Articles | Volume 15, issue 8
https://doi.org/10.5194/essd-15-3673-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-3673-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Global oceanic diazotroph database version 2 and elevated estimate of global oceanic N2 fixation
Zhibo Shao
State Key Laboratory of Marine Environmental Science and College of Ocean
and Earth Sciences, Xiamen University, Xiamen, Fujian, China
Yangchun Xu
State Key Laboratory of Marine Environmental Science and College of Ocean
and Earth Sciences, Xiamen University, Xiamen, Fujian, China
Hua Wang
State Key Laboratory of Marine Environmental Science and College of Ocean
and Earth Sciences, Xiamen University, Xiamen, Fujian, China
Weicheng Luo
State Key Laboratory of Marine Environmental Science and College of Ocean
and Earth Sciences, Xiamen University, Xiamen, Fujian, China
Lice Wang
State Key Laboratory of Marine Environmental Science and College of Ocean
and Earth Sciences, Xiamen University, Xiamen, Fujian, China
Yuhong Huang
State Key Laboratory of Marine Environmental Science and College of Ocean
and Earth Sciences, Xiamen University, Xiamen, Fujian, China
Nona Sheila R. Agawin
Marine Ecology and Systematics (MarES) Research Group, University of the
Balearic Islands, Palma de Mallorca, Spain
Ayaz Ahmed
Environment and Life Science Research Centre, Kuwait Institute for
Scientific Research, Salmiya, Kuwait
Mar Benavides
Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, UM 110, 13288,
Marseille, France
Turing Center for Living Systems, Aix-Marseille University, 13009 Marseille,
France
Mikkel Bentzon-Tilia
Department for Biotechnology and Biomedicine, Technical University of
Denmark, Lyngby, Denmark
Ilana Berman-Frank
Department of Marine Biology, Leon H. Charney School of Marine Sciences,
University of Haifa, Haifa, Israel
Hugo Berthelot
Ifremer, DYNECO, Plouzané, France
Isabelle C. Biegala
Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, UM 110, 13288,
Marseille, France
Mariana B. Bif
Monterey Bay Aquarium Research Institute, Moss Landing, California, USA
Antonio Bode
Oceanographic Center of A Coruña, Spanish Institute of Oceanography
(IEO-CSIC), A Coruña, Spain
Sophie Bonnet
Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, UM 110, 13288,
Marseille, France
Deborah A. Bronk
Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, USA
Mark V. Brown
Climate Change Cluster, University of Technology Sydney, Sydney, NSW,
Australia
Lisa Campbell
Department of Oceanography, Texas A&M University, College Station, Texas,
USA
Douglas G. Capone
Department of Biological Sciences, Marine and Environmental Biology Section,
University of Southern California, Los Angeles, California, USA
Edward J. Carpenter
College of Science and Engineering, San Francisco State University, San
Francisco, California, USA
Nicolas Cassar
Division of Earth and Ocean Sciences, Nicholas School of the Environment,
Duke University, Durham, North Carolina, USA
CNRS, Université de Brest, IRD, Ifremer, LEMAR, Plouzané, France
Bonnie X. Chang
Vesta, PBC, Southampton, New York, USA
Dreux Chappell
College of Marine Science, University of South Florida, Tampa, Florida, USA
Yuh-ling Lee Chen
Department of Oceanography, National Sun Yat-sen University, Kaohsiung,
Taiwan
Matthew J. Church
Flathead Lake Biological Station, University of Montana, Polson, Montana,
USA
Francisco M. Cornejo-Castillo
Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
Amália Maria Sacilotto Detoni
Institute of Marine Sciences of Andalucía (ICMAN), Consejo Superior de
Investigaciones Científicas (CSIC), Campus Río San Pedro, Puerto
Real, Spain
Scott C. Doney
Department of Environmental Sciences, University of Virginia,
Charlottesville, Virginia, USA
Cecile Dupouy
Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, UM 110, 13288,
Marseille, France
Marta Estrada
Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
Camila Fernandez
CNRS Observatoire océanologique, Banyuls-sur-mer, France
Center for Oceanographic Research COPAS Coastal, Universidad de
Concepción, Vigo, Chile
Bieito Fernández-Castro
Ocean and Earth Science, National Oceanography Centre, University of
Southampton, Southampton, UK
Debany Fonseca-Batista
Department of Oceanography, Dalhousie University, Halifax, Nova Scotia,
Canada
Rachel A. Foster
Department of Ecology, Environment, and Plant Sciences, Stockholm
University, Stockholm, Sweden
Ken Furuya
Institute of Plankton Eco-engineering, Soka University, Hachioji, Tokyo,
Japan
Nicole Garcia
Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, UM 110, 13288,
Marseille, France
Kanji Goto
Graduate School of Environmental Science, Hokkaido University, Kita-Ku,
Sapporo, Japan
Jesús Gago
Spanish Institute of Oceanography (IEO-CSIC), Centro Oceanografico de Vigo, Concepción,
Spain
Mary R. Gradoville
Columbia River Inter-Tribal Fish Commission, Portland, Oregon, USA
M. Robert Hamersley
Environmental Studies, Soka University of America, Aliso Viejo, California,
USA
Britt A. Henke
Ocean Sciences Department, University of California at Santa Cruz, Santa
Cruz, California, USA
Cora Hörstmann
Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, UM 110, 13288,
Marseille, France
Amal Jayakumar
Department of Geosciences, Princeton University, Princeton, New Jersey, USA
Zhibing Jiang
Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou,
Zhejiang, China
Shuh-Ji Kao
State Key Laboratory of Marine Environmental Science and College of Ocean
and Earth Sciences, Xiamen University, Xiamen, Fujian, China
David M. Karl
Department of Oceanography, University of Hawai'i at Mānoa, Honolulu,
Hawaii, USA
Leila R. Kittu
Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel,
Düstern, Kiel, Germany
Angela N. Knapp
Department of Earth, Ocean, & Atmospheric Science, Florida State
University, Tallahassee, Florida, USA
Sanjeev Kumar
Geosciences Division, Physical Research Laboratory, Ahmedabad, India
Julie LaRoche
Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
Hongbin Liu
Department of Ocean Science, The Hong Kong University of Science and
Technology, Hong Kong SAR, China
Jiaxing Liu
Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
Caroline Lory
French National Research Institute for Sustainable Development, IRD,
Marseille, France
Carolin R. Löscher
Department of Biology, DIAS, University of Southern Denmark, Odense, Denmark
Emilio Marañón
Centro de Investigación Mariña da Universidade de Vigo (CIM-UVigo),
Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo,
Campus Lagoas-Marcosende, Vigo, Spain
Lauren F. Messer
Division of Biological and Environmental Sciences, Faculty of Natural
Sciences, University of Stirling, Stirling, Scotland, UK
Matthew M. Mills
Earth System Science, Stanford University, Stanford, California, USA
Wiebke Mohr
Max Planck Institute for Marine Microbiology, Bremen, Germany
Pia H. Moisander
Department of Biology, University of Massachusetts Dartmouth, Dartmouth,
Massachusetts, USA
Claire Mahaffey
Department of Earth, Ocean and Ecological Sciences, University of Liverpool,
Liverpool, UK
Robert Moore
Department of Oceanography, Dalhousie University, Halifax, Nova Scotia,
Canada
Beatriz Mouriño-Carballido
Centro de Investigación Mariña da Universidade de Vigo (CIM-UVigo),
Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo,
Campus Lagoas-Marcosende, Vigo, Spain
Margaret R. Mulholland
Department of Ocean and Atmospheric Sciences, Old Dominion University,
Norfolk, Virginia, USA
Shin-ichiro Nakaoka
Center for Global Environmental Research, National Institute for
Environmental Studies, Tsukuba, Japan
Joseph A. Needoba
OHSU-PSU School of Public Health, Oregon Health and Science University
Portland, Portland, Oregon, USA
Eric J. Raes
Flourishing Oceans, Minderoo Foundation, Broadway, Nedlands, WA, Australia
Eyal Rahav
Israel Oceanographic and Limnological Research, National Institute of
Oceanography, Haifa, Israel
Teodoro Ramírez-Cárdenas
Centro Oceanográfico de Málaga, Instituto Español de
Oceanografía (IEO, CSIC), Fuengirola, Spain
Christian Furbo Reeder
Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, UM 110, 13288,
Marseille, France
Lasse Riemann
Department of Biology, University of Copenhagen, Helsingør, Denmark
Virginie Riou
Analytical, Environmental and Geo-Chemistry & Earth System Sciences,
Vrije Universiteit Brussel, Brussels, Belgium
Julie C. Robidart
National Oceanography Centre, Southampton, UK
Vedula V. S. S. Sarma
CSIR-National Institute of Oceanography, Regional Cente Waltair,
Visakhapatnam, India
Takuya Sato
Institute for Chemical Research, Kyoto University, Kyoto, Japan
Himanshu Saxena
Geosciences Division, Physical Research Laboratory, Ahmedabad, India
Corday Selden
Department of Marine and Coastal Sciences, Rutgers University, New Brunswick
New Jersey, USA
Justin R. Seymour
Climate Change Cluster, University of Technology Sydney, Sydney, New South
Wales, Australia
Dalin Shi
State Key Laboratory of Marine Environmental Science and College of Ocean
and Earth Sciences, Xiamen University, Xiamen, Fujian, China
Takuhei Shiozaki
Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba,
Japan
Arvind Singh
Geosciences Division, Physical Research Laboratory, Ahmedabad, India
Rachel E. Sipler
Climate Change Cluster, University of Technology Sydney, Sydney, NSW,
Australia
Research Centre for Indian Ocean Ecosystem, Tianjin University of Science
and Technology, Tianjin, China
College of Marine Science and Technology, China University of Geosciences
(Wuhan), Wuhan, Hubei, China
Koji Suzuki
Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
Kazutaka Takahashi
Graduate School of Agricultural and Life Sciences, The University of Tokyo,
Tokyo, Japan
Yehui Tan
Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
Weiyi Tang
Department of Geosciences, Princeton University, Princeton, New Jersey, USA
Jean-Éric Tremblay
Québec-Océan and Takuvik, Department of Biology, Laval University,
Québec, Canada
Kendra Turk-Kubo
Ocean Sciences Department, University of California at Santa Cruz, Santa
Cruz, California, USA
Zuozhu Wen
State Key Laboratory of Marine Environmental Science and College of Ocean
and Earth Sciences, Xiamen University, Xiamen, Fujian, China
Angelicque E. White
Department of Oceanography, University of Hawai'i at Mānoa, Honolulu,
Hawaii, USA
Samuel T. Wilson
School of Natural and Environmental Sciences, Newcastle University,
Newcastle upon Tyne, UK
Takashi Yoshida
Graduate school of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, Japan
Jonathan P. Zehr
Ocean Sciences Department, University of California at Santa Cruz, Santa
Cruz, California, USA
Run Zhang
State Key Laboratory of Marine Environmental Science and College of Ocean
and Earth Sciences, Xiamen University, Xiamen, Fujian, China
Yao Zhang
State Key Laboratory of Marine Environmental Science and College of Ocean
and Earth Sciences, Xiamen University, Xiamen, Fujian, China
State Key Laboratory of Marine Environmental Science and College of Ocean
and Earth Sciences, Xiamen University, Xiamen, Fujian, China
Related authors
Zhibo Shao and Ya-Wei Luo
Biogeosciences, 19, 2939–2952, https://doi.org/10.5194/bg-19-2939-2022, https://doi.org/10.5194/bg-19-2939-2022, 2022
Short summary
Short summary
Non-cyanobacterial diazotrophs (NCDs) may be an important player in fixing N2 in the ocean. By conducting meta-analyses, we found that a representative marine NCD phylotype, Gamma A, tends to inhabit ocean environments with high productivity, low iron concentration and high light intensity. It also appears to be more abundant inside cyclonic eddies. Our study suggests a niche differentiation of NCDs from cyanobacterial diazotrophs as the latter prefers low-productivity and high-iron oceans.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Hongmei Li, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Carla F. Berghoff, Henry C. Bittig, Laurent Bopp, Patricia Cadule, Katie Campbell, Matthew A. Chamberlain, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Thomas Colligan, Jeanne Decayeux, Laique Djeutchouang, Xinyu Dou, Carolina Duran Rojas, Kazutaka Enyo, Wiley Evans, Amanda Fay, Richard A. Feely, Daniel J. Ford, Adrianna Foster, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Siv K. Lauvset, Nathalie Lefèvre, Zhu Liu, Junjie Liu, Lei Ma, Shamil Maksyutov, Gregg Marland, Nicolas Mayot, Patrick McGuire, Nicolas Metzl, Natalie M. Monacci, Eric J. Morgan, Shin-Ichiro Nakaoka, Craig Neill, Yosuke Niwa, Tobias Nützel, Lea Olivier, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Zhangcai Qin, Laure Resplandy, Alizée Roobaert, Thais M. Rosan, Christian Rödenbeck, Jörg Schwinger, T. Luke Smallman, Stephen Smith, Reinel Sospedra-Alfonso, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Roland Séférian, Shintaro Takao, Hiroaki Tatebe, Hanqin Tian, Bronte Tilbrook, Olivier Torres, Etienne Tourigny, Hiroyuki Tsujino, Francesco Tubiello, Guido van der Werf, Rik Wanninkhof, Xuhui Wang, Dongxu Yang, Xiaojuan Yang, Zhen Yu, Wenping Yuan, Xu Yue, Sönke Zaehle, Ning Zeng, and Jiye Zeng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-519, https://doi.org/10.5194/essd-2024-519, 2024
Preprint under review for ESSD
Short summary
Short summary
The Global Carbon Budget 2024 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2024). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Huailin Deng, Koji Suzuki, Ichiro Yasuda, Hiroshi Ogawa, and Jun Nishioka
EGUsphere, https://doi.org/10.5194/egusphere-2024-3064, https://doi.org/10.5194/egusphere-2024-3064, 2024
Short summary
Short summary
Iron (Fe) and nitrate are vital for primary production in the North Pacific. Sedimentary Fe is carried by North Pacific Intermediate Water to the north Pacific, but the nutrient return path and its effect on phytoplankton are unclear. By combining Fe and macronutrient fluxes with phytoplankton composition, this study firstly revealed that Fe supply from subsurface greatly controls diatom abundance and identified the nutrient return path in the subarctic gyre and Kuroshio-Oyashio Transition Area.
Sebastian I. Cantarero, Edgart Flores, Harry Allbrook, Paulina Aguayo, Cristian A. Vargas, John E. Tamanaha, J. Bentley C. Scholz, Lennart T. Bach, Carolin R. Löscher, Ulf Riebesell, Balaji Rajagopalan, Nadia Dildar, and Julio Sepúlveda
Biogeosciences, 21, 3927–3958, https://doi.org/10.5194/bg-21-3927-2024, https://doi.org/10.5194/bg-21-3927-2024, 2024
Short summary
Short summary
Our study explores lipid remodeling in response to environmental stress, specifically how cell membrane chemistry changes. We focus on intact polar lipids in a phytoplankton community exposed to diverse stressors in a mesocosm experiment. The observed remodeling indicates acyl chain recycling for energy storage in intact polar lipids during stress, reallocating resources based on varying growth conditions. This understanding is essential to grasp the system's impact on cellular pools.
Yosuke Niwa, Yasunori Tohjima, Yukio Terao, Tazu Saeki, Akihiko Ito, Taku Umezawa, Kyohei Yamada, Motoki Sasakawa, Toshinobu Machida, Shin-Ichiro Nakaoka, Hideki Nara, Hiroshi Tanimoto, Hitoshi Mukai, Yukio Yoshida, Shinji Morimoto, Shinya Takatsuji, Kazuhiro Tsuboi, Yousuke Sawa, Hidekazu Matsueda, Kentaro Ishijima, Ryo Fujita, Daisuke Goto, Xin Lan, Kenneth Schuldt, Michal Heliasz, Tobias Biermann, Lukasz Chmura, Jarsolaw Necki, and Irène Xueref-Remy
EGUsphere, https://doi.org/10.5194/egusphere-2024-2457, https://doi.org/10.5194/egusphere-2024-2457, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study estimated regional and sectoral emission contributions to the unprecedented surge of atmospheric methane for 2020–2022. The methane is the second most important greenhouse gas and its emissions reduction is urgently required to mitigate the global warming. Numerical modeling-based estimates with three different sets of atmospheric observations consistently suggested large contributions of biogenic emissions from South Asia and Southeast Asia to the surge of atmospheric methane.
Lennart Thomas Bach, Aaron James Ferderer, Julie LaRoche, and Kai Georg Schulz
Biogeosciences, 21, 3665–3676, https://doi.org/10.5194/bg-21-3665-2024, https://doi.org/10.5194/bg-21-3665-2024, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is an emerging marine CO2 removal method, but its environmental effects are insufficiently understood. The OAE Pelagic Impact Intercomparison Project (OAEPIIP) provides funding for a standardized and globally replicated microcosm experiment to study the effects of OAE on plankton communities. Here, we provide a detailed manual for the OAEPIIP experiment. We expect OAEPIIP to help build scientific consensus on the effects of OAE on plankton.
Brandon Stephens, Montserrat Roca-Martí, Amy Maas, Vinícius Amaral, Samantha Clevenger, Shawnee Traylor, Claudia Benitez-Nelson, Philip Boyd, Ken Buesseler, Craig Carlson, Nicolas Cassar, Margaret Estapa, Andrea Fassbender, Yibin Huang, Phoebe Lam, Olivier Marchal, Susanne Menden-Deuer, Nicola Paul, Alyson Santoro, David Siegel, and David Nicholson
EGUsphere, https://doi.org/10.5194/egusphere-2024-2251, https://doi.org/10.5194/egusphere-2024-2251, 2024
Short summary
Short summary
The ocean’s mesopelagic zone (MZ) plays a crucial role in the global carbon cycle. This study combines new and previously published measurements of organic carbon supply and demand collected in August 2018 for the MZ in the subarctic North Pacific Ocean. Supply was insufficient to meet demand in August, but supply entering into the MZ in the spring of 2018 could have met the August demand. Results suggest observations over seasonal time scales may help to close MZ carbon budgets.
Weiyi Tang, Jeff Talbott, Timothy Jones, and Bess B. Ward
Biogeosciences, 21, 3239–3250, https://doi.org/10.5194/bg-21-3239-2024, https://doi.org/10.5194/bg-21-3239-2024, 2024
Short summary
Short summary
Wastewater treatment plants (WWTPs) are known to be hotspots of greenhouse gas emissions. However, the impact of WWTPs on the emission of the greenhouse gas N2O in downstream aquatic environments is less constrained. We found spatially and temporally variable but overall higher N2O concentrations and fluxes in waters downstream of WWTPs, pointing to the need for efficient N2O removal in addition to the treatment of nitrogen in WWTPs.
Jakob Rønning, Zarah J. Kofoed, Mats Jacobsen, and Carolin R. Löscher
EGUsphere, https://doi.org/10.5194/egusphere-2023-2884, https://doi.org/10.5194/egusphere-2023-2884, 2024
Short summary
Short summary
In our study, we assessed the impact of olivine on marine primary producers of ocean-based solutions. The experiments revealed no negative effects on carbon fixation rates. Additions of the alkaline minerals did not establish growth inhibition; instead, they showed slight growth increases with species-specific responses. Ni exposure from olivine did not inhibit growth. However, limitations include the absence of responses in natural settings.
Takuya Sato, Tamaha Yamaguchi, Kiyotaka Hidataka, Sayaka Sogawa, Takashi Setou, Taketoshi Kodama, Takuhei Shiozaki, and Kazutaka Takahashi
EGUsphere, https://doi.org/10.5194/egusphere-2024-1294, https://doi.org/10.5194/egusphere-2024-1294, 2024
Short summary
Short summary
Gamma A is a widespread non-cyanobacterial diazotroph and plays a crucial role for marine ecosystems, but its controlling factors are still largely unknown. This study, for the first time, quantified microzooplankton grazing on Gamma A and revealed significance of grazing pressure on Gamma A distribution around the Kuroshio region. It highlights the importance of top-down controls on Gamma A abundance and the associated nitrogen cycle.
Mathilde Dugenne, Marco Corrales-Ugalde, Jessica Y. Luo, Rainer Kiko, Todd D. O'Brien, Jean-Olivier Irisson, Fabien Lombard, Lars Stemmann, Charles Stock, Clarissa R. Anderson, Marcel Babin, Nagib Bhairy, Sophie Bonnet, Francois Carlotti, Astrid Cornils, E. Taylor Crockford, Patrick Daniel, Corinne Desnos, Laetitia Drago, Amanda Elineau, Alexis Fischer, Nina Grandrémy, Pierre-Luc Grondin, Lionel Guidi, Cecile Guieu, Helena Hauss, Kendra Hayashi, Jenny A. Huggett, Laetitia Jalabert, Lee Karp-Boss, Kasia M. Kenitz, Raphael M. Kudela, Magali Lescot, Claudie Marec, Andrew McDonnell, Zoe Mériguet, Barbara Niehoff, Margaux Noyon, Thelma Panaïotis, Emily Peacock, Marc Picheral, Emilie Riquier, Collin Roesler, Jean-Baptiste Romagnan, Heidi M. Sosik, Gretchen Spencer, Jan Taucher, Chloé Tilliette, and Marion Vilain
Earth Syst. Sci. Data, 16, 2971–2999, https://doi.org/10.5194/essd-16-2971-2024, https://doi.org/10.5194/essd-16-2971-2024, 2024
Short summary
Short summary
Plankton and particles influence carbon cycling and energy flow in marine ecosystems. We used three types of novel plankton imaging systems to obtain size measurements from a range of plankton and particle sizes and across all major oceans. Data were compiled and cross-calibrated from many thousands of images, showing seasonal and spatial changes in particle size structure in different ocean basins. These datasets form the first release of the Pelagic Size Structure database (PSSdb).
Julika Zinke, Gabriel Freitas, Rachel Ann Foster, Paul Zieger, Ernst Douglas Nilsson, Piotr Markuszewski, and Matthew Edward Salter
EGUsphere, https://doi.org/10.5194/egusphere-2024-1851, https://doi.org/10.5194/egusphere-2024-1851, 2024
Short summary
Short summary
Bioaerosols, which can influence climate and human health, were studied in the Baltic Sea. In May and August 2021, we used a sea spray simulation chamber on two ship based campaigns to collect and measure these aerosols. We found that bacteria were enriched in the air compared to seawater. Bacterial diversity was analyzed using DNA sequencing. Our methods provided consistent estimates of bacterial emission fluxes, aligning with previous studies.
Michael Morando, Jonathan Magasin, Shunyan Cheung, Matthew M. Mills, Jonathan P. Zehr, and Kendra A. Turk-Kubo
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-163, https://doi.org/10.5194/essd-2024-163, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Nitrogen is crucial in ocean food webs, but only some microbes can fix N2 gas into a bioavailable form. Most are known only by their nifH gene sequence. We created a software workflow for nifH data and ran it on 865 ocean samples, producing a database that captures the global diversity of N2-fixing marine microbes and the environmental factors that influence them. The workflow and DB can standardize analyses on past and future nifH datasets to enable insights into marine microbial communities.
Nir Haim, Vika Grigorieva, Rotem Soffer, Boaz Mayzel, Timor Katz, Ronen Alkalay, Eli Biton, Ayah Lazar, Hezi Gildor, Ilana Berman-Frank, Yishai Weinstein, Barak Herut, and Yaron Toledo
Earth Syst. Sci. Data, 16, 2659–2668, https://doi.org/10.5194/essd-16-2659-2024, https://doi.org/10.5194/essd-16-2659-2024, 2024
Short summary
Short summary
This paper outlines the process of creating an open-access surface wave dataset, drawing from deep-sea research station observations located 50 km off the coast of Israel. The discussion covers the wave monitoring procedure, from instrument configuration to wave field retrieval, and aspects of quality assurance. The dataset presented spans over 5 years, offering uncommon in situ wave measurements in the deep sea, and addresses the existing gap in wave information within the region.
Han Zhang, Guangming Mai, Weicheng Luo, Meng Chen, Ran Duan, and Tuo Shi
Biogeosciences, 21, 2529–2546, https://doi.org/10.5194/bg-21-2529-2024, https://doi.org/10.5194/bg-21-2529-2024, 2024
Short summary
Short summary
We report taxon-specific biogeography of N2-fixing microbes (diazotrophs) driven by Kuroshio intrusion (Kl) into the South China Sea. We show that the composition and distribution of distinct diazotrophic taxa shift with Kl-induced variations in physicochemical parameters of seawater and that Kl shapes diazotrophic community primarily as a stochastic process. This study thus has implications for the distribution of diazotrophs in a future warming ocean, as Kls are projected to intensify.
Maxim Rubin-Blum, Eyal Rahav, Guy Sisma-Ventura, Yana Yudkovski, Zoya Harbozov, Or Bialik, Oded Ezra, Anneleen Foubert, Barak Herut, and Yizhaq Makovsky
EGUsphere, https://doi.org/10.5194/egusphere-2024-1285, https://doi.org/10.5194/egusphere-2024-1285, 2024
Short summary
Short summary
Geochemical cycles and biodiversity are altered at transition zones of chemosynthetic ecosystems, chemotones. We asked if burrowing alters the functionality of these habitats. We surveyed the seafloor, analyzed sediment properties, and explored microbial communities in ghost shrimp burrows. We made an exciting discovery of chemosynthetic biofilms, linking them to macromolecule turnover and nutrient cycling, using metagenomics. This phenomenon may play an important role in biogeochemical cycles.
Nico Lange, Björn Fiedler, Marta Álvarez, Alice Benoit-Cattin, Heather Benway, Pier Luigi Buttigieg, Laurent Coppola, Kim Currie, Susana Flecha, Dana S. Gerlach, Makio Honda, I. Emma Huertas, Siv K. Lauvset, Frank Muller-Karger, Arne Körtzinger, Kevin M. O'Brien, Sólveig R. Ólafsdóttir, Fernando C. Pacheco, Digna Rueda-Roa, Ingunn Skjelvan, Masahide Wakita, Angelicque White, and Toste Tanhua
Earth Syst. Sci. Data, 16, 1901–1931, https://doi.org/10.5194/essd-16-1901-2024, https://doi.org/10.5194/essd-16-1901-2024, 2024
Short summary
Short summary
The Synthesis Product for Ocean Time Series (SPOTS) is a novel achievement expanding and complementing the biogeochemical data landscape by providing consistent and high-quality biogeochemical time-series data from 12 ship-based fixed time-series programs. SPOTS covers multiple unique marine environments and time-series ranges, including data from 1983 to 2021. All in all, it facilitates a variety of applications that benefit from the collective value of biogeochemical time-series observations.
Zuozhu Wen, Ruotong Jiang, Tianli He, Thomas Browning, Haizheng Hong, and Dalin Shi
EGUsphere, https://doi.org/10.5194/egusphere-2024-775, https://doi.org/10.5194/egusphere-2024-775, 2024
Preprint withdrawn
Short summary
Short summary
The isotope effect of biological N2 fixation is a key parameter for understanding the nitrogen cycle, however, little is known about its regulatory mechanisms. Here we show for the first time that CO2 exerts important controls on the N isotopic composition in diazotrophic cyanobacteria Trichodesmium and Crocosphaera, through the controls on nitrogenase enzyme efficiency. This study provides insights into understanding the fluctuations of δ15N records, and thus the past nitrogen cycle.
Astrid Müller, Hiroshi Tanimoto, Takafumi Sugita, Prabir K. Patra, Shin-ichiro Nakaoka, Toshinobu Machida, Isamu Morino, André Butz, and Kei Shiomi
Atmos. Meas. Tech., 17, 1297–1316, https://doi.org/10.5194/amt-17-1297-2024, https://doi.org/10.5194/amt-17-1297-2024, 2024
Short summary
Short summary
Satellite CH4 observations with high accuracy are needed to understand changes in atmospheric CH4 concentrations. But over oceans, reference data are limited. We combine various ship and aircraft observations with the help of atmospheric chemistry models to derive observation-based column-averaged mixing ratios of CH4 (obs. XCH4). We discuss three different approaches and demonstrate the applicability of the new reference dataset for carbon cycle studies and satellite evaluation.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Matthew D. Eisaman, Sonja Geilert, Phil Renforth, Laura Bastianini, James Campbell, Andrew W. Dale, Spyros Foteinis, Patricia Grasse, Olivia Hawrot, Carolin R. Löscher, Greg H. Rau, and Jakob Rønning
State Planet, 2-oae2023, 3, https://doi.org/10.5194/sp-2-oae2023-3-2023, https://doi.org/10.5194/sp-2-oae2023-3-2023, 2023
Short summary
Short summary
Ocean-alkalinity-enhancement technologies refer to various methods and approaches aimed at increasing the alkalinity of seawater. This chapter explores technologies for increasing ocean alkalinity, including electrochemical-based approaches, ocean liming, accelerated weathering of limestone, hydrated carbonate addition, and coastal enhanced weathering, and suggests best practices in research and development.
Maria D. Iglesias-Rodríguez, Rosalind E. M. Rickaby, Arvind Singh, and James A. Gately
State Planet, 2-oae2023, 5, https://doi.org/10.5194/sp-2-oae2023-5-2023, https://doi.org/10.5194/sp-2-oae2023-5-2023, 2023
Short summary
Short summary
Recent concern about the repercussions of rising atmospheric CO2 as a key heat-trapping agent have prompted ocean experts to discuss ocean alkalinity enhancement (OAE) as a CO2 removal approach but also as a potential way to mitigate ocean acidification. This chapter provides an overview of best practice in OAE laboratory experimentation by identifying key criteria to achieve high-quality results and providing recommendations to contrast results with other laboratories.
Weiyi Tang, Bess B. Ward, Michael Beman, Laura Bristow, Darren Clark, Sarah Fawcett, Claudia Frey, François Fripiat, Gerhard J. Herndl, Mhlangabezi Mdutyana, Fabien Paulot, Xuefeng Peng, Alyson E. Santoro, Takuhei Shiozaki, Eva Sintes, Charles Stock, Xin Sun, Xianhui S. Wan, Min N. Xu, and Yao Zhang
Earth Syst. Sci. Data, 15, 5039–5077, https://doi.org/10.5194/essd-15-5039-2023, https://doi.org/10.5194/essd-15-5039-2023, 2023
Short summary
Short summary
Nitrification and nitrifiers play an important role in marine nitrogen and carbon cycles by converting ammonium to nitrite and nitrate. Nitrification could affect microbial community structure, marine productivity, and the production of nitrous oxide – a powerful greenhouse gas. We introduce the newly constructed database of nitrification and nitrifiers in the marine water column and guide future research efforts in field observations and model development of nitrification.
Yifan Guan, Gretchen Keppel-Aleks, Scott C. Doney, Christof Petri, Dave Pollard, Debra Wunch, Frank Hase, Hirofumi Ohyama, Isamu Morino, Justus Notholt, Kei Shiomi, Kim Strong, Rigel Kivi, Matthias Buschmann, Nicholas Deutscher, Paul Wennberg, Ralf Sussmann, Voltaire A. Velazco, and Yao Té
Atmos. Chem. Phys., 23, 5355–5372, https://doi.org/10.5194/acp-23-5355-2023, https://doi.org/10.5194/acp-23-5355-2023, 2023
Short summary
Short summary
We characterize spatial–temporal patterns of interannual variability (IAV) in atmospheric CO2 based on NASA’s Orbiting Carbon Observatory-2 (OCO-2). CO2 variation is strongly impacted by climate events, with higher anomalies during El Nino years. We show high correlation in IAV between space-based and ground-based CO2 from long-term sites. Because OCO-2 has near-global coverage, our paper provides a roadmap to study IAV where in situ observation is sparse, such as open oceans and remote lands.
