann, L., Van Wambeke, F., Pulido-Villena, E., Vogts, A.,
Bonnet, S., Grosso, O., Diaz, J. M., Duhamel, S., and Benavides, M.:
Contrasting Roles of DOP as a Source of Phosphorus and Energy for Marine
Diazotrophs, Front. Marine Sci., 9, 923765, https://doi.org/10.3389/fmars.2022.923765, 2022.
Flett, R. J., Hamilton, R. D., and Campbell, N. E. R.: Aquatic
acetylene-reduction techniques: solutions to several problems, Can.
J. Microbiol., 221, 43–51, https://doi.org/10.1139/m76-006, 1976.
Fonseca-Batista, D., Dehairs, F., Riou, V., Fripiat, F., Elskens, M., Deman,
F., Brion, N., Quéroué, F., Bode, M., and Auel, H.: Nitrogen
fixation in the eastern Atlantic reaches similar levels in the Southern and
Northern Hemisphere, J. Geophys. Res.-Oceans, 122, 587–601,
https://doi.org/10.1002/2016jc012335, 2017.
Fonseca-Batista, D., Li, X., Riou, V., Michotey, V., Deman, F., Fripiat, F., Guasco, S., Brion, N., Lemaitre, N., Tonnard, M., Gallinari, M., Planquette, H., Planchon, F., Sarthou, G., Elskens, M., LaRoche, J., Chou, L., and Dehairs, F.: Evidence of high N2 fixation rates in the temperate northeast Atlantic, Biogeosciences, 16, 999–1017, https://doi.org/10.5194/bg-16-999-2019, 2019.
Foster, R. A., Subramaniam, A., Mahaffey, C., Carpenter, E. J., Capone, D.
G., and Zehr, J. P.: Influence of the Amazon River plume on distributions of
free-living and symbiotic cyanobacteria in the western tropical north
Atlantic Ocean, Limnol. Oceanogr., 52, 517–532, https://doi.org/10.4319/lo.2007.52.2.0517, 2007.
Foster, R. A., Paytan, A., and Zehr, J.: Seasonality of N2 fixation and
nifH gene diversity in the Gulf of Aqaba (Red Sea), Limnol. Oceanogr., 54,
219–233, https://doi.org/10.4319/lo.2009.54.1.0219, 2009.
Foster, R. A., Kuypers, M. M. M., Vagner, T., Paerl, R. W., Musat, N., and
Zehr, J. P.: Nitrogen fixation and transfer in open ocean
diatom–cyanobacterial symbioses, ISME J., 5, 1484–1493, https://doi.org/10.1038/ismej.2011.26, 2011.
Foster, R. A., Sztejrenszus, S., and Kuypers, M. M. M.: Measuring carbon and
N2 fixation in field populations of colonial and free-living
unicellular cyanobacteria using nanometer-scale secondary ion mass
spectrometry, J. Phycol., 49, 502–516, https://doi.org/10.1111/jpy.12057, 2013.
Foster, R. A., Tienken, D., Littmann, S., Whitehouse, M. J., Kuypers, M. M.
M., and White, A. E.: The rate and fate of N2 and C fixation by marine
diatom-diazotroph symbioses, ISME J., 16, 477–487, https://doi.org/10.1038/s41396-021-01086-7, 2022a.
Foster, R. A., Villareal, T. A., Lundin, D., Waterbury, J. B., Webb, E. A.,
and Zehr, J. P.: Richelia, in: Bergey's Manual of Systematics of Archaea and
Bacteria, John Wiley & Sons, Inc., in association with Bergey's Manual
Trust, 1–17, https://doi.org/10.1002/9781118960608.gbm01520,
2022b.
Gandhi, N., Singh, A., Prakash, S., Ramesh, R., Raman, M., Sheshshayee, M.
S., and Shetye, S.: First direct measurements of N2 fixation during a
Trichodesmium bloom in the eastern Arabian Sea, Global Biogeochem. Cycles, 25, 1–10,
https://doi.org/10.1029/2010gb003970, 2011.
Garcia, N., Raimbault, P., and Sandroni, V.: Seasonal nitrogen fixation and
primary production in the Southwest Pacific: nanoplankton diazotrophy and
transfer of nitrogen to picoplankton organisms, Marine Ecol. Prog.
Ser., 343, 25–33, https://doi.org/10.3354/meps06882, 2007.
Geisler, E., Bogler, A., Bar-Zeev, E., and Rahav, E.: Heterotrophic nitrogen
fixation at the hyper-eutrophic qshon river and estuary system, Front. Microbiol., 11, 1370, https://doi.org/10.3389/fmicb.2020.01370,
2020.
Giller, K. E., Nambiar, P. T. C., Srinivasa Rao, B., Dart, P. J., and Day,
J. M.: A comparison of nitrogen fixation in genotypes of 420 groundnut
(Arachis hypogaea L.) using 15N-isotope dilution, Biol. Fert. Soils, 5, 23–25, https://doi.org/10.1007/BF00264341, 1987.
Glibert, P. M. and Bronk, D. A.: Release of Dissolved Organic Nitrogen by
Marine Diazotrophic Cyanobacteria, Trichodesmium spp, Appl. Environ. Microbiol., 60, 3996–4000, https://doi.org/10.1128/aem.60.11.3996-4000.1994, 1994.
Glover, D. M., Jenkins, W. J., and Doney, S. C.: Modeling methods for marine
science, Cambridge University Press, Cambridge, UK, https://doi.org/10.1017/CBO9780511975721, 2011.
Gradoville, M. R., Bombar, D., Crump, B. C., Letelier, R. M., Zehr, J. P.,
and White, A. E.: Diversity and activity of nitrogen-fixing communities
across ocean basins, Limnol. Oceanogr., 62, 1895–1909, https://doi.org/10.1002/lno.10542, 2017.
Gradoville, M. R., Farnelid, H., White, A. E., Turk-Kubo, K. A., Stewart,
B., Ribalet, F., Ferrón, S., Pinedo-Gonzalez, P., Armbrust, E. V., Karl,
D. M., John, S., and Zehr, J. P.: Latitudinal constraints on the abundance
and activity of the cyanobacterium UCYN-A and other marine diazotrophs in
the North Pacific, Limnol. Oceanogr., 65, 1858–1875, https://doi.org/10.1002/lno.11423, 2020.
Gradoville, M., Cabello, A., Wilson, S., Turk-Kubo, K., Karl, D., and Zehr,
J.: Light and depth dependency of nitrogen fixation by the
non-photosynthetic, symbiotic cyanobacterium UCYN-A, Environ. Microbiol., 23, 4518–4531, https://doi.org/10.1111/1462-2920.15645,
2021.
Gradoville, M. R., Dugenne, M., Hynes, A. M., Zehr, J. P., and White, A. E.:
Empirical relationship between nifH gene abundance and diazotroph cell
concentration in the North Pacific Subtropical Gyre, J. Phycol., 53, 829–833,
https://doi.org/10.1111/jpy.13289, 2022.
Graham, J. A., Argyle, M., and Furnham, A.: The goal structure of
situations, Eur. J. Soc. Psychol., 10, 345–366, https://doi.org/10.1002/ejsp.2420100403, 1980.
Großkopf, T., Mohr, W., Baustian, T., Schunck, H., Gill, D., Kuypers, M.
M. M., Lavik, G., Schmitz, R. A., Wallace, D. W. R., and LaRoche, J.:
Doubling of marine dinitrogen-fixation rates based on direct measurements,
Nature, 488, 361–364, https://doi.org/10.1038/nature11338,
2012.
Gruber, N.: The marine nitrogen cycle: overview and challenges, in: Nitrogen
in the marine environment, 2nd edn., edited by: Capone, D. G., Bronk, D.
A., Mulholland, M. R., and Carpenter, E. J., Elsevier, Amsterdam, 1–50,
https://doi.org/10.1016/B978-0-12-372522-6.00001-3, 2008.
Gruber, N.: A diagnosis for marine nitrogen fixation, Nature, 566, 191–193,
https://doi.org/10.1038/d41586-019-00498-y, 2019.