Martine Lizotte, Bennet Juhls, Atsushi Matsuoka, Philippe Massicotte, Gaëlle Mével, David Obie James Anikina, Sofia Antonova, Guislain Bécu, Marine Béguin, Simon Bélanger, Thomas Bossé-Demers, Lisa Bröder, Flavienne Bruyant, Gwénaëlle Chaillou, Jérôme Comte, Raoul-Marie Couture, Emmanuel Devred, Gabrièle Deslongchamps, Thibaud Dezutter, Miles Dillon, David Doxaran, Aude Flamand, Frank Fell, Joannie Ferland, Marie-Hélène Forget, Michael Fritz, Thomas J. Gordon, Caroline Guilmette, Andrea Hilborn, Rachel Hussherr, Charlotte Irish, Fabien Joux, Lauren Kipp, Audrey Laberge-Carignan, Hugues Lantuit, Edouard Leymarie, Antonio Mannino, Juliette Maury, Paul Overduin, Laurent Oziel, Colin Stedmon, Crystal Thomas, Lucas Tisserand, Jean-Éric Tremblay, Jorien Vonk, Dustin Whalen, and Marcel Babin
Earth Syst. Sci. Data, 15, 1617–1653, https://doi.org/10.5194/essd-15-1617-2023, https://doi.org/10.5194/essd-15-1617-2023, 2023
Short summary
Short summary
Permafrost thaw in the Mackenzie Delta region results in the release of organic matter into the coastal marine environment. What happens to this carbon-rich organic matter as it transits along the fresh to salty aquatic environments is still underdocumented. Four expeditions were conducted from April to September 2019 in the coastal area of the Beaufort Sea to study the fate of organic matter. This paper describes a rich set of data characterizing the composition and sources of organic matter.
Yong Zhang, Yong Zhang, Shuai Ma, Hanbing Chen, Jiabing Li, Zhengke Li, Kui Xu, Ruiping Huang, Hong Zhang, Yonghe Han, and Jun Sun
Biogeosciences, 20, 1299–1312, https://doi.org/10.5194/bg-20-1299-2023, https://doi.org/10.5194/bg-20-1299-2023, 2023
Short summary
Short summary
We found that increasing light intensity compensates for the negative effects of low phosphorus (P) availability on cellular protein and nitrogen contents. Reduced P availability, increasing light intensity, and ocean acidification act synergistically to increase cellular contents of carbohydrate and POC and the allocation of POC to carbohydrate. These regulation mechanisms in Emiliania huxleyi could provide vital information for evaluating carbon cycle in marine ecosystems under global change.
Tsukasa Dobashi, Yuzo Miyazaki, Eri Tachibana, Kazutaka Takahashi, Sachiko Horii, Fuminori Hashihama, Saori Yasui-Tamura, Yoko Iwamoto, Shu-Kuan Wong, and Koji Hamasaki
Biogeosciences, 20, 439–449, https://doi.org/10.5194/bg-20-439-2023, https://doi.org/10.5194/bg-20-439-2023, 2023
Short summary
Short summary
Water-soluble organic nitrogen (WSON) in marine aerosols is important for biogeochemical cycling of bioelements. Our shipboard measurements suggested that reactive nitrogen produced and exuded by nitrogen-fixing microorganisms in surface seawater likely contributed to the formation of WSON aerosols in the subtropical North Pacific. This study provides new implications for the role of marine microbial activity in the formation of WSON aerosols in the ocean surface.
Adam Francis, Raja S. Ganeshram, Robyn E. Tuerena, Robert G. M. Spencer, Robert M. Holmes, Jennifer A. Rogers, and Claire Mahaffey
Biogeosciences, 20, 365–382, https://doi.org/10.5194/bg-20-365-2023, https://doi.org/10.5194/bg-20-365-2023, 2023
Short summary
Short summary
Climate change is causing extensive permafrost degradation and nutrient releases into rivers with great ecological impacts on the Arctic Ocean. We focused on nitrogen (N) release from this degradation and associated cycling using N isotopes, an understudied area. Many N species are released at degradation sites with exchanges between species. N inputs from permafrost degradation and seasonal river N trends were identified using isotopes, helping to predict climate change impacts.
Darren C. McKee, Scott C. Doney, Alice Della Penna, Emmanuel S. Boss, Peter Gaube, Michael J. Behrenfeld, and David M. Glover
Biogeosciences, 19, 5927–5952, https://doi.org/10.5194/bg-19-5927-2022, https://doi.org/10.5194/bg-19-5927-2022, 2022
Short summary
Short summary
As phytoplankton (small, drifting photosynthetic organisms) drift with ocean currents, biomass accumulation rates should be evaluated in a Lagrangian (observer moves with a fluid parcel) as opposed to an Eulerian (observer is stationary) framework. Here, we use profiling floats and surface drifters combined with satellite data to analyse time and length scales of chlorophyll concentrations (a proxy for biomass) and of velocity to quantify how phytoplankton variability is related to water motion.
Emily J. Zakem, Barbara Bayer, Wei Qin, Alyson E. Santoro, Yao Zhang, and Naomi M. Levine
Biogeosciences, 19, 5401–5418, https://doi.org/10.5194/bg-19-5401-2022, https://doi.org/10.5194/bg-19-5401-2022, 2022
Short summary
Short summary
We use a microbial ecosystem model to quantitatively explain the mechanisms controlling observed relative abundances and nitrification rates of ammonia- and nitrite-oxidizing microorganisms in the ocean. We also estimate how much global carbon fixation can be associated with chemoautotrophic nitrification. Our results improve our understanding of the controls on nitrification, laying the groundwork for more accurate predictions in global climate models.
Zuozhu Wen, Thomas J. Browning, Rongbo Dai, Wenwei Wu, Weiying Li, Xiaohua Hu, Wenfang Lin, Lifang Wang, Xin Liu, Zhimian Cao, Haizheng Hong, and Dalin Shi
Biogeosciences, 19, 5237–5250, https://doi.org/10.5194/bg-19-5237-2022, https://doi.org/10.5194/bg-19-5237-2022, 2022
Short summary
Short summary
Fe and P are key factors controlling the biogeography and activity of marine N2-fixing microorganisms. We found lower abundance and activity of N2 fixers in the northern South China Sea than around the western boundary of the North Pacific, and N2 fixation rates switched from Fe–P co-limitation to P limitation. We hypothesize the Fe supply rates and Fe utilization strategies of each N2 fixer are important in regulating spatial variability in community structure across the study area.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Luke Gregor, Judith Hauck, Corinne Le Quéré, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Ramdane Alkama, Almut Arneth, Vivek K. Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Henry C. Bittig, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Wiley Evans, Stefanie Falk, Richard A. Feely, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Lucas Gloege, Giacomo Grassi, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Atul K. Jain, Annika Jersild, Koji Kadono, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Keith Lindsay, Junjie Liu, Zhu Liu, Gregg Marland, Nicolas Mayot, Matthew J. McGrath, Nicolas Metzl, Natalie M. Monacci, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Naiqing Pan, Denis Pierrot, Katie Pocock, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Carmen Rodriguez, Thais M. Rosan, Jörg Schwinger, Roland Séférian, Jamie D. Shutler, Ingunn Skjelvan, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Toste Tanhua, Pieter P. Tans, Xiangjun Tian, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Anthony P. Walker, Rik Wanninkhof, Chris Whitehead, Anna Willstrand Wranne, Rebecca Wright, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-2022, https://doi.org/10.5194/essd-14-4811-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2022 describes the datasets and methodology used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, the land ecosystems, and the ocean. These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Flavienne Bruyant, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Lise Artigue, Lucas Barbedo de Freitas, Guislain Bécu, Simon Bélanger, Pascaline Bourgain, Annick Bricaud, Etienne Brouard, Camille Brunet, Tonya Burgers, Danielle Caleb, Katrine Chalut, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Marine Cusa, Fanny Cusset, Laeticia Dadaglio, Marty Davelaar, Gabrièle Deslongchamps, Céline Dimier, Julie Dinasquet, Dany Dumont, Brent Else, Igor Eulaers, Joannie Ferland, Gabrielle Filteau, Marie-Hélène Forget, Jérome Fort, Louis Fortier, Martí Galí, Morgane Gallinari, Svend-Erik Garbus, Nicole Garcia, Catherine Gérikas Ribeiro, Colline Gombault, Priscilla Gourvil, Clémence Goyens, Cindy Grant, Pierre-Luc Grondin, Pascal Guillot, Sandrine Hillion, Rachel Hussherr, Fabien Joux, Hannah Joy-Warren, Gabriel Joyal, David Kieber, Augustin Lafond, José Lagunas, Patrick Lajeunesse, Catherine Lalande, Jade Larivière, Florence Le Gall, Karine Leblanc, Mathieu Leblanc, Justine Legras, Keith Lévesque, Kate-M. Lewis, Edouard Leymarie, Aude Leynaert, Thomas Linkowski, Martine Lizotte, Adriana Lopes dos Santos, Claudie Marec, Dominique Marie, Guillaume Massé, Philippe Massicotte, Atsushi Matsuoka, Lisa A. Miller, Sharif Mirshak, Nathalie Morata, Brivaela Moriceau, Philippe-Israël Morin, Simon Morisset, Anders Mosbech, Alfonso Mucci, Gabrielle Nadaï, Christian Nozais, Ingrid Obernosterer, Thimoté Paire, Christos Panagiotopoulos, Marie Parenteau, Noémie Pelletier, Marc Picheral, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Llúcia Ribot Lacosta, Jean-François Rontani, Blanche Saint-Béat, Julie Sansoulet, Noé Sardet, Catherine Schmechtig, Antoine Sciandra, Richard Sempéré, Caroline Sévigny, Jordan Toullec, Margot Tragin, Jean-Éric Tremblay, Annie-Pier Trottier, Daniel Vaulot, Anda Vladoiu, Lei Xue, Gustavo Yunda-Guarin, and Marcel Babin
Earth Syst. Sci. Data, 14, 4607–4642, https://doi.org/10.5194/essd-14-4607-2022, https://doi.org/10.5194/essd-14-4607-2022, 2022
Short summary
Short summary
This paper presents a dataset acquired during a research cruise held in Baffin Bay in 2016. We observed that the disappearance of sea ice in the Arctic Ocean increases both the length and spatial extent of the phytoplankton growth season. In the future, this will impact the food webs on which the local populations depend for their food supply and fisheries. This dataset will provide insight into quantifying these impacts and help the decision-making process for policymakers.
Xiaofeng Dai, Mingming Chen, Xianhui Wan, Ehui Tan, Jialing Zeng, Nengwang Chen, Shuh-Ji Kao, and Yao Zhang
Biogeosciences, 19, 3757–3773, https://doi.org/10.5194/bg-19-3757-2022, https://doi.org/10.5194/bg-19-3757-2022, 2022
Short summary
Short summary
This study revealed the distinct distribution patterns of six key microbial functional genes and transcripts related to N2O sources and sinks in four estuaries spanning the Chinese coastline, which were significantly constrained by nitrogen and oxygen concentrations, salinity, temperature, and pH. The community structure of the nosZ clade II was distinctly different from those in the soil and marine OMZs. Denitrification may principally control the N2O emissions patterns across the estuaries.
Zhibo Shao and Ya-Wei Luo
Biogeosciences, 19, 2939–2952, https://doi.org/10.5194/bg-19-2939-2022, https://doi.org/10.5194/bg-19-2939-2022, 2022
Short summary
Short summary
Non-cyanobacterial diazotrophs (NCDs) may be an important player in fixing N2 in the ocean. By conducting meta-analyses, we found that a representative marine NCD phylotype, Gamma A, tends to inhabit ocean environments with high productivity, low iron concentration and high light intensity. It also appears to be more abundant inside cyclonic eddies. Our study suggests a niche differentiation of NCDs from cyanobacterial diazotrophs as the latter prefers low-productivity and high-iron oceans.
Natalia Belkin, Tamar Guy-Haim, Maxim Rubin-Blum, Ayah Lazar, Guy Sisma-Ventura, Rainer Kiko, Arseniy R. Morov, Tal Ozer, Isaac Gertman, Barak Herut, and Eyal Rahav
Ocean Sci., 18, 693–715, https://doi.org/10.5194/os-18-693-2022, https://doi.org/10.5194/os-18-693-2022, 2022
Short summary
Short summary
We studied how distinct water circulations that elevate (cyclone) or descend (anticyclone) water from the upper ocean affect the biomass, activity and diversity of planktonic microorganisms in the impoverished eastern Mediterranean. We show that cyclonic and anticyclonic eddies differ in their community composition and production. Moreover, the anticyclone may be a potential bio-invasion and dispersal vector, while the cyclone may serve as a thermal refugee for native species.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Christian Furbo Reeder, Ina Stoltenberg, Jamileh Javidpour, and Carolin Regina Löscher
Ocean Sci., 18, 401–417, https://doi.org/10.5194/os-18-401-2022, https://doi.org/10.5194/os-18-401-2022, 2022
Short summary
Short summary
The Baltic Sea is predicted to freshen in the future. To explore the effect of decreasing salinity on N2 fixers, we followed the natural salinity gradient in the Baltic Sea from the Kiel Fjord to the Gotland Basin and identified an N2 fixer community dominated by Nodularia and UCYN-A. A salinity threshold was identified at a salinity of 10, with Nodularia dominating at low and UCYN-A dominating at higher salinity, suggesting a future expansion of Nodularia N2 fixers and a retraction of UCYN-A.
Julie Dinasquet, Estelle Bigeard, Frédéric Gazeau, Farooq Azam, Cécile Guieu, Emilio Marañón, Céline Ridame, France Van Wambeke, Ingrid Obernosterer, and Anne-Claire Baudoux
Biogeosciences, 19, 1303–1319, https://doi.org/10.5194/bg-19-1303-2022, https://doi.org/10.5194/bg-19-1303-2022, 2022
Short summary
Short summary
Saharan dust deposition of nutrients and trace metals is crucial to microbes in the Mediterranean Sea. Here, we tested the response of microbial and viral communities to simulated dust deposition under present and future conditions of temperature and pH. Overall, the effect of the deposition was dependent on the initial microbial assemblage, and future conditions will intensify microbial responses. We observed effects on trophic interactions, cascading all the way down to viral processes.
Céline Ridame, Julie Dinasquet, Søren Hallstrøm, Estelle Bigeard, Lasse Riemann, France Van Wambeke, Matthieu Bressac, Elvira Pulido-Villena, Vincent Taillandier, Fréderic Gazeau, Antonio Tovar-Sanchez, Anne-Claire Baudoux, and Cécile Guieu
Biogeosciences, 19, 415–435, https://doi.org/10.5194/bg-19-415-2022, https://doi.org/10.5194/bg-19-415-2022, 2022
Short summary
Short summary
We show that in the Mediterranean Sea spatial variability in N2 fixation is related to the diazotrophic community composition reflecting different nutrient requirements among species. Nutrient supply by Saharan dust is of great importance to diazotrophs, as shown by the strong stimulation of N2 fixation after a simulated dust event under present and future climate conditions; the magnitude of stimulation depends on the degree of limitation related to the diazotrophic community composition.
Hyewon Heather Kim, Jeff S. Bowman, Ya-Wei Luo, Hugh W. Ducklow, Oscar M. Schofield, Deborah K. Steinberg, and Scott C. Doney
Biogeosciences, 19, 117–136, https://doi.org/10.5194/bg-19-117-2022, https://doi.org/10.5194/bg-19-117-2022, 2022
Short summary
Short summary
Heterotrophic marine bacteria are tiny organisms responsible for taking up organic matter in the ocean. Using a modeling approach, this study shows that characteristics (taxonomy and physiology) of bacteria are associated with a subset of ecological processes in the coastal West Antarctic Peninsula region, a system susceptible to global climate change. This study also suggests that bacteria will become more active, in particular large-sized cells, in response to changing climates in the region.
Zhuo Chen, Jun Sun, Ting Gu, Guicheng Zhang, and Yuqiu Wei
Ocean Sci., 17, 1775–1789, https://doi.org/10.5194/os-17-1775-2021, https://doi.org/10.5194/os-17-1775-2021, 2021
Short summary
Short summary
We investigated the spatial distribution pattern and diversity of phytoplankton communities in the western Pacific Ocean (WPO) in the autumn of 2016, 2017, and 2018. The regions with strong vertical stratification were more favorable for cyanobacteria, whereas weak vertical stratification was more conducive to diatoms and dinoflagellates. It is clear that physical processes control phytoplankton community structure by driving the balance of chemical elements.
Helen E. Phillips, Amit Tandon, Ryo Furue, Raleigh Hood, Caroline C. Ummenhofer, Jessica A. Benthuysen, Viviane Menezes, Shijian Hu, Ben Webber, Alejandra Sanchez-Franks, Deepak Cherian, Emily Shroyer, Ming Feng, Hemantha Wijesekera, Abhisek Chatterjee, Lisan Yu, Juliet Hermes, Raghu Murtugudde, Tomoki Tozuka, Danielle Su, Arvind Singh, Luca Centurioni, Satya Prakash, and Jerry Wiggert
Ocean Sci., 17, 1677–1751, https://doi.org/10.5194/os-17-1677-2021, https://doi.org/10.5194/os-17-1677-2021, 2021
Short summary
Short summary
Over the past decade, understanding of the Indian Ocean has progressed through new observations and advances in theory and models of the oceanic and atmospheric circulation. This review brings together new understanding of the ocean–atmosphere system in the Indian Ocean, describing Indian Ocean circulation patterns, air–sea interactions, climate variability, and the critical role of the Indian Ocean as a clearing house for anthropogenic heat.
Puthenveettil Narayana Menon Vinayachandran, Yukio Masumoto, Michael J. Roberts, Jenny A. Huggett, Issufo Halo, Abhisek Chatterjee, Prakash Amol, Garuda V. M. Gupta, Arvind Singh, Arnab Mukherjee, Satya Prakash, Lynnath E. Beckley, Eric Jorden Raes, and Raleigh Hood
Biogeosciences, 18, 5967–6029, https://doi.org/10.5194/bg-18-5967-2021, https://doi.org/10.5194/bg-18-5967-2021, 2021
Short summary
Short summary
Upwelling in the coastal ocean triggers biological productivity and thus enhances fisheries. Therefore, understanding the phenomenon of upwelling and the underlying mechanisms is important. In this paper, the present understanding of the upwelling along the coastline of the Indian Ocean from the coast of Africa all the way up to the coast of Australia is reviewed. The review provides a synthesis of the physical processes associated with upwelling and its impact on the marine ecosystem.
Pascal Perolo, Bieito Fernández Castro, Nicolas Escoffier, Thibault Lambert, Damien Bouffard, and Marie-Elodie Perga
Earth Syst. Dynam., 12, 1169–1189, https://doi.org/10.5194/esd-12-1169-2021, https://doi.org/10.5194/esd-12-1169-2021, 2021
Short summary
Short summary
Wind blowing over the ocean creates waves that, by increasing the level of turbulence, promote gas exchange at the air–water interface. In this study, for the first time, we measured enhanced gas exchanges by wind-induced waves at the surface of a large lake. We adapted an ocean-based model to account for the effect of surface waves on gas exchange in lakes. We finally show that intense wind events with surface waves contribute disproportionately to the annual CO2 gas flux in a large lake.
Cynthia Evelyn Bluteau, Peter S. Galbraith, Daniel Bourgault, Vincent Villeneuve, and Jean-Éric Tremblay
Ocean Sci., 17, 1509–1525, https://doi.org/10.5194/os-17-1509-2021, https://doi.org/10.5194/os-17-1509-2021, 2021
Short summary
Short summary
In 2018, the Canadian Coast Guard approved a science team to sample in tandem with its ice-breaking and ship escorting operations. This collaboration provided the first mixing observations during winter that covered the largest spatial extent of the St. Lawrence Estuary and the Gulf of St. Lawrence ever measured in any season. Contrary to previous assumptions, we demonstrate that fluvial nitrate inputs from upstream (i.e., Great Lakes) are the most significant source of nitrate in the estuary.
France Van Wambeke, Vincent Taillandier, Karine Desboeufs, Elvira Pulido-Villena, Julie Dinasquet, Anja Engel, Emilio Marañón, Céline Ridame, and Cécile Guieu
Biogeosciences, 18, 5699–5717, https://doi.org/10.5194/bg-18-5699-2021, https://doi.org/10.5194/bg-18-5699-2021, 2021
Short summary
Short summary
Simultaneous in situ measurements of (dry and wet) atmospheric deposition and biogeochemical stocks and fluxes in the sunlit waters of the open Mediterranean Sea revealed complex physical and biological processes occurring within the mixed layer. Nitrogen (N) budgets were computed to compare the sources and sinks of N in the mixed layer. The transitory effect observed after a wet dust deposition impacted the microbial food web down to the deep chlorophyll maximum.
Frédéric Gazeau, France Van Wambeke, Emilio Marañón, Maria Pérez-Lorenzo, Samir Alliouane, Christian Stolpe, Thierry Blasco, Nathalie Leblond, Birthe Zäncker, Anja Engel, Barbara Marie, Julie Dinasquet, and Cécile Guieu
Biogeosciences, 18, 5423–5446, https://doi.org/10.5194/bg-18-5423-2021, https://doi.org/10.5194/bg-18-5423-2021, 2021
Short summary
Short summary
Our study shows that the impact of dust deposition on primary production depends on the initial composition and metabolic state of the tested community and is constrained by the amount of nutrients added, to sustain both the fast response of heterotrophic prokaryotes and the delayed one of phytoplankton. Under future environmental conditions, heterotrophic metabolism will be more impacted than primary production, therefore reducing the capacity of surface waters to sequester anthropogenic CO2.
Jia-Jang Hung, Ching-Han Tung, Zong-Ying Lin, Yuh-ling Lee Chen, Shao-Hung Peng, Yen-Huei Lin, and Li-Shan Tsai
Biogeosciences, 18, 5141–5162, https://doi.org/10.5194/bg-18-5141-2021, https://doi.org/10.5194/bg-18-5141-2021, 2021
Short summary
Short summary
We report measured active and passive fluxes and their controlling mechanisms in the northern South China Sea (NSCS). The total fluxes were higher than most reports in open oceans, indicating the significance of NSCS in atmospheric CO2 uptake and in storing that CO2 in the ocean’s interior. Winter cooling and extreme events enhanced nutrient availability and elevated fluxes. Global warming may have profound impacts on reducing ocean’s uptake and storage of CO2 in subtropical–tropical oceans.
Carolin R. Löscher
Biogeosciences, 18, 4953–4963, https://doi.org/10.5194/bg-18-4953-2021, https://doi.org/10.5194/bg-18-4953-2021, 2021
Short summary
Short summary
The Bay of Bengal (BoB) is classically seen as an ocean region with low primary production, which has been predicted to decrease even further. Here, the importance of such a trend is used to explore what could happen to the BoB's low-oxygen core waters if primary production decreases. Lower biological production leads to less oxygen loss in deeper waters by respiration; thus it could be that oxygen will not further decrease and the BoB will not become anoxic, different to other low-oxygen areas.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Hyewon Heather Kim, Ya-Wei Luo, Hugh W. Ducklow, Oscar M. Schofield, Deborah K. Steinberg, and Scott C. Doney
Geosci. Model Dev., 14, 4939–4975, https://doi.org/10.5194/gmd-14-4939-2021, https://doi.org/10.5194/gmd-14-4939-2021, 2021
Short summary
Short summary
The West Antarctic Peninsula (WAP) is a rapidly warming region, revealed by multi-decadal observations. Despite the region being data rich, there is a lack of focus on ecosystem model development. Here, we introduce a data assimilation ecosystem model for the WAP region. Experiments by assimilating data from an example growth season capture key WAP features. This study enables us to glue the snapshots from available data sets together to explain the observations in the WAP.
Kai G. Schulz, Eric P. Achterberg, Javier Arístegui, Lennart T. Bach, Isabel Baños, Tim Boxhammer, Dirk Erler, Maricarmen Igarza, Verena Kalter, Andrea Ludwig, Carolin Löscher, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Elisabeth von der Esch, Bess B. Ward, and Ulf Riebesell
Biogeosciences, 18, 4305–4320, https://doi.org/10.5194/bg-18-4305-2021, https://doi.org/10.5194/bg-18-4305-2021, 2021
Short summary
Short summary
Upwelling of nutrient-rich deep waters to the surface make eastern boundary upwelling systems hot spots of marine productivity. This leads to subsurface oxygen depletion and the transformation of bioavailable nitrogen into inert N2. Here we quantify nitrogen loss processes following a simulated deep water upwelling. Denitrification was the dominant process, and budget calculations suggest that a significant portion of nitrogen that could be exported to depth is already lost in the surface ocean.
Yosuke Niwa, Yousuke Sawa, Hideki Nara, Toshinobu Machida, Hidekazu Matsueda, Taku Umezawa, Akihiko Ito, Shin-Ichiro Nakaoka, Hiroshi Tanimoto, and Yasunori Tohjima
Atmos. Chem. Phys., 21, 9455–9473, https://doi.org/10.5194/acp-21-9455-2021, https://doi.org/10.5194/acp-21-9455-2021, 2021
Short summary
Short summary
Fires in Equatorial Asia release a large amount of carbon into the atmosphere. Extensively using high-precision atmospheric carbon dioxide (CO2) data from a commercial aircraft observation project, we estimated fire carbon emissions in Equatorial Asia induced by the big El Niño event in 2015. Additional shipboard measurement data elucidated the validity of the analysis and the best estimate indicated 273 Tg C for fire emissions during September–October 2015.
Nadia Burgoa, Francisco Machín, Ángel Rodríguez-Santana, Ángeles Marrero-Díaz, Xosé Antón Álvarez-Salgado, Bieito Fernández-Castro, María Dolores Gelado-Caballero, and Javier Arístegui
Ocean Sci., 17, 769–788, https://doi.org/10.5194/os-17-769-2021, https://doi.org/10.5194/os-17-769-2021, 2021
Short summary
Short summary
The circulation patterns in the confluence of the North Atlantic subtropical and tropical gyres delimited by the Cape Verde Front were examined during a field cruise in summer 2017. The collected hydrographic data, O2 and inorganic nutrients along the perimeter of a closed box embracing the Cape Verde Frontal Zone allowed for the independent estimation of the transport of these properties.
Astrid Müller, Hiroshi Tanimoto, Takafumi Sugita, Toshinobu Machida, Shin-ichiro Nakaoka, Prabir K. Patra, Joshua Laughner, and David Crisp
Atmos. Chem. Phys., 21, 8255–8271, https://doi.org/10.5194/acp-21-8255-2021, https://doi.org/10.5194/acp-21-8255-2021, 2021
Short summary
Short summary
Over oceans, high uncertainties in satellite CO2 retrievals exist due to limited reference data. We combine commercial ship and aircraft observations and, with the aid of model calculations, obtain column-averaged mixing ratios of CO2 (XCO2) data over the Pacific Ocean. This new dataset has great potential as a robust reference for XCO2 measured from space and can help to better understand changes in the carbon cycle in response to climate change using satellite observations.
Yangyang Zhao, Khanittha Uthaipan, Zhongming Lu, Yan Li, Jing Liu, Hongbin Liu, Jianping Gan, Feifei Meng, and Minhan Dai
Biogeosciences, 18, 2755–2775, https://doi.org/10.5194/bg-18-2755-2021, https://doi.org/10.5194/bg-18-2755-2021, 2021
Short summary
Short summary
In situ oxygen consumption rates were estimated for the first time during destruction of coastal hypoxia as disturbed by a typhoon and its reinstatement in the South China Sea off the Pearl River estuary. The reinstatement of summer hypoxia was rapid with a comparable timescale with that of its initial disturbance from frequent tropical cyclones, which has important implications for better understanding the intermittent nature of coastal hypoxia and its prediction in a changing climate.
Siqi Wu, Moge Du, Xianhui Sean Wan, Corday Selden, Mar Benavides, Sophie Bonnet, Robert Hamersley, Carolin R. Löscher, Margaret R. Mulholland, Xiuli Yan, and Shuh-Ji Kao
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-104, https://doi.org/10.5194/bg-2021-104, 2021
Preprint withdrawn
Short summary
Short summary
Nitrogen (N2) fixation is one of the most important nutrient sources to the ocean. Here, we report N2 fixation in the deep, dark ocean in the South China Sea via a highly sensitive new method and elaborate controls, showing the overlooked importance of N2 fixation in the deep ocean. By global data compilation, we also provide an easy measured basic parameter to estimate deep N2 fixation. Our study may help to expand the area limit of N2 fixation studies and better constrain global N2 fixation.
Philippe Massicotte, Rainer M. W. Amon, David Antoine, Philippe Archambault, Sergio Balzano, Simon Bélanger, Ronald Benner, Dominique Boeuf, Annick Bricaud, Flavienne Bruyant, Gwenaëlle Chaillou, Malik Chami, Bruno Charrière, Jing Chen, Hervé Claustre, Pierre Coupel, Nicole Delsaut, David Doxaran, Jens Ehn, Cédric Fichot, Marie-Hélène Forget, Pingqing Fu, Jonathan Gagnon, Nicole Garcia, Beat Gasser, Jean-François Ghiglione, Gaby Gorsky, Michel Gosselin, Priscillia Gourvil, Yves Gratton, Pascal Guillot, Hermann J. Heipieper, Serge Heussner, Stanford B. Hooker, Yannick Huot, Christian Jeanthon, Wade Jeffrey, Fabien Joux, Kimitaka Kawamura, Bruno Lansard, Edouard Leymarie, Heike Link, Connie Lovejoy, Claudie Marec, Dominique Marie, Johannie Martin, Jacobo Martín, Guillaume Massé, Atsushi Matsuoka, Vanessa McKague, Alexandre Mignot, William L. Miller, Juan-Carlos Miquel, Alfonso Mucci, Kaori Ono, Eva Ortega-Retuerta, Christos Panagiotopoulos, Tim Papakyriakou, Marc Picheral, Louis Prieur, Patrick Raimbault, Joséphine Ras, Rick A. Reynolds, André Rochon, Jean-François Rontani, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Yuan Shen, Guisheng Song, Dariusz Stramski, Eri Tachibana, Alexandre Thirouard, Imma Tolosa, Jean-Éric Tremblay, Mickael Vaïtilingom, Daniel Vaulot, Frédéric Vaultier, John K. Volkman, Huixiang Xie, Guangming Zheng, and Marcel Babin
Earth Syst. Sci. Data, 13, 1561–1592, https://doi.org/10.5194/essd-13-1561-2021, https://doi.org/10.5194/essd-13-1561-2021, 2021
Short summary
Short summary
The MALINA oceanographic expedition was conducted in the Mackenzie River and the Beaufort Sea systems. The sampling was performed across seven shelf–basin transects to capture the meridional gradient between the estuary and the open ocean. The main goal of this research program was to better understand how processes such as primary production are influencing the fate of organic matter originating from the surrounding terrestrial landscape during its transition toward the Arctic Ocean.
Gerd Krahmann, Damian L. Arévalo-Martínez, Andrew W. Dale, Marcus Dengler, Anja Engel, Nicolaas Glock, Patricia Grasse, Johannes Hahn, Helena Hauss, Mark Hopwood, Rainer Kiko, Alexandra Loginova, Carolin R. Löscher, Marie Maßmig, Alexandra-Sophie Roy, Renato Salvatteci, Stefan Sommer, Toste Tanhua, and Hela Mehrtens
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-308, https://doi.org/10.5194/essd-2020-308, 2021
Preprint withdrawn
Short summary
Short summary
The project "Climate-Biogeochemistry Interactions in the Tropical Ocean" (SFB 754) was a multidisciplinary research project active from 2008 to 2019 aimed at a better understanding of the coupling between the tropical climate and ocean circulation and the ocean's oxygen and nutrient balance. On 34 research cruises, mainly in the Southeast Tropical Pacific and the Northeast Tropical Atlantic, 1071 physical, chemical and biological data sets were collected.