Hagino, K., Onuma, R., Kawachi, M., and Horiguchi, T.: Discovery of an
Endosymbiotic Nitrogen-Fixing Cyanobacterium UCYN-A in Braarudosphaera
bigelowii (Prymnesiophyceae), PLOS ONE, 8, e81749,
https://doi.org/10.1371/journal.pone.0081749, 2013.
Hallstrøm, S., Benavides, M., Salamon, E. R., Arístegui, J., and
Riemann, L.: Activity and distribution of diazotrophic communities across
the Cape Verde Frontal Zone in the Northeast Atlantic Ocean,
Biogeochemistry, 160, 49–67, https://doi.org/10.1007/s10533-022-00940-w,
2022.
Halm, H., Lam, P., Ferdelman, T. G., Lavik, G., Dittmar, T., LaRoche, J.,
D'Hondt, S., and Kuypers, M. M. M.: Heterotrophic organisms dominate
nitrogen fixation in the South Pacific Gyre, ISME J., 6, 1238–1249,
https://doi.org/10.1038/ismej.2011.182, 2012.
Hamersley, M. R., Turk, K. A., Leinweber, A., Gruber, N., Zehr, J. P.,
Gunderson, T., and Capone, D. G.: Nitrogen fixation within the water column
associated with two hypoxic basins in the Southern California Bight, Aquat. Microb. Ecol., 63, 193–205, https://doi.org/10.3354/ame01494, 2011.
Harding, K., Turk-Kubo, K. A., Sipler, R. E., Mills, M. M., Bronk, D. A.,
and Zehr, J. P.: Symbiotic unicellular cyanobacteria fix nitrogen in the
Arctic Ocean, P. Natl. Acad. Sci. USA, 115, 13371–13375, https://doi.org/10.1073/pnas.1813658115, 2018.
Harding, K. J., Turk-Kubo, K. A., Mak, E. W. K., Weber, P. K., Mayali, X.,
and Zehr, J. P.: Cell-specific measurements show nitrogen fixation by
particle-attached putative non-cyanobacterial diazotrophs in the North
Pacific Subtropical Gyre, Nat. Commun., 13, 6979, https://doi.org/10.1038/s41467-022-34585-y, 2022.
Hardy, R. W. F., Burns, R. C., and Holsten, R. D.: Applications of the
acetylene-ethylene assay for measurement of nitrogen fixation, Soil Biol. Biochem., 5, 47–81, https://doi.org/10.1016/0038-0717(73)90093-X, 1973.
Harrison, P., Zingone, A., Mickelson, M., Lehtinen, S., Nagappa, R.,
Kraberg, A., Sun, J., McQuatters-Gollop, A., and Jakobsen, H.: Cell volumes
of marine phytoplankton from globally distributed coastal data sets,
Estuarine, Coast. Shelf Sci., 162, 130–142, https://doi.org/10.1016/j.ecss.2015.05.026, 2015.
Hashimoto, R., Watai, H., Miyahara, K., Sako, Y., and Yoshida, T.: Spatial
and temporal variability of unicellular diazotrophic cyanobacteria in the
eastern Seto Inland Sea, Fish. Sci., 82, 459–471, https://doi.org/10.1007/s12562-016-0983-y, 2016.
Hegde, S., Anil, A., Patil, J., Mitbavkar, S., Krishnamurthy, V., and
Gopalakrishna, V.: Influence of environmental settings on the prevalence of
Trichodesmium spp. in the Bay of Bengal, Mar. Ecol. Prog. Ser., 356, 93–101, https://doi.org/10.3354/meps07259, 2008.
Henke, B. A., Turk-Kubo, K. A., Bonnet, S., and Zehr, J. P.: Distributions
and abundances of sublineages of the N2-Fixing Cyanobacterium
Candidatus Atelocyanobacterium thalassa (UCYN-A) in the New Caledonian Coral Lagoon,
Front. Microbiol., 9, 554, https://doi.org/10.3389/fmicb.2018.00554,
2018.
Holl, C. M., Villareal, T. A., Payne, C. D., Clayton, T. D., Hart, C., and
Montoya, J. P.: Trichodesmium in the western Gulf of Mexico: 15N2-fixation and
natural abundance stable isotopic evidence, Limnol. Oceanogr., 52,
2249–2259, https://doi.org/10.4319/lo.2007.52.5.2249, 2007.
Hörstmann, C., Raes, E. J., Buttigieg, P. L., Lo Monaco, C., John, U., and Waite, A. M.: Hydrographic fronts shape productivity, nitrogen fixation, and microbial community composition in the southern Indian Ocean and the Southern Ocean, Biogeosciences, 18, 3733–3749, https://doi.org/10.5194/bg-18-3733-2021, 2021.
Hyman, M. R. and Arp, D. J.: Quantification and removal of some
contaminating gases from acetylene used to study gas-utilizing enzymes and
microorganisms, Appl. Environ. Microbiol., 53, 298–303,
https://doi.org/10.1128/aem.53.2.298-303.1987, 1987.
Ibello, V., Cantoni, C., Cozzi, S., and Civitarese, G.: First basin-wide
experimental results on N2 fixation in the open Mediterranean Sea,
Geophys. Res. Lett., 37, L03608, https://doi.org/10.1029/2009gl041635,
2010.
Jayakumar, A., Chang, B. X., Widner, B., Bernhardt, P., Mulholland, M. R.,
and Ward, B. B.: Biological nitrogen fixation in the oxygen-minimum region
of the eastern tropical North Pacific ocean, ISME J., 11,
2356–2367, https://doi.org/10.1038/ismej.2017.97, 2017.
Jiang, Z., Chen, J., Zhou, F., Zhai, H., Zhang, D., and Yan, X.: Summer
distribution patterns of Trichodesmium spp. in the Changjiang (Yangtze
River) Estuary and adjacent East China Sea shelf, Oceanologia, 59, 248–261,
https://doi.org/10.1016/j.oceano.2017.02.001, 2017.
Jiang, Z., Zhu, Y., Sun, Z., Zhai, H., Zhou, F., Yan, X., Zeng, J., Chen,
J., and Chen, Q.: Enhancement of Summer Nitrogen Fixation by the Kuroshio
Intrusion in the East China Sea and Southern Yellow Sea, J. Geophys. Res.-Biogeo., 128, e2022JG007287, https://doi.org/10.1029/2022JG007287, 2023.
Karlusich, J. J. P., Pelletier, E., Lombard, F., Carsique, M., Dvorak, E.,
Colin, S., Picheral, M., Cornejo-Castillo, F. M., Acinas, S. G., Pepperkok,
R., Karsenti, E., De Vargas, C., Wincker, P., Bowler, C., and Foster, R. A.:
Global distribution patterns of marine nitrogen-fixers by imaging and
molecular methods, Nat. Commun., 12, 4160, https://doi.org/10.1038/s41467-021-24299-y, 2021.
Kitajima, S., Furuya, K., Hashihama, F., Takeda, S., and Kanda, J.:
Latitudinal distribution of diazotrophs and their nitrogen fixation in the
tropical and subtropical western North Pacific, Limnol. Oceanogr.,
54, 537–547, https://doi.org/10.4319/lo.2009.54.2.0537, 2009.
Kittu, L. R., Paul, A. J., Fernández-Méndez, M., Hopwood, M. J., and
Riebesell, U.: Coastal N2 Fixation Rates Coincide Spatially With
Nitrogen Loss in the Humboldt Upwelling System off Peru, Global Biogeochem. Cycles, 37, e2022GB00757, https://doi.org/10.1029/2022gb007578, 2023.
Klawonn, I., Lavik, G., Boning, P., Marchant, H. K., Dekaezemacker, J.,
Mohr, W., and Ploug, H.: Simple approach for the preparation of
15−15N2-enriched water for nitrogen fixation assessments:
evaluation, application and recommendations, Front. Microbiol., 6, 769,
https://doi.org/10.3389/fmicb.2015.00769, 2015.
Knapp, A. N., Casciotti, K. L., Berelson, W. M., Prokopenko, M. G., and
Capone, D. G.: Low rates of nitrogen fixation in eastern tropical South
Pacific surface waters, P. Natl. Acad. Sci. USA, 113, 4398–4403, https://doi.org/10.1073/pnas.1515641113, 2016.
Konno, U., Tsunogai, U., Komatsu, D. D., Daita, S., Nakagawa, F., Tsuda, A., Matsui, T., Eum, Y.-J., and Suzuki, K.: Determination of total N2 fixation rates in the ocean taking into account both the particulate and filtrate fractions, Biogeosciences, 7, 2369–2377, https://doi.org/10.5194/bg-7-2369-2010, 2010.
Kromkamp, J., De Bie, M., Goosen, N., Peene, J., Van Rijswijk, P., Sinke,
J., and Duinevel, G. C. A.: Primary production by phytoplankton along the
Kenyan coast during the SE monsoon and November intermonsoon 1992, and the
occurrence of Trichodesmium, Deep-Sea Res. Pt. II,
44, 1195–1212, https://doi.org/10.1016/s0967-0645(97)00015-5,
1997.
Krupke, A., Musat, N., LaRoche, J., Mohr, W., Fuchs, B. M., Amann, R. I.,
Kuypers, M. M. M., and Foster, R. A.: In situ identification and N2 and
C fixation rates of uncultivated cyanobacteria populations, Syst.
Appl. Microbiol., 36, 259–271, https://doi.org/10.1016/j.syapm.2013.02.002, 2013.
Krupke, A., Lavik, G., Halm, H., Fuchs, B. M., Amann, R. I., and Kuypers, M.
M. M.: Distribution of a consortium between unicellular algae and the
N2 fixing cyanobacterium UCYN-A in the North Atlantic Ocean,
Environ. Microbiol., 16, 3153–3167, https://doi.org/10.1111/1462-2920.12431, 2014.
Krupke, A., Mohr, W., Laroche, J., Fuchs, B. M., Amann, R. I., and Kuypers,
M. M.: The effect of nutrients on carbon and nitrogen fixation by the
UCYN-A–haptophyte symbiosis, ISME J., 9, 1635–1647, https://doi.org/10.1038/ismej.2014.253, 2015.
Kumar, P. K., Singh, A., Ramesh, R., and Nallathambi, T.: N2 Fixation
in the eastern Arabian Sea: probable role of heterotrophic diazotrophs,
Front. Marine Sci., 4, 80, https://doi.org/10.3389/fmars.2017.00080, 2017.
Kumari, V. R., Ghosh, V. R. D., Rao, D. N., Krishna, M. S., and Sarma, V. V.
S. S.: Nitrogen fixation in the western coastal Bay of Bengal: Controlling
factors and contribution to primary production, Regional Studies in Marine
Science, 53, 102410, https://doi.org/10.1016/j.rsma.2022.102410, 2022.
Landou, E., Lazar, B., LaRoche, J., Fennel, K., and Berman-Frank, I.:
Contribution of photic and aphotic N2 fixation to production in an
oligotrophic sea, Limnol. Oceanogr., 68, 692–708, https://doi.org/10.1002/lno.12303, 2023.
Langlois, R., Grokopf, T., Mills, M., Takeda, S., and LaRoche, J.:
Widespread distribution and expression of Gamma A (UMB), an uncultured,
diazotrophic, gamma-proteobacterial nifH phylotype, Plos One, 10, 17, https://doi.org/10.1371/journal.pone.0128912, 2015.
Le Moal, M. and Biegala, I. C.: Diazotrophic unicellular cyanobacteria in
the northwestern Mediterranean Sea: A seasonal cycle, Limnol. Oceanogr., 54,
845–855, https://doi.org/10.4319/lo.2009.54.3.0845, 2009.
Le Moal, M., Collin, H., and Biegala, I. C.: Intriguing diversity among diazotrophic picoplankton along a Mediterranean transect: a dominance of rhizobia, Biogeosciences, 8, 827–840, https://doi.org/10.5194/bg-8-827-2011, 2011.
Letelier, R. and Karl, D.: Role of Trichodesmium spp. in the productivity of
the subtropical North Pacific Ocean, Mar. Ecol. Prog. Ser., 133, 263–273,
https://doi.org/10.3354/meps133263, 1996.
Li, L., Wu, C., Sun, J., Song, S., Ding, C., Huang, D., and Pujari, L.:
Nitrogen fixation driven by mesoscale eddies and the Kuroshio Current in the
northern South China Sea and the East China Sea, Acta Oceanol. Sin., 39,
30–41, https://doi.org/10.1007/s13131-020-1691-0, 2020.
Liu, J. X., Zhou, L. B., Li, J. J., Lin, Y. Y., Ke, Z. X., Zhao, C. Y., Liu,
H. J., Jiang, X., He, Y. H., and Tan, Y. H.: Effect of mesoscale eddies on
diazotroph community structure and nitrogen fixation rates in the South
China Sea, Regional Studies in Marine Science, 35, 14, https://doi.org/10.1016/j.rsma.2020.101106, 2020.
Loescher, C. R., Großkopf, T., Desai, F. D., Gill, D., Schunck, H.,
Croot, P. L., Schlosser, C., Neulinger, S. C., Pinnow, N., Lavik, G.,
Kuypers, M. M. M., LaRoche, J., and Schmitz, R. A.: Facets of diazotrophy in
the oxygen minimum zone waters off Peru, ISME J., 8, 2180–2192,
https://doi.org/10.1038/ismej.2014.71, 2014.
Loick-Wilde, N., Weber, S. C., Conroy, B. J., Capone, D. G., Coles, V. J.,
Medeiros, P. M., Steinberg, D. K., and Montoya, J. P.: Nitrogen sources and
net growth efficiency of zooplankton in three Amazon River plume food webs,
Limnol. Oceanogr., 61, 460–481, https://doi.org/10.1002/lno.10227, 2015.
Loick-Wilde, N., Fernandez-Urruzola, I., Eglite, E., Liskow, I., Nausch, M.,
Schulz-Bull, D., Wodarg, D., Wasmund, N., and Mohrholz, V.: Stratification,
nitrogen fixation, and cyanobacterial bloom stage regulate the planktonic
food web structure, Glob. Chang. Biol., 25, 794–810, https://doi.org/10.1111/gcb.14546, 2019.
Lory, C., Van Wambeke, F., Fourquez, M., Barani, A., Guieu, C., Tilliette,
C., Marie, D., Nunige, S., Berman-Frank, I., and Bonnet, S.: Assessing the
contribution of diazotrophs to microbial Fe uptake using a group specific
approach in the Western Tropical South Pacific Ocean, ISME Commun.,
2, 41, https://doi.org/10.1038/s43705-022-00122-7, 2022.
Löscher, C. R., Bourbonnais, A., Dekaezemacker, J., Charoenpong, C. N., Altabet, M. A., Bange, H. W., Czeschel, R., Hoffmann, C., and Schmitz, R.: N2 fixation in eddies of the eastern tropical South Pacific Ocean, Biogeosciences, 13, 2889–2899, https://doi.org/10.5194/bg-13-2889-2016, 2016.
Löscher, C. R., Mohr, W., Bange, H. W., and Canfield, D. E.: No nitrogen fixation in the Bay of Bengal?, Biogeosciences, 17, 851–864, https://doi.org/10.5194/bg-17-851-2020, 2020.
Lu, Y., Wen, Z., Shi, D., Chen, M., Zhang, Y., Bonnet, S., Li, Y., Tian, J., and Kao, S.-J.: Effect of light on N2 fixation and net nitrogen release of Trichodesmium in a field study, Biogeosciences, 15, 1–12, https://doi.org/10.5194/bg-15-1-2018, 2018.
Luo, Y.-W., Doney, S. C., Anderson, L. A., Benavides, M., Berman-Frank, I., Bode, A., Bonnet, S., Boström, K. H., Böttjer, D., Capone, D. G., Carpenter, E. J., Chen, Y. L., Church, M. J., Dore, J. E., Falcón, L. I., Fernández, A., Foster, R. A., Furuya, K., Gómez, F., Gundersen, K., Hynes, A. M., Karl, D. M., Kitajima, S., Langlois, R. J., LaRoche, J., Letelier, R. M., Marañón, E., McGillicuddy Jr., D. J., Moisander, P. H., Moore, C. M., Mouriño-Carballido, B., Mulholland, M. R., Needoba, J. A., Orcutt, K. M., Poulton, A. J., Rahav, E., Raimbault, P., Rees, A. P., Riemann, L., Shiozaki, T., Subramaniam, A., Tyrrell, T., Turk-Kubo, K. A., Varela, M., Villareal, T. A., Webb, E. A., White, A. E., Wu, J., and Zehr, J. P.: Database of diazotrophs in global ocean: abundance, biomass and nitrogen fixation rates, Earth Syst. Sci. Data, 4, 47–73, https://doi.org/10.5194/essd-4-47-2012, 2012.