Le Xie, Wei Wei, Lanlan Cai, Xiaowei Chen, Yuhong Huang, Nianzhi Jiao, Rui Zhang, and Ya-Wei Luo
Earth Syst. Sci. Data, 13, 1251–1271, https://doi.org/10.5194/essd-13-1251-2021, https://doi.org/10.5194/essd-13-1251-2021, 2021
Short summary
Short summary
Viruses play key roles in marine ecosystems by killing their hosts, maintaining diversity and recycling nutrients. In the global viral oceanography database (gVOD), 10 931 viral abundance data and 727 viral production data, along with host and other oceanographic parameters, were compiled. It identified viral data were undersampled in the southeast Pacific and Indian oceans. The gVOD can be used in marine viral ecology investigation and modeling of marine ecosystems and biogeochemical cycles.
Emilio Marañón, France Van Wambeke, Julia Uitz, Emmanuel S. Boss, Céline Dimier, Julie Dinasquet, Anja Engel, Nils Haëntjens, María Pérez-Lorenzo, Vincent Taillandier, and Birthe Zäncker
Biogeosciences, 18, 1749–1767, https://doi.org/10.5194/bg-18-1749-2021, https://doi.org/10.5194/bg-18-1749-2021, 2021
Short summary
Short summary
The concentration of chlorophyll is commonly used as an indicator of the abundance of photosynthetic plankton (phytoplankton) in lakes and oceans. Our study investigates why a deep chlorophyll maximum, located near the bottom of the upper, illuminated layer develops in the Mediterranean Sea. We find that the acclimation of cells to low light is the main mechanism involved and that this deep maximum represents also a maximum in the biomass and carbon fixation activity of phytoplankton.
Fuminori Hashihama, Hiroaki Saito, Taketoshi Kodama, Saori Yasui-Tamura, Jota Kanda, Iwao Tanita, Hiroshi Ogawa, E. Malcolm S. Woodward, Philip W. Boyd, and Ken Furuya
Biogeosciences, 18, 897–915, https://doi.org/10.5194/bg-18-897-2021, https://doi.org/10.5194/bg-18-897-2021, 2021
Short summary
Short summary
We investigated the nutrient assimilation characteristics of deep-water-induced phytoplankton blooms across the subtropical North and South Pacific Ocean. Nutrient drawdown ratios of dissolved inorganic nitrogen to phosphate were anomalously low in the western North Pacific, likely due to the high phosphate uptake capability of low-phosphate-adapted phytoplankton. The anomalous phosphate uptake might influence the maintenance of chronic phosphate depletion in the western North Pacific.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone Alin, Luiz E. O. C. Aragão, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp, Selma Bultan, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Wiley Evans, Liesbeth Florentie, Piers M. Forster, Thomas Gasser, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Luke Gregor, Nicolas Gruber, Ian Harris, Kerstin Hartung, Vanessa Haverd, Richard A. Houghton, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Koji Kadono, Etsushi Kato, Vassilis Kitidis, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Gregg Marland, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Adam J. P. Smith, Adrienne J. Sutton, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Guido van der Werf, Nicolas Vuichard, Anthony P. Walker, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Xu Yue, and Sönke Zaehle
Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, https://doi.org/10.5194/essd-12-3269-2020, 2020
Short summary
Short summary
The Global Carbon Budget 2020 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Tim Rixen, Greg Cowie, Birgit Gaye, Joaquim Goes, Helga do Rosário Gomes, Raleigh R. Hood, Zouhair Lachkar, Henrike Schmidt, Joachim Segschneider, and Arvind Singh
Biogeosciences, 17, 6051–6080, https://doi.org/10.5194/bg-17-6051-2020, https://doi.org/10.5194/bg-17-6051-2020, 2020
Short summary
Short summary
The northern Indian Ocean hosts an extensive oxygen minimum zone (OMZ), which intensified due to human-induced global changes. This includes the occurrence of anoxic events on the Indian shelf and affects benthic ecosystems and the pelagic ecosystem structure in the Arabian Sea. Consequences for biogeochemical cycles are unknown, which, in addition to the poor representation of mesoscale features, reduces the reliability of predictions of the future OMZ development in the northern Indian Ocean.
Yanhong Lu, Shunyan Cheung, Ling Chen, Shuh-Ji Kao, Xiaomin Xia, Jianping Gan, Minhan Dai, and Hongbin Liu
Biogeosciences, 17, 6017–6032, https://doi.org/10.5194/bg-17-6017-2020, https://doi.org/10.5194/bg-17-6017-2020, 2020
Short summary
Short summary
Through a comprehensive investigation, we observed differential niche partitioning among diverse ammonia-oxidizing archaea (AOA) sublineages in a typical subtropical estuary. Distinct AOA communities observed at DNA and RNA levels suggested that a strong divergence in ammonia-oxidizing activity among different AOA groups occurs. Our result highlights the importance of identifying major ammonia oxidizers at RNA level in future studies.
Amal Jayakumar and Bess B. Ward
Biogeosciences, 17, 5953–5966, https://doi.org/10.5194/bg-17-5953-2020, https://doi.org/10.5194/bg-17-5953-2020, 2020
Short summary
Short summary
Diversity and community composition of nitrogen-fixing microbes in the three main oxygen minimum zones of the world ocean were investigated using nifH clone libraries. Representatives of three main clusters of nifH genes were detected. Sequences were most diverse in the surface waters. The most abundant OTUs were affiliated with Alpha- and Gammaproteobacteria. The sequences were biogeographically distinct and the dominance of a few OTUs was commonly observed in OMZs in this (and other) studies.
Samuel T. Wilson, Alia N. Al-Haj, Annie Bourbonnais, Claudia Frey, Robinson W. Fulweiler, John D. Kessler, Hannah K. Marchant, Jana Milucka, Nicholas E. Ray, Parvadha Suntharalingam, Brett F. Thornton, Robert C. Upstill-Goddard, Thomas S. Weber, Damian L. Arévalo-Martínez, Hermann W. Bange, Heather M. Benway, Daniele Bianchi, Alberto V. Borges, Bonnie X. Chang, Patrick M. Crill, Daniela A. del Valle, Laura Farías, Samantha B. Joye, Annette Kock, Jabrane Labidi, Cara C. Manning, John W. Pohlman, Gregor Rehder, Katy J. Sparrow, Philippe D. Tortell, Tina Treude, David L. Valentine, Bess B. Ward, Simon Yang, and Leonid N. Yurganov
Biogeosciences, 17, 5809–5828, https://doi.org/10.5194/bg-17-5809-2020, https://doi.org/10.5194/bg-17-5809-2020, 2020
Short summary
Short summary
The oceans are a net source of the major greenhouse gases; however there has been little coordination of oceanic methane and nitrous oxide measurements. The scientific community has recently embarked on a series of capacity-building exercises to improve the interoperability of dissolved methane and nitrous oxide measurements. This paper derives from a workshop which discussed the challenges and opportunities for oceanic methane and nitrous oxide research in the near future.
Tamar Guy-Haim, Maxim Rubin-Blum, Eyal Rahav, Natalia Belkin, Jacob Silverman, and Guy Sisma-Ventura
Biogeosciences, 17, 5489–5511, https://doi.org/10.5194/bg-17-5489-2020, https://doi.org/10.5194/bg-17-5489-2020, 2020
Short summary
Short summary
The availability of nutrients in oligotrophic marine ecosystems is limited. Following jellyfish blooms, large die-off events result in the release of high amounts of nutrients to the water column and sediment. Our study assessed the decomposition effects of an infamous invasive jellyfish in the ultra-oligotrophic Eastern Mediterranean Sea. We found that jellyfish decomposition favored heterotrophic bacteria and altered biogeochemical fluxes, further impoverishing this nutrient-poor ecosystem.
Lennart Thomas Bach, Allanah Joy Paul, Tim Boxhammer, Elisabeth von der Esch, Michelle Graco, Kai Georg Schulz, Eric Achterberg, Paulina Aguayo, Javier Arístegui, Patrizia Ayón, Isabel Baños, Avy Bernales, Anne Sophie Boegeholz, Francisco Chavez, Gabriela Chavez, Shao-Min Chen, Kristin Doering, Alba Filella, Martin Fischer, Patricia Grasse, Mathias Haunost, Jan Hennke, Nauzet Hernández-Hernández, Mark Hopwood, Maricarmen Igarza, Verena Kalter, Leila Kittu, Peter Kohnert, Jesus Ledesma, Christian Lieberum, Silke Lischka, Carolin Löscher, Andrea Ludwig, Ursula Mendoza, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Joaquin Ortiz Cortes, Jonna Piiparinen, Claudia Sforna, Kristian Spilling, Sonia Sanchez, Carsten Spisla, Michael Sswat, Mabel Zavala Moreira, and Ulf Riebesell
Biogeosciences, 17, 4831–4852, https://doi.org/10.5194/bg-17-4831-2020, https://doi.org/10.5194/bg-17-4831-2020, 2020
Short summary
Short summary
The eastern boundary upwelling system off Peru is among Earth's most productive ocean ecosystems, but the factors that control its functioning are poorly constrained. Here we used mesocosms, moored ~ 6 km offshore Peru, to investigate how processes in plankton communities drive key biogeochemical processes. We show that nutrient and light co-limitation keep productivity and export at a remarkably constant level while stoichiometry changes strongly with shifts in plankton community structure.
Claudine Hauri, Cristina Schultz, Katherine Hedstrom, Seth Danielson, Brita Irving, Scott C. Doney, Raphael Dussin, Enrique N. Curchitser, David F. Hill, and Charles A. Stock
Biogeosciences, 17, 3837–3857, https://doi.org/10.5194/bg-17-3837-2020, https://doi.org/10.5194/bg-17-3837-2020, 2020
Short summary
Short summary
The coastal ecosystem of the Gulf of Alaska (GOA) is especially vulnerable to the effects of ocean acidification and climate change. To improve our conceptual understanding of the system, we developed a new regional biogeochemical model setup for the GOA. Model output suggests that bottom water is seasonally high in CO2 between June and January. Such extensive periods of reoccurring high CO2 may be harmful to ocean acidification-sensitive organisms.
Sebastian Landwehr, Iris Thurnherr, Nicolas Cassar, Martin Gysel-Beer, and Julia Schmale
Atmos. Meas. Tech., 13, 3487–3506, https://doi.org/10.5194/amt-13-3487-2020, https://doi.org/10.5194/amt-13-3487-2020, 2020
Short summary
Short summary
Shipborne wind speed measurements are relevant for field studies of air–sea interaction processes. Distortion of the airflow by the ship’s structure can, however, lead to errors. We estimate the flow distortion bias by comparing the observations to ERA-5 reanalysis data. The underlying assumptions are that the bias depends only on the relative orientation of the ship to the wind direction and that the ERA-5 wind speeds are (on average) representative of the true wind speed.
Juan Yao, Juying Wang, Hongbin Liu, and Kedong Yin
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-188, https://doi.org/10.5194/bg-2020-188, 2020
Preprint withdrawn
Short summary
Short summary
Our study finds that winds appear to be a dominant regulating force on the formation of hypoxia in the Pearl River estuarine waters. The wind speed > 6 m/s appears to a threshold above which the water column stratification is destroyed and the formation of bottom hypoxia is interrupted. The frequency of such the above-threshold wind events decreases significantly, implying that climate change induced variability in wind speeds can exasperate the coastal formation of bottom hypoxia in the region.
Noelle A. Held, Eric A. Webb, Matthew M. McIlvin, David A. Hutchins, Natalie R. Cohen, Dawn M. Moran, Korinna Kunde, Maeve C. Lohan, Claire Mahaffey, E. Malcolm S. Woodward, and Mak A. Saito
Biogeosciences, 17, 2537–2551, https://doi.org/10.5194/bg-17-2537-2020, https://doi.org/10.5194/bg-17-2537-2020, 2020
Short summary
Short summary
Trichodesmium is a globally important marine nitrogen fixer that stimulates primary production in the surface ocean. We surveyed metaproteomes of Trichodesmium populations across the North Atlantic and other oceans, and we found that they experience simultaneous phosphate and iron stress because of the biophysical limits of nutrient uptake. Importantly, nitrogenase was most abundant during co-stress, indicating the potential importance of this phenotype to global nitrogen and carbon cycling.
Toru Kobari, Taiga Honma, Daisuke Hasegawa, Naoki Yoshie, Eisuke Tsutsumi, Takeshi Matsuno, Takeyoshi Nagai, Takeru Kanayama, Fukutaro Karu, Koji Suzuki, Takahiro Tanaka, Xinyu Guo, Gen Kume, Ayako Nishina, and Hirohiko Nakamura
Biogeosciences, 17, 2441–2452, https://doi.org/10.5194/bg-17-2441-2020, https://doi.org/10.5194/bg-17-2441-2020, 2020
Short summary
Short summary
We report on biological productivity under turbulent nitrate flux amplified with the Kuroshio. Oceanographic observations exhibit that the Kuroshio topographically enhances significant turbulent mixing and nitrate influx to the euphotic zone. Onboard experiments show phytoplankton and microzooplankton growths enhanced with the nitrate flux and a significant microzooplankton grazing on phytoplankton. These rapid and systematic trophodynamics enhance biological productivity in the Kuroshio.
Antonio Tovar-Sánchez, Araceli Rodríguez-Romero, Anja Engel, Birthe Zäncker, Franck Fu, Emilio Marañón, María Pérez-Lorenzo, Matthieu Bressac, Thibaut Wagener, Sylvain Triquet, Guillaume Siour, Karine Desboeufs, and Cécile Guieu
Biogeosciences, 17, 2349–2364, https://doi.org/10.5194/bg-17-2349-2020, https://doi.org/10.5194/bg-17-2349-2020, 2020
Short summary
Short summary
Residence times of particulate metals derived from aerosol deposition in the Sea Surface Microlayer of the Mediterranean Sea ranged from a couple of minutes (e.g., for Fe) to a few hours (e.g., for Cu). Microbial activity seems to play an important role in in this process and in the concentration and distribution of metals between diferent water layers.
Claudia Frey, Hermann W. Bange, Eric P. Achterberg, Amal Jayakumar, Carolin R. Löscher, Damian L. Arévalo-Martínez, Elizabeth León-Palmero, Mingshuang Sun, Xin Sun, Ruifang C. Xie, Sergey Oleynik, and Bess B. Ward
Biogeosciences, 17, 2263–2287, https://doi.org/10.5194/bg-17-2263-2020, https://doi.org/10.5194/bg-17-2263-2020, 2020
Short summary
Short summary
The production of N2O via nitrification and denitrification associated with low-O2 waters is a major source of oceanic N2O. We investigated the regulation and dynamics of these processes with respect to O2 and organic matter inputs. The transcription of the key nitrification gene amoA rapidly responded to changes in O2 and strongly correlated with N2O production rates. N2O production by denitrification was clearly stimulated by organic carbon, implying that its supply controls N2O production.
Martine Lizotte, Maurice Levasseur, Virginie Galindo, Margaux Gourdal, Michel Gosselin, Jean-Éric Tremblay, Marjolaine Blais, Joannie Charette, and Rachel Hussherr
Biogeosciences, 17, 1557–1581, https://doi.org/10.5194/bg-17-1557-2020, https://doi.org/10.5194/bg-17-1557-2020, 2020
Short summary
Short summary
This study brings further support to the premise that the prevalence of younger and thinner icescapes over older and thicker ones in the Canadian High Arctic favors the early development of under-ice microorganisms as well as their production of the climate-relevant gas dimethylsulfide (DMS). Given the rapid rate of climate-driven changes in Arctic sea ice, our results suggest implications for the timing and magnitude of DMS pulses in the Arctic, with ramifications for climate forecasting.
Carolin R. Löscher, Wiebke Mohr, Hermann W. Bange, and Donald E. Canfield
Biogeosciences, 17, 851–864, https://doi.org/10.5194/bg-17-851-2020, https://doi.org/10.5194/bg-17-851-2020, 2020
Short summary
Short summary
Oxygen minimum zones (OMZs) are ocean areas severely depleted in oxygen as a result of physical, chemical, and biological processes. Biologically, organic material is produced in the sea surface and exported to deeper waters, where it respires. In the Bay of Bengal (BoB), an OMZ is present, but there are traces of oxygen left. Our study now suggests that this is because one key process, nitrogen fixation, is absent in the BoB, thus preventing primary production and consecutive respiration.
Stanford B. Hooker, Atsushi Matsuoka, Raphael M. Kudela, Youhei Yamashita, Koji Suzuki, and Henry F. Houskeeper
Biogeosciences, 17, 475–497, https://doi.org/10.5194/bg-17-475-2020, https://doi.org/10.5194/bg-17-475-2020, 2020
Short summary
Short summary
A Kd(λ) and aCDOM(440) data set spanned oceanic, coastal, and inland waters. The algorithmic approach, based on Kd end-member pairs, can be used globally. End-members with the largest spectral span had an accuracy of 1.2–2.4 % (RMSE). Validation was influenced by subjective
nonconservativewater masses. The influence of subcategories was confirmed with an objective cluster analysis.
Philippe Massicotte, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Mathieu Ardyna, Laurent Arnaud, Lise Artigue, Cyril Aubry, Pierre Ayotte, Guislain Bécu, Simon Bélanger, Ronald Benner, Henry C. Bittig, Annick Bricaud, Éric Brossier, Flavienne Bruyant, Laurent Chauvaud, Debra Christiansen-Stowe, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Christine Cox, Aurelie Delaforge, Thibaud Dezutter, Céline Dimier, Florent Domine, Francis Dufour, Christiane Dufresne, Dany Dumont, Jens Ehn, Brent Else, Joannie Ferland, Marie-Hélène Forget, Louis Fortier, Martí Galí, Virginie Galindo, Morgane Gallinari, Nicole Garcia, Catherine Gérikas Ribeiro, Margaux Gourdal, Priscilla Gourvil, Clemence Goyens, Pierre-Luc Grondin, Pascal Guillot, Caroline Guilmette, Marie-Noëlle Houssais, Fabien Joux, Léo Lacour, Thomas Lacour, Augustin Lafond, José Lagunas, Catherine Lalande, Julien Laliberté, Simon Lambert-Girard, Jade Larivière, Johann Lavaud, Anita LeBaron, Karine Leblanc, Florence Le Gall, Justine Legras, Mélanie Lemire, Maurice Levasseur, Edouard Leymarie, Aude Leynaert, Adriana Lopes dos Santos, Antonio Lourenço, David Mah, Claudie Marec, Dominique Marie, Nicolas Martin, Constance Marty, Sabine Marty, Guillaume Massé, Atsushi Matsuoka, Lisa Matthes, Brivaela Moriceau, Pierre-Emmanuel Muller, Christopher-John Mundy, Griet Neukermans, Laurent Oziel, Christos Panagiotopoulos, Jean-Jacques Pangrazi, Ghislain Picard, Marc Picheral, France Pinczon du Sel, Nicole Pogorzelec, Ian Probert, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Erin Reimer, Jean-François Rontani, Søren Rysgaard, Blanche Saint-Béat, Makoto Sampei, Julie Sansoulet, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Caroline Sévigny, Yuan Shen, Margot Tragin, Jean-Éric Tremblay, Daniel Vaulot, Gauthier Verin, Frédéric Vivier, Anda Vladoiu, Jeremy Whitehead, and Marcel Babin
Earth Syst. Sci. Data, 12, 151–176, https://doi.org/10.5194/essd-12-151-2020, https://doi.org/10.5194/essd-12-151-2020, 2020
Short summary
Short summary
The Green Edge initiative was developed to understand the processes controlling the primary productivity and the fate of organic matter produced during the Arctic spring bloom (PSB). In this article, we present an overview of an extensive and comprehensive dataset acquired during two expeditions conducted in 2015 and 2016 on landfast ice southeast of Qikiqtarjuaq Island in Baffin Bay.
Li Ma, Hua Lin, Xiabing Xie, Minhan Dai, and Yao Zhang
Biogeosciences, 16, 4765–4781, https://doi.org/10.5194/bg-16-4765-2019, https://doi.org/10.5194/bg-16-4765-2019, 2019
Short summary
Short summary
The major microbial process producing N2O in estuarine ecosystems remains controversial. Combining the concentrations and isotopic compositions of N2O, distributions and transcript levels of ammonia-oxidizing bacterial and archaeal amoA and denitrifier nirS genes, and in situ incubation estimates of nitrification rates and N2O production rates, we clarified that ammonia-oxidizing bacteria contributed the major part in N2O production in the upper Pearl River estuary despite their low abundance.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Judith Hauck, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Dorothee C. E. Bakker, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Peter Anthoni, Leticia Barbero, Ana Bastos, Vladislav Bastrikov, Meike Becker, Laurent Bopp, Erik Buitenhuis, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Kim I. Currie, Richard A. Feely, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Daniel S. Goll, Nicolas Gruber, Sören Gutekunst, Ian Harris, Vanessa Haverd, Richard A. Houghton, George Hurtt, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Jed O. Kaplan, Etsushi Kato, Kees Klein Goldewijk, Jan Ivar Korsbakken, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Danica Lombardozzi, Gregg Marland, Patrick C. McGuire, Joe R. Melton, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Craig Neill, Abdirahman M. Omar, Tsuneo Ono, Anna Peregon, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Roland Séférian, Jörg Schwinger, Naomi Smith, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Guido R. van der Werf, Andrew J. Wiltshire, and Sönke Zaehle
Earth Syst. Sci. Data, 11, 1783–1838, https://doi.org/10.5194/essd-11-1783-2019, https://doi.org/10.5194/essd-11-1783-2019, 2019
Short summary
Short summary
The Global Carbon Budget 2019 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Elisabeth Deschaseaux, James O'Brien, Nachshon Siboni, Katherina Petrou, and Justin R. Seymour
Biogeosciences, 16, 4377–4391, https://doi.org/10.5194/bg-16-4377-2019, https://doi.org/10.5194/bg-16-4377-2019, 2019
Short summary
Short summary
Here we report that abrupt increases in temperature–simulating marine heatwaves might have the potential to shape the physiological state and biogenic sulfur production in microalgae involved in harmful algal blooms. Changes in physiology and biochemistry seem to trigger a shift in the bacteria community associated with these microalgae. Since microalgae and associated bacteria play an important role in climate regulation, this could have serious consequences for our future ocean and climate.
Yasunori Tohjima, Hitoshi Mukai, Toshinobu Machida, Yu Hoshina, and Shin-Ichiro Nakaoka
Atmos. Chem. Phys., 19, 9269–9285, https://doi.org/10.5194/acp-19-9269-2019, https://doi.org/10.5194/acp-19-9269-2019, 2019
Short summary
Short summary
The amount of fossil-fuel-derived carbon dioxide that was taken up by land biosphere and ocean was evaluated from atmospheric carbon dioxide and oxygen observations in the western Pacific over a 15-year period. The results showed that about 30 % and 17 % of the fossil-fuel-derived carbon dioxide emitted during a 17-year period (2000–2016) was taken up by the ocean and land sinks, respectively. Long-term trends of land and ocean sinks for the decadal period were also evaluated.
William J. Jenkins, Scott C. Doney, Michaela Fendrock, Rana Fine, Toshitaka Gamo, Philippe Jean-Baptiste, Robert Key, Birgit Klein, John E. Lupton, Robert Newton, Monika Rhein, Wolfgang Roether, Yuji Sano, Reiner Schlitzer, Peter Schlosser, and Jim Swift
Earth Syst. Sci. Data, 11, 441–454, https://doi.org/10.5194/essd-11-441-2019, https://doi.org/10.5194/essd-11-441-2019, 2019
Short summary
Short summary
This paper describes an assembled dataset containing measurements of certain trace substances in the ocean, their distributions, and evolution with time. These substances, called tracers, result from a combination of natural and artificial processes, and their distribution and evolution provide important clues about ocean circulation, mixing, and ventilation. In addition, they give information about the global hydrologic cycle and volcanic and hydrothermal processes.
Robin Bénard, Maurice Levasseur, Michael Scarratt, Sonia Michaud, Michel Starr, Alfonso Mucci, Gustavo Ferreyra, Michel Gosselin, Jean-Éric Tremblay, Martine Lizotte, and Gui-Peng Yang
Biogeosciences, 16, 1167–1185, https://doi.org/10.5194/bg-16-1167-2019, https://doi.org/10.5194/bg-16-1167-2019, 2019
Short summary
Short summary
We present rare data on the combined effects of acidification and warming on dimethylsulfide (DMS) during a mesocosm experiment. Our results show a reduction of DMS under elevated pCO2, but warming the mesocosms by 5 °C translated into a positive offset in concentrations of DMS over the whole range of pCO2 tested. Our results suggest that warming could mitigate the expected reduction in DMS production due to OA, even increasing the net DMS production, with possible repercussions for the climate.
Debany Fonseca-Batista, Xuefeng Li, Virginie Riou, Valérie Michotey, Florian Deman, François Fripiat, Sophie Guasco, Natacha Brion, Nolwenn Lemaitre, Manon Tonnard, Morgane Gallinari, Hélène Planquette, Frédéric Planchon, Géraldine Sarthou, Marc Elskens, Julie LaRoche, Lei Chou, and Frank Dehairs
Biogeosciences, 16, 999–1017, https://doi.org/10.5194/bg-16-999-2019, https://doi.org/10.5194/bg-16-999-2019, 2019
Short summary
Short summary
Dinitrogen fixation and primary production were investigated using stable isotope incubation experiments along two transects off the Western Iberian Margin in May 2014 close to the end of the phytoplankton spring bloom. We observed substantial N2 fixation activities (up to 1533 µmol N m-2 d-1) associated with a predominance of unicellular cyanobacteria and non-cyanobacterial diazotrophs, which seemed to be promoted by the presence of bloom-derived organic matter and excess phosphorus.
M. Shahanul Islam, Jun Sun, Xiaoqian Li, and Xiaoyun Leng
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-58, https://doi.org/10.5194/bg-2019-58, 2019
Manuscript not accepted for further review
Short summary
Short summary
This manuscript expressed several seasonal datasets on TEP and its sinking rates through descriptive comparison with previous work. This paper will provide a clear scenario for further research to the interested scientist about oceanic carbon pool associated with TEP. The manuscript were designed after discussing of TEP assemblage and its sinking variations through different depths with seasonal (autumn, summer & winter) fluctuations in two dynamic seas of China (Bohai Sea & Yellow Sea).
Marina Zamanillo, Eva Ortega-Retuerta, Sdena Nunes, Pablo Rodríguez-Ros, Manuel Dall'Osto, Marta Estrada, Maria Montserrat Sala, and Rafel Simó
Biogeosciences, 16, 733–749, https://doi.org/10.5194/bg-16-733-2019, https://doi.org/10.5194/bg-16-733-2019, 2019
Short summary
Short summary
Many marine microorganisms produce polysaccharide-rich transparent exopolymer particles (TEPs) for rather unknown reasons but with important consequences for the ocean carbon cycle, sea–air gas exchange and formation of organic aerosols. Here we compare surface–ocean distributions of TEPs and physical, chemical and biological variables along a N–S transect in the Atlantic Ocean. Our data suggest that phytoplankton and not bacteria are the main TEP producers, and solar radiation acts as a sink.
Siyue Li, Rong Mao, Yongmei Ma, and Vedula V. S. S. Sarma
Biogeosciences, 16, 681–693, https://doi.org/10.5194/bg-16-681-2019, https://doi.org/10.5194/bg-16-681-2019, 2019
Short summary
Short summary
We provide a first determination of k in human-impacted subtropical streams and small rivers. High and highly variable k values reflect different controls on water turbulence. New models of k are developed using water depth and flow velocity. We show that previous estimates of riverine CO2 evasion from subtropical streams and small rivers are conservative and highlight the importance of incorporating scale-appropriate k measurements into extensive pCO2 investigations for accurate C budgets.
Moturi S. Krishna, Rongali Viswanadham, Mamidala H. K. Prasad, Vuravakonda R. Kumari, and Vedula V. S. S. Sarma
Biogeosciences, 16, 505–519, https://doi.org/10.5194/bg-16-505-2019, https://doi.org/10.5194/bg-16-505-2019, 2019
Short summary
Short summary
An order-of-magnitude variability in DIC was found within the Indian estuaries due to significant variability in size of rivers, precipitation pattern and lithology in the catchments. Indian monsoonal estuaries annually export ∼ 10.3 Tg of DIC to the northern Indian Ocean, of which 75 % enters into the Bay of Bengal. Our results indicated that chemical weathering of carbonate and silicate minerals by soil CO2 is the major source of DIC in the Indian monsoonal rivers.
Manab Kumar Dutta, Sanjeev Kumar, Rupa Mukherjee, Prasun Sanyal, and Sandip Kumar Mukhopadhyay
Biogeosciences, 16, 289–307, https://doi.org/10.5194/bg-16-289-2019, https://doi.org/10.5194/bg-16-289-2019, 2019
Short summary
Short summary
The study focused on understanding C biogeochemistry of two adjacently located estuaries undergoing different levels of anthropogenic stresses. Different parameters related to C cycling were measured in an anthropogenically influenced and a mangrove-dominated estuary. Although the entire estuarine system acted as a source of carbon dioxide to the regional atmosphere, emission approximately 17 times higher was noticed from the anthropogenically affected estuary compared to mangrove-dominated one.
Christos Panagiotopoulos, Mireille Pujo-Pay, Mar Benavides, France Van Wambeke, and Richard Sempéré
Biogeosciences, 16, 105–116, https://doi.org/10.5194/bg-16-105-2019, https://doi.org/10.5194/bg-16-105-2019, 2019
Angela M. Kuhn, Katja Fennel, and Ilana Berman-Frank
Biogeosciences, 15, 7379–7401, https://doi.org/10.5194/bg-15-7379-2018, https://doi.org/10.5194/bg-15-7379-2018, 2018
Short summary
Short summary
Recent studies demonstrate that marine N2 fixation can be carried out without light. However, direct measurements of N2 fixation in dark environments are relatively scarce. This study uses a model that represents biogeochemical cycles at a deep-ocean location in the Gulf of Aqaba (Red Sea). Different model versions are used to test assumptions about N2 fixers. Relaxing light limitation for marine N2 fixers improved the similarity between model results and observations of deep nitrate and oxygen.
Corinne Le Quéré, Robbie M. Andrew, Pierre Friedlingstein, Stephen Sitch, Judith Hauck, Julia Pongratz, Penelope A. Pickers, Jan Ivar Korsbakken, Glen P. Peters, Josep G. Canadell, Almut Arneth, Vivek K. Arora, Leticia Barbero, Ana Bastos, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Philippe Ciais, Scott C. Doney, Thanos Gkritzalis, Daniel S. Goll, Ian Harris, Vanessa Haverd, Forrest M. Hoffman, Mario Hoppema, Richard A. Houghton, George Hurtt, Tatiana Ilyina, Atul K. Jain, Truls Johannessen, Chris D. Jones, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Peter Landschützer, Nathalie Lefèvre, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-ichiro Nakaoka, Craig Neill, Are Olsen, Tsueno Ono, Prabir Patra, Anna Peregon, Wouter Peters, Philippe Peylin, Benjamin Pfeil, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Matthias Rocher, Christian Rödenbeck, Ute Schuster, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Tobias Steinhoff, Adrienne Sutton, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Ingrid T. van der Laan-Luijkx, Guido R. van der Werf, Nicolas Viovy, Anthony P. Walker, Andrew J. Wiltshire, Rebecca Wright, Sönke Zaehle, and Bo Zheng
Earth Syst. Sci. Data, 10, 2141–2194, https://doi.org/10.5194/essd-10-2141-2018, https://doi.org/10.5194/essd-10-2141-2018, 2018
Short summary
Short summary
The Global Carbon Budget 2018 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Jose Luis Otero-Ferrer, Pedro Cermeño, Antonio Bode, Bieito Fernández-Castro, Josep M. Gasol, Xosé Anxelu G. Morán, Emilio Marañon, Victor Moreira-Coello, Marta M. Varela, Marina Villamaña, and Beatriz Mouriño-Carballido
Biogeosciences, 15, 6199–6220, https://doi.org/10.5194/bg-15-6199-2018, https://doi.org/10.5194/bg-15-6199-2018, 2018
Short summary
Short summary
The effect of inorganic nutrients on planktonic assemblages has been traditionally assessed by looking at concentrations rather than fluxes of nutrient supply. However, in near-steady-state systems such as subtropical gyres, nitrate concentrations are kept close to the detection limit due to phytoplankton uptake. Our results, based on direct measurements of nitrate diffusive fluxes, support the key role of nitrate supply in controlling the structure of marine picoplankton communities.