Luo, Y.-W., Lima, I. D., Karl, D. M., Deutsch, C. A., and Doney, S. C.: Data-based assessment of environmental controls on global marine nitrogen fixation, Biogeosciences, 11, 691–708, https://doi.org/10.5194/bg-11-691-2014, 2014.
Mague, T. H., Weare, N. M., and Holm-Hansen, O.: Nitrogen fixation in the
North Pacific Ocean, Mar. Biol., 24, 109–119, https://doi.org/10.1007/bf00389344, 1974.
Martínez-Pérez, C., Mohr, W., Loscher, C. R., Dekaezemacker, J.,
Littmann, S., Yilmaz, P., Lehnen, N., Fuchs, B. M., Lavik, G., Schmitz, R.
A., LaRoche, J., and Kuypers, M. M.: The small unicellular diazotrophic
symbiont, UCYN-A, is a key player in the marine nitrogen cycle, Nat.
Microbiol., 1, 16163, https://doi.org/10.1038/nmicrobiol.2016.163, 2016.
Masotti, I., Ruiz-Pino, D., and Le Bouteiller, A.: Photosynthetic
characteristics of Trichodesmium in the southwest Pacific Ocean: importance and
significance, Mar. Ecol. Prog. Ser., 338, 47–59, https://doi.org/10.3354/meps338047, 2007.
McCarthy, J. J. and Carpenter, E. J.: Oscillatoria (Trichodesmium) Thiebautii
(cyanophyta) the central North Atlantic Ocean, J. Phycol., 15,
75–82, https://doi.org/10.1111/j.1529-8817.1979.tb02965.x,
1979.
Meiler, S., Britten, G. L., Dutkiewicz, S., Gradoville, M. R., Moisander, P.
H., Jahn, O., and Follows, M. J.: Constraining uncertainties of diazotroph
biogeography from nifH gene abundance, Limnol. Oceanogr., 67, 816–829,
https://doi.org/10.1002/lno.12036, 2022.
Meiler, S., Britten, G. L., Dutkiewicz, S., Moisander, P. H., and Follows,
M. J.: Challenges and opportunities in connecting gene count observations
with ocean biogeochemical models: Reply to Zehr and Riemann (2023), Limnol.
Oceanogr., 68, 1413–1416, https://doi.org/10.1002/lno.12363,
2023.
Menden-Deuer, S. and Lessard, E. J.: Carbon to volume relationships for
dinoflagellates, diatoms, and other protist plankton, Limnol. Oceanogr., 45, 569–579, https://doi.org/10.4319/lo.2000.45.3.0569, 2000.
Messer, L. F., Mahaffey, C., M Robinson, C., Jeffries, T. C., Baker, K. G.,
Bibiloni Isaksson, J., Ostrowski, M., Doblin, M. A., Brown, M. V., and
Seymour, J. R.: High levels of heterogeneity in diazotroph diversity and
activity within a putative hotspot for marine nitrogen fixation, ISME J., 10, 1499–1513, https://doi.org/10.1038/ismej.2015.205,
2016.
Messer, L. F., Brown, M. V., Van Ruth, P. D., Doubell, M., and Seymour, J.
R.: Temperate southern Australian coastal waters are characterised by
surprisingly high rates of nitrogen fixation and diversity of diazotrophs,
PeerJ, 9, e10809, https://doi.org/10.7717/peerj.10809, 2021.
Meyer, N. R., Fortney, J. L., and Dekas, A. E.: NanoSIMS sample preparation
decreases isotope enrichment: magnitude, variability and implications for
single-cell rates of microbial activity, Environ. Microbiol., 23, 81–98,
https://doi.org/10.1111/1462-2920.15264, 2021.
Mills, M. M., Turk-Kubo, K. A., van Dijken, G. L., Henke, B. A., Harding,
K., Wilson, S. T., Arrigo, K. R., and Zehr, J. P.: Unusual marine
cyanobacteria/haptophyte symbiosis relies on N2 fixation even in
N-rich environments, ISME J., 14, 2395–2406, https://doi.org/10.1038/s41396-020-0691-6, 2020.
Mohr, W., Grosskopf, T., Wallace, D. W., and LaRoche, J.: Methodological
underestimation of oceanic nitrogen fixation rates, PLoS One, 5, e12583,
https://doi.org/10.1371/journal.pone.0012583, 2010.
Moisander, P. H., Zhang, R., Boyle, E. A., Hewson, I., Montoya, J. P., and
Zehr, J. P.: Analogous nutrient limitations in unicellular diazotrophs and
Prochlorococcus in the South Pacific Ocean, ISME J., 6, 733–744, https://doi.org/10.1038/ismej.2011.152, 2012.
Moisander, P. H., Serros, T., Paerl, R. W., Beinart, R. A., and Zehr, J. P.:
Gammaproteobacterial diazotrophs and nifH gene expression in surface waters of
the South Pacific Ocean, ISME J, 8, 1962–1973, https://doi.org/10.1038/ismej.2014.49, 2014.
Moisander, P. H., Benavides, M., Bonnet, S., Berman-Frank, I., White, A. E.,
and Riemann, L.: Chasing after non-cyanobacterial nitrogen fixation in
marine pelagic environments, Front. Microbiol., 8, 1736, https://doi.org/10.3389/fmicb.2017.01736, 2017.
Mompeán, C., Bode, A., Benítez-Barrios, V. M.,
Domínguez-Yanes, J. F., Escánez, J., and Fraile-Nuez, E.: Spatial
patterns of plankton biomass and stable isotopes reflect the influence of
the nitrogen-fixer Trichodesmium along the subtropical North Atlantic,
J. Plankton Res., 35, 513–525, https://doi.org/10.1093/plankt/fbt011, 2013.
Mompeán, C., Bode, A., Latasa, M., Fernández-Castro, B.,
Mouriño-Carballido, B., and Irigoien, X.: The influence of nitrogen
inputs on biomass and trophic structure of ocean plankton: a study using
biomass and stable isotope size-spectra, J. Plankton Res., 38,
1163–1177, https://doi.org/10.1093/plankt/fbw052, 2016.
Montoya, J. P., Voss, M., Kahler, P., and Capone, D. G.: A Simple,
High-Precision, High-Sensitivity Tracer Assay for N2 Fixation, Appl.
Environ. Microbiol., 62, 986–993, https://doi.org/10.1128/aem.62.3.986-993.1996, 1996.
Moore, R. M., Grefe, I., Zorz, J., Shan, S., Thompson, K., Ratten, J., and
LaRoche, J.: On the relationship between hydrogen saturation in the tropical
Atlantic Ocean and nitrogen fixation by the symbiotic diazotroph UCYN-A, J. Geophys. Res.-Oceans, 123, 2353–2362, https://doi.org/10.1002/2017jc013047, 2018.
Moreira-Coello, V., Mourino-Carballido, B., Maranon, E., Fernandez-Carrera,
A., Bode, A., and Varela, M. M.: Biological N2 fixation in the
upwelling region off NW Iberia: magnitude, relevance, and players, Front.
Mar. Sci., 4, 303, https://doi.org/10.3389/fmars.2017.00303,
2017.
Mulholland, M. R.: The fate of nitrogen fixed by diazotrophs in the ocean, Biogeosciences, 4, 37–51, https://doi.org/10.5194/bg-4-37-2007, 2007.
Mulholland, M. R., Bernhardt, P. W., Heil, C. A., Bronk, D. A., and O'Neil,
J. M.: Nitrogen fixation and release of fixed nitrogen by Trichodesmium spp. in the Gulf
of Mexico, Limnol. Oceanogr., 51, 1762–1776, https://doi.org/10.4319/lo.2006.51.4.1762, 2006.