Qixing Ji, Claudia Frey, Xin Sun, Melanie Jackson, Yea-Shine Lee, Amal Jayakumar, Jeffrey C. Cornwell, and Bess B. Ward
Biogeosciences, 15, 6127–6138, https://doi.org/10.5194/bg-15-6127-2018, https://doi.org/10.5194/bg-15-6127-2018, 2018
Short summary
Short summary
Nitrous oxide (N2O) is a strong greenhouse gas and ozone-depletion agent. Intense N2O effluxes had been observed from nutrient-rich estuaries with human impacts, such as the Chesapeake Bay. We report that increased nitrogen availability and low-oxygen conditions stimulate N2O production. Thus, controlling the nutrient input to the bay will decrease nitrogen availability and alleviate eutrophication, leading to water column reoxygenation, and subsequently will mitigate N2O emission.
Chris J. Daniels, Alex J. Poulton, William M. Balch, Emilio Marañón, Tim Adey, Bruce C. Bowler, Pedro Cermeño, Anastasia Charalampopoulou, David W. Crawford, Dave Drapeau, Yuanyuan Feng, Ana Fernández, Emilio Fernández, Glaucia M. Fragoso, Natalia González, Lisa M. Graziano, Rachel Heslop, Patrick M. Holligan, Jason Hopkins, María Huete-Ortega, David A. Hutchins, Phoebe J. Lam, Michael S. Lipsen, Daffne C. López-Sandoval, Socratis Loucaides, Adrian Marchetti, Kyle M. J. Mayers, Andrew P. Rees, Cristina Sobrino, Eithne Tynan, and Toby Tyrrell
Earth Syst. Sci. Data, 10, 1859–1876, https://doi.org/10.5194/essd-10-1859-2018, https://doi.org/10.5194/essd-10-1859-2018, 2018
Short summary
Short summary
Calcifying marine algae (coccolithophores) are key to oceanic biogeochemical processes, such as calcium carbonate production and export. We compile a global database of calcium carbonate production from field samples (n = 2756), alongside primary production rates and coccolithophore abundance. Basic statistical analysis highlights global distribution, average surface and integrated rates, patterns with depth and the importance of considering cell-normalised rates as a simple physiological index.
Samuel T. Wilson, Hermann W. Bange, Damian L. Arévalo-Martínez, Jonathan Barnes, Alberto V. Borges, Ian Brown, John L. Bullister, Macarena Burgos, David W. Capelle, Michael Casso, Mercedes de la Paz, Laura Farías, Lindsay Fenwick, Sara Ferrón, Gerardo Garcia, Michael Glockzin, David M. Karl, Annette Kock, Sarah Laperriere, Cliff S. Law, Cara C. Manning, Andrew Marriner, Jukka-Pekka Myllykangas, John W. Pohlman, Andrew P. Rees, Alyson E. Santoro, Philippe D. Tortell, Robert C. Upstill-Goddard, David P. Wisegarver, Gui-Ling Zhang, and Gregor Rehder
Biogeosciences, 15, 5891–5907, https://doi.org/10.5194/bg-15-5891-2018, https://doi.org/10.5194/bg-15-5891-2018, 2018
Short summary
Short summary
To determine the variability between independent measurements of dissolved methane and nitrous oxide, seawater samples were analyzed by multiple laboratories. The results revealed the influences of the different parts of the analytical process, from the initial sample collection to the calculation of the final concentrations. Recommendations are made to improve dissolved methane and nitrous oxide measurements to help preclude future analytical discrepancies between laboratories.
Cécile Dupouy, Robert Frouin, Marc Tedetti, Morgane Maillard, Martine Rodier, Fabien Lombard, Lionel Guidi, Marc Picheral, Jacques Neveux, Solange Duhamel, Bruno Charrière, and Richard Sempéré
Biogeosciences, 15, 5249–5269, https://doi.org/10.5194/bg-15-5249-2018, https://doi.org/10.5194/bg-15-5249-2018, 2018
Short summary
Short summary
The marine diazotrophic Cyanobacterium Trichodesmium from the Underwater Vision Profiler 5 is concentrated in the first 50 m in the western tropical Pacific Ocean (18–22° S, 160° E–160° W). Its contribution to Tchl a and zeaxanthin is 60 % in the Melanesian archipelago and 30 % in the Fijian archipelago. Its impact on UV–VIS radiance is a peculiar signal in the green and yellow and possibly associated with backscattering or phycoerythrin fluorescence from Trichodesmium.
Guillaume Rousset, Florian De Boissieu, Christophe E. Menkes, Jérôme Lefèvre, Robert Frouin, Martine Rodier, Vincent Ridoux, Sophie Laran, Sophie Bonnet, and Cécile Dupouy
Biogeosciences, 15, 5203–5219, https://doi.org/10.5194/bg-15-5203-2018, https://doi.org/10.5194/bg-15-5203-2018, 2018
Lei Hou, Xiabing Xie, Xianhui Wan, Shuh-Ji Kao, Nianzhi Jiao, and Yao Zhang
Biogeosciences, 15, 5169–5187, https://doi.org/10.5194/bg-15-5169-2018, https://doi.org/10.5194/bg-15-5169-2018, 2018
Short summary
Short summary
The niche differentiation of ammonia and nitrite oxidizers is controversial because they display disparate patterns in different environments. Combining molecular and nitrification rate analyses, our study clarified that water mass mixing and the substrate availability primarily regulated the niche differentiation of nitrifier populations along a salinity gradient. The nitrifier populations may have specific adaptations to different substrate conditions through their ecological strategies.
Robin Bénard, Maurice Levasseur, Michael Scarratt, Marie-Amélie Blais, Alfonso Mucci, Gustavo Ferreyra, Michel Starr, Michel Gosselin, Jean-Éric Tremblay, and Martine Lizotte
Biogeosciences, 15, 4883–4904, https://doi.org/10.5194/bg-15-4883-2018, https://doi.org/10.5194/bg-15-4883-2018, 2018
Short summary
Short summary
We investigated the combined effect of ocean acidification and warming on the dynamics of the phytoplankton fall boom in the Lower St. Lawrence Estuary, Canada. Twelve 2600 L mesocosms were used to cover a wide range of pH and two temperatures. We found that warming, rather than acidification, is more likely to alter the autumnal bloom in this estuary in the decades to come by stimulating the development and senescence of diatoms, and promoting picocyanobacteria proliferation.
Cyril Dutheil, Olivier Aumont, Thomas Gorguès, Anne Lorrain, Sophie Bonnet, Martine Rodier, Cécile Dupouy, Takuhei Shiozaki, and Christophe Menkes
Biogeosciences, 15, 4333–4352, https://doi.org/10.5194/bg-15-4333-2018, https://doi.org/10.5194/bg-15-4333-2018, 2018
Short summary
Short summary
N2 fixation is recognized as one of the major sources of nitrogen in the ocean. Thus, N2 fixation sustains a significant part of the primary production (PP) by supplying the most common limiting nutrient for phytoplankton growth. From numerical simulations, the local maximums of Trichodesmium biomass in the Pacific are found around islands, explained by the iron fluxes from island sediments. We assessed that 15 % of the PP may be due to Trichodesmium in the low-nutrient, low-chlorophyll areas.
Sophie Bonnet, Mathieu Caffin, Hugo Berthelot, Olivier Grosso, Mar Benavides, Sandra Helias-Nunige, Cécile Guieu, Marcus Stenegren, and Rachel Ann Foster
Biogeosciences, 15, 4215–4232, https://doi.org/10.5194/bg-15-4215-2018, https://doi.org/10.5194/bg-15-4215-2018, 2018
Yu Hoshina, Yasunori Tohjima, Keiichi Katsumata, Toshinobu Machida, and Shin-ichiro Nakaoka
Atmos. Chem. Phys., 18, 9283–9295, https://doi.org/10.5194/acp-18-9283-2018, https://doi.org/10.5194/acp-18-9283-2018, 2018
Short summary
Short summary
We installed a low flow rate measurement system on a cargo ship sailing between Japan and North America and started onboard continuous measurements for O2 and CO2. From the comparison between the in situ measurements and flask samples, we concluded that the uncertainties in the O2 and CO2 mole fraction for the in situ measurements are about 9 per meg and about 0.3 ppm, respectively.
Dina Spungin, Natalia Belkin, Rachel A. Foster, Marcus Stenegren, Andrea Caputo, Mireille Pujo-Pay, Nathalie Leblond, Cécile Dupouy, Sophie Bonnet, and Ilana Berman-Frank
Biogeosciences, 15, 3893–3908, https://doi.org/10.5194/bg-15-3893-2018, https://doi.org/10.5194/bg-15-3893-2018, 2018
Short summary
Short summary
The way marine organisms die can determine the fate of organic matter (OM) in the ocean. We investigated whether a form of auto-induced programmed cell death (PCD) influenced phytoplankton mortality and fate of OM. Our results from high biomass blooms of the cyanobacterium Trichodesmium show evidence for PCD and high production of sticky carbon material termed transparent exopolymeric particles (TEP) that facilitates cellular aggregation and enhances the vertical flux of OM to depth.
Mar Benavides, Katyanne M. Shoemaker, Pia H. Moisander, Jutta Niggemann, Thorsten Dittmar, Solange Duhamel, Olivier Grosso, Mireille Pujo-Pay, Sandra Hélias-Nunige, Alain Fumenia, and Sophie Bonnet
Biogeosciences, 15, 3107–3119, https://doi.org/10.5194/bg-15-3107-2018, https://doi.org/10.5194/bg-15-3107-2018, 2018
Short summary
Short summary
We measured N2 fixation rates and identified diazotrophic phylotypes in the mesopelagic layer along a transect spanning from New Caledonia to French Polynesia. N2 fixation rates were low but consistently detected across all depths and stations. A distinct diazotrophic phylotype dominated at 650 dbar, coinciding with the oxygenated Subantarctic Mode Water (SAMW) and suggesting that the distribution of aphotic diazotroph communities is to some extent controlled by water mass structure.
Ji-Hyung Park, Omme K. Nayna, Most S. Begum, Eliyan Chea, Jens Hartmann, Richard G. Keil, Sanjeev Kumar, Xixi Lu, Lishan Ran, Jeffrey E. Richey, Vedula V. S. S. Sarma, Shafi M. Tareq, Do Thi Xuan, and Ruihong Yu
Biogeosciences, 15, 3049–3069, https://doi.org/10.5194/bg-15-3049-2018, https://doi.org/10.5194/bg-15-3049-2018, 2018
Short summary
Short summary
Human activities are drastically altering water and material flows in river systems across Asia. This review provides a conceptual framework for assessing the human impacts on Asian river C fluxes and an update on anthropogenic alterations of riverine C fluxes, focusing on the impacts of water pollution and river impoundments on CO2 outgassing from the rivers draining South, Southeast, and East Asian regions that account for the largest fraction of river discharge and C exports from Asia.
France Van Wambeke, Audrey Gimenez, Solange Duhamel, Cécile Dupouy, Dominique Lefevre, Mireille Pujo-Pay, and Thierry Moutin
Biogeosciences, 15, 2669–2689, https://doi.org/10.5194/bg-15-2669-2018, https://doi.org/10.5194/bg-15-2669-2018, 2018
Short summary
Short summary
The western tropical South Pacific Ocean has recently been shown to be a hotspot for biological nitrogen fixation. In this study, we examined the horizontal and vertical distribution of heterotrophic prokaryotic production alongside photosynthetic rates, nitrogen fixation rates and phosphate turnover times across the western tropical South Pacific Ocean, in order to relate these fluxes to bottom–up controls (related to nitrogen, phosphate and labile C availability).
Angela N. Knapp, Kelly M. McCabe, Olivier Grosso, Nathalie Leblond, Thierry Moutin, and Sophie Bonnet
Biogeosciences, 15, 2619–2628, https://doi.org/10.5194/bg-15-2619-2018, https://doi.org/10.5194/bg-15-2619-2018, 2018
Short summary
Short summary
The spatial distribution of biological N2 fixation fluxes to the ocean remains poorly constrained. Here we use nitrogen isotope budgets to identify significant N2 fixation inputs to the western tropical South Pacific (WTSP), where N2 fixation supports > 50 % of export production at stations proximal to iron sources. The significant N2 fixation inputs in the WTSP may offset nitrogen loss in the oxygen-deficient zones of the eastern tropical South Pacific.
Li Luo, Shuh-Ji Kao, Hongyan Bao, Huayun Xiao, Hongwei Xiao, Xiaohong Yao, Huiwang Gao, Jiawei Li, and Yangyang Lu
Atmos. Chem. Phys., 18, 6207–6222, https://doi.org/10.5194/acp-18-6207-2018, https://doi.org/10.5194/acp-18-6207-2018, 2018
Mathieu Caffin, Thierry Moutin, Rachel Ann Foster, Pascale Bouruet-Aubertot, Andrea Michelangelo Doglioli, Hugo Berthelot, Cécile Guieu, Olivier Grosso, Sandra Helias-Nunige, Nathalie Leblond, Audrey Gimenez, Anne Alexandra Petrenko, Alain de Verneil, and Sophie Bonnet
Biogeosciences, 15, 2565–2585, https://doi.org/10.5194/bg-15-2565-2018, https://doi.org/10.5194/bg-15-2565-2018, 2018
Short summary
Short summary
We performed N budgets to assess the role of N2 fixation on production and export in the western tropical South Pacific Ocean. We deployed a combination of techniques including high-sensitivity measurements of N input and sediment traps deployment. We demonstrated that N2 fixation was the major source of new N before atmospheric deposition and upward nitrate fluxes. It contributed significantly to organic matter export, indicating a high efficiency of this region to export carbon.
Mianrun Chen, Dongyoung Kim, Hongbin Liu, and Chang-Keun Kang
Biogeosciences, 15, 2055–2073, https://doi.org/10.5194/bg-15-2055-2018, https://doi.org/10.5194/bg-15-2055-2018, 2018
Short summary
Short summary
The trophic preference (i.e., food resources and trophic levels) of different copepod groups was assessed along a salinity gradient in the temperate estuarine Gwangyang Bay of Korea, based on a seasonal investigation of taxonomic results in 2015 and stable isotope analysis incorporating multiple linear regression models. Our results depict a simple energy flow of the planktonic food web of Gwangyang Bay.
Marcus Stenegren, Andrea Caputo, Carlo Berg, Sophie Bonnet, and Rachel A. Foster
Biogeosciences, 15, 1559–1578, https://doi.org/10.5194/bg-15-1559-2018, https://doi.org/10.5194/bg-15-1559-2018, 2018
Short summary
Short summary
We successfully performed quantitative PCR at sea. The qPCR data were procured within 3 h and used in decisions on further sampling on site. We designed and applied a new primer and probe set for quantifying the UCYN-A1 host and observed discrepancies between host and symbiont, which contradict previous studies. Lastly, we observed a clear vertical separation between a subsurface group (UCYN-A with hosts) and a surface group (remaining diazotrophs), mainly separated by temperature.
Corinne Le Quéré, Robbie M. Andrew, Pierre Friedlingstein, Stephen Sitch, Julia Pongratz, Andrew C. Manning, Jan Ivar Korsbakken, Glen P. Peters, Josep G. Canadell, Robert B. Jackson, Thomas A. Boden, Pieter P. Tans, Oliver D. Andrews, Vivek K. Arora, Dorothee C. E. Bakker, Leticia Barbero, Meike Becker, Richard A. Betts, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Philippe Ciais, Catherine E. Cosca, Jessica Cross, Kim Currie, Thomas Gasser, Ian Harris, Judith Hauck, Vanessa Haverd, Richard A. Houghton, Christopher W. Hunt, George Hurtt, Tatiana Ilyina, Atul K. Jain, Etsushi Kato, Markus Kautz, Ralph F. Keeling, Kees Klein Goldewijk, Arne Körtzinger, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Ivan Lima, Danica Lombardozzi, Nicolas Metzl, Frank Millero, Pedro M. S. Monteiro, David R. Munro, Julia E. M. S. Nabel, Shin-ichiro Nakaoka, Yukihiro Nojiri, X. Antonio Padin, Anna Peregon, Benjamin Pfeil, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Janet Reimer, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Benjamin D. Stocker, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Ingrid T. van der Laan-Luijkx, Guido R. van der Werf, Steven van Heuven, Nicolas Viovy, Nicolas Vuichard, Anthony P. Walker, Andrew J. Watson, Andrew J. Wiltshire, Sönke Zaehle, and Dan Zhu
Earth Syst. Sci. Data, 10, 405–448, https://doi.org/10.5194/essd-10-405-2018, https://doi.org/10.5194/essd-10-405-2018, 2018
Short summary
Short summary
The Global Carbon Budget 2017 describes data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. It is the 12th annual update and the 6th published in this journal.
Alain Fumenia, Thierry Moutin, Sophie Bonnet, Mar Benavides, Anne Petrenko, Sandra Helias Nunige, and Christophe Maes
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-557, https://doi.org/10.5194/bg-2017-557, 2018
Revised manuscript not accepted
Short summary
Short summary
The Melanesian archipelago waters between 160° E and 170° W are characterized by a significant N2 fixation rates and an excess of particulate organic nitrogen compared to the canonical ratio of Redfield and a positive N*. We hypothesize that the southern branch of the subtropical gyre is probably the main vector of excess nitrogen transport in the thermocline waters showing an influence of nitrogen fixation occurring in the western tropical in a large part of the South Pacific.
Johanna Maltby, Lea Steinle, Carolin R. Löscher, Hermann W. Bange, Martin A. Fischer, Mark Schmidt, and Tina Treude
Biogeosciences, 15, 137–157, https://doi.org/10.5194/bg-15-137-2018, https://doi.org/10.5194/bg-15-137-2018, 2018
Short summary
Short summary
The activity and environmental controls of methanogenesis (MG) within the sulfate-reducing zone (0–30 cm below the seafloor) were investigated in organic-rich sediments of the seasonally hypoxic Eckernförde Bay, SW Baltic Sea. MG activity was mostly linked to non-competitive substrates. The major controls identified were organic matter availability, C / N, temperature, and O2 in the water column, revealing higher rates in warm, stratified, hypoxic seasons compared to colder, oxygenated seasons.
Yangyang Lu, Zuozhu Wen, Dalin Shi, Mingming Chen, Yao Zhang, Sophie Bonnet, Yuhang Li, Jiwei Tian, and Shuh-Ji Kao
Biogeosciences, 15, 1–12, https://doi.org/10.5194/bg-15-1-2018, https://doi.org/10.5194/bg-15-1-2018, 2018
Short summary
Short summary
We investigated the light response of field Trichodesmium N2 fixation and net dissolved nitrogen release behavior. Our results suggest that N2 fixation was a function of light intensity, and the light requirement of Trichodesmium nitrogen fixation was high relative to its photosynthetic light demand. Meanwhile, light is a crucial parameter driving the physiological state of Trichodesmium, which subsequently determined the C / N metabolism and net dissolved nitrogen release.
Zuchuan Li and Nicolas Cassar
Biogeosciences, 14, 5015–5027, https://doi.org/10.5194/bg-14-5015-2017, https://doi.org/10.5194/bg-14-5015-2017, 2017
Douglas B. Collins, Julia Burkart, Rachel Y.-W. Chang, Martine Lizotte, Aude Boivin-Rioux, Marjolaine Blais, Emma L. Mungall, Matthew Boyer, Victoria E. Irish, Guillaume Massé, Daniel Kunkel, Jean-Éric Tremblay, Tim Papakyriakou, Allan K. Bertram, Heiko Bozem, Michel Gosselin, Maurice Levasseur, and Jonathan P. D. Abbatt
Atmos. Chem. Phys., 17, 13119–13138, https://doi.org/10.5194/acp-17-13119-2017, https://doi.org/10.5194/acp-17-13119-2017, 2017
Short summary
Short summary
The sources of aerosol particles and their growth to sizes large enough to act as cloud droplet seeds is of major importance to climate since clouds exert substantial control over the atmospheric energy balance. Using ship-board measurements from two summers in the Canadian Arctic, aerosol formation events were related to co-sampled atmospheric and oceanic parameters, providing insight into factors that drive particle formation and motivating further study of ocean–atmosphere interactions.
Alex R. Baker, Maria Kanakidou, Katye E. Altieri, Nikos Daskalakis, Gregory S. Okin, Stelios Myriokefalitakis, Frank Dentener, Mitsuo Uematsu, Manmohan M. Sarin, Robert A. Duce, James N. Galloway, William C. Keene, Arvind Singh, Lauren Zamora, Jean-Francois Lamarque, Shih-Chieh Hsu, Shital S. Rohekar, and Joseph M. Prospero
Atmos. Chem. Phys., 17, 8189–8210, https://doi.org/10.5194/acp-17-8189-2017, https://doi.org/10.5194/acp-17-8189-2017, 2017
Short summary
Short summary
Man's activities have greatly increased the amount of nitrogen emitted into the atmosphere. Some of this nitrogen is transported to the world's oceans, where it may affect microscopic marine plants and cause ecological problems. The huge size of the oceans makes direct monitoring of nitrogen inputs impossible, so computer models must be used to assess this issue. We find that current models reproduce observed nitrogen deposition to the oceans reasonably well and recommend future improvements.
James C. Orr, Raymond G. Najjar, Olivier Aumont, Laurent Bopp, John L. Bullister, Gokhan Danabasoglu, Scott C. Doney, John P. Dunne, Jean-Claude Dutay, Heather Graven, Stephen M. Griffies, Jasmin G. John, Fortunat Joos, Ingeborg Levin, Keith Lindsay, Richard J. Matear, Galen A. McKinley, Anne Mouchet, Andreas Oschlies, Anastasia Romanou, Reiner Schlitzer, Alessandro Tagliabue, Toste Tanhua, and Andrew Yool
Geosci. Model Dev., 10, 2169–2199, https://doi.org/10.5194/gmd-10-2169-2017, https://doi.org/10.5194/gmd-10-2169-2017, 2017
Short summary
Short summary
The Ocean Model Intercomparison Project (OMIP) is a model comparison effort under Phase 6 of the Coupled Model Intercomparison Project (CMIP6). Its physical component is described elsewhere in this special issue. Here we describe its ocean biogeochemical component (OMIP-BGC), detailing simulation protocols and analysis diagnostics. Simulations focus on ocean carbon, other biogeochemical tracers, air-sea exchange of CO2 and related gases, and chemical tracers used to evaluate modeled circulation.
Jun Sun, Haijiao Liu, Xiaodong Zhang, Cuixia Zhang, and Shuqun Song
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-112, https://doi.org/10.5194/bg-2017-112, 2017
Manuscript not accepted for further review
Short summary
Short summary
The coccolithophore abundance in this study was relatively low, resulting from the weak winds and minimal nutrient upwelling compared to previous studies that were conducted during the monsoon seasons. During the spring intermonsoon period, no significant oceanic circulation occurred in the EEIO except for WJs. We inferred that, in the study area, different coccolithophore species had specific environmental preferences. Thus, coccolithophore species are good indicators of oceanographic changes.
Rachel Hussherr, Maurice Levasseur, Martine Lizotte, Jean-Éric Tremblay, Jacoba Mol, Helmuth Thomas, Michel Gosselin, Michel Starr, Lisa A. Miller, Tereza Jarniková, Nina Schuback, and Alfonso Mucci
Biogeosciences, 14, 2407–2427, https://doi.org/10.5194/bg-14-2407-2017, https://doi.org/10.5194/bg-14-2407-2017, 2017
Short summary
Short summary
This study assesses the impact of ocean acidification on phytoplankton and its synthesis of the climate-active gas dimethyl sulfide (DMS), as well as its modulation, by two contrasting light regimes in the Arctic. The light regimes tested had no significant impact on either the phytoplankton or DMS concentration, whereas both variables decreased linearly with the decrease in pH. Thus, a rapid decrease in surface water pH could alter the algal biomass and inhibit DMS production in the Arctic.
Xiang Gong, Wensheng Jiang, Linhui Wang, Huiwang Gao, Emmanuel Boss, Xiaohong Yao, Shuh-Ji Kao, and Jie Shi
Biogeosciences, 14, 2371–2386, https://doi.org/10.5194/bg-14-2371-2017, https://doi.org/10.5194/bg-14-2371-2017, 2017
Short summary
Short summary
The subsurface chlorophyll maximum layer (SCML) forms near the nitracline. By incorporating a piecewise function for the approximate Gaussian vertical profile of chlorophyll, we derive analytical solutions of a specified nutrient–phytoplankton model. Nitracline depth is deeper than SCML depth, and a thinner SCML corresponds to a steeper nitracline. A higher light attenuation coefficient leads to a shallower but steeper nitracline. Nitracline steepness is independent of surface light intensity.
Takafumi Hirata and Koji Suzuki
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-164, https://doi.org/10.5194/bg-2017-164, 2017
Preprint withdrawn
Short summary
Short summary
This work delivers a regional estimates of primary production due to diatoms, haptophytes and cyanobacteria around the Kuroshio current. Using a novel methodology, photosynthetic efficiency and abundance of marine phytoplankton are now viewed from a satellite in space. Our see that variability in primary production by diatoms is mainly regulated by their abundance rather than their efficiency, whereas the variability by cyanobacteria is more regulated by their efficiency than their abundance.
Johannes Karstensen, Florian Schütte, Alice Pietri, Gerd Krahmann, Björn Fiedler, Damian Grundle, Helena Hauss, Arne Körtzinger, Carolin R. Löscher, Pierre Testor, Nuno Vieira, and Martin Visbeck
Biogeosciences, 14, 2167–2181, https://doi.org/10.5194/bg-14-2167-2017, https://doi.org/10.5194/bg-14-2167-2017, 2017
Short summary
Short summary
High-resolution observational data from underwater gliders and ships are used to investigate drivers and pathways of nutrient upwelling in high-productive whirling ecosystems (eddies). The data suggest that the upwelling is created by the interaction of wind-induced internal waves with the local rotation of the eddy. Because of differences in nutrient and oxygen pathways, a low-oxygen core is established at shallow depth in the high-productive eddies.
Jiye Zeng, Tsuneo Matsunaga, Nobuko Saigusa, Tomoko Shirai, Shin-ichiro Nakaoka, and Zheng-Hong Tan
Ocean Sci., 13, 303–313, https://doi.org/10.5194/os-13-303-2017, https://doi.org/10.5194/os-13-303-2017, 2017
Short summary
Short summary
Three machine learning models were investigated for the reconstruction of global surface ocean CO2 concentration. They include self-organizing maps (SOMs), feedforward neural networks (FNNs), and support vector machines (SVMs). Our results show that the SVM performs the best, the FNN the second, and the SOM the worst. While the SOM does not have over-fitting problems, it is sensitive to data scaling and its discrete interpolation may not be good for some applications.
Anja Engel, Hannes Wagner, Frédéric A. C. Le Moigne, and Samuel T. Wilson
Biogeosciences, 14, 1825–1838, https://doi.org/10.5194/bg-14-1825-2017, https://doi.org/10.5194/bg-14-1825-2017, 2017
Short summary
Short summary
To better understand the role of oxygen for the biological carbon pump, we studied particle fluxes through hypoxic waters in the eastern tropical North Atlantic. Attenuation of organic carbon fluxes over depth was lower than expected from seawater temperatures, indicating co-effects of oxygen concentration. Differences were observed for individual organic components, suggesting that future carbon export fluxes may depend on changes in surface ocean organic matter quality under global change.
Tsung-Yu Lee, Li-Chin Lee, Jr-Chuan Huang, Shih-Hao Jien, Thomas Hein, Franz Zehetner, Shuh-Ji Kao, and Fuh-Kwo Shiah
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-105, https://doi.org/10.5194/bg-2017-105, 2017
Revised manuscript not accepted
Min Nina Xu, Yanhua Wu, Li Wei Zheng, Zhenzhen Zheng, Huade Zhao, Edward A. Laws, and Shuh-Ji Kao
Biogeosciences, 14, 1021–1038, https://doi.org/10.5194/bg-14-1021-2017, https://doi.org/10.5194/bg-14-1021-2017, 2017
Short summary
Short summary
To resolve multiple N transformation rates, we proposed an innovative “isotope matrix method” to simultaneously derive rates for multiple transformations. This method was designed specifically for incubations in the euphotic zone under simulated in situ light conditions and minimized potential biases caused by non-targeted processes. The method facilitates simple post hoc analysis of data and can be used to probe specific effects of environmental factors on the rates of interactive N processes.
Corinne Le Quéré, Robbie M. Andrew, Josep G. Canadell, Stephen Sitch, Jan Ivar Korsbakken, Glen P. Peters, Andrew C. Manning, Thomas A. Boden, Pieter P. Tans, Richard A. Houghton, Ralph F. Keeling, Simone Alin, Oliver D. Andrews, Peter Anthoni, Leticia Barbero, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Philippe Ciais, Kim Currie, Christine Delire, Scott C. Doney, Pierre Friedlingstein, Thanos Gkritzalis, Ian Harris, Judith Hauck, Vanessa Haverd, Mario Hoppema, Kees Klein Goldewijk, Atul K. Jain, Etsushi Kato, Arne Körtzinger, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Danica Lombardozzi, Joe R. Melton, Nicolas Metzl, Frank Millero, Pedro M. S. Monteiro, David R. Munro, Julia E. M. S. Nabel, Shin-ichiro Nakaoka, Kevin O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Christian Rödenbeck, Joe Salisbury, Ute Schuster, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Benjamin D. Stocker, Adrienne J. Sutton, Taro Takahashi, Hanqin Tian, Bronte Tilbrook, Ingrid T. van der Laan-Luijkx, Guido R. van der Werf, Nicolas Viovy, Anthony P. Walker, Andrew J. Wiltshire, and Sönke Zaehle
Earth Syst. Sci. Data, 8, 605–649, https://doi.org/10.5194/essd-8-605-2016, https://doi.org/10.5194/essd-8-605-2016, 2016
Short summary
Short summary
The Global Carbon Budget 2016 is the 11th annual update of emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land, and ocean. This data synthesis brings together measurements, statistical information, and analyses of model results in order to provide an assessment of the global carbon budget and their uncertainties for years 1959 to 2015, with a projection for year 2016.
Björn Fiedler, Damian S. Grundle, Florian Schütte, Johannes Karstensen, Carolin R. Löscher, Helena Hauss, Hannes Wagner, Alexandra Loginova, Rainer Kiko, Péricles Silva, Toste Tanhua, and Arne Körtzinger
Biogeosciences, 13, 5633–5647, https://doi.org/10.5194/bg-13-5633-2016, https://doi.org/10.5194/bg-13-5633-2016, 2016
Short summary
Short summary
Oxygen-depleted mesoscale features in the open eastern tropical North Atlantic, which are formed in the Mauritanian upwelling region, were discovered recently. This study examines biogeochemical structure and magnitudes of related processes within these isolated water masses. We found very low oxygen concentrations and strongly enhanced acidity at near-surface depth. Oxygen utilization and downward carbon export were found to exceed known values for this ocean region.
Angela Wulff, Maria Karlberg, Malin Olofsson, Anders Torstensson, Lasse Riemann, Franciska Steinhoff, Malin Mohlin, Nina Ekstrand, and Melissa Chierici
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-383, https://doi.org/10.5194/bg-2016-383, 2016
Manuscript not accepted for further review
Short summary
Short summary
The Baltic Sea could expect increased precipitation (lower salinity) and increased concentration of atmospheric CO2 over the next 100 years. In a 12-day outdoor experiment, we tested the combined effects of lower salinity and increased CO2 concentrations on a natural summer microplanktonic community. Lower salinity seemed more important than increased pCO2. Thus, we do not expect any dramatic effects of increased pCO2 in combination with decreased salinity on the Baltic microplanktonic food web.
Karine Leblanc, Véronique Cornet, Mathieu Caffin, Martine Rodier, Anne Desnues, Hugo Berthelot, Kendra Turk-Kubo, and Jules Heliou
Biogeosciences, 13, 5205–5219, https://doi.org/10.5194/bg-13-5205-2016, https://doi.org/10.5194/bg-13-5205-2016, 2016
Dorothee C. E. Bakker, Benjamin Pfeil, Camilla S. Landa, Nicolas Metzl, Kevin M. O'Brien, Are Olsen, Karl Smith, Cathy Cosca, Sumiko Harasawa, Stephen D. Jones, Shin-ichiro Nakaoka, Yukihiro Nojiri, Ute Schuster, Tobias Steinhoff, Colm Sweeney, Taro Takahashi, Bronte Tilbrook, Chisato Wada, Rik Wanninkhof, Simone R. Alin, Carlos F. Balestrini, Leticia Barbero, Nicholas R. Bates, Alejandro A. Bianchi, Frédéric Bonou, Jacqueline Boutin, Yann Bozec, Eugene F. Burger, Wei-Jun Cai, Robert D. Castle, Liqi Chen, Melissa Chierici, Kim Currie, Wiley Evans, Charles Featherstone, Richard A. Feely, Agneta Fransson, Catherine Goyet, Naomi Greenwood, Luke Gregor, Steven Hankin, Nick J. Hardman-Mountford, Jérôme Harlay, Judith Hauck, Mario Hoppema, Matthew P. Humphreys, Christopher W. Hunt, Betty Huss, J. Severino P. Ibánhez, Truls Johannessen, Ralph Keeling, Vassilis Kitidis, Arne Körtzinger, Alex Kozyr, Evangelia Krasakopoulou, Akira Kuwata, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Claire Lo Monaco, Ansley Manke, Jeremy T. Mathis, Liliane Merlivat, Frank J. Millero, Pedro M. S. Monteiro, David R. Munro, Akihiko Murata, Timothy Newberger, Abdirahman M. Omar, Tsuneo Ono, Kristina Paterson, David Pearce, Denis Pierrot, Lisa L. Robbins, Shu Saito, Joe Salisbury, Reiner Schlitzer, Bernd Schneider, Roland Schweitzer, Rainer Sieger, Ingunn Skjelvan, Kevin F. Sullivan, Stewart C. Sutherland, Adrienne J. Sutton, Kazuaki Tadokoro, Maciej Telszewski, Matthias Tuma, Steven M. A. C. van Heuven, Doug Vandemark, Brian Ward, Andrew J. Watson, and Suqing Xu
Earth Syst. Sci. Data, 8, 383–413, https://doi.org/10.5194/essd-8-383-2016, https://doi.org/10.5194/essd-8-383-2016, 2016
Short summary
Short summary
Version 3 of the Surface Ocean CO2 Atlas (www.socat.info) has 14.5 million CO2 (carbon dioxide) values for the years 1957 to 2014 covering the global oceans and coastal seas. Version 3 is an update to version 2 with a longer record and 44 % more CO2 values. The CO2 measurements have been made on ships, fixed moorings and drifting buoys. SOCAT enables quantification of the ocean carbon sink and ocean acidification, as well as model evaluation, thus informing climate negotiations.
Hongbin Liu and Chih-Jung Wu
Biogeosciences, 13, 4767–4775, https://doi.org/10.5194/bg-13-4767-2016, https://doi.org/10.5194/bg-13-4767-2016, 2016
Short summary
Short summary
The transport of organic C from the surface to the deep ocean by sinking particles composed of remains of dead cells and zooplankton fecal pellets can reduce the atmospheric CO2. Study of the effect of the silica content of diatoms, one of the most important primary products, on the production, degradation and sinking of its fecal pellets provides a better understanding of the complexity and variability of the planktonic food web and its implication on the vertical flux of C in the global ocean.
Angela N. Knapp, Sarah E. Fawcett, Alfredo Martínez-Garcia, Nathalie Leblond, Thierry Moutin, and Sophie Bonnet
Biogeosciences, 13, 4645–4657, https://doi.org/10.5194/bg-13-4645-2016, https://doi.org/10.5194/bg-13-4645-2016, 2016
Short summary
Short summary
The goal of this manuscript was to track the fate of newly fixed nitrogen (N) in large volume mesocosms in the coastal waters of New Caledonia. We used a N isotope ("δ15N") budget and found a shift in the δ15N of sinking particulate N over the 23-day experiment, indicating that nitrate supported export production at the beginning of the experiment, but that nitrogen fixation supported export at the end. We infer that nitrogen fixation supported export production by a release of dissolved N.
Dina Spungin, Ulrike Pfreundt, Hugo Berthelot, Sophie Bonnet, Dina AlRoumi, Frank Natale, Wolfgang R. Hess, Kay D. Bidle, and Ilana Berman-Frank
Biogeosciences, 13, 4187–4203, https://doi.org/10.5194/bg-13-4187-2016, https://doi.org/10.5194/bg-13-4187-2016, 2016
Short summary
Short summary
The marine cyanobacterium Trichodesmium spp. forms massive blooms important to carbon and nitrogen cycling in the oceans that often collapse abruptly. We investigated a Trichodesmium bloom in the lagoon waters of New Caledonia to specifically elucidate the cellular processes mediating the bloom decline. We demonstrate physiological, biochemical, and genetic evidence for nutrient and oxidative stress that induced a genetically controlled programmed cell death (PCD) pathway leading to bloom demise.
Ulrike Pfreundt, Dina Spungin, Sophie Bonnet, Ilana Berman-Frank, and Wolfgang R. Hess
Biogeosciences, 13, 4135–4149, https://doi.org/10.5194/bg-13-4135-2016, https://doi.org/10.5194/bg-13-4135-2016, 2016
Short summary
Short summary
The VAHINE experiment in the New Caledonia lagoon (SW Pacific) targeted the dynamics of nutrient pools and fluxes, N2 fixation, and the composition and productivity of the microbial communities. To connect this information to the actual activities of diverse microbial taxa, we present the analysis of the community-wide gene expression for 23 days. The results from this experiment provide insight into the microbial activities in a low-nutrient, low-chlorophyll ecosystem and within a mesocosm.
Jessica Gier, Stefan Sommer, Carolin R. Löscher, Andrew W. Dale, Ruth A. Schmitz, and Tina Treude
Biogeosciences, 13, 4065–4080, https://doi.org/10.5194/bg-13-4065-2016, https://doi.org/10.5194/bg-13-4065-2016, 2016
Short summary
Short summary
Benthic nitrogen fixation and sulfate reduction were investigated in the Peruvian oxygen minimum zone. The data suggest a coupling of both activities to a large extent, but that also sulfide and organic matter availability are controlling the benthic diazotrophy in this area. The molecular analysis confirms the presence of heterotrophic diazotrophs. This work improves our understanding of N cycling in OMZ sediments and the understanding of N sources in the marine environment.
Charlotte Laufkötter, Meike Vogt, Nicolas Gruber, Olivier Aumont, Laurent Bopp, Scott C. Doney, John P. Dunne, Judith Hauck, Jasmin G. John, Ivan D. Lima, Roland Seferian, and Christoph Völker
Biogeosciences, 13, 4023–4047, https://doi.org/10.5194/bg-13-4023-2016, https://doi.org/10.5194/bg-13-4023-2016, 2016
Short summary
Short summary
We compare future projections in marine export production, generated by four ecosystem models under IPCC's high-emission scenario RCP8.5. While all models project decreases in export, they differ strongly regarding the drivers. The formation of sinking particles of organic matter is the most uncertain process with models not agreeing on either magnitude or the direction of change. Changes in diatom concentration are a strong driver for export in some models but of low significance in others.
Ilana Berman-Frank, Dina Spungin, Eyal Rahav, France Van Wambeke, Kendra Turk-Kubo, and Thierry Moutin
Biogeosciences, 13, 3793–3805, https://doi.org/10.5194/bg-13-3793-2016, https://doi.org/10.5194/bg-13-3793-2016, 2016
Short summary
Short summary
In the marine environment, sticky sugar-containing gels, termed transparent exopolymeric particles (TEP), are produced from biological sources and physical and chemical processes. These compounds are essential vectors enhancing downward flow of organic matter and its storage at depth. Spatial and temporal dynamics of TEPs were followed for 23 days during the VAHINE mesocosm experiment that investigated the fate of nitrogen and carbon derived from organisms fixing atmospheric N2 (diazotrophs).
Urban Johannes Wünsch, Boris Peter Koch, Matthias Witt, and Joseph Andrew Needoba
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-263, https://doi.org/10.5194/bg-2016-263, 2016
Revised manuscript not accepted
Short summary
Short summary
We used a combination of continuously measuring water chemistry sensors and periodic sampling efforts to assess the seasonal variability of dissolved organic matter (DOM) in the Columbia River in spring and summer 2013.
We found that our sensors can provide detailed data on carbon export that far exceed usual monitoring efforts. The detailed data help to understand the impact of short-lived events, such as rainstorms, on the overall terrestrial carbon flux in the Columbia River.
Carolin R. Löscher, Hermann W. Bange, Ruth A. Schmitz, Cameron M. Callbeck, Anja Engel, Helena Hauss, Torsten Kanzow, Rainer Kiko, Gaute Lavik, Alexandra Loginova, Frank Melzner, Judith Meyer, Sven C. Neulinger, Markus Pahlow, Ulf Riebesell, Harald Schunck, Sören Thomsen, and Hannes Wagner
Biogeosciences, 13, 3585–3606, https://doi.org/10.5194/bg-13-3585-2016, https://doi.org/10.5194/bg-13-3585-2016, 2016
Short summary
Short summary
The ocean loses oxygen due to climate change. Addressing this issue in tropical ocean regions (off Peru and Mauritania), we aimed to understand the effects of oxygen depletion on various aspects of marine biogeochemistry, including primary production and export production, the nitrogen cycle, greenhouse gas production, organic matter fluxes and remineralization, and the role of zooplankton and viruses.
Brian P. V. Hunt, Sophie Bonnet, Hugo Berthelot, Brandon J. Conroy, Rachel A. Foster, and Marc Pagano
Biogeosciences, 13, 3131–3145, https://doi.org/10.5194/bg-13-3131-2016, https://doi.org/10.5194/bg-13-3131-2016, 2016
Short summary
Short summary
Biological nitrogen (N) fixation is an important source of N for food webs in tropical and subtropical oceans. However, uptake pathways remain poorly understood. This study found that fixed N contributed a third of total zooplankton N in the New Caledonia lagoon. Fixed N reached the zooplankton through 1) direct grazing on N fixers and 2) grazing on phytoplankton that had taken up N released by fixers. We report the first record of direct zooplankton grazing on the unicellular N fixer UCYN-C.
Carolin R. Löscher, Annie Bourbonnais, Julien Dekaezemacker, Chawalit N. Charoenpong, Mark A. Altabet, Hermann W. Bange, Rena Czeschel, Chris Hoffmann, and Ruth Schmitz
Biogeosciences, 13, 2889–2899, https://doi.org/10.5194/bg-13-2889-2016, https://doi.org/10.5194/bg-13-2889-2016, 2016
Short summary
Short summary
The ocean is full of eddies and they play a key role for ocean biogeochemistry. In order to understand dinitrogen (N2) fixation, one major control of oceanic primary production, we investigated three eddies in the eastern tropical South Pacific off Peru. We conducted the first detailed survey and found increased N2 fixation in the oxygen-depleted cores of anticyclonic mode water eddies. Taken together, we could – for the first time – show that eddies play an important role in N2 fixation off Peru.
Roland Séférian, Marion Gehlen, Laurent Bopp, Laure Resplandy, James C. Orr, Olivier Marti, John P. Dunne, James R. Christian, Scott C. Doney, Tatiana Ilyina, Keith Lindsay, Paul R. Halloran, Christoph Heinze, Joachim Segschneider, Jerry Tjiputra, Olivier Aumont, and Anastasia Romanou
Geosci. Model Dev., 9, 1827–1851, https://doi.org/10.5194/gmd-9-1827-2016, https://doi.org/10.5194/gmd-9-1827-2016, 2016
Short summary
Short summary
This paper explores how the large diversity in spin-up protocols used for ocean biogeochemistry in CMIP5 models contributed to inter-model differences in modeled fields. We show that a link between spin-up duration and skill-score metrics emerges from both individual IPSL-CM5A-LR's results and an ensemble of CMIP5 models. Our study suggests that differences in spin-up protocols constitute a source of inter-model uncertainty which would require more attention in future intercomparison exercises.
Sophie Bonnet, Hugo Berthelot, Kendra Turk-Kubo, Sarah Fawcett, Eyal Rahav, Stéphane L'Helguen, and Ilana Berman-Frank
Biogeosciences, 13, 2653–2673, https://doi.org/10.5194/bg-13-2653-2016, https://doi.org/10.5194/bg-13-2653-2016, 2016
Short summary
Short summary
N2 fixation rates were measured daily in ~ 50 m3 mesocosms deployed in New Caledonia to investigate the high-frequency dynamics of diazotrophy and the fate of diazotroph-derived nitrogen (DDN) oligotrophic ecosystems. ~ 10 % of UCYN-C from the water column were exported daily to the traps, representing as much as 22.4 ± 5.5 % of the total POC exported at the height of the UCYN-C bloom. 16 ± 6 % of the DDN was released to the dissolved pool and 21 ± 4 % was transferred to non-diazotrophic plankton.
Helena Hauss, Svenja Christiansen, Florian Schütte, Rainer Kiko, Miryam Edvam Lima, Elizandro Rodrigues, Johannes Karstensen, Carolin R. Löscher, Arne Körtzinger, and Björn Fiedler
Biogeosciences, 13, 1977–1989, https://doi.org/10.5194/bg-13-1977-2016, https://doi.org/10.5194/bg-13-1977-2016, 2016
Short summary
Short summary
In a low-oxygen eddy in the tropical Atlantic, total zooplankton biomass was increased. Larger plankton avoided the oxygen minimum zone (OMZ, < 20 µmol O2 kg−1). We identified four strategies by different plankton groups: (i) shallow OMZ avoidance and compression at surface, (ii) migration to shallow OMZ core during daytime, migration to surface at nighttime, (iii) residing in shallow OMZ day and night and (iv) migration through the shallow OMZ from oxygenated depths to surface and back.
Jr-Chuan Huang, Tsung-Yu Lee, Teng-Chiu Lin, Thomas Hein, Li-Chin Lee, Yu-Ting Shih, Shuh-Ji Kao, Fuh-Kwo Shiah, and Neng-Huei Lin
Biogeosciences, 13, 1787–1800, https://doi.org/10.5194/bg-13-1787-2016, https://doi.org/10.5194/bg-13-1787-2016, 2016
Short summary
Short summary
The mean riverine DIN export of 49 watersheds in Taiwan is ∼ 3800 kg N km−2 yr−1, 18 times the global average. The mean riverine DIN export ratio is 0.30–0.51, which is much higher than the average of 0.20–0.25 of large rivers around the world, indicating excessive N input relative to ecosystem retention capacity. The DIN export ratio is positively related to agriculture input, and levels of human disturbance and watersheds with high DIN export ratios are likely at advanced stages of N excess.
Josiane Mélançon, Maurice Levasseur, Martine Lizotte, Michael Scarratt, Jean-Éric Tremblay, Philippe Tortell, Gui-Peng Yang, Guang-Yu Shi, Huiwang Gao, David Semeniuk, Marie Robert, Michael Arychuk, Keith Johnson, Nes Sutherland, Marty Davelaar, Nina Nemcek, Angelica Peña, and Wendy Richardson
Biogeosciences, 13, 1677–1692, https://doi.org/10.5194/bg-13-1677-2016, https://doi.org/10.5194/bg-13-1677-2016, 2016
Short summary
Short summary
Ocean acidification is likely to affect iron-limited phytoplankton fertilization by desert dust. Short incubations of northeast subarctic Pacific waters enriched with dust and set at pH 8.0 and 7.8 were conducted. Acidification led to a significant reduction (by 16–38 %) of the final concentration of chl a reached after enrichment. These results show that dust deposition events in a low-pH iron-limited ocean are likely to stimulate phytoplankton growth to a lesser extent than in today's ocean.
Shuh-Ji Kao, Tzu-Ling Chiang, Da-Wei Li, Yi-Chia Hsin, Li-Wei Zheng, Jin-Yu Terence Yang, Shih-Chieh Hsu, Chau-Ron Wu, and Minhan Dai
Clim. Past Discuss., https://doi.org/10.5194/cp-2015-167, https://doi.org/10.5194/cp-2015-167, 2016
Preprint withdrawn
Short summary
Short summary
A 3-D model was run for the South China Sea to explore the effects of sea level drop and monsoon wind intensity on glacial patterns of circulation and ventilation. Winter northeasterly monsoon wind intensity governs the volume transport of Kuroshio intrusion through the Luzon Strait, subsequently, the water exchange rate and the mean residence time of water body of the SCS.
Ulrike Lomnitz, Stefan Sommer, Andrew W. Dale, Carolin R. Löscher, Anna Noffke, Klaus Wallmann, and Christian Hensen
Biogeosciences, 13, 1367–1386, https://doi.org/10.5194/bg-13-1367-2016, https://doi.org/10.5194/bg-13-1367-2016, 2016
Short summary
Short summary
The study presents a P budget including the P input from the water column, the P burial in the sediments, as well as the P release from the sediments. We found that the P input could not maintain the P release rates. Consideration of other P sources, e.g., terrigenous P and P released from the dissolution of Fe oxyhydroxides, showed that none of these can account for the missing P. Thus, it is likely that abundant sulfide-oxidizing bacteria release the missing P during our measurement period.
Damian L. Arévalo-Martínez, Annette Kock, Carolin R. Löscher, Ruth A. Schmitz, Lothar Stramma, and Hermann W. Bange
Biogeosciences, 13, 1105–1118, https://doi.org/10.5194/bg-13-1105-2016, https://doi.org/10.5194/bg-13-1105-2016, 2016
Short summary
Short summary
We present the first measurements of N2O across three mesoscale eddies in the eastern tropical South Pacific. Eddie's vertical structure, offshore transport, properties during its formation and near-surface primary production determined the N2O distribution. Substantial depletion of N2O within the core of anticyclonic eddies suggests that although these are transient features, N-loss processes within their centres can lead to an enhanced N2O sink which is not accounted for in marine N2O budgets.
Gregory R. Wentworth, Jennifer G. Murphy, Betty Croft, Randall V. Martin, Jeffrey R. Pierce, Jean-Sébastien Côté, Isabelle Courchesne, Jean-Éric Tremblay, Jonathan Gagnon, Jennie L. Thomas, Sangeeta Sharma, Desiree Toom-Sauntry, Alina Chivulescu, Maurice Levasseur, and Jonathan P. D. Abbatt
Atmos. Chem. Phys., 16, 1937–1953, https://doi.org/10.5194/acp-16-1937-2016, https://doi.org/10.5194/acp-16-1937-2016, 2016
Short summary
Short summary
Air near the surface in the summertime Arctic is extremely clean and typically has very low concentrations of both gases and particles. However, atmospheric measurements taken throughout the Canadian Arctic in the summer of 2014 revealed higher-than-expected amounts of gaseous ammonia. It is likely the majority of this ammonia is coming from migratory seabird colonies throughout the Arctic. Seabird guano (dung) releases ammonia which could impact climate and sensitive Arctic ecosystems.
A. Kock, D. L. Arévalo-Martínez, C. R. Löscher, and H. W. Bange
Biogeosciences, 13, 827–840, https://doi.org/10.5194/bg-13-827-2016, https://doi.org/10.5194/bg-13-827-2016, 2016
Short summary
Short summary
We measured the nitrous oxide (N2O) distribution in the water column in the oxygen minimum zone off Peru, an area with extremely high N2O emissions. Our data show very variable and often very high N2O concentrations in the water column at the coast, which lead to high N2O emissions when these waters are brought to the surface. The very high N2O production off Peru may be caused by high nutrient turnover rates together with rapid changes in the oxygen concentrations.
J. Meyer, C. R. Löscher, S. C. Neulinger, A. F. Reichel, A. Loginova, C. Borchard, R. A. Schmitz, H. Hauss, R. Kiko, and U. Riebesell
Biogeosciences, 13, 781–794, https://doi.org/10.5194/bg-13-781-2016, https://doi.org/10.5194/bg-13-781-2016, 2016
L. Luo, X. H. Yao, H. W. Gao, S. C. Hsu, J. W. Li, and S. J. Kao
Atmos. Chem. Phys., 16, 325–341, https://doi.org/10.5194/acp-16-325-2016, https://doi.org/10.5194/acp-16-325-2016, 2016
Short summary
Short summary
Concentrations and depositions of various nitrogen species of water-soluble fraction in aerosols were observed during spring over the eastern China seas and northwestern Pacific Ocean. Results revealed nitrogen deposition associated with the sea fog weather was 6 times higher than that of spring supply from the Yangtze River to the ECS shelf. The DON emission had occurred most likely during sea spray. Weather conditions modulate the nitrogen exchange at the ocean-atmosphere boundary.
A. Fujiwara, T. Hirawake, K. Suzuki, L. Eisner, I. Imai, S. Nishino, T. Kikuchi, and S.-I. Saitoh
Biogeosciences, 13, 115–131, https://doi.org/10.5194/bg-13-115-2016, https://doi.org/10.5194/bg-13-115-2016, 2016
Short summary
Short summary
This study provides the general relationship between the timing of sea ice retreat and phytoplankton size structure during the marginal ice zone bloom period in the Chukchi and Bering shelves using a satellite remote sensing approach. We also found that not only the length of the ice-free season but also the annual phytoplankton size composition positively correlated with annual net primary production.
J. E. Rheuban, S. Williamson, J. E. Costa, D. M. Glover, R. W. Jakuba, D. C. McCorkle, C. Neill, T. Williams, and S. C. Doney
Biogeosciences, 13, 253–265, https://doi.org/10.5194/bg-13-253-2016, https://doi.org/10.5194/bg-13-253-2016, 2016
Short summary
Short summary
We analysed 22 years of water quality data collected through a citizen science program focused on Buzzards Bay, MA. We found that summertime water temperatures warmed by nearly 2C and chlorophyll a nearly doubled across Buzzards Bay from 1992-2013. Although water quality worsened over time, nutrient concentrations remained largely the same in many places. Warming or altered rainfall patterns from a changing climate may partially offset benefits achieved by reducing nutrients.
C. R. Löscher, M. A. Fischer, S. C. Neulinger, B. Fiedler, M. Philippi, F. Schütte, A. Singh, H. Hauss, J. Karstensen, A. Körtzinger, S. Künzel, and R. A. Schmitz
Biogeosciences, 12, 7467–7482, https://doi.org/10.5194/bg-12-7467-2015, https://doi.org/10.5194/bg-12-7467-2015, 2015
Short summary
Short summary
The waters of the tropical Atlantic Open Ocean usually contain comparably high concentrations of oxygen. Now, it became clear that there are watermasses related to eddies that are nearly anoxic. We surveyed one of those eddies and found a biosphere that largely differed from the usual biosphere present in this area with a specific community responsible for primary production and for degradation processes. Further, we found the very first indication for active nitrogen loss in the open Atlantic.
K. A. Turk-Kubo, I. E. Frank, M. E. Hogan, A. Desnues, S. Bonnet, and J. P. Zehr
Biogeosciences, 12, 7435–7452, https://doi.org/10.5194/bg-12-7435-2015, https://doi.org/10.5194/bg-12-7435-2015, 2015
Short summary
Short summary
-A shift from diatom-associated diazotrophs (DDAs) to unicellular cyanobacterial group C (UCYN-C) in response to DIP fertilization was captured in a large-scale mesocosm experiment in the Noumea lagoon (NL), a low-nutrient low-chlorophyll coastal environment. -First report of in situ net growth and mortality rates for unicellular diazotrophs UCYN-A2, and UCYN-C. -First quantitative abundance data for diazotrophs in NL indicate that DDAs and UCYN-A1/A2 may be important N2 fixers in this region.
C. Rödenbeck, D. C. E. Bakker, N. Gruber, Y. Iida, A. R. Jacobson, S. Jones, P. Landschützer, N. Metzl, S. Nakaoka, A. Olsen, G.-H. Park, P. Peylin, K. B. Rodgers, T. P. Sasse, U. Schuster, J. D. Shutler, V. Valsala, R. Wanninkhof, and J. Zeng
Biogeosciences, 12, 7251–7278, https://doi.org/10.5194/bg-12-7251-2015, https://doi.org/10.5194/bg-12-7251-2015, 2015
Short summary
Short summary
This study investigates variations in the CO2 uptake of the ocean from year to year. These variations have been calculated from measurements of the surface-ocean carbon content by various different interpolation methods. The equatorial Pacific is estimated to be the region with the strongest year-to-year variations, tied to the El Nino phase. The global ocean CO2 uptake gradually increased from about the year 2000. The comparison of the interpolation methods identifies these findings as robust.
C. Laufkötter, M. Vogt, N. Gruber, M. Aita-Noguchi, O. Aumont, L. Bopp, E. Buitenhuis, S. C. Doney, J. Dunne, T. Hashioka, J. Hauck, T. Hirata, J. John, C. Le Quéré, I. D. Lima, H. Nakano, R. Seferian, I. Totterdell, M. Vichi, and C. Völker
Biogeosciences, 12, 6955–6984, https://doi.org/10.5194/bg-12-6955-2015, https://doi.org/10.5194/bg-12-6955-2015, 2015
Short summary
Short summary
We analyze changes in marine net primary production (NPP) and its drivers for the 21st century in 9 marine ecosystem models under the RCP8.5 scenario. NPP decreases in 5 models and increases in 1 model; 3 models show no significant trend. The main drivers include stronger nutrient limitation, but in many models warming-induced increases in phytoplankton growth outbalance the nutrient effect. Temperature-driven increases in grazing and other loss processes cause a net decrease in biomass and NPP.
C. Le Quéré, R. Moriarty, R. M. Andrew, J. G. Canadell, S. Sitch, J. I. Korsbakken, P. Friedlingstein, G. P. Peters, R. J. Andres, T. A. Boden, R. A. Houghton, J. I. House, R. F. Keeling, P. Tans, A. Arneth, D. C. E. Bakker, L. Barbero, L. Bopp, J. Chang, F. Chevallier, L. P. Chini, P. Ciais, M. Fader, R. A. Feely, T. Gkritzalis, I. Harris, J. Hauck, T. Ilyina, A. K. Jain, E. Kato, V. Kitidis, K. Klein Goldewijk, C. Koven, P. Landschützer, S. K. Lauvset, N. Lefèvre, A. Lenton, I. D. Lima, N. Metzl, F. Millero, D. R. Munro, A. Murata, J. E. M. S. Nabel, S. Nakaoka, Y. Nojiri, K. O'Brien, A. Olsen, T. Ono, F. F. Pérez, B. Pfeil, D. Pierrot, B. Poulter, G. Rehder, C. Rödenbeck, S. Saito, U. Schuster, J. Schwinger, R. Séférian, T. Steinhoff, B. D. Stocker, A. J. Sutton, T. Takahashi, B. Tilbrook, I. T. van der Laan-Luijkx, G. R. van der Werf, S. van Heuven, D. Vandemark, N. Viovy, A. Wiltshire, S. Zaehle, and N. Zeng
Earth Syst. Sci. Data, 7, 349–396, https://doi.org/10.5194/essd-7-349-2015, https://doi.org/10.5194/essd-7-349-2015, 2015
Short summary
Short summary
Accurate assessment of anthropogenic carbon dioxide emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to understand the global carbon cycle, support the development of climate policies, and project future climate change. We describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on a range of data and models and their interpretation by a broad scientific community.
L. Zhou, Y. Tan, L. Huang, Z. Hu, and Z. Ke
Biogeosciences, 12, 6809–6822, https://doi.org/10.5194/bg-12-6809-2015, https://doi.org/10.5194/bg-12-6809-2015, 2015
Short summary
Short summary
We observed that phytoplankton biomass and growth rate (μ), microzooplankton grazing rate (m), and coupling (correlation) between the μ and m significantly varied between the summer and winter, and microzooplankton selectively grazed more on the larger-sized phytoplankton, and a low grazing impact on phytoplankton (m/μ < 50%) in the SSCS. The salient seasonal variations in μ and m, and their coupling were closely related to environmental variables under the influence of the East Asian monsoon.
C. Hauri, S. C. Doney, T. Takahashi, M. Erickson, G. Jiang, and H. W. Ducklow
Biogeosciences, 12, 6761–6779, https://doi.org/10.5194/bg-12-6761-2015, https://doi.org/10.5194/bg-12-6761-2015, 2015
Short summary
Short summary
Evaluation of a unique 20-year-long time series of inorganic carbon and nutrient observations from the West Antarctic Peninsula region shows that summertime biological productivity and meltwater input drive a large range of surface aragonite saturation states from values < 1 (undersaturated) up to 3.9. Even though we did not detect any statistically significant long-term trends, ongoing ocean acidification and freshwater input may soon induce more unfavorable conditions than seen today.
A. Singh, S. E. Baer, U. Riebesell, A. C. Martiny, and M. W. Lomas
Biogeosciences, 12, 6389–6403, https://doi.org/10.5194/bg-12-6389-2015, https://doi.org/10.5194/bg-12-6389-2015, 2015
Short summary
Short summary
Stoichiometry of macronutrients in the subtropical ocean is important to understand how biogeochemical cycles are coupled. We observed that elemental stoichiometry was much higher in the dissolved organic-matter pools than in the particulate organic matter pools. In addition ratios vary with depth due to changes in growth rates of specific phytoplankton groups, namely cyanobacteria. These data will improve biogeochemical models by placing observational constraints on these ratios.
R. Arruda, P. H. R. Calil, A. A. Bianchi, S. C. Doney, N. Gruber, I. Lima, and G. Turi
Biogeosciences, 12, 5793–5809, https://doi.org/10.5194/bg-12-5793-2015, https://doi.org/10.5194/bg-12-5793-2015, 2015
Short summary
Short summary
We investigate surface ocean pCO2 and air-sea CO2 fluxes climatological variability through biogeochemical modeling in the southwestern Atlantic Ocean. Surface ocean pCO2 spatio-temporal variability was found to be controlled mainly by temperature and Dissolved Inorganic Carbon (DIC). Biological production, physical transport and solubility are the main controlling processes. With different behaviors on subtropical and subantarctic open ocean, and on inner/outer continental shelves.
R. H. R. Stanley, W. J. Jenkins, S. C. Doney, and D. E. Lott III
Biogeosciences, 12, 5199–5210, https://doi.org/10.5194/bg-12-5199-2015, https://doi.org/10.5194/bg-12-5199-2015, 2015
Short summary
Short summary
A long-standing enigma in oceanography is the process in which nutrients are supplied to the sunlit zone of the low nutrient regions of the ocean. In this work, we present one approach for quantifying the physical supply of nitrate to the euphotic zone in the Sargasso Sea through the use of gas tracers. We find that the nitrate supplied is more than enough to support the rates of net community production (balance of photosynthesis respiration) observed.