Mulholland, M. R., Bernhardt, P. W., Blanco-Garcia, J. L., Mannino, A.,
Hyde, K., Mondragon, E., Turk, K., Moisander, P. H., and Zehr, J. P.: Rates
of dinitrogen fixation and the abundance of diazotrophs in North American
coastal waters between Cape Hatteras and Georges Bank, Limnol. Oceanogr., 57, 1067–1083, https://doi.org/10.4319/lo.2012.57.4.1067, 2012.
Mulholland, M. R., Bernhardt, P. W., Widner, B. N., Selden, C. R., Chappell,
P. D., Clayton, S., Mannino, A., and Hyde, K.: High rates of N2 fixation in temperate, western North Atlantic coastal waters expand the
realm of marine diazotrophy, Global Biogeochem. Cycles, 33, 826–840,
https://doi.org/10.1029/2018gb006130, 2019.
Musat, N., Stryhanyuk, H., Bombach, P., Adrian, L., Audinot, J.-N., and
Richnow, H. H.: The effect of FISH and CARD-FISH on the isotopic composition
of 13C- and 15N-labeled Pseudomonas putida cells measured by nanoSIMS,
Syst. Appl. Microbiol., 37, 267–276, https://doi.org/10.1016/j.syapm.2014.02.002, 2014.
Needoba, J. A., Foster, R. A., Sakamoto, C., Zehr, J. P., and Johnson, K.
S.: Nitrogen fixation by unicellular diazotrophic cyanobacteria in the
temperate oligotrophic North Pacific Ocean, Limnol. Oceanogr., 52, 1317–1327,
https://doi.org/10.4319/lo.2007.52.4.1317, 2007.
Palter, J. B., Ames, E. J., Benavides, M., Goncalves Neto, A., Granger, J.,
Moisander, P. H., Watkins-Brandt, K. S., and White, A. E.: High N2
fixation in and near the Gulf Stream consistent with a circulation control
on diazotrophy, Geophys. Res. Lett., 47, e2020GL089103, https://doi.org/10.1111/j.1365-2656.2010.01695.x, 2020.
Postgate, J. R.: Nitrogen Fixation, 3rd Edn., Cambridge University
Press, Cambridge, United Kingdom, 1998.
Raes, E., van de Kamp, J., Bodrossy, L., Fong, A., Riekenberg, J., Holmes,
B., Erler, D., Eyre, B., Weil, S.-S., and Waite, A.: N2 fixation and
new insights into nitrification from the ice-edge to the equator in the
South Pacific Ocean, Front. Marine Sci., 7, 389, https://doi.org/10.3389/fmars.2020.00389, 2020.
Raes, E. J., Waite, A. M., McInnes, A. S., Olsen, H., Nguyen, H. M.,
Hardman-Mountford, N., and Thompson, P. A.: Changes in latitude and dominant
diazotrophic community alter N2 fixation, Marine Ecol. Prog.
Ser., 516, 85–102, https://doi.org/10.3354/meps11009, 2014.
Rahav, E., Bar-Zeev, E., Ohayon, S., Elifantz, H., Belkin, N., Herut, B.,
Mulholland, M. R., and Berman-Frank, I.: Dinitrogen fixation in aphotic
oxygenated marine environments, Front. Microbiol., 4, 227, https://doi.org/10.3389/fmicb.2013.00227, 2013a.
Rahav, E., Herut, B., Levi, A., Mulholland, M. R., and Berman-Frank, I.: Springtime contribution of dinitrogen fixation to primary production across the Mediterranean Sea, Ocean Sci., 9, 489–498, https://doi.org/10.5194/os-9-489-2013, 2013b.
Rahav, E., Herut, B., Mulholland, M., Belkin, N., Elifantz, H., and
Berman-Frank, I.: Heterotrophic and autotrophic contribution to dinitrogen
fixation in the Gulf of Aqaba, Marine Ecol. Prog. Ser., 522, 67–77,
https://doi.org/10.3354/meps11143, 2015.
Rahav, E., Giannetto, M. J., and Bar-Zeev, E.: Contribution of mono and
polysaccharides to heterotrophic N2 fixation at the eastern
Mediterranean coastline, Sci. Rep.-UK, 6, 27858, https://doi.org/10.1038/srep27858, 2016.
Ratten, J.-M., LaRoche, J., Desai, D. K., Shelley, R. U., Landing, W. M.,
Boyle, E., Cutter, G. A., and Langlois, R. J.: Sources of iron and phosphate
affect the distribution of diazotrophs in the North Atlantic, Deep-Sea
Res. Pt. II, 116, 332–341, https://doi.org/10.1016/j.dsr2.2014.11.012, 2015.
Reeder, C. F., Stoltenberg, I., Javidpour, J., and Löscher, C. R.: Salinity as a key control on the diazotrophic community composition in the southern Baltic Sea, Ocean Sci., 18, 401–417, https://doi.org/10.5194/os-18-401-2022, 2022.
Riou, V., Fonseca-Batista, D., Roukaerts, A., Biegala, I. C., Prakya, S. R.,
Magalhães Loureiro, C., Santos, M., Muniz-Piniella, A. E., Schmiing, M.,
Elskens, M., Brion, N., Martins, M. A., and Dehairs, F.: Importance of
N2-fixation on the productivity at the North-Western Azores
Current/Front System, and the abundance of diazotrophic unicellular
cyanobacteria, PLoS One, 11, e0150827, https://doi.org/10.1371/journal.pone.0150827, 2016.
Sahoo, D., Saxena, H., Nazirahmed, S., Kumar, S., Sudheer, A. K., Bhushan,
R., Sahay, A., and Singh, A.: Role of eddies and N2 fixation in
regulating proportions in the Bay of Bengal, Biogeochemistry, 155,
413–429, https://doi.org/10.1007/s10533-021-00833-4, 2021.
Sahu, B. K., Baliarsingh, S. K., Lotliker, A. A., Parida, C., Srichandan,
S., and Sahu, K. C.: Winter thermal inversion and Trichodesmium dominance in north-western
Bay of Bengal, Ocean Sci. J., 52, 301–306, https://doi.org/10.1007/s12601-017-0028-1, 2017.
Sargent, E. C., Hitchcock, A., Johansson, S. A., Langlois, R., Moore, C. M.,
LaRoche, J., Poulton, A. J., and Bibby, T. S.: Evidence for polyploidy in
the globally important diazotroph Trichodesmium, FEMS Microbiol. Lett., 363, fnw244,
https://doi.org/10.1093/femsle/fnw244, 2016.
Sarma, V. V. S. S., Vivek, R., Rao, D. N., and Ghosh, V. R. D.: Severe
phosphate limitation on nitrogen fixation in the Bay of Bengal, Cont. Shelf Res., 205, 104199, https://doi.org/10.1016/j.csr.2020.104199, 2020.
Sato, T., Shiozaki, T., Taniuchi, Y., Kasai, H., and Takahashi, K.: Nitrogen
fixation and diazotroph community in the subarctic Sea of Japan and Sea of
Okhotsk, J. Geophys. Res.-Oceans, 126, e2020JC017071, https://doi.org/10.1029/2020jc017071, 2021.
Sato, T., Shiozaki, T., Hashihama, F., Sato, M., Murata, A., Sasaoka, K.,
Umeda, S.-i., and Takahashi, K.: Low Nitrogen Fixation Related to Shallow
Nitracline Across the Eastern Indian Ocean, J. Geophys. Res.-Biogeo., 127, e2022JG007104, https://doi.org/10.1029/2022JG007104, 2022.
Saulia, E., Benavides, M., Henke, B., Turk-Kubo, K., Cooperguard, H.,
Grosso, O., Desnues, A., Rodier, M., Dupouy, C., Riemann, L., and Bonnet,
S.: Seasonal Shifts in Diazotrophs Players: Patterns Observed Over a
Two-Year Time Series in the New Caledonian Lagoon (Western Tropical South
Pacific Ocean), Front. Marine Sci., 7, 581755, https://doi.org/10.3389/fmars.2020.581755, 2020.
Saxena, H., Sahoo, D., Khan, M. A., Kumar, S., Sudheer, A. K., and Singh,
A.: Dinitrogen fixation rates in the Bay of Bengal during summer monsoon,
Environ. Res. Commun., 2, 051007, https://doi.org/10.1088/2515-7620/ab89fa, 2020.