H. Jing, E. Rocke, L. Kong, X. Xia, H. Liu, and M. R. Landry
Biogeosciences Discuss., https://doi.org/10.5194/bgd-12-13483-2015, https://doi.org/10.5194/bgd-12-13483-2015, 2015
Manuscript not accepted for further review
Short summary
Short summary
Photosynthetic Dinoflagellates predominated in the surface, while potential parasitic Dinoflagellates and Ciliates dominated in the OMZ and deeper water in Costa Rica Dome. Total and active protists in the anoxic core were distinct from those in others depths. Reduced community diversity and presence of parasitic/symbiotic trophic lifestyles in the suboxic/anoxic OMZ suggests that oxygen deficiency could cause a change of protist community and the associated microbial food web as well.
H. Endo, K. Sugie, T. Yoshimura, and K. Suzuki
Biogeosciences, 12, 2247–2259, https://doi.org/10.5194/bg-12-2247-2015, https://doi.org/10.5194/bg-12-2247-2015, 2015
P. Coupel, A. Matsuoka, D. Ruiz-Pino, M. Gosselin, D. Marie, J.-É. Tremblay, and M. Babin
Biogeosciences, 12, 991–1006, https://doi.org/10.5194/bg-12-991-2015, https://doi.org/10.5194/bg-12-991-2015, 2015
B. F. Jonsson, S. Doney, J. Dunne, and M. L. Bender
Biogeosciences, 12, 681–695, https://doi.org/10.5194/bg-12-681-2015, https://doi.org/10.5194/bg-12-681-2015, 2015
Short summary
Short summary
We compare how two global circulation models simulate biological production over the year with observations. Note that models simulate the range of biological production and biomass well but fail with regard to timing and regional structures. This is probably because the physics in the models are wrong, especially vertical processes such as mixed layer dynamics.
S. Sitch, P. Friedlingstein, N. Gruber, S. D. Jones, G. Murray-Tortarolo, A. Ahlström, S. C. Doney, H. Graven, C. Heinze, C. Huntingford, S. Levis, P. E. Levy, M. Lomas, B. Poulter, N. Viovy, S. Zaehle, N. Zeng, A. Arneth, G. Bonan, L. Bopp, J. G. Canadell, F. Chevallier, P. Ciais, R. Ellis, M. Gloor, P. Peylin, S. L. Piao, C. Le Quéré, B. Smith, Z. Zhu, and R. Myneni
Biogeosciences, 12, 653–679, https://doi.org/10.5194/bg-12-653-2015, https://doi.org/10.5194/bg-12-653-2015, 2015
Y.-T. Shih, T.-Y. Lee, J.-C. Huang, S.-J. Kao, K.-K. Liu, and F.-J. Chang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-449-2015, https://doi.org/10.5194/hessd-12-449-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
This study combines the observed riverine DIN (dissolved inorganic nitrogen) export and the controlling factors (land-use, population and discharge) to inversely estimate the effective DIN yield factors for individual land-use and per capita loading. Those estimated DIN yield factors can extrapolate all possible combinations of land-use, discharge, and population density, demonstrating the capability for scenario assessment.
K.-K. Liu, C.-K. Kang, T. Kobari, H. Liu, C. Rabouille, and K. Fennel
Biogeosciences, 11, 7061–7075, https://doi.org/10.5194/bg-11-7061-2014, https://doi.org/10.5194/bg-11-7061-2014, 2014
Short summary
Short summary
This paper provides background info on the East China Sea, Japan/East Sea and South China Sea and highlights major findings in the special issue on their biogeochemical conditions and ecosystem functions. The three seas are subject to strong impacts from human activities and/or climate forcing. Because these continental margins sustain arguably some of the most productive marine ecosystems in the world, changes in these stressed ecosystems may threaten the livelihood of a large human population.
M. Gehlen, R. Séférian, D. O. B. Jones, T. Roy, R. Roth, J. Barry, L. Bopp, S. C. Doney, J. P. Dunne, C. Heinze, F. Joos, J. C. Orr, L. Resplandy, J. Segschneider, and J. Tjiputra
Biogeosciences, 11, 6955–6967, https://doi.org/10.5194/bg-11-6955-2014, https://doi.org/10.5194/bg-11-6955-2014, 2014
Short summary
Short summary
This study evaluates potential impacts of pH reductions on North Atlantic deep-sea ecosystems in response to latest IPCC scenarios.Multi-model projections of pH changes over the seafloor are analysed with reference to a critical threshold based on palaeo-oceanographic studies, contemporary observations and model results. By 2100 under the most severe IPCC CO2 scenario, pH reductions occur over ~23% of deep-sea canyons and ~8% of seamounts – including seamounts proposed as marine protected areas.
D. Nomura, H. Yoshikawa-Inoue, S. Kobayashi, S. Nakaoka, K. Nakata, and G. Hashida
Biogeosciences, 11, 5749–5761, https://doi.org/10.5194/bg-11-5749-2014, https://doi.org/10.5194/bg-11-5749-2014, 2014
T.-Y. Lee, Y.-T. Shih, J.-C. Huang, S.-J. Kao, F.-K. Shiah, and K.-K. Liu
Biogeosciences, 11, 5307–5321, https://doi.org/10.5194/bg-11-5307-2014, https://doi.org/10.5194/bg-11-5307-2014, 2014
N. Jiao, C. Robinson, F. Azam, H. Thomas, F. Baltar, H. Dang, N. J. Hardman-Mountford, M. Johnson, D. L. Kirchman, B. P. Koch, L. Legendre, C. Li, J. Liu, T. Luo, Y.-W. Luo, A. Mitra, A. Romanou, K. Tang, X. Wang, C. Zhang, and R. Zhang
Biogeosciences, 11, 5285–5306, https://doi.org/10.5194/bg-11-5285-2014, https://doi.org/10.5194/bg-11-5285-2014, 2014
J.-É. Tremblay, P. Raimbault, N. Garcia, B. Lansard, M. Babin, and J. Gagnon
Biogeosciences, 11, 4853–4868, https://doi.org/10.5194/bg-11-4853-2014, https://doi.org/10.5194/bg-11-4853-2014, 2014
C. Rödenbeck, D. C. E. Bakker, N. Metzl, A. Olsen, C. Sabine, N. Cassar, F. Reum, R. F. Keeling, and M. Heimann
Biogeosciences, 11, 4599–4613, https://doi.org/10.5194/bg-11-4599-2014, https://doi.org/10.5194/bg-11-4599-2014, 2014
S.-C. Hsu, G.-C. Gong, F.-K. Shiah, C.-C. Hung, S.-J. Kao, R. Zhang, W.-N. Chen, C.-C. Chen, C. C.-K. Chou, Y.-C. Lin, F.-J. Lin, and S.-H. Lin
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-21433-2014, https://doi.org/10.5194/acpd-14-21433-2014, 2014
Revised manuscript has not been submitted
O2 / Ar and satellite observation: a methodological study
C.-H. Chang, N. C. Johnson, and N. Cassar
Biogeosciences, 11, 3279–3297, https://doi.org/10.5194/bg-11-3279-2014, https://doi.org/10.5194/bg-11-3279-2014, 2014
C. Le Quéré, G. P. Peters, R. J. Andres, R. M. Andrew, T. A. Boden, P. Ciais, P. Friedlingstein, R. A. Houghton, G. Marland, R. Moriarty, S. Sitch, P. Tans, A. Arneth, A. Arvanitis, D. C. E. Bakker, L. Bopp, J. G. Canadell, L. P. Chini, S. C. Doney, A. Harper, I. Harris, J. I. House, A. K. Jain, S. D. Jones, E. Kato, R. F. Keeling, K. Klein Goldewijk, A. Körtzinger, C. Koven, N. Lefèvre, F. Maignan, A. Omar, T. Ono, G.-H. Park, B. Pfeil, B. Poulter, M. R. Raupach, P. Regnier, C. Rödenbeck, S. Saito, J. Schwinger, J. Segschneider, B. D. Stocker, T. Takahashi, B. Tilbrook, S. van Heuven, N. Viovy, R. Wanninkhof, A. Wiltshire, and S. Zaehle
Earth Syst. Sci. Data, 6, 235–263, https://doi.org/10.5194/essd-6-235-2014, https://doi.org/10.5194/essd-6-235-2014, 2014
A. Forest, P. Coupel, B. Else, S. Nahavandian, B. Lansard, P. Raimbault, T. Papakyriakou, Y. Gratton, L. Fortier, J.-É. Tremblay, and M. Babin
Biogeosciences, 11, 2827–2856, https://doi.org/10.5194/bg-11-2827-2014, https://doi.org/10.5194/bg-11-2827-2014, 2014
K. Suzuki, A. Hattori-Saito, Y. Sekiguchi, J. Nishioka, M. Shigemitsu, T. Isada, H. Liu, and R. M. L. McKay
Biogeosciences, 11, 2503–2517, https://doi.org/10.5194/bg-11-2503-2014, https://doi.org/10.5194/bg-11-2503-2014, 2014
N. Jiao, Y. Zhang, K. Zhou, Q. Li, M. Dai, J. Liu, J. Guo, and B. Huang
Biogeosciences, 11, 2465–2475, https://doi.org/10.5194/bg-11-2465-2014, https://doi.org/10.5194/bg-11-2465-2014, 2014
Y. Zhang, X. Xie, N. Jiao, S. S.-Y. Hsiao, and S.-J. Kao
Biogeosciences, 11, 2131–2145, https://doi.org/10.5194/bg-11-2131-2014, https://doi.org/10.5194/bg-11-2131-2014, 2014
S. S.-Y. Hsiao, T.-C. Hsu, J.-w. Liu, X. Xie, Y. Zhang, J. Lin, H. Wang, J.-Y. T. Yang, S.-C. Hsu, M. Dai, and S.-J. Kao
Biogeosciences, 11, 2083–2098, https://doi.org/10.5194/bg-11-2083-2014, https://doi.org/10.5194/bg-11-2083-2014, 2014
C. Guo, H. Liu, L. Zheng, S. Song, B. Chen, and B. Huang
Biogeosciences, 11, 1847–1862, https://doi.org/10.5194/bg-11-1847-2014, https://doi.org/10.5194/bg-11-1847-2014, 2014
J.-Y. T. Yang, S.-C. Hsu, M. H. Dai, S. S.-Y. Hsiao, and S.-J. Kao
Biogeosciences, 11, 1833–1846, https://doi.org/10.5194/bg-11-1833-2014, https://doi.org/10.5194/bg-11-1833-2014, 2014
A. Fujiwara, T. Hirawake, K. Suzuki, I. Imai, and S.-I. Saitoh
Biogeosciences, 11, 1705–1716, https://doi.org/10.5194/bg-11-1705-2014, https://doi.org/10.5194/bg-11-1705-2014, 2014
D. C. E. Bakker, B. Pfeil, K. Smith, S. Hankin, A. Olsen, S. R. Alin, C. Cosca, S. Harasawa, A. Kozyr, Y. Nojiri, K. M. O'Brien, U. Schuster, M. Telszewski, B. Tilbrook, C. Wada, J. Akl, L. Barbero, N. R. Bates, J. Boutin, Y. Bozec, W.-J. Cai, R. D. Castle, F. P. Chavez, L. Chen, M. Chierici, K. Currie, H. J. W. de Baar, W. Evans, R. A. Feely, A. Fransson, Z. Gao, B. Hales, N. J. Hardman-Mountford, M. Hoppema, W.-J. Huang, C. W. Hunt, B. Huss, T. Ichikawa, T. Johannessen, E. M. Jones, S. D. Jones, S. Jutterström, V. Kitidis, A. Körtzinger, P. Landschützer, S. K. Lauvset, N. Lefèvre, A. B. Manke, J. T. Mathis, L. Merlivat, N. Metzl, A. Murata, T. Newberger, A. M. Omar, T. Ono, G.-H. Park, K. Paterson, D. Pierrot, A. F. Ríos, C. L. Sabine, S. Saito, J. Salisbury, V. V. S. S. Sarma, R. Schlitzer, R. Sieger, I. Skjelvan, T. Steinhoff, K. F. Sullivan, H. Sun, A. J. Sutton, T. Suzuki, C. Sweeney, T. Takahashi, J. Tjiputra, N. Tsurushima, S. M. A. C. van Heuven, D. Vandemark, P. Vlahos, D. W. R. Wallace, R. Wanninkhof, and A. J. Watson
Earth Syst. Sci. Data, 6, 69–90, https://doi.org/10.5194/essd-6-69-2014, https://doi.org/10.5194/essd-6-69-2014, 2014
S.-J. Kao, R. G. Hilton, K. Selvaraj, M. Dai, F. Zehetner, J.-C. Huang, S.-C. Hsu, R. Sparkes, J. T. Liu, T.-Y. Lee, J.-Y. T. Yang, A. Galy, X. Xu, and N. Hovius
Earth Surf. Dynam., 2, 127–139, https://doi.org/10.5194/esurf-2-127-2014, https://doi.org/10.5194/esurf-2-127-2014, 2014
I. D. Lima, P. J. Lam, and S. C. Doney
Biogeosciences, 11, 1177–1198, https://doi.org/10.5194/bg-11-1177-2014, https://doi.org/10.5194/bg-11-1177-2014, 2014
J. Sun, X. Y. Gu, Y. Y. Feng, S. F. Jin, W. S. Jiang, H. Y. Jin, and J. F. Chen
Biogeosciences, 11, 779–806, https://doi.org/10.5194/bg-11-779-2014, https://doi.org/10.5194/bg-11-779-2014, 2014
Y.-W. Luo, I. D. Lima, D. M. Karl, C. A. Deutsch, and S. C. Doney
Biogeosciences, 11, 691–708, https://doi.org/10.5194/bg-11-691-2014, https://doi.org/10.5194/bg-11-691-2014, 2014
M. Ishii, R. A. Feely, K. B. Rodgers, G.-H. Park, R. Wanninkhof, D. Sasano, H. Sugimoto, C. E. Cosca, S. Nakaoka, M. Telszewski, Y. Nojiri, S. E. Mikaloff Fletcher, Y. Niwa, P. K. Patra, V. Valsala, H. Nakano, I. Lima, S. C. Doney, E. T. Buitenhuis, O. Aumont, J. P. Dunne, A. Lenton, and T. Takahashi
Biogeosciences, 11, 709–734, https://doi.org/10.5194/bg-11-709-2014, https://doi.org/10.5194/bg-11-709-2014, 2014
Y.-F. Tseng, J. Lin, M. Dai, and S.-J. Kao
Biogeosciences, 11, 409–423, https://doi.org/10.5194/bg-11-409-2014, https://doi.org/10.5194/bg-11-409-2014, 2014
C.-C. Lai, Y.-W. Fu, H.-B. Liu, H.-Y. Kuo, K.-W. Wang, C.-H. Lin, J.-H. Tai, G. T. F. Wong, K.-Y. Lee, T.-Y. Chen, Y. Yamamoto, M.-F. Chow, Y. Kobayashi, C.-Y. Ko, and F.-K. Shiah
Biogeosciences, 11, 147–156, https://doi.org/10.5194/bg-11-147-2014, https://doi.org/10.5194/bg-11-147-2014, 2014
K. Misumi, K. Lindsay, J. K. Moore, S. C. Doney, F. O. Bryan, D. Tsumune, and Y. Yoshida
Biogeosciences, 11, 33–55, https://doi.org/10.5194/bg-11-33-2014, https://doi.org/10.5194/bg-11-33-2014, 2014
T.-C. Hsu and S.-J. Kao
Biogeosciences, 10, 7847–7862, https://doi.org/10.5194/bg-10-7847-2013, https://doi.org/10.5194/bg-10-7847-2013, 2013
P. Landschützer, N. Gruber, D. C. E. Bakker, U. Schuster, S. Nakaoka, M. R. Payne, T. P. Sasse, and J. Zeng
Biogeosciences, 10, 7793–7815, https://doi.org/10.5194/bg-10-7793-2013, https://doi.org/10.5194/bg-10-7793-2013, 2013
Y. Yamashita, Y. Nosaka, K. Suzuki, H. Ogawa, K. Takahashi, and H. Saito
Biogeosciences, 10, 7207–7217, https://doi.org/10.5194/bg-10-7207-2013, https://doi.org/10.5194/bg-10-7207-2013, 2013
V. V. S. S. Sarma, A. Lenton, R. M. Law, N. Metzl, P. K. Patra, S. Doney, I. D. Lima, E. Dlugokencky, M. Ramonet, and V. Valsala
Biogeosciences, 10, 7035–7052, https://doi.org/10.5194/bg-10-7035-2013, https://doi.org/10.5194/bg-10-7035-2013, 2013
M. Vogt, T. Hashioka, M. R. Payne, E. T. Buitenhuis, C. Le Quéré, S. Alvain, M. N. Aita, L. Bopp, S. C. Doney, T. Hirata, I. Lima, S. Sailley, and Y. Yamanaka
Biogeosciences Discuss., https://doi.org/10.5194/bgd-10-17193-2013, https://doi.org/10.5194/bgd-10-17193-2013, 2013
Revised manuscript has not been submitted
T. Hashioka, M. Vogt, Y. Yamanaka, C. Le Quéré, E. T. Buitenhuis, M. N. Aita, S. Alvain, L. Bopp, T. Hirata, I. Lima, S. Sailley, and S. C. Doney
Biogeosciences, 10, 6833–6850, https://doi.org/10.5194/bg-10-6833-2013, https://doi.org/10.5194/bg-10-6833-2013, 2013
K. Sugie, H. Endo, K. Suzuki, J. Nishioka, H. Kiyosawa, and T. Yoshimura
Biogeosciences, 10, 6309–6321, https://doi.org/10.5194/bg-10-6309-2013, https://doi.org/10.5194/bg-10-6309-2013, 2013
L. Bopp, L. Resplandy, J. C. Orr, S. C. Doney, J. P. Dunne, M. Gehlen, P. Halloran, C. Heinze, T. Ilyina, R. Séférian, J. Tjiputra, and M. Vichi
Biogeosciences, 10, 6225–6245, https://doi.org/10.5194/bg-10-6225-2013, https://doi.org/10.5194/bg-10-6225-2013, 2013
S. Nakaoka, M. Telszewski, Y. Nojiri, S. Yasunaka, C. Miyazaki, H. Mukai, and N. Usui
Biogeosciences, 10, 6093–6106, https://doi.org/10.5194/bg-10-6093-2013, https://doi.org/10.5194/bg-10-6093-2013, 2013
C. J. O'Brien, J. A. Peloquin, M. Vogt, M. Heinle, N. Gruber, P. Ajani, H. Andruleit, J. Arístegui, L. Beaufort, M. Estrada, D. Karentz, E. Kopczyńska, R. Lee, A. J. Poulton, T. Pritchard, and C. Widdicombe
Earth Syst. Sci. Data, 5, 259–276, https://doi.org/10.5194/essd-5-259-2013, https://doi.org/10.5194/essd-5-259-2013, 2013
E. T. Buitenhuis, M. Vogt, R. Moriarty, N. Bednaršek, S. C. Doney, K. Leblanc, C. Le Quéré, Y.-W. Luo, C. O'Brien, T. O'Brien, J. Peloquin, R. Schiebel, and C. Swan
Earth Syst. Sci. Data, 5, 227–239, https://doi.org/10.5194/essd-5-227-2013, https://doi.org/10.5194/essd-5-227-2013, 2013
M. Ardyna, M. Babin, M. Gosselin, E. Devred, S. Bélanger, A. Matsuoka, and J.-É. Tremblay
Biogeosciences, 10, 4383–4404, https://doi.org/10.5194/bg-10-4383-2013, https://doi.org/10.5194/bg-10-4383-2013, 2013
E. Rahav, B. Herut, M. R. Mulholland, B. Voß, D. Stazic, C. Steglich, W. R. Hess, and I. Berman-Frank
Biogeosciences Discuss., https://doi.org/10.5194/bgd-10-10327-2013, https://doi.org/10.5194/bgd-10-10327-2013, 2013
Revised manuscript has not been submitted
S. Bélanger, M. Babin, and J.-É. Tremblay
Biogeosciences, 10, 4087–4101, https://doi.org/10.5194/bg-10-4087-2013, https://doi.org/10.5194/bg-10-4087-2013, 2013
A. Lenton, B. Tilbrook, R. M. Law, D. Bakker, S. C. Doney, N. Gruber, M. Ishii, M. Hoppema, N. S. Lovenduski, R. J. Matear, B. I. McNeil, N. Metzl, S. E. Mikaloff Fletcher, P. M. S. Monteiro, C. Rödenbeck, C. Sweeney, and T. Takahashi
Biogeosciences, 10, 4037–4054, https://doi.org/10.5194/bg-10-4037-2013, https://doi.org/10.5194/bg-10-4037-2013, 2013
V. Le Fouest, M. Babin, and J.-É. Tremblay
Biogeosciences, 10, 3661–3677, https://doi.org/10.5194/bg-10-3661-2013, https://doi.org/10.5194/bg-10-3661-2013, 2013
S. Efrati, Y. Lehahn, E. Rahav, N. Kress, B. Herut, I. Gertman, R. Goldman, T. Ozer, M. Lazar, and E. Heifetz
Biogeosciences, 10, 3349–3357, https://doi.org/10.5194/bg-10-3349-2013, https://doi.org/10.5194/bg-10-3349-2013, 2013
E. Rahav, B. Herut, A. Levi, M. R. Mulholland, and I. Berman-Frank
Ocean Sci., 9, 489–498, https://doi.org/10.5194/os-9-489-2013, https://doi.org/10.5194/os-9-489-2013, 2013
C. Le Quéré, R. J. Andres, T. Boden, T. Conway, R. A. Houghton, J. I. House, G. Marland, G. P. Peters, G. R. van der Werf, A. Ahlström, R. M. Andrew, L. Bopp, J. G. Canadell, P. Ciais, S. C. Doney, C. Enright, P. Friedlingstein, C. Huntingford, A. K. Jain, C. Jourdain, E. Kato, R. F. Keeling, K. Klein Goldewijk, S. Levis, P. Levy, M. Lomas, B. Poulter, M. R. Raupach, J. Schwinger, S. Sitch, B. D. Stocker, N. Viovy, S. Zaehle, and N. Zeng
Earth Syst. Sci. Data, 5, 165–185, https://doi.org/10.5194/essd-5-165-2013, https://doi.org/10.5194/essd-5-165-2013, 2013
C. Beaulieu, S. A. Henson, Jorge L. Sarmiento, J. P. Dunne, S. C. Doney, R. R. Rykaczewski, and L. Bopp
Biogeosciences, 10, 2711–2724, https://doi.org/10.5194/bg-10-2711-2013, https://doi.org/10.5194/bg-10-2711-2013, 2013
N. Yasuki, K. Suzuki, and A. Tsuda
Biogeosciences Discuss., https://doi.org/10.5194/bgd-10-6605-2013, https://doi.org/10.5194/bgd-10-6605-2013, 2013
Revised manuscript has not been submitted
K. Castro-Morales, N. Cassar, D. R. Shoosmith, and J. Kaiser
Biogeosciences, 10, 2273–2291, https://doi.org/10.5194/bg-10-2273-2013, https://doi.org/10.5194/bg-10-2273-2013, 2013
S. Khatiwala, T. Tanhua, S. Mikaloff Fletcher, M. Gerber, S. C. Doney, H. D. Graven, N. Gruber, G. A. McKinley, A. Murata, A. F. Ríos, and C. L. Sabine
Biogeosciences, 10, 2169–2191, https://doi.org/10.5194/bg-10-2169-2013, https://doi.org/10.5194/bg-10-2169-2013, 2013
J. Peloquin, C. Swan, N. Gruber, M. Vogt, H. Claustre, J. Ras, J. Uitz, R. Barlow, M. Behrenfeld, R. Bidigare, H. Dierssen, G. Ditullio, E. Fernandez, C. Gallienne, S. Gibb, R. Goericke, L. Harding, E. Head, P. Holligan, S. Hooker, D. Karl, M. Landry, R. Letelier, C. A. Llewellyn, M. Lomas, M. Lucas, A. Mannino, J.-C. Marty, B. G. Mitchell, F. Muller-Karger, N. Nelson, C. O'Brien, B. Prezelin, D. Repeta, W. O. Jr. Smith, D. Smythe-Wright, R. Stumpf, A. Subramaniam, K. Suzuki, C. Trees, M. Vernet, N. Wasmund, and S. Wright
Earth Syst. Sci. Data, 5, 109–123, https://doi.org/10.5194/essd-5-109-2013, https://doi.org/10.5194/essd-5-109-2013, 2013
R. Wanninkhof, G. -H. Park, T. Takahashi, C. Sweeney, R. Feely, Y. Nojiri, N. Gruber, S. C. Doney, G. A. McKinley, A. Lenton, C. Le Quéré, C. Heinze, J. Schwinger, H. Graven, and S. Khatiwala
Biogeosciences, 10, 1983–2000, https://doi.org/10.5194/bg-10-1983-2013, https://doi.org/10.5194/bg-10-1983-2013, 2013
V. J. Bertics, C. R. Löscher, I. Salonen, A. W. Dale, J. Gier, R. A. Schmitz, and T. Treude
Biogeosciences, 10, 1243–1258, https://doi.org/10.5194/bg-10-1243-2013, https://doi.org/10.5194/bg-10-1243-2013, 2013
U. Schuster, G. A. McKinley, N. Bates, F. Chevallier, S. C. Doney, A. R. Fay, M. González-Dávila, N. Gruber, S. Jones, J. Krijnen, P. Landschützer, N. Lefèvre, M. Manizza, J. Mathis, N. Metzl, A. Olsen, A. F. Rios, C. Rödenbeck, J. M. Santana-Casiano, T. Takahashi, R. Wanninkhof, and A. J. Watson
Biogeosciences, 10, 607–627, https://doi.org/10.5194/bg-10-607-2013, https://doi.org/10.5194/bg-10-607-2013, 2013
A.-S. Roy, S. M. Gibbons, H. Schunck, S. Owens, J. G. Caporaso, M. Sperling, J. I. Nissimov, S. Romac, L. Bittner, M. Mühling, U. Riebesell, J. LaRoche, and J. A. Gilbert
Biogeosciences, 10, 555–566, https://doi.org/10.5194/bg-10-555-2013, https://doi.org/10.5194/bg-10-555-2013, 2013
P. K. Patra, J. G. Canadell, R. A. Houghton, S. L. Piao, N.-H. Oh, P. Ciais, K. R. Manjunath, A. Chhabra, T. Wang, T. Bhattacharya, P. Bousquet, J. Hartman, A. Ito, E. Mayorga, Y. Niwa, P. A. Raymond, V. V. S. S. Sarma, and R. Lasco
Biogeosciences, 10, 513–527, https://doi.org/10.5194/bg-10-513-2013, https://doi.org/10.5194/bg-10-513-2013, 2013
N. N. Chang, J. C. Shiao, G. C. Gong, S. J. Kao, and C. H. Hsieh
Biogeosciences Discuss., https://doi.org/10.5194/bgd-10-1051-2013, https://doi.org/10.5194/bgd-10-1051-2013, 2013
Revised manuscript not accepted
C. Hauri, N. Gruber, M. Vogt, S. C. Doney, R. A. Feely, Z. Lachkar, A. Leinweber, A. M. P. McDonnell, M. Munnich, and G.-K. Plattner
Biogeosciences, 10, 193–216, https://doi.org/10.5194/bg-10-193-2013, https://doi.org/10.5194/bg-10-193-2013, 2013
J. Martin, J. É. Tremblay, and N. M. Price
Biogeosciences, 9, 5353–5371, https://doi.org/10.5194/bg-9-5353-2012, https://doi.org/10.5194/bg-9-5353-2012, 2012
B. W. Blomquist, C. W. Fairall, B. J. Huebert, and S. T. Wilson
Atmos. Meas. Tech., 5, 3069–3075, https://doi.org/10.5194/amt-5-3069-2012, https://doi.org/10.5194/amt-5-3069-2012, 2012
Related subject area
Domain: ESSD – Ocean | Subject: Chemical oceanography
A 20-year (1998–2017) global sea surface dimethyl sulfide gridded dataset with daily resolution
A machine-learning reconstruction of sea surface pCO2 in the North American Atlantic Coastal Ocean Margin from 1993 to 2021
High-resolution global shipping emission inventory by Shipping Emission Inventory Model (SEIM)
Distributions of in situ parameters, dissolved (in)organic carbon, and nutrients in the water column and pore waters of Arctic fjords (western Spitsbergen) during a melting season
Climatological distribution of ocean acidification variables along the North American ocean margins
Updated climatological mean ΔfCO2 and net sea–air CO2 flux over the global open ocean regions
The annual update GLODAPv2.2023: the global interior ocean biogeochemical data product
Synthesis Product for Ocean Time Series (SPOTS) – a ship-based biogeochemical pilot
French coastal network for carbonate system monitoring: the CocoriCO2 dataset
A global database of dissolved organic matter (DOM) concentration measurements in coastal waters (CoastDOM v1)
A decade-long cruise time series (2008–2018) of physical and biogeochemical conditions in the southern Salish Sea, North America
A regional pCO2 climatology of the Baltic Sea from in situ pCO2 observations and a model-based extrapolation approach
A 12-year-long (2010–2021) hydrological and biogeochemical dataset in the Sicily Channel (Mediterranean Sea)
A decade of marine inorganic carbon chemistry observations in the northern Gulf of Alaska – insights into an environment in transition
A novel sea surface pCO2-product for the global coastal ocean resolving trends over 1982–2020
A high-resolution synthesis dataset for multistressor analyses along the US West Coast
CMEMS-LSCE: a global, 0.25°, monthly reconstruction of the surface ocean carbonate system
A synthesis of ocean total alkalinity and dissolved inorganic carbon measurements from 1993 to 2022: the SNAPO-CO2-v1 dataset
A consistent ocean oxygen profile dataset with new quality control and bias assessment
A year of transient tracers (chlorofluorocarbon 12 and sulfur hexafluoride), noble gases (helium and neon), and tritium in the Arctic Ocean from the MOSAiC expedition (2019–2020)
Database of nitrification and nitrifiers in the global ocean
GOBAI-O2: temporally and spatially resolved fields of ocean interior dissolved oxygen over nearly 2 decades
Spatiotemporal variability in pH and carbonate parameters on the Canadian Atlantic continental shelf between 2014 and 2022
Barium in seawater: dissolved distribution, relationship to silicon, and barite saturation state determined using machine learning
High-frequency, year-round time series of the carbonate chemistry in a high-Arctic fjord (Svalbard)
OceanSODA-UNEXE: a multi-year gridded Amazon and Congo River outflow surface ocean carbonate system dataset
Evaluating the transport of surface seawater from 1956 to 2021 using 137Cs deposited in the global ocean as a chemical tracer
Spatial reconstruction of long-term (2003–2020) sea surface pCO2 in the South China Sea using a machine-learning-based regression method aided by empirical orthogonal function analysis
OceanSODA-MDB: a standardised surface ocean carbonate system dataset for model–data intercomparisons
Hyperspectral reflectance dataset of pristine, weathered, and biofouled plastics
A database of marine macronutrient, temperature and salinity measurements made around the highly productive island of South Georgia, the Scotia Sea and the Antarctic Peninsula between 1980 and 2009
GLODAPv2.2022: the latest version of the global interior ocean biogeochemical data product
Oil slicks in the Gulf of Guinea – 10 years of Envisat Advanced Synthetic Aperture Radar observations
Shengqian Zhou, Ying Chen, Shan Huang, Xianda Gong, Guipeng Yang, Honghai Zhang, Hartmut Herrmann, Alfred Wiedensohler, Laurent Poulain, Yan Zhang, Fanghui Wang, Zongjun Xu, and Ke Yan
Earth Syst. Sci. Data, 16, 4267–4290, https://doi.org/10.5194/essd-16-4267-2024, https://doi.org/10.5194/essd-16-4267-2024, 2024
Short summary
Short summary
Dimethyl sulfide (DMS) is a crucial natural reactive gas in the global climate system due to its great contribution to aerosols and subsequent impact on clouds over remote oceans. Leveraging machine learning techniques, we constructed a long-term global sea surface DMS gridded dataset with daily resolution. Compared to previous datasets, our new dataset holds promise for improving atmospheric chemistry modeling and advancing our comprehension of the climate effects associated with oceanic DMS.