Scavotto, R. E., Dziallas, C., Bentzon-Tilia, M., Riemann, L., and
Moisander, P. H.: Nitrogen-fixing bacteria associated with copepods in
coastal waters of the North Atlantic Ocean, Environ. Microbiol., 17,
3754–3765, https://doi.org/10.1111/1462-2920.12777, 2015.
Schvarcz, C. R., Wilson, S. T., Caffin, M., Stancheva, R., Li, Q.,
Turk-Kubo, K. A., White, A. E., Karl, D. M., Zehr, J. P., and Steward, G.
F.: Overlooked and widespread pennate diatom-diazotroph symbioses in the
sea, Nat. Commun., 13, 799, https://doi.org/10.1038/s41467-022-28065-6, 2022.
Selden, C. R., Mulholland, M. R., Bernhardt, P. W., Widner, B.,
Macías-Tapia, A., Ji, Q., and Jayakumar, A.: Dinitrogen Fixation Across
Physico-Chemical Gradients of the Eastern Tropical North Pacific Oxygen
Deficient Zone, Global Biogeochem. Cycles, 33, 1187–1202, https://doi.org/10.1029/2019gb006242, 2019.
Selden, C. R., Chappell, P. D., Clayton, S., Macías-Tapia, A.,
Bernhardt, P. W., and Mulholland, M. R.: A coastal N2 fixation hotspot
at the Cape Hatteras front: Elucidating spatial heterogeneity in diazotroph
activity via supervised machine learning, Limnol. Oceanogr., 66,
1832–1849, https://doi.org/10.1002/lno.11727, 2021a.
Selden, C. R., Mulholland, M. R., Widner, B., Bernhardt, P., and Jayakumar,
A.: Toward resolving disparate accounts of the extent and magnitude of
nitrogen fixation in the Eastern Tropical South Pacific oxygen deficient
zone, Limnol. Oceanogr., 66, 1950–1960, https://doi.org/10.1002/lno.11735, 2021b.
Selden, C. R., Einarsson, S. V., Lowry, K. E., Crider, K. E., Pickart, R.
S., Lin, P., Ashjian, C. J., and Chappell, P. D.: Coastal upwelling enhances
abundance of a symbiotic diazotroph (UCYN-A) and its haptophyte host in the
Arctic Ocean, Front. Mar. Sci., 9, 877562, https://doi.org/10.3389/fmars.2022.877562, 2022.
Shao, Z. and Luo, Y.-W.: Controlling factors on the global distribution of a representative marine non-cyanobacterial diazotroph phylotype (Gamma A), Biogeosciences, 19, 2939–2952, https://doi.org/10.5194/bg-19-2939-2022, 2022.
Shao, Z., Xu, Y., Wang, H., Luo, W., Wang, L., Huang, Y., and Luo, Y.-W.:
Version 2 of the global oceanic diazotroph database, Figshare [data set],
https://doi.org/10.6084/m9.figshare.21677687, 2022.
Shiozaki, T., Kodama, T., Kitajima, S., Sato, M., and Furuya, K.: Advective
transport of diazotrophs and importance of their nitrogen fixation on new
and primary production in the western Pacific warm pool, Limnol. Oceanogr.,
58, 49–60, https://doi.org/10.4319/lo.2013.58.1.0049, 2013.
Shiozaki, T., Chen, Y. L. L., Lin, Y. H., Taniuchi, Y., Sheu, D. S., Furuya,
K., and Chen, H. Y.: Seasonal variations of unicellular diazotroph groups A
and B, and Trichodesmium in the northern South China Sea and neighboring upstream
Kuroshio Current, Cont. Shelf Res., 80, 20–31, https://doi.org/10.1016/j.csr.2014.02.015, 2014a.
Shiozaki, T., Ijichi, M., Kodama, T., Takeda, S., and Furuya, K.:
Heterotrophic bacteria as major nitrogen fixers in the euphotic zone of the
Indian Ocean, Global Biogeochem. Cycles, 28, 1096–1110, https://doi.org/10.1002/2014gb004886, 2014b.
Shiozaki, T., Kodama, T., and Furuya, K.: Large-scale impact of the island
mass effect through nitrogen fixation in the western South Pacific Ocean,
Geophys. Res. Lett., 41, 2907–2913, https://doi.org/10.1002/2014GL059835, 2014c.
Shiozaki, T., Nagata, T., Ijichi, M., and Furuya, K.: Nitrogen fixation and the diazotroph community in the temperate coastal region of the northwestern North Pacific, Biogeosciences, 12, 4751–4764, https://doi.org/10.5194/bg-12-4751-2015, 2015a.
Shiozaki, T., Takeda, S., Itoh, S., Kodama, T., Liu, X., Hashihama, F., and Furuya, K.: Why is Trichodesmium abundant in the Kuroshio?, Biogeosciences, 12, 6931–6943, https://doi.org/10.5194/bg-12-6931-2015, 2015b.
Shiozaki, T., Bombar, D., Riemann, L., Hashihama, F., Takeda, S., Yamaguchi,
T., Ehama, M., Hamasaki, K., and Furuya, K.: Basin scale variability of
active diazotrophs and nitrogen fixation in the North Pacific, from the
tropics to the subarctic Bering Sea, Global Biogeochem. Cycles, 31,
996–1009, https://doi.org/10.1002/2017gb005681, 2017.
Shiozaki, T., Bombar, D., Riemann, L., Sato, M., Hashihama, F., Kodama, T.,
Tanita, I., Takeda, S., Saito, H., Hamasaki, K., and Furuya, K.: Linkage
Between Dinitrogen Fixation and Primary Production in the Oligotrophic South
Pacific Ocean, Global Biogeochem. Cycles, 32, 1028–1044, https://doi.org/10.1029/2017GB005869, 2018a.
Shiozaki, T., Fujiwara, A., Ijichi, M., Harada, N., Nishino, S., Nishi, S.,
Nagata, T., and Hamasaki, K.: Diazotroph community structure and the role of
nitrogen fixation in the nitrogen cycle in the Chukchi Sea (western Arctic
Ocean), Limnol. Oceanogr., 63, 2191–2205, https://doi.org/10.1002/lno.10933, 2018b.
Shiozaki, T., Kondo, Y., Yuasa, D., and Takeda, S.: Distribution of major
diazotrophs in the surface water of the Kuroshio from northeastern Taiwan to
south of mainland Japan, J. Plankton Res., 40, 407–419, https://doi.org/10.1093/plankt/fby027, 2018c.
Shiozaki, T., Fujiwara, A., Inomura, K., Hirose, Y., Hashihama, F., and
Harada, N.: Biological nitrogen fixation detected under Antarctic sea ice,
Nat. Geosci., 13, 729, https://doi.org/10.1038/s41561-020-00651-7, 2020.
Short, S. M. and Zehr, J. P.: Quantitative Analysis of nifH Genes and
Transcripts from Aquatic Environments, in: Methods in Enzymology, Academic
Press, 397, 380–394, https://doi.org/10.1016/S0076-6879(05)97023-7,
2005.
Singh, A., Bach, L. T., Fischer, T., Hauss, H., Kiko, R., Paul, A. J.,
Stange, P., Vandromme, P., and Riebesell, U.: Niche construction by
non-diazotrophs for N2 fixers in the eastern tropical North Atlantic
Ocean, Geophys. Res. Lett., 44, 6904–6913, https://doi.org/10.1002/2017gl074218, 2017.
Singh, A., Gandhi, N., and Ramesh, R.: Surplus supply of bioavailable
nitrogen through N2 fixation to primary producers in the eastern
Arabian Sea during autumn, Cont. Shelf Res., 181, 103–110,
https://doi.org/10.1016/j.csr.2019.05.012, 2019.
Sipler, R. E., Gong, D., Baer, S. E., Sanderson, M. P., Roberts, Q. N.,
Mulholland, M. R., and Bronk, D. A.: Preliminary estimates of the
contribution of Arctic nitrogen fixation to the global nitrogen budget,
Limnol. Oceanogr. Lett., 2, 159–166, https://doi.org/10.1002/lol2.10046, 2017.