Zelun Wu, Wenfang Lu, Alizée Roobaert, Luping Song, Xiao-Hai Yan, and Wei-Jun Cai
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-309, https://doi.org/10.5194/essd-2024-309, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
This study addresses the lack of comprehensive sea surface CO2 data in North American Atlantic coastal regions by developing a new pCO2-product (ReCAD-NAACOM-pCO2). Using machine learning and environmental data, it reconstructs sea surface CO2 levels from 1993–2021. The product accurately captures seasonal cycles, regional variations, and long-term trends, outperforming earlier attempts. It provides crucial data for studying coastal carbon dynamics and climate change impacts.
Wen Yi, Xiaotong Wang, Tingkun He, Huan Liu, Zhenyu Luo, Zhaofeng Lv, and Kebin He
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-258, https://doi.org/10.5194/essd-2024-258, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
This study presents a detailed global dataset on ship emissions, covering the years 2013 and 2016–2021, using advanced modeling techniques. The dataset includes emissions data for 4 types of greenhouse gases and 5 types of air pollutants. The data, available for research, offers valuable insights into ship emission spatiotemporal patterns by vessel type and age, providing a solid data foundation for fine-scale scientific research and shipping emission mitigation.
Seyed Reza Saghravani, Michael Ernst Böttcher, Wei-Li Hong, Karol Kuliński, Aivo Lepland, Arunima Sen, and Beata Szymczycha
Earth Syst. Sci. Data, 16, 3419–3431, https://doi.org/10.5194/essd-16-3419-2024, https://doi.org/10.5194/essd-16-3419-2024, 2024
Short summary
Short summary
A comprehensive study conducted in 2021 examined the distributions of dissolved nutrients and carbon in the western Spitsbergen fjords during the high-melting season. Significant spatial variability was observed in the water column and pore water concentrations of constituents, highlighting the unique biogeochemical characteristics of each fjord and their potential impact on ecosystem functioning and oceanographic processes.
Li-Qing Jiang, Tim P. Boyer, Christopher R. Paver, Hyelim Yoo, James R. Reagan, Simone R. Alin, Leticia Barbero, Brendan R. Carter, Richard A. Feely, and Rik Wanninkhof
Earth Syst. Sci. Data, 16, 3383–3390, https://doi.org/10.5194/essd-16-3383-2024, https://doi.org/10.5194/essd-16-3383-2024, 2024
Short summary
Short summary
In this paper, we unveil a data product featuring ten coastal ocean acidification variables. These indicators are provided on 1°×1° spatial grids at 14 standardized depth levels, ranging from the surface to a depth of 500 m, along the North American ocean margins.
Amanda R. Fay, David R. Munro, Galen A. McKinley, Denis Pierrot, Stewart C. Sutherland, Colm Sweeney, and Rik Wanninkhof
Earth Syst. Sci. Data, 16, 2123–2139, https://doi.org/10.5194/essd-16-2123-2024, https://doi.org/10.5194/essd-16-2123-2024, 2024
Short summary
Short summary
Presented here is a near-global monthly climatological estimate of the difference between atmosphere and ocean carbon dioxide concentrations. The ocean's ability to take up carbon, both now and in the future, is defined by this difference in concentrations. With over 30 million measurements of surface ocean carbon over the last 40 years and utilization of an extrapolation technique, a mean estimate of surface ocean ΔfCO2 is presented.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Marta Álvarez, Kumiko Azetsu-Scott, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Mario Hoppema, Matthew P. Humphreys, Masao Ishii, Emil Jeansson, Akihiko Murata, Jens Daniel Müller, Fiz F. Pérez, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Adam Ulfsbo, Anton Velo, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 16, 2047–2072, https://doi.org/10.5194/essd-16-2047-2024, https://doi.org/10.5194/essd-16-2047-2024, 2024
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2023 is the fifth update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality controlling, including systematic evaluation of measurement biases. This version contains data from 1108 hydrographic cruises covering the world's oceans from 1972 to 2021.
Nico Lange, Björn Fiedler, Marta Álvarez, Alice Benoit-Cattin, Heather Benway, Pier Luigi Buttigieg, Laurent Coppola, Kim Currie, Susana Flecha, Dana S. Gerlach, Makio Honda, I. Emma Huertas, Siv K. Lauvset, Frank Muller-Karger, Arne Körtzinger, Kevin M. O'Brien, Sólveig R. Ólafsdóttir, Fernando C. Pacheco, Digna Rueda-Roa, Ingunn Skjelvan, Masahide Wakita, Angelicque White, and Toste Tanhua
Earth Syst. Sci. Data, 16, 1901–1931, https://doi.org/10.5194/essd-16-1901-2024, https://doi.org/10.5194/essd-16-1901-2024, 2024
Short summary
Short summary
The Synthesis Product for Ocean Time Series (SPOTS) is a novel achievement expanding and complementing the biogeochemical data landscape by providing consistent and high-quality biogeochemical time-series data from 12 ship-based fixed time-series programs. SPOTS covers multiple unique marine environments and time-series ranges, including data from 1983 to 2021. All in all, it facilitates a variety of applications that benefit from the collective value of biogeochemical time-series observations.
Sébastien Petton, Fabrice Pernet, Valérian Le Roy, Matthias Huber, Sophie Martin, Éric Macé, Yann Bozec, Stéphane Loisel, Peggy Rimmelin-Maury, Émilie Grossteffan, Michel Repecaud, Loïc Quemener, Michael Retho, Soazig Manac'h, Mathias Papin, Philippe Pineau, Thomas Lacoue-Labarthe, Jonathan Deborde, Louis Costes, Pierre Polsenaere, Loïc Rigouin, Jérémy Benhamou, Laure Gouriou, Joséphine Lequeux, Nathalie Labourdette, Nicolas Savoye, Grégory Messiaen, Elodie Foucault, Vincent Ouisse, Marion Richard, Franck Lagarde, Florian Voron, Valentin Kempf, Sébastien Mas, Léa Giannecchini, Francesca Vidussi, Behzad Mostajir, Yann Leredde, Samir Alliouane, Jean-Pierre Gattuso, and Frédéric Gazeau
Earth Syst. Sci. Data, 16, 1667–1688, https://doi.org/10.5194/essd-16-1667-2024, https://doi.org/10.5194/essd-16-1667-2024, 2024
Short summary
Short summary
Our research highlights the concerning impact of rising carbon dioxide levels on coastal areas. To better understand these changes, we've established an observation network in France. By deploying pH sensors and other monitoring equipment at key coastal sites, we're gaining valuable insights into how various factors, such as freshwater inputs, tides, temperature, and biological processes, influence ocean pH.
Christian Lønborg, Cátia Carreira, Gwenaël Abril, Susana Agustí, Valentina Amaral, Agneta Andersson, Javier Arístegui, Punyasloke Bhadury, Mariana B. Bif, Alberto V. Borges, Steven Bouillon, Maria Ll. Calleja, Luiz C. Cotovicz Jr., Stefano Cozzi, Maryló Doval, Carlos M. Duarte, Bradley Eyre, Cédric G. Fichot, E. Elena García-Martín, Alexandra Garzon-Garcia, Michele Giani, Rafael Gonçalves-Araujo, Renee Gruber, Dennis A. Hansell, Fuminori Hashihama, Ding He, Johnna M. Holding, William R. Hunter, J. Severino P. Ibánhez, Valeria Ibello, Shan Jiang, Guebuem Kim, Katja Klun, Piotr Kowalczuk, Atsushi Kubo, Choon-Weng Lee, Cláudia B. Lopes, Federica Maggioni, Paolo Magni, Celia Marrase, Patrick Martin, S. Leigh McCallister, Roisin McCallum, Patricia M. Medeiros, Xosé Anxelu G. Morán, Frank E. Muller-Karger, Allison Myers-Pigg, Marit Norli, Joanne M. Oakes, Helena Osterholz, Hyekyung Park, Maria Lund Paulsen, Judith A. Rosentreter, Jeff D. Ross, Digna Rueda-Roa, Chiara Santinelli, Yuan Shen, Eva Teira, Tinkara Tinta, Guenther Uher, Masahide Wakita, Nicholas Ward, Kenta Watanabe, Yu Xin, Youhei Yamashita, Liyang Yang, Jacob Yeo, Huamao Yuan, Qiang Zheng, and Xosé Antón Álvarez-Salgado
Earth Syst. Sci. Data, 16, 1107–1119, https://doi.org/10.5194/essd-16-1107-2024, https://doi.org/10.5194/essd-16-1107-2024, 2024
Short summary
Short summary
In this paper, we present the first edition of a global database compiling previously published and unpublished measurements of dissolved organic matter (DOM) collected in coastal waters (CoastDOM v1). Overall, the CoastDOM v1 dataset will be useful to identify global spatial and temporal patterns and to facilitate reuse in studies aimed at better characterizing local biogeochemical processes and identifying a baseline for modelling future changes in coastal waters.
Simone R. Alin, Jan A. Newton, Richard A. Feely, Dana Greeley, Beth Curry, Julian Herndon, and Mark Warner
Earth Syst. Sci. Data, 16, 837–865, https://doi.org/10.5194/essd-16-837-2024, https://doi.org/10.5194/essd-16-837-2024, 2024
Short summary
Short summary
The Salish cruise data product provides 2008–2018 oceanographic data from the southern Salish Sea and nearby coastal sampling stations. Temperature, salinity, oxygen, nutrient, and dissolved inorganic carbon measurements from 715 oceanographic profiles will facilitate further study of ocean acidification, hypoxia, and marine heatwave impacts in this region. Three subsets of the compiled datasets from 35 cruises are available with consistent formatting and multiple commonly used units.
Henry C. Bittig, Erik Jacobs, Thomas Neumann, and Gregor Rehder
Earth Syst. Sci. Data, 16, 753–773, https://doi.org/10.5194/essd-16-753-2024, https://doi.org/10.5194/essd-16-753-2024, 2024
Short summary
Short summary
We present a pCO2 climatology of the Baltic Sea using a new approach to extrapolate from individual observations to the entire Baltic Sea. The extrapolation approach uses (a) a model to inform on how data at one location are connected to data at other locations, together with (b) very accurate pCO2 observations from 2003 to 2021 as the base data. The climatology can be used e.g. to assess uptake and release of CO2 or to identify extreme events.
Francesco Placenti, Marco Torri, Katrin Schroeder, Mireno Borghini, Gabriella Cerrati, Angela Cuttitta, Vincenzo Tancredi, Carmelo Buscaino, and Bernardo Patti
Earth Syst. Sci. Data, 16, 743–752, https://doi.org/10.5194/essd-16-743-2024, https://doi.org/10.5194/essd-16-743-2024, 2024
Short summary
Short summary
Oceanographic surveys were conducted in the Strait of Sicily between 2010 and 2021. This paper provides a description of the time series of nutrients and hydrological data collected in this zone. The dataset fills an important gap in field observations of a crucial area where exchanges with the Mediterranean sub-basin take place, providing support for studies aimed at describing ongoing processes and at realizing reliable projections of the effects of these processes in the near future.
Natalie M. Monacci, Jessica N. Cross, Wiley Evans, Jeremy T. Mathis, and Hongjie Wang
Earth Syst. Sci. Data, 16, 647–665, https://doi.org/10.5194/essd-16-647-2024, https://doi.org/10.5194/essd-16-647-2024, 2024
Short summary
Short summary
As carbon dioxide is released into the air through human-generated activity, about one third dissolves into the surface water of oceans, lowering pH and increasing acidity. This is known as ocean acidification. We merged 10 years of ocean carbon data and made them publicly available for adaptation planning during a time of change. The data confirmed that Alaska is already experiencing the effects of ocean acidification due to naturally cold water, high productivity, and circulation patterns.
Alizée Roobaert, Pierre Regnier, Peter Landschützer, and Goulven G. Laruelle
Earth Syst. Sci. Data, 16, 421–441, https://doi.org/10.5194/essd-16-421-2024, https://doi.org/10.5194/essd-16-421-2024, 2024
Short summary
Short summary
The quantification of the coastal air–sea CO2 exchange (FCO2) has improved in recent years, but its multiannual variability remains unclear. This study, based on interpolated observations, reconstructs the longest global time series of coastal FCO2 (1982–2020). Results show the coastal ocean acts as a CO2 sink, with increasing intensity over time. This new coastal FCO2-product allows establishing regional carbon budgets and provides new constraints for closing the global carbon cycle.
Esther G. Kennedy, Meghan Zulian, Sara L. Hamilton, Tessa M. Hill, Manuel Delgado, Carina R. Fish, Brian Gaylord, Kristy J. Kroeker, Hannah M. Palmer, Aurora M. Ricart, Eric Sanford, Ana K. Spalding, Melissa Ward, Guadalupe Carrasco, Meredith Elliott, Genece V. Grisby, Evan Harris, Jaime Jahncke, Catherine N. Rocheleau, Sebastian Westerink, and Maddie I. Wilmot
Earth Syst. Sci. Data, 16, 219–243, https://doi.org/10.5194/essd-16-219-2024, https://doi.org/10.5194/essd-16-219-2024, 2024
Short summary
Short summary
We present a new synthesis of oceanographic observations along the US West Coast that has been optimized for multiparameter investigations of coastal warming, deoxygenation, and acidification risk. This synthesis includes both previously published and new observations, all of which have been consistently formatted and quality-controlled to facilitate high-resolution investigations of climate risks and consequences across a wide range of spatial and temporal scales.
Thi-Tuyet-Trang Chau, Marion Gehlen, Nicolas Metzl, and Frédéric Chevallier
Earth Syst. Sci. Data, 16, 121–160, https://doi.org/10.5194/essd-16-121-2024, https://doi.org/10.5194/essd-16-121-2024, 2024
Short summary
Short summary
CMEMS-LSCE leads as the first global observation-based reconstructions of six carbonate system variables for the years 1985–2021 at monthly and 0.25° resolutions. The high-resolution reconstructions outperform their 1° counterpart in reproducing horizontal and temporal gradients of observations over various oceanic regions to nearshore time series stations. New datasets can be exploited in numerous studies, including monitoring changes in ocean carbon uptake and ocean acidification.
Nicolas Metzl, Jonathan Fin, Claire Lo Monaco, Claude Mignon, Samir Alliouane, David Antoine, Guillaume Bourdin, Jacqueline Boutin, Yann Bozec, Pascal Conan, Laurent Coppola, Frédéric Diaz, Eric Douville, Xavier Durrieu de Madron, Jean-Pierre Gattuso, Frédéric Gazeau, Melek Golbol, Bruno Lansard, Dominique Lefèvre, Nathalie Lefèvre, Fabien Lombard, Férial Louanchi, Liliane Merlivat, Léa Olivier, Anne Petrenko, Sébastien Petton, Mireille Pujo-Pay, Christophe Rabouille, Gilles Reverdin, Céline Ridame, Aline Tribollet, Vincenzo Vellucci, Thibaut Wagener, and Cathy Wimart-Rousseau
Earth Syst. Sci. Data, 16, 89–120, https://doi.org/10.5194/essd-16-89-2024, https://doi.org/10.5194/essd-16-89-2024, 2024
Short summary
Short summary
This work presents a synthesis of 44 000 total alkalinity and dissolved inorganic carbon observations obtained between 1993 and 2022 in the Global Ocean and the Mediterranean Sea at the surface and in the water column. Seawater samples were measured using the same method and calibrated with international Certified Reference Material. We describe the data assemblage, quality control and some potential uses of this dataset.
Viktor Gouretski, Lijing Cheng, Juan Du, Xiaogang Xing, and Fei Chai
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-518, https://doi.org/10.5194/essd-2023-518, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
High-quality observations are crucial to understanding ocean oxygen changes and their impact on marine biota. We developed a quality control procedure to ensure the high quality of the heterogeneous ocean oxygen data archive and to prove data consistency. Oxygen data obtained by means of oxygen sensors on autonomous Argo floats were compared with reference data based on the chemical analysis and estimates of the residual offsets were obtained.
Céline Heuzé, Oliver Huhn, Maren Walter, Natalia Sukhikh, Salar Karam, Wiebke Körtke, Myriel Vredenborg, Klaus Bulsiewicz, Jürgen Sültenfuß, Ying-Chih Fang, Christian Mertens, Benjamin Rabe, Sandra Tippenhauer, Jacob Allerholt, Hailun He, David Kuhlmey, Ivan Kuznetsov, and Maria Mallet
Earth Syst. Sci. Data, 15, 5517–5534, https://doi.org/10.5194/essd-15-5517-2023, https://doi.org/10.5194/essd-15-5517-2023, 2023
Short summary
Short summary
Gases dissolved in the ocean water not used by the ecosystem (or "passive tracers") are invaluable to track water over long distances and investigate the processes that modify its properties. Unfortunately, especially so in the ice-covered Arctic Ocean, such gas measurements are sparse. We here present a data set of several passive tracers (anthropogenic gases, noble gases and their isotopes) collected over the full ocean depth, weekly, during the 1-year drift in the Arctic during MOSAiC.
Weiyi Tang, Bess B. Ward, Michael Beman, Laura Bristow, Darren Clark, Sarah Fawcett, Claudia Frey, François Fripiat, Gerhard J. Herndl, Mhlangabezi Mdutyana, Fabien Paulot, Xuefeng Peng, Alyson E. Santoro, Takuhei Shiozaki, Eva Sintes, Charles Stock, Xin Sun, Xianhui S. Wan, Min N. Xu, and Yao Zhang
Earth Syst. Sci. Data, 15, 5039–5077, https://doi.org/10.5194/essd-15-5039-2023, https://doi.org/10.5194/essd-15-5039-2023, 2023
Short summary
Short summary
Nitrification and nitrifiers play an important role in marine nitrogen and carbon cycles by converting ammonium to nitrite and nitrate. Nitrification could affect microbial community structure, marine productivity, and the production of nitrous oxide – a powerful greenhouse gas. We introduce the newly constructed database of nitrification and nitrifiers in the marine water column and guide future research efforts in field observations and model development of nitrification.
Jonathan D. Sharp, Andrea J. Fassbender, Brendan R. Carter, Gregory C. Johnson, Cristina Schultz, and John P. Dunne
Earth Syst. Sci. Data, 15, 4481–4518, https://doi.org/10.5194/essd-15-4481-2023, https://doi.org/10.5194/essd-15-4481-2023, 2023
Short summary
Short summary
Dissolved oxygen content is a critical metric of ocean health. Recently, expanding fleets of autonomous platforms that measure oxygen in the ocean have produced a wealth of new data. We leverage machine learning to take advantage of this growing global dataset, producing a gridded data product of ocean interior dissolved oxygen at monthly resolution over nearly 2 decades. This work provides novel information for investigations of spatial, seasonal, and interannual variability in ocean oxygen.
Olivia Gibb, Frédéric Cyr, Kumiko Azetsu-Scott, Joël Chassé, Darlene Childs, Carrie-Ellen Gabriel, Peter S. Galbraith, Gary Maillet, Pierre Pepin, Stephen Punshon, and Michel Starr
Earth Syst. Sci. Data, 15, 4127–4162, https://doi.org/10.5194/essd-15-4127-2023, https://doi.org/10.5194/essd-15-4127-2023, 2023
Short summary
Short summary
The ocean absorbs large quantities of carbon dioxide (CO2) released into the atmosphere as a result of the burning of fossil fuels. This, in turn, causes ocean acidification, which poses a major threat to global ocean ecosystems. In this study, we compiled 9 years (2014–2022) of ocean carbonate data (i.e., ocean acidification parameters) collected in Atlantic Canada as part of the Atlantic Zone Monitoring Program.
Öykü Z. Mete, Adam V. Subhas, Heather H. Kim, Ann G. Dunlea, Laura M. Whitmore, Alan M. Shiller, Melissa Gilbert, William D. Leavitt, and Tristan J. Horner
Earth Syst. Sci. Data, 15, 4023–4045, https://doi.org/10.5194/essd-15-4023-2023, https://doi.org/10.5194/essd-15-4023-2023, 2023
Short summary
Short summary
We present results from a machine learning model that accurately predicts dissolved barium concentrations for the global ocean. Our results reveal that the whole-ocean barium inventory is significantly lower than previously thought and that the deep ocean below 1000 m is at equilibrium with respect to barite. The model output can be used for a number of applications, including intercomparison, interpolation, and identification of regions warranting additional investigation.
Jean-Pierre Gattuso, Samir Alliouane, and Philipp Fischer
Earth Syst. Sci. Data, 15, 2809–2825, https://doi.org/10.5194/essd-15-2809-2023, https://doi.org/10.5194/essd-15-2809-2023, 2023
Short summary
Short summary
The Arctic Ocean is subject to high rates of ocean warming and acidification, with critical implications for marine organisms, ecosystems and the services they provide. We report here on the first high-frequency (1 h), multi-year (5 years) dataset of the carbonate system at a coastal site in a high-Arctic fjord (Kongsfjorden, Svalbard). This site is a significant sink for CO2 every month of the year (9 to 17 mol m-2 yr-1). The saturation state of aragonite can be as low as 1.3.
Richard P. Sims, Thomas M. Holding, Peter E. Land, Jean-Francois Piolle, Hannah L. Green, and Jamie D. Shutler
Earth Syst. Sci. Data, 15, 2499–2516, https://doi.org/10.5194/essd-15-2499-2023, https://doi.org/10.5194/essd-15-2499-2023, 2023
Short summary
Short summary
The flow of carbon between the land and ocean is poorly quantified with existing measurements. It is not clear how seasonality and long-term variability impact this flow of carbon. Here, we demonstrate how satellite observations can be used to create decadal time series of the inorganic carbonate system in the Amazon and Congo River outflows.
Yayoi Inomata and Michio Aoyama
Earth Syst. Sci. Data, 15, 1969–2007, https://doi.org/10.5194/essd-15-1969-2023, https://doi.org/10.5194/essd-15-1969-2023, 2023
Short summary
Short summary
The behavior of 137Cs in surface seawater in the global ocean was analyzed by using the HAMGlobal2021 database. Approximately 32 % of 137Cs existed in the surface seawater in 1970. The 137Cs released into the North Pacific Ocean by large-scale nuclear weapons tests was transported to the Indian Ocean and then the Atlantic Ocean on a 4–5 decadal timescale, whereas 137Cs released from nuclear reprocessing plants was transported northward to the Arctic Ocean on a decadal scale.
Zhixuan Wang, Guizhi Wang, Xianghui Guo, Yan Bai, Yi Xu, and Minhan Dai
Earth Syst. Sci. Data, 15, 1711–1731, https://doi.org/10.5194/essd-15-1711-2023, https://doi.org/10.5194/essd-15-1711-2023, 2023
Short summary
Short summary
We reconstructed monthly sea surface pCO2 data with a high spatial resolution in the South China Sea (SCS) from 2003 to 2020. We validate our reconstruction with three independent testing datasets and present a new method to assess the uncertainty of the data. The results strongly suggest that our reconstruction effectively captures the main features of the spatiotemporal patterns of pCO2 in the SCS. Using this dataset, we found that the SCS is overall a weak source of atmospheric CO2.
Peter Edward Land, Helen S. Findlay, Jamie D. Shutler, Jean-Francois Piolle, Richard Sims, Hannah Green, Vassilis Kitidis, Alexander Polukhin, and Irina I. Pipko
Earth Syst. Sci. Data, 15, 921–947, https://doi.org/10.5194/essd-15-921-2023, https://doi.org/10.5194/essd-15-921-2023, 2023
Short summary
Short summary
Measurements of the ocean’s carbonate system (e.g. CO2 and pH) have increased greatly in recent years, resulting in a need to combine these data with satellite measurements and model results, so they can be used to test predictions of how the ocean reacts to changes such as absorption of the CO2 emitted by humans. We show a method of combining data into regions of interest (100 km circles over a 10 d period) and apply it globally to produce a harmonised and easy-to-use data archive.
Giulia Leone, Ana I. Catarino, Liesbeth De Keukelaere, Mattias Bossaer, Els Knaeps, and Gert Everaert
Earth Syst. Sci. Data, 15, 745–752, https://doi.org/10.5194/essd-15-745-2023, https://doi.org/10.5194/essd-15-745-2023, 2023
Short summary
Short summary
This paper illustrates a dataset of hyperspectral reflectance measurements of macroplastics. Plastic samples consisted of pristine, artificially weathered, and biofouled plastic items and field plastic debris. Samples were measured in dry conditions and a subset of plastics in wet and submerged conditions. This dataset can be used to better understand plastic optical features when exposed to natural agents and to support the development of algorithms for monitoring environmental plastics.
Michael J. Whitehouse, Katharine R. Hendry, Geraint A. Tarling, Sally E. Thorpe, and Petra ten Hoopen
Earth Syst. Sci. Data, 15, 211–224, https://doi.org/10.5194/essd-15-211-2023, https://doi.org/10.5194/essd-15-211-2023, 2023
Short summary
Short summary
We present a database of Southern Ocean macronutrient, temperature and salinity measurements collected on 20 oceanographic cruises between 1980 and 2009. Vertical profiles and underway surface measurements were collected year-round as part of an integrated ecosystem study. Our data provide a novel view of biogeochemical cycling in biologically productive regions across a critical period in recent climate history and will contribute to a better understanding of the drivers of primary production.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Simone Alin, Marta Álvarez, Kumiko Azetsu-Scott, Leticia Barbero, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Mario Hoppema, Matthew P. Humphreys, Masao Ishii, Emil Jeansson, Li-Qing Jiang, Steve D. Jones, Claire Lo Monaco, Akihiko Murata, Jens Daniel Müller, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Adam Ulfsbo, Anton Velo, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 14, 5543–5572, https://doi.org/10.5194/essd-14-5543-2022, https://doi.org/10.5194/essd-14-5543-2022, 2022
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2022 is the fourth update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality controlling, including systematic evaluation of measurement biases. This version contains data from 1085 hydrographic cruises covering the world's oceans from 1972 to 2021.
Zhour Najoui, Nellya Amoussou, Serge Riazanoff, Guillaume Aurel, and Frédéric Frappart
Earth Syst. Sci. Data, 14, 4569–4588, https://doi.org/10.5194/essd-14-4569-2022, https://doi.org/10.5194/essd-14-4569-2022, 2022
Short summary
Short summary
Oil spills could have serious repercussions for both the marine environment and ecosystem. The Gulf of Guinea is a very active area with respect to maritime traffic as well as oil and gas exploitation (platforms). As a result, the region is subject to a large number of oil pollution events. This study aims to detect oil slicks in the Gulf of Guinea and analyse their spatial and temporal distribution using satellite data.
Cited articles
Agawin, N. S. R., Tovar-Sánchez, A., De Zarruk, K. K., Duarte, C. M.,
and Agustí, S.: Variability in the abundance of Trichodesmium and nitrogen fixation
activities in the subtropical NE Atlantic, J. Plankton Res., 35,
1126–1140, https://doi.org/10.1093/plankt/fbt059, 2013.
Ahmed, A., Gauns, M., Kurian, S., Bardhan, P., Pratihary, A., Naik, H.,
Shenoy, D. M., and Naqvi, S. W. A.: Nitrogen fixation rates in the eastern
Arabian Sea, Estuarine, Coast. Shelf Sci., 191, 74–83, https://doi.org/10.1016/j.ecss.2017.04.005, 2017.
Barthel, K.-G., Schneider, G., Gradinger, R., and Lenz, J.: Concentration of
live pico- and nanoplankton by means of tangential flow filtration, J. Plankton Res., 11, 1213–1221, https://doi.org/10.1093/plankt/11.6.1213, 1989.
Benavides, M., Agawin, N. S. R., Arístegui, J., Peene, J., and Stal, L.
J.: Dissolved organic nitrogen and carbon release by a marine unicellular
diazotrophic cyanobacterium, Aquat. Microb. Ecol., 69, 69–80, https://doi.org/10.3354/ame01621 2013a.
Benavides, M., Bronk, D. A., Agawin, N. S. R., Pérez-Hernández, M.
D., Hernández-Guerra, A., and Arístegui, J.: Longitudinal
variability of size-fractionated N2 fixation and DON release rates
along 24.5∘ N in the subtropical North Atlantic, J. Geophys. Res.-Oceans, 118, 3406–3415, https://doi.org/10.1002/jgrc.20253, 2013b.
Benavides, M., Santana-Falcón, Y., Wasmund, N., and Aristegui, J.:
Microbial uptake and regeneration of inorganic nitrogen off the coastal
Namibian upwelling system, J. Marine Syst., https://doi.org/10.1016/j.jmarsys.2014.05.002, 2014.
Benavides, M., Moisander, P. H., Berthelot, H., Dittmar, T., Grosso, O., and
Bonnet, S.: Mesopelagic N2 fixation related to organic matter
composition in the Solomon and Bismarck Seas (Southwest Pacific), Plos One,
10, 12, https://doi.org/10.1371/journal.pone.0143775, 2015.
Benavides, M., Bonnet, S., Hernandez, N., Martinez-Perez, A. M., Nieto-Cid,
M., Alvarez-Salgado, X. A., Banos, I., Montero, M. F., Mazuecos, I. P.,
Gasol, J. M., Osterholz, H., Dittmar, T., Berman-Frank, I., and Aristegui,
J.: Basin-wide N2 fixation in the deep waters of the Mediterranean
Sea, Global Biogeochem. Cycles, 30, 952–961, https://doi.org/10.1002/2015gb005326, 2016a.
Benavides, M., Moisander, P. H., Daley, M. C., Bode, A., and Aristegui, J.:
Longitudinal variability of diazotroph abundances in the subtropical North
Atlantic Ocean, J. Plankton Res., 38, 662–672, https://doi.org/10.1093/plankt/fbv121, 2016b.
Benavides, M., Berthelot, H., Duhamel, S., Raimbault, P., and Bonnet, S.:
Dissolved organic matter uptake by Trichodesmium in the Southwest Pacific, Sci. Rep.-UK, 7, 41315, https://doi.org/10.1038/srep41315, 2017.
Benavides, M., Bonnet, S., Berman-Frank, I., and Riemann, L.: Deep into
oceanic N2 fixation, Front. Marine Sci., 5, 108, https://doi.org/10.3389/fmars.2018.00108, 2018a.
Benavides, M., Shoemaker, K. M., Moisander, P. H., Niggemann, J., Dittmar, T., Duhamel, S., Grosso, O., Pujo-Pay, M., Hélias-Nunige, S., Fumenia, A., and Bonnet, S.: Aphotic N2 fixation along an oligotrophic to ultraoligotrophic transect in the western tropical South Pacific Ocean, Biogeosciences, 15, 3107–3119, https://doi.org/10.5194/bg-15-3107-2018, 2018b.
Benavides, M., Conradt, L., Bonnet, S., Berman-Frank, I., Barrillon, S.,
Petrenko, A., and Doglioli, A.: Fine-scale sampling unveils diazotroph
patchiness in the South Pacific Ocean, ISME Commun., 1, 3, https://doi.org/10.1038/s43705-021-00006-2, 2021.