Sohm, J. A., Hilton, J. A., Noble, A. E., Zehr, J. P., Saito, M. A., and
Webb, E. A.: Nitrogen fixation in the South Atlantic Gyre and the Benguela
upwelling system, Geophys. Res. Lett., 38, L16608, https://doi.org/10.1029/2011GL048315, 2011.
Staal, M., Lintel-Hekkert, S. t., Harren, F., and Stal, L.: Nitrogenase
activity in cyanobacteria measured by the acetylene reduction assay: a
comparison between batch incubation and on-line monitoring, Environ. Microbiol., 3, 343–351, https://doi.org/10.1046/j.1462-2920.2001.00201.x, 2001.
Staal, M., te Lintel Hekkert, S., Jan Brummer, G., Veldhuis, M., Sikkens,
C., Persijn, S., and Stal, L. J.: Nitrogen fixation along a north-south
transect in the eastern Atlantic Ocean, Limnol. Oceanogr., 52,
1305–1316, https://doi.org/10.4319/lo.2007.52.4.1305, 2007.
Stenegren, M., Berg, C., Padilla, C., David, S.-S., Montoya, J., Yager, P.,
and Foster, R.: Piecewise Structural Equation Model (SEM) Disentangles the
Environmental Conditions Favoring Diatom Diazotroph Associations (DDAs) in
the Western Tropical North Atlantic (WTNA), Front. Microbiol., 8, 810, https://doi.org/10.3389/fmicb.2017.00810, 2017.
Stenegren, M., Caputo, A., Berg, C., Bonnet, S., and Foster, R. A.: Distribution and drivers of symbiotic and free-living diazotrophic cyanobacteria in the western tropical South Pacific, Biogeosciences, 15, 1559–1578, https://doi.org/10.5194/bg-15-1559-2018, 2018.
Subramaniam, A., Yager, P., Carpenter, E., Mahaffey, C., Björkman, K.,
Cooley, S., Kustka, A., Montoya, J., Sañudo-Wilhelmy, S., and Shipe, R.:
Amazon River enhances diazotrophy and carbon sequestration in the tropical
North Atlantic Ocean, P. Natl. Acad. Sci. USA, 105,
10460–10465, https://doi.org/10.1073/pnas.0710279105, 2008.
Subramaniam, A., Mahaffey, C., Johns, W., and Mahowald, N.: Equatorial
upwelling enhances nitrogen fixation in the Atlantic Ocean, Geophys. Res. Lett., 40, 1766–1771, https://doi.org/10.1002/grl.50250, 2013.
Suzuki, S., Kawachi, M., Tsukakoshi, C., Nakamura, A., Hagino, K., Inouye,
I., and Ishida, K.-I.: Unstable relationship between Braarudosphaera bigelowii (= Chrysochromulina parkeae) and its
nitrogen-fixing endosymbiont, Front. Plant Sci., 12, 749895, https://doi.org/10.3389/fpls.2021.749895, 2021.
Tang, W., Cerdán-García, E., Berthelot, H., Polyviou, D., Wang, S.,
Baylay, A., Whitby, H., Planquette, H., Mowlem, M., Robidart, J., and
Cassar, N.: New insights into the distributions of nitrogen fixation and
diazotrophs revealed by high-resolution sensing and sampling methods, ISME J., 14, 2514–2526, https://doi.org/10.1038/s41396-020-0703-6, 2020.
Tang, W. Y. and Cassar, N.: Data-driven modeling of the distribution of
diazotrophs in the global ocean, Geophys. Res. Lett., 46,
12258–12269, https://doi.org/10.1029/2019gl084376, 2019.
Tang, W. Y., Wang, S., Fonseca-Batista, D., Dehairs, F., Gifford, S.,
Gonzalez, A. G., Gallinari, M., Planquette, H., Sarthou, G., and Cassar, N.:
Revisiting the distribution of oceanic N2 fixation and estimating
diazotrophic contribution to marine production, Nat. Commun., 10,
https://doi.org/10.1038/s41467-019-08640-0, 2019.
Tenório, M. M. B., Dupouy, C., Rodier, M., and Neveux, J.:
Trichodesmium and other planktonic cyanobacteria in New Caledonian waters (SW tropical
Pacific) during an El Niño episode, Aquat. Microb. Ecol., 81,
219–241, https://doi.org/10.3354/ame01873, 2018.
Thomas, B. L. K.: Geometric means and measures of dispersion, Biometrics,
35, 908–909, 1979.
Thompson, A., Carter, B. J., Turk-Kubo, K., Malfatti, F., Azam, F., and
Zehr, J. P.: Genetic diversity of the unicellular nitrogen-fixing
cyanobacteria UCYN-A and its prymnesiophyte host, Environ. Microbiol., 16,
3238–3249, https://doi.org/10.1111/1462-2920.12490, 2014.
Thompson, A. W., Foster, R. A., Krupke, A., Carter, B. J., Musat, N.,
Vaulot, D., Kuypers, M. M. M., and Zehr, J. P.: Unicellular cyanobacterium
symbiotic with a single-celled eukaryotic alga, Science,
337, 1546–1550, https://doi.org/10.1126/science.1222700, 2012.
Tuo, S.-h., Mulholland, M. R., Taniuchi, Y., Chen, H.-Y., Jane, W.-N., Lin,
Y.-H., and Chen, Y.-l. L.: Trichome lengths of the heterocystous
N2-fixing cyanobacteria in the tropical marginal seas of the western
north pacific, Front. Marine Sci., 8, 678607, https://doi.org/10.3389/fmars.2021.678607, 2021.
Turk-Kubo, K., Achilles, K., Serros, T., Ochiai, M., Montoya, J., and Zehr,
J.: Nitrogenase (nifH) gene expression in diazotrophic cyanobacteria in the
Tropical North Atlantic in response to nutrient amendments., Front.
Aquat. Microbiol., 3, 1–17, https://doi.org/10.3389/fmicb.2012.00386, 2012.
Turk-Kubo, K. A., Karamchandani, M., Capone, D. G., and Zehr, J. P.: The
paradox of marine heterotrophic nitrogen fixation: abundances of
heterotrophic diazotrophs do not account for nitrogen fixation rates in the
Eastern Tropical South Pacific, Environ. Microbiol., 16, 3095–3114, https://doi.org/10.1111/1462-2920.12346, 2014.
Turk-Kubo, K. A., Mills, M. M., Arrigo, K. R., van Dijken, G., Henke, B. A.,
Stewart, B., Wilson, S. T., and Zehr, J. P.: UCYN-A/haptophyte symbioses
dominate N2 fixation in the Southern California Current System, ISME
Commun., 1, 42, https://doi.org/10.1038/s43705-021-00039-7, 2021.
Turk-Kubo, K., Gradoville, M., Cheung, S., Cornejo Castillo, F. M., Harding,
K., Morando, M., Mills, M., and Zehr, J.: Non-cyanobacterial diazotrophs:
Global diversity, distribution, ecophysiology, and activity in marine
waters, FEMS Microbiol. Rev., fuac046, https://doi.org/10.1093/femsre/fuac046, 2022.
Verity, P. G., Robertson, C. Y., Tronzo, C. R., Andrews, M. G., Nelson, J.
R., and Sieracki, M. E.: Relationships between cell volume and the carbon
and nitrogen content of marine photosynthetic nanoplankton, Limnol. Oceanogr., 37, 1434–1446, https://doi.org/10.4319/lo.1992.37.7.1434, 1992.
Villareal, T. A., Adornato, L., Wilson, C., and Schoenbaechler, C. A.:
Summer blooms of diatom-diazotroph assemblages and surface chlorophyll in
the North Pacific gyre: A disconnect, J. Geophys. Res., 116, C03001,
https://doi.org/10.1029/2010jc006268, 2011.
Wang, S., Tang, W., Delage, E., Gifford, S., Whitby, H., González, A.
G., Eveillard, D., Planquette, H., and Cassar, N.: Investigating the
microbial ecology of coastal hotspots of marine nitrogen fixation in the
western North Atlantic, Sci. Rep.-UK, 11, 5508, https://doi.org/10.1038/s41598-021-84969-1, 2021.
Wang, W. L., Moore, J. K., Martiny, A. C., and Primeau, F. W.: Convergent
estimates of marine nitrogen fixation, Nature, 566, 205–213, https://doi.org/10.1038/s41586-019-0911-2, 2019.
Wannicke, N., Benavides, M., Dalsgaard, T., Dippner, J. W., Montoya, J. P.,
and Voss, M.: New perspectives on nitrogen Fixation measurements using
15N2 Gas, Front. Marine Sci., 5, 120, https://doi.org/10.3389/fmars.2018.00120, 2018.
Wasmund, N., Struck, U., Hansen, A., Flohr, A., Nausch, G.,
Grüttmüller, A., and Voss, M.: Missing nitrogen fixation in the
Benguela region, Deep-Sea Res. Pt. I,
106, 30–41, https://doi.org/10.1016/j.dsr.2015.10.007, 2015.
Watkins-Brandt, K., Letelier, R., Spitz, Y., Church, M., Böttjer, D.,
and White, A.: Addition of inorganic or organic phosphorus enhances nitrogen
and carbon fixation in the oligotrophic North Pacific, Marine Ecol.
Prog. Ser., 432, 17–29, https://doi.org/10.3354/meps09147,
2011.
Wen, Z., Lin, W., Shen, R., Hong, H., Kao, S.-J., and Shi, D.: Nitrogen
fixation in two coastal upwelling regions of the Taiwan Strait, Sci. Rep.-UK, 7, 17601, https://doi.org/10.1038/s41598-017-18006-5,
2017.
Wen, Z., Browning, T. J., Cai, Y., Dai, R., Zhang, R., Du, C., Jiang, R.,
Lin, W., Liu, X., Cao, Z., Hong, H., Dai, M., and Shi, D.: Nutrient
regulation of biological nitrogen fixation across the tropical western North
Pacific, Sci. Adv., 8, eabl7564, https://doi.org/10.1126/sciadv.abl7564, 2022.
White, A. E., Watkins-Brandt, K. S., and Church, M. J.: Temporal variability
of Trichodesmium spp. and diatom-diazotroph assemblages in the North Pacific Subtropical
Gyre, Front. Mar. Sci., 5, 27, https://doi.org/10.3389/fmars.2018.00027, 2018.
White, A. E., Granger, J., Selden, C., Gradoville, M. R., Potts, L.,
Bourbonnais, A., Fulweiler, R. W., Knapp, A. N., Mohr, W., Moisander, P. H.,
Tobias, C. R., Caffin, M., Wilson, S. T., Benavides, M., Bonnet, S.,
Mulholland, M. R., and Chang, B. X.: A critical review of the 15N2
tracer method to measure diazotrophic production in pelagic ecosystems,
Limnol. Oceanogr.-Methods, 18, 129–147, https://doi.org/10.1002/lom3.10353, 2020.
White, A. E., Granger, J., and Turk-Kubo, K.: Questioning high nitrogen fixation rate measurements in the Southern Ocean, Nat. Geosci., 15, 29–30, https://doi.org/10.1038/s41561-021-00873-3, 2022.
Wilson, S. T., Böttjer, D., Church, M. J., and Karl, D. M.: Comparative
assessment of nitrogen fixation methodologies, conducted in the oligotrophic
North Pacific Ocean, Appl. Environ. Microbiol., 78, 6516–6523,
https://doi.org/10.1128/aem.01146-12, 2012.
Wilson, S. T., Aylward, F. O., Ribalet, F., Barone, B., Casey, J. R.,
Connell, P. E., Eppley, J. M., Ferrón, S., Fitzsimmons, J. N., Hayes, C.
T., Romano, A. E., Turk-Kubo, K. A., Vislova, A., Armbrust, E. V., Caron, D.
A., Church, M. J., Zehr, J. P., Karl, D. M., and DeLong, E. F.: Coordinated
regulation of growth, activity and transcription in natural populations of
the unicellular nitrogen-fixing cyanobacterium Crocosphaera, Nat. Microbiol., 2,
17118, https://doi.org/10.1038/nmicrobiol.2017.118, 2017.
Woebken, D., Burow, L. C., Behnam, F., Mayali, X., Schintlmeister, A.,
Fleming, E. D., Prufert-Bebout, L., Singer, S. W., Cortés, A. L.,
Hoehler, T. M., Pett-Ridge, J., Spormann, A. M., Wagner, M., Weber, P. K.,
and Bebout, B. M.: Revisiting N2 fixation in Guerrero Negro intertidal
microbial mats with a functional single-cell approach, ISME J., 9, 485–496,
https://doi.org/10.1038/ismej.2014.144, 2015.
Wu, C., Kan, J., Liu, H., Pujari, L., Guo, C., Wang, X., and Sun, J.:
Heterotrophic bacteria dominate the diazotrophic community in the Eastern
Indian Ocean (EIO) during pre-southwest monsoon, Microb. Ecol., 78, 804–819,
https://doi.org/10.1007/s00248-019-01355-1, 2019.
Wu, C., Sun, J., Liu, H., Xu, W., Zhang, G., Lu, H., and Guo, Y.: Evidence
of the significant contribution of heterotrophic diazotrophs to nitrogen
fixation in the Eastern Indian Ocean during pre-southwest monsoon period,
Ecosystems, 25, 1066–1083, https://doi.org/10.1007/s10021-021-00702-z, 2021.
Yeung, L. Y., Berelson, W. M., Young, E. D., Prokopenko, M. G., Rollins, N.,
Coles, V. J., Montoya, J. P., Carpenter, E. J., Steinberg, D. K., Foster, R.
A., Capone, D. G., and Yager, P. L.: Impact of diatom-diazotroph
associations on carbon export in the Amazon River plume, Geophys. Res. Lett., 39, L18609, https://doi.org/10.1029/2012GL053356,
2012.
Yogev, T., Rahav, E., Bar-Zeev, E., Man-Aharonovich, D., Stambler, N.,
Kress, N., Béjà, O., Mulholland, M. R., Herut, B., and Berman-Frank,
I.: Is dinitrogen fixation significant in the Levantine Basin, East
Mediterranean Sea?, Environ. Microbiol., 13, 854–871, https://doi.org/10.1111/j.1462-2920.2010.02402.x, 2011.
Zehr, J. P.: Nitrogen fixation by marine cyanobacteria, Trends Microbiol.,
19, 162–173, https://doi.org/10.1016/j.tim.2010.12.004, 2011.
Zehr, J. P. and Capone, D. G.: Marine nitrogen fixation, Springer, https://doi.org/10.1007/978-3-030-67746-6, 2021.
Zehr, J. P. and Riemann, L.: Quantification of gene copy numbers is valuable
in marine microbial ecology: A comment to Meiler et al. (2022), Limnol.
Oceanogr., 68, 1406–1412, https://doi.org/10.1002/lno.12364,
2023.
Zhang, R., Chen, M., Yang, Q., Lin, Y., Mao, H., Qiu, Y., Tong, J., Lv, E.,
Yang, Z., Yang, W., and Cao, J.: Physical-biological coupling of N2
fixation in the northwestern South China Sea coastal upwelling during
summer, Limnol. Oceanogr., 60, 1411–1425, https://doi.org/10.1002/lno.10111, 2015.
Zhang, R., Zhang, D., Chen, M., Jiang, Z., Wang, C., Zheng, M., Qiu, Y., and
Huang, J.: N2 fixation rate and diazotroph community structure in the
western tropical North Pacific Ocean, Acta Oceanol. Sin., 38, 26–34,
https://doi.org/10.1007/s13131-019-1513-4, 2019.
Zhang, X., Ward, B. B., and Sigman, D. M.: Global nitrogen cycle: critical
enzymes, organisms, and processes for nitrogen budgets and dynamics, Chem.
Rev., 120, 5308–5351, https://doi.org/10.1021/acs.chemrev.9b00613, 2020.
Short summary
N2 fixation by marine diazotrophs is an important bioavailable N source to the global ocean. This updated global oceanic diazotroph database increases the number of in situ measurements of N2 fixation rates, diazotrophic cell abundances, and nifH gene copy abundances by 184 %, 86 %, and 809 %, respectively. Using the updated database, the global marine N2 fixation rate is estimated at 223 ± 30 Tg N yr−1, which triplicates that using the original database.
N2 fixation by marine diazotrophs is an important bioavailable N source to the global ocean....
Altmetrics
Final-revised paper
Preprint