Benavides, M., Bonnet, S., Le Moigne, F. A. C., Armin, G., Inomura, K.,
Hallstrøm, S., Riemann, L., Berman-Frank, I., Poletti, E., Garel, M.,
Grosso, O., Leblanc, K., Guigue, C., Tedetti, M., and Dupouy, C.: Sinking
Trichodesmium fixes nitrogen in the dark ocean, ISME J., 16, 2398–2405,
https://doi.org/10.1038/s41396-022-01289-6, 2022a.
Benavides, M., Caffin, M., Duhamel, S., Foster, R. A., Grosso, O., Guieu,
C., Van Wambeke, F., and Bonnet, S.: Anomalously high abundance of
Crocosphaera in the South Pacific Gyre, FEMS Microbiol. Lett., 369, fnac039, https://doi.org/10.1093/femsle/fnac039, 2022b.
Bentzon-Tilia, M., Severin, I., Hansen, L. H., and Riemann, L.: Genomics and
Ecophysiology of Heterotrophic Nitrogen-Fixing Bacteria Isolated from
Estuarine Surface Water, mBio, 6, e00929-15, https://doi.org/10.1128/mbio.00929-15,
2015a.
Bentzon-Tilia, M., Traving, S. J., Mantikci, M., Knudsen-Leerbeck, H.,
Hansen, J. L., Markager, S., and Riemann, L.: Significant N2 fixation
by heterotrophs, photoheterotrophs and heterocystous cyanobacteria in two
temperate estuaries, ISME J., 9, 273–285, https://doi.org/10.1038/ismej.2014.119, 2015b.
Berthelot, H., Bonnet, S., Camps, M., Grosso, O., and Moutin, T.: Assessment
of the dinitrogen released as ammonium and dissolved organic nitrogen by
unicellular and filamentous marine diazotrophic cyanobacteria grown in
culture, Front. Mar. Sci., 2, 80, https://doi.org/10.3389/fmars.2015.00080, 2015.
Berthelot, H., Benavides, M., Moisander, P. H., Grosso, O., and Bonnet, S.:
High-nitrogen fixation rates in the particulate and dissolved pools in the
Western Tropical Pacific (Solomon and Bismarck Seas), Geophys. Res. Lett.,
44, 8414–8423, https://doi.org/10.1002/2017gl073856, 2017.
Berthelot, H., Duhamel, S., L'Helguen, S., Maguer, J.-F., Wang, S.,
Cetiniæ, I., and Cassar, N.: NanoSIMS single cell analyses reveal the
contrasting nitrogen sources for small phytoplankton, ISME J., 13,
651–662, https://doi.org/10.1038/s41396-018-0285-8, 2019.
Bhavya, P. S., Kumar, S., Gupta, G. V. M., Sudheesh, V., Sudharma, K. V.,
Varrier, D. S., Dhanya, K. R., and Saravanane, N.: Nitrogen uptake dynamics
in a tropical eutrophic estuary (Cochin, India) and adjacent coastal waters,
Estuar. Coasts, 39, 54–67, https://doi.org/10.1007/s12237-015-9982-y, 2016.
Biegala, I. and Raimbault, P.: High abundance of diazotrophic
picocyanobacteria (<3 µm) in a Southwest Pacific coral
lagoon, Aquat. Microb. Ecol., 51, 45–53, https://doi.org/10.3354/ame01185, 2008.
Bif, M. and Yunes, J.: Distribution of the marine cyanobacteria
Trichodesmium and their association with iron-rich particles in the South Atlantic Ocean,
Aquat. Microb. Ecol., 78, 107–119, https://doi.org/10.3354/ame01810, 2017.
Bird, C., Martinez, M. J., O'Donnell, A. G., and Wyman, M.: Spatial
distribution and transcriptional activity of an uncultured clade of
planktonic diazotrophic ã-proteobacteria in the Arabian Sea, Appl. Environ. Microbiol., 71, 2079–2085, https://doi.org/10.1128/AEM.71.4.2079-2085.2005, 2005.
Blais, M., Tremblay, J. É., Jungblut, A. D., Gagnon, J., Martin, J.,
Thaler, M., and Lovejoy, C.: Nitrogen fixation and identification of
potential diazotrophs in the Canadian Arctic, Global Biogeochem. Cycles,
26, 1–13, https://doi.org/10.1029/2011gb004096, 2012.
Bombar, D., Moisander, P. H., Dippner, J. W., Foster, R. A., Voss, M.,
Karfeld, B., and Zehr, J. P.: Distribution of diazotrophic microorganisms
and nifH gene expression in the Mekong River plume during intermonsoon, Mar.
Ecol. Prog. Ser., 424, 39–55, https://doi.org/10.3354/meps08976, 2011.
Bombar, D., Taylor, C. D., Wilson, S. T., Robidart, J. C., Rabines, A.,
Turk-Kubo, K. A., Kemp, J. N., Karl, D. M., and Zehr, J. P.: Measurements of
nitrogen fixation in the oligotrophic North Pacific Subtropical Gyre using a
free-drifting submersible incubation device, J. Plankton Res.,
37, 727–739, https://doi.org/10.1093/plankt/fbv049, 2015.
Bombar, D., Paerl, R. W., and Riemann, L.: Marine non-cyanobacterial
diazotrophs: moving beyond molecular detection, Trends Microbiol., 24,
916–927, https://doi.org/10.1016/j.tim.2016.07.002, 2016.
Bonnet, S., Dekaezemacker, J., Turk-Kubo, K. A., Moutin, T., Hamersley, R.
M., Grosso, O., Zehr, J. P., and Capone, D. G.: Aphotic N2 Fixation in
the Eastern Tropical South Pacific Ocean, PLoS ONE, 8, e81265, https://doi.org/10.1371/journal.pone.0081265, 2013.
Bonnet, S., Rodier, M., Turk-Kubo, K. A., Germineaud, C., Menkes, C.,
Ganachaud, A., Cravatte, S., Raimbault, P., Campbell, E., Quéroué,
F., Sarthou, G., Desnues, A., Maes, C., and Eldin, G.: Contrasted
geographical distribution of N2 fixation rates and nifH phylotypes in the
Coral and Solomon Seas (southwestern Pacific) during austral winter
conditions, Global Biogeochem. Cycles, 29, 1874–1892, https://doi.org/10.1002/2015gb005117, 2015.
Bonnet, S., Caffin, M., Berthelot, H., and Moutin, T.: Hot spot of N2 fixation in the western tropical South Pacific pleads for a spatial
decoupling between N2 fixation and denitrification, P. Natl. Acad. Sci. USA, 114, E2800–E2801, https://doi.org/10.1073/pnas.1619514114, 2017.
Bonnet, S., Caffin, M., Berthelot, H., Grosso, O., Benavides, M., Helias-Nunige, S., Guieu, C., Stenegren, M., and Foster, R. A.: In-depth characterization of diazotroph activity across the western tropical South Pacific hotspot of N2 fixation (OUTPACE cruise), Biogeosciences, 15, 4215–4232, https://doi.org/10.5194/bg-15-4215-2018, 2018.
Bonnet, S., Guieu, C., Taillandier, V., Boulart, C., Bouruet-Aubertot, P.,
Gazeau, F., Scalabrin, C., Bressac, M., Knapp, A., Cuypers, Y.,
González-Santana, D., Forrer, H., Grisoni, J. M., Grosso, O., Habasque,
J., Jardin-Camps, M., Leblond, N., Le Moigne, F., Lebourges-Dhaussy, A., and
Tilliette, C.: Natural iron fertilization by shallow hydrothermal sources
fuels diazotroph blooms in the ocean, Science, 380,
812–817, https://doi.org/10.1126/science.abq4654, 2023.
Böttjer, D., Dore, J. E., Karl, D. M., Letelier, R. M., Mahaffey, C.,
Wilson, S. T., Zehr, J., and Church, M. J.: Temporal variability of nitrogen
fixation and particulate nitrogen export at Station ALOHA, Limnol. Oceanogr., 62, 200–216, https://doi.org/10.1002/lno.10386,
2017.
Breitbarth, E., Mills, M. M., Friedrichs, G., and LaRoche, J.: The Bunsen
gas solubility coefficient of ethylene as a function of temperature and
salinity and its importance for nitrogen fixation assays, Limnol. Oceanogr.-Methods, 2, 282–288, https://doi.org/10.4319/lom.2004.2.282, 2004.
Cabello, A. M., Turk-Kubo, K. A., Hayashi, K., Jacobs, L., Kudela, R. M.,
and Zehr, J. P.: Unexpected presence of the nitrogen-fixing symbiotic
cyanobacterium UCYN-A in Monterey Bay, California, J. Phycol., 56,
1521–1533, https://doi.org/10.1111/jpy.13045, 2020.
Campbell, L., Carpenter, E., Montoya, J., Kustka, A., and Capone, D.: Picoplankton community structure within and outside a Trichodesmium bloom in the southwestern Pacific Ocean, Vie Milieu, 55, 185–195, 2005.
Capone, D. G.: Determination of nitrogenase activity in aquatic samples
using the acetylene reduction procedure, in: Handbook of Methods in Aquat. Microb. Ecol., edited by: Kemp, P. F., Cole, J. J., Sherr, B. F., and
Sherr, E. B., Lewis Publishers, Boca Raton, FL, 621–631, 1993.
Capone, D. G. and Montoya, J. P.: Nitrogen fixation and denitrification,
Meth. Microbiol., 30, 501–515, https://doi.org/10.1016/S0580-9517(01)30060-0, 2001.
Capone, D. G., Burns, J. A., Montoya, J. P., Subramaniam, A., Mahaffey, C.,
Gunderson, T., Michaels, A. F., and Carpenter, E. J.: Nitrogen fixation by
Trichodesmium spp.: An important source of new nitrogen to the tropical and subtropical
North Atlantic Ocean, Global Biogeochem. Cycles, 19, GB2024, https://doi.org/10.1029/2004GB002331, 2005.
Caputo, A., Nylander, J. A. A., and Foster, R. A.: The genetic diversity and
evolution of diatom-diazotroph associations highlights traits favoring
symbiont integration (vol. 366, fny297, 2019), Fems Microbiol. Lett.,
366, fny297, https://doi.org/10.1093/femsle/fnz120, 2019.
Cassar, N., Tang, W., Gabathuler, H., and Huang, K.: Method for High
Frequency Underway N2 Fixation Measurements: Flow-Through Incubation
Acetylene Reduction Assays by Cavity Ring Down Laser Absorption Spectroscopy
(FARACAS), Anal. Chem., 90, 2839–2851, https://doi.org/10.1021/acs.analchem.7b04977, 2018.
Cerdan-Garcia, E., Baylay, A., Polyviou, D., Woodward, E. M. S., Wrightson,
L., Mahaffey, C., Lohan, M. C., Moore, C. M., Bibby, T. S., and Robidart, J.
C.: Transcriptional responses of Trichodesmium to natural inverse gradients
of Fe and P availability, ISME J., 16, 1055–1064, https://doi.org/10.1038/s41396-021-01151-1,
2021.
Chang, B. X., Jayakumar, A., Widner, B., Bernhardt, P., Mordy, C. W.,
Mulholland, M. R., and Ward, B. B.: Low rates of dinitrogen fixation in the
eastern tropical South Pacific, Limnol. Oceanogr., 64, 1913–1923,
https://doi.org/10.1002/lno.11159, 2019.
Chen, L. Y.-L., Chen, H.-Y., Lin, Y.-H., Yong, T.-C., Taniuchi, Y., and Tuo,
S.-H.: The relative contributions of unicellular and filamentous diazotrophs
to N2 fixation in the South China Sea and the upstream Kuroshio, Deep-Sea Res. Pt. I, 85, 56–71, https://doi.org/10.1016/j.dsr.2013.11.006, 2014.
Chen, M. M., Lu, Y. Y., Jiao, N. Z., Tian, J. W., Kao, S. J., and Zhang, Y.:
Biogeographic drivers of diazotrophs in the western Pacific Ocean, Limnol.
Oceanogr., 64, 1403–1421, https://doi.org/10.1002/lno.11123,
2019.
Cheung, S., Liu, K., Turk-Kubo, K. A., Nishioka, J., Suzuki, K., Landry, M.
R., Zehr, J. P., Leung, S., Deng, L., and Liu, H.: High biomass turnover
rates of endosymbiotic nitrogen-fixing cyanobacteria in the western Bering
Sea, Limnol. Oceanogr. Lett., 7, 501–509, https://doi.org/10.1002/lol2.10267, 2022.
Cheung, S. Y., Nitanai, R., Tsurumoto, C., Endo, H., Nakaoka, S., Cheah, W.,
Lorda, J. F., Xia, X. M., Liu, H. B., and Suzuki, K.: Physical forcing
controls the basin-scale occurrence of nitrogen-fixing organisms in the
North Pacific Ocean, Global Biogeochem. Cycles, 34, 9, https://doi.org/10.1029/2019GB006452, 2020.
Church, M. J. and Zehr, J.: Time series measurements of nifH gene abundances for
several cyanobacteria in the subtropical North Pacific Ocean, Zenodo
[data set], https://doi.org/10.5281/zenodo.4728253, 2020.
Church, M. J., Jenkins, B. D., Karl, D. M., and Zehr, J. P.: Vertical
distributions of nitrogen-fixing phylotypes at Stn ALOHA in the oligotrophic
North Pacific Ocean, Aquat. Microb. Ecol., 38, 3–14, https://doi.org/10.3354/ame038003, 2005a.
Church, M. J., Short, C. M., Jenkins, B. D., Karl, D. M., and Zehr, J. P.:
Temporal Patterns of Nitrogenase Gene (nifH) Expression in the Oligotrophic
North Pacific Ocean, Appl. Environ. Microbiol., 71, 5362–5370,
https://doi.org/10.1128/aem.71.9.5362-5370.2005, 2005b.
Church, M. J., Björkman, K. M., Karl, D. M., Saito, M. A., and Zehr, J.
P.: Regional distributions of nitrogen-fixing bacteria in the Pacific Ocean,
Limnol. Oceanogr., 53, 63–77, https://doi.org/10.4319/lo.2008.53.1.0063, 2008.
Confesor, K. A., Selden, C. R., Powell, K. E., Donahue, L. A., Mellett, T.,
Caprara, S., Knapp, A. N., Buck, K. N., and Chappell, P. D.: Defining the
Realized Niche of the Two Major Clades of Trichodesmium: A Study on the West
Florida Shelf, Front. Marine Sci., 9, 821655, https://doi.org/10.3389/fmars.2022.821655, 2022.
Cornejo-Castillo, F. M., Cabello, A. M., Salazar, G., Sánchez-Baracaldo,
P., Lima-Mendez, G., Hingamp, P., Alberti, A., Sunagawa, S., Bork, P., de
Vargas, C., Raes, J., Bowler, C., Wincker, P., Zehr, J. P., Gasol, J. M.,
Massana, R., and Acinas, S. G.: Cyanobacterial symbionts diverged in the
late Cretaceous towards lineage-specific nitrogen fixation factories in
single-celled phytoplankton, Nat. Commun., 7, 11071, https://doi.org/10.1038/ncomms11071, 2016.
Cornejo-Castillo, F. M., Munoz-Marin, M. D. C., Turk-Kubo, K. A.,
Royo-Llonch, M., Farnelid, H., Acinas, S. G., and Zehr, J. P.: UCYN-A3, a
newly characterized open ocean sublineage of the symbiotic N2-fixing
cyanobacterium Candidatus Atelocyanobacterium thalassa, Environ. Microbiol.,
21, 111–124, https://doi.org/10.1111/1462-2920.14429, 2019.
Dabundo, R., Lehmann, M. F., Treibergs, L., Tobias, C. R., Altabet, M. A.,
Moisander, P. H., and Granger, J.: The contamination of commercial
15N2 gas stocks with 15N-labeled nitrate and ammonium and
consequences for nitrogen fixation measurements, PLoS One, 9, e110335,
https://doi.org/10.1371/journal.pone.0110335, 2014.
Dekaezemacker, J., Bonnet, S., Grosso, O., Moutin, T., Bressac, M., and
Capone, D. G.: Evidence of active dinitrogen fixation in surface waters of
the eastern tropical South Pacific during El Nino and La Nina events and
evaluation of its potential nutrient controls, Global Biogeochem. Cycles,
27, 768–779, https://doi.org/10.1002/gbc.20063, 2013.
Delmont, T. O., Pierella Karlusich, J. J., Veseli, I., Fuessel, J., Eren, A.
M., Foster, R. A., Bowler, C., Wincker, P., and Pelletier, E.: Heterotrophic
bacterial diazotrophs are more abundant than their cyanobacterial
counterparts in metagenomes covering most of the sunlit ocean, ISME
J., 16, 927–936, https://doi.org/10.1038/s41396-021-01135-1, 2021.
Detoni, A. M. S., Ciotti, Á. M., Calil, P. H. R., Tavano, V. M., and
Yunes, J. S.: Trichodesmium latitudinal distribution on the shelf break in the
southwestern Atlantic Ocean during spring and autumn, Global Biogeochem. Cycles, 30, 1738–1753, https://doi.org/10.1002/2016gb005431,
2016.
Detoni, A. M. S., Subramaniam, A., Haley, S. T., Dyhrman, S. T., and Calil,
P. H. R.: Cyanobacterial diazotroph distributions in the western South
Atlantic, Front. Marine Sci., 9, 856643, https://doi.org/10.3389/fmars.2022.856643, 2022.
Deutsch, C., Sarmiento, J. L., Sigman, D. M., Gruber, N., and Dunne, J. P.:
Spatial coupling of nitrogen inputs and losses in the ocean, Nature, 445,
163–167, https://doi.org/10.1038/nature05392, 2007.
Dugenne, M., Gradoville, M., Church, M., Wilson, S., Sheyn, U., Harke, M.,
Björkman, K., Hawco, N., Hynes, A., Ribalet, F., Karl, D., DeLong, E.,
Dyhrman, S., Armbrust, E., John, S., Eppley, J., Harding, K., Stewart, B.,
Cabello, A., and Zehr, J.: Nitrogen Fixation in Mesoscale Eddies of the
North Pacific Subtropical Gyre: Patterns and Mechanisms, Global Biogeochem. Cycles, 37, e2022GB00738, https://doi.org/10.1029/2022GB007386, 2023.
Dupouy, C., Benielli-Gary, D., Neveux, J., Dandonneau, Y., and Westberry, T. K.: An algorithm for detecting Trichodesmium surface blooms in the South Western Tropical Pacific, Biogeosciences, 8, 3631–3647, https://doi.org/10.5194/bg-8-3631-2011, 2011.
Estrada, M., Delgado, M., Blasco, D., Latasa, M., Cabello, A. M.,
Benítez-Barrios, V., Fraile-Nuez, E., Mozetiè, P., and Vidal, M.:
Phytoplankton across tropical and subtropical regions of the Atlantic,
Indian and Pacific oceans, PLoS One, 11, e0151699, https://doi.org/10.1371/journal.pone.0151699, 2016.
Farnelid, H., Bentzon-Tilia, M., Andersson, A. F., Bertilsson, S., Jost, G.,
Labrenz, M., Jürgens, K., and Riemann, L.: Active nitrogen-fixing
heterotrophic bacteria at and below the chemocline of the central Baltic
Sea, ISME J., 7, 1413–1423, https://doi.org/10.1038/ismej.2013.26, 2013.
Farnelid, H., Turk-Kubo, K., Muñoz-Marín, M. C., and Zehr, J. P.:
New insights into the ecology of the globally significant uncultured
nitrogen-fixing symbiont UCYN-A, Aquat. Microb. Ecol., 77, 125–138,
https://doi.org/10.3354/ame01794, 2016.
Fernández, A., Mouriño-Carballido, B., Bode, A., Varela, M., and Marañón, E.: Latitudinal distribution of Trichodesmium spp. and N2 fixation in the Atlantic Ocean, Biogeosciences, 7, 3167–3176, https://doi.org/10.5194/bg-7-3167-2010, 2010.
Fernandez, C., González, M. L., Muñoz, C., Molina, V., and Farias,
L.: Temporal and spatial variability of biological nitrogen fixation off the
upwelling system of central Chile (35–38.5∘ S), J. Geophys. Res.-Oceans, 120, 3330–3349, https://doi.org/10.1002/2014jc010410, 2015.
Fernández-Castro, B., Mouriño-Carballido, B., Marañón, E.,
Chouciño, P., Gago, J., Ramírez, T., Vidal, M., Bode, A., Blasco,
D., Royer, S.-J., Estrada, M., and Simó, R.: Importance of salt
fingering for new nitrogen supply in the oligotrophic ocean, Nat.
Commun., 6, 8002, https://doi.org/10.1038/ncomms9002,
2015.
Filella, A., Riemann, L., Van Wambeke, F., Pulido-Villena, E., Vogts, A.,
Bonnet, S., Grosso, O., Diaz, J. M., Duhamel, S., and Benavides, M.:
Contrasting Roles of DOP as a Source of Phosphorus and Energy for Marine
Diazotrophs, Front. Marine Sci., 9, 923765, https://doi.org/10.3389/fmars.2022.923765, 2022.
Flett, R. J., Hamilton, R. D., and Campbell, N. E. R.: Aquatic
acetylene-reduction techniques: solutions to several problems, Can.
J. Microbiol., 221, 43–51, https://doi.org/10.1139/m76-006, 1976.
Fonseca-Batista, D., Dehairs, F., Riou, V., Fripiat, F., Elskens, M., Deman,
F., Brion, N., Quéroué, F., Bode, M., and Auel, H.: Nitrogen
fixation in the eastern Atlantic reaches similar levels in the Southern and
Northern Hemisphere, J. Geophys. Res.-Oceans, 122, 587–601,
https://doi.org/10.1002/2016jc012335, 2017.
Fonseca-Batista, D., Li, X., Riou, V., Michotey, V., Deman, F., Fripiat, F., Guasco, S., Brion, N., Lemaitre, N., Tonnard, M., Gallinari, M., Planquette, H., Planchon, F., Sarthou, G., Elskens, M., LaRoche, J., Chou, L., and Dehairs, F.: Evidence of high N2 fixation rates in the temperate northeast Atlantic, Biogeosciences, 16, 999–1017, https://doi.org/10.5194/bg-16-999-2019, 2019.
Foster, R. A., Subramaniam, A., Mahaffey, C., Carpenter, E. J., Capone, D.
G., and Zehr, J. P.: Influence of the Amazon River plume on distributions of
free-living and symbiotic cyanobacteria in the western tropical north
Atlantic Ocean, Limnol. Oceanogr., 52, 517–532, https://doi.org/10.4319/lo.2007.52.2.0517, 2007.
Foster, R. A., Paytan, A., and Zehr, J.: Seasonality of N2 fixation and
nifH gene diversity in the Gulf of Aqaba (Red Sea), Limnol. Oceanogr., 54,
219–233, https://doi.org/10.4319/lo.2009.54.1.0219, 2009.
Foster, R. A., Kuypers, M. M. M., Vagner, T., Paerl, R. W., Musat, N., and
Zehr, J. P.: Nitrogen fixation and transfer in open ocean
diatom–cyanobacterial symbioses, ISME J., 5, 1484–1493, https://doi.org/10.1038/ismej.2011.26, 2011.
Foster, R. A., Sztejrenszus, S., and Kuypers, M. M. M.: Measuring carbon and
N2 fixation in field populations of colonial and free-living
unicellular cyanobacteria using nanometer-scale secondary ion mass
spectrometry, J. Phycol., 49, 502–516, https://doi.org/10.1111/jpy.12057, 2013.
Foster, R. A., Tienken, D., Littmann, S., Whitehouse, M. J., Kuypers, M. M.
M., and White, A. E.: The rate and fate of N2 and C fixation by marine
diatom-diazotroph symbioses, ISME J., 16, 477–487, https://doi.org/10.1038/s41396-021-01086-7, 2022a.
Foster, R. A., Villareal, T. A., Lundin, D., Waterbury, J. B., Webb, E. A.,
and Zehr, J. P.: Richelia, in: Bergey's Manual of Systematics of Archaea and
Bacteria, John Wiley & Sons, Inc., in association with Bergey's Manual
Trust, 1–17, https://doi.org/10.1002/9781118960608.gbm01520,
2022b.
Gandhi, N., Singh, A., Prakash, S., Ramesh, R., Raman, M., Sheshshayee, M.
S., and Shetye, S.: First direct measurements of N2 fixation during a
Trichodesmium bloom in the eastern Arabian Sea, Global Biogeochem. Cycles, 25, 1–10,
https://doi.org/10.1029/2010gb003970, 2011.
Garcia, N., Raimbault, P., and Sandroni, V.: Seasonal nitrogen fixation and
primary production in the Southwest Pacific: nanoplankton diazotrophy and
transfer of nitrogen to picoplankton organisms, Marine Ecol. Prog.
Ser., 343, 25–33, https://doi.org/10.3354/meps06882, 2007.
Geisler, E., Bogler, A., Bar-Zeev, E., and Rahav, E.: Heterotrophic nitrogen
fixation at the hyper-eutrophic qshon river and estuary system, Front. Microbiol., 11, 1370, https://doi.org/10.3389/fmicb.2020.01370,
2020.
Giller, K. E., Nambiar, P. T. C., Srinivasa Rao, B., Dart, P. J., and Day,
J. M.: A comparison of nitrogen fixation in genotypes of 420 groundnut
(Arachis hypogaea L.) using 15N-isotope dilution, Biol. Fert. Soils, 5, 23–25, https://doi.org/10.1007/BF00264341, 1987.
Glibert, P. M. and Bronk, D. A.: Release of Dissolved Organic Nitrogen by
Marine Diazotrophic Cyanobacteria, Trichodesmium spp, Appl. Environ. Microbiol., 60, 3996–4000, https://doi.org/10.1128/aem.60.11.3996-4000.1994, 1994.
Glover, D. M., Jenkins, W. J., and Doney, S. C.: Modeling methods for marine
science, Cambridge University Press, Cambridge, UK, https://doi.org/10.1017/CBO9780511975721, 2011.
Gradoville, M. R., Bombar, D., Crump, B. C., Letelier, R. M., Zehr, J. P.,
and White, A. E.: Diversity and activity of nitrogen-fixing communities
across ocean basins, Limnol. Oceanogr., 62, 1895–1909, https://doi.org/10.1002/lno.10542, 2017.
Gradoville, M. R., Farnelid, H., White, A. E., Turk-Kubo, K. A., Stewart,
B., Ribalet, F., Ferrón, S., Pinedo-Gonzalez, P., Armbrust, E. V., Karl,
D. M., John, S., and Zehr, J. P.: Latitudinal constraints on the abundance
and activity of the cyanobacterium UCYN-A and other marine diazotrophs in
the North Pacific, Limnol. Oceanogr., 65, 1858–1875, https://doi.org/10.1002/lno.11423, 2020.
Gradoville, M., Cabello, A., Wilson, S., Turk-Kubo, K., Karl, D., and Zehr,
J.: Light and depth dependency of nitrogen fixation by the
non-photosynthetic, symbiotic cyanobacterium UCYN-A, Environ. Microbiol., 23, 4518–4531, https://doi.org/10.1111/1462-2920.15645,
2021.
Gradoville, M. R., Dugenne, M., Hynes, A. M., Zehr, J. P., and White, A. E.:
Empirical relationship between nifH gene abundance and diazotroph cell
concentration in the North Pacific Subtropical Gyre, J. Phycol., 53, 829–833,
https://doi.org/10.1111/jpy.13289, 2022.
Graham, J. A., Argyle, M., and Furnham, A.: The goal structure of
situations, Eur. J. Soc. Psychol., 10, 345–366, https://doi.org/10.1002/ejsp.2420100403, 1980.
Großkopf, T., Mohr, W., Baustian, T., Schunck, H., Gill, D., Kuypers, M.
M. M., Lavik, G., Schmitz, R. A., Wallace, D. W. R., and LaRoche, J.:
Doubling of marine dinitrogen-fixation rates based on direct measurements,
Nature, 488, 361–364, https://doi.org/10.1038/nature11338,
2012.
Gruber, N.: The marine nitrogen cycle: overview and challenges, in: Nitrogen
in the marine environment, 2nd edn., edited by: Capone, D. G., Bronk, D.
A., Mulholland, M. R., and Carpenter, E. J., Elsevier, Amsterdam, 1–50,
https://doi.org/10.1016/B978-0-12-372522-6.00001-3, 2008.
Gruber, N.: A diagnosis for marine nitrogen fixation, Nature, 566, 191–193,
https://doi.org/10.1038/d41586-019-00498-y, 2019.
Hagino, K., Onuma, R., Kawachi, M., and Horiguchi, T.: Discovery of an
Endosymbiotic Nitrogen-Fixing Cyanobacterium UCYN-A in Braarudosphaera
bigelowii (Prymnesiophyceae), PLOS ONE, 8, e81749,
https://doi.org/10.1371/journal.pone.0081749, 2013.
Hallstrøm, S., Benavides, M., Salamon, E. R., Arístegui, J., and
Riemann, L.: Activity and distribution of diazotrophic communities across
the Cape Verde Frontal Zone in the Northeast Atlantic Ocean,
Biogeochemistry, 160, 49–67, https://doi.org/10.1007/s10533-022-00940-w,
2022.
Halm, H., Lam, P., Ferdelman, T. G., Lavik, G., Dittmar, T., LaRoche, J.,
D'Hondt, S., and Kuypers, M. M. M.: Heterotrophic organisms dominate
nitrogen fixation in the South Pacific Gyre, ISME J., 6, 1238–1249,
https://doi.org/10.1038/ismej.2011.182, 2012.
Hamersley, M. R., Turk, K. A., Leinweber, A., Gruber, N., Zehr, J. P.,
Gunderson, T., and Capone, D. G.: Nitrogen fixation within the water column
associated with two hypoxic basins in the Southern California Bight, Aquat. Microb. Ecol., 63, 193–205, https://doi.org/10.3354/ame01494, 2011.
Harding, K., Turk-Kubo, K. A., Sipler, R. E., Mills, M. M., Bronk, D. A.,
and Zehr, J. P.: Symbiotic unicellular cyanobacteria fix nitrogen in the
Arctic Ocean, P. Natl. Acad. Sci. USA, 115, 13371–13375, https://doi.org/10.1073/pnas.1813658115, 2018.
Harding, K. J., Turk-Kubo, K. A., Mak, E. W. K., Weber, P. K., Mayali, X.,
and Zehr, J. P.: Cell-specific measurements show nitrogen fixation by
particle-attached putative non-cyanobacterial diazotrophs in the North
Pacific Subtropical Gyre, Nat. Commun., 13, 6979, https://doi.org/10.1038/s41467-022-34585-y, 2022.
Hardy, R. W. F., Burns, R. C., and Holsten, R. D.: Applications of the
acetylene-ethylene assay for measurement of nitrogen fixation, Soil Biol. Biochem., 5, 47–81, https://doi.org/10.1016/0038-0717(73)90093-X, 1973.
Harrison, P., Zingone, A., Mickelson, M., Lehtinen, S., Nagappa, R.,
Kraberg, A., Sun, J., McQuatters-Gollop, A., and Jakobsen, H.: Cell volumes
of marine phytoplankton from globally distributed coastal data sets,
Estuarine, Coast. Shelf Sci., 162, 130–142, https://doi.org/10.1016/j.ecss.2015.05.026, 2015.
Hashimoto, R., Watai, H., Miyahara, K., Sako, Y., and Yoshida, T.: Spatial
and temporal variability of unicellular diazotrophic cyanobacteria in the
eastern Seto Inland Sea, Fish. Sci., 82, 459–471, https://doi.org/10.1007/s12562-016-0983-y, 2016.
Hegde, S., Anil, A., Patil, J., Mitbavkar, S., Krishnamurthy, V., and
Gopalakrishna, V.: Influence of environmental settings on the prevalence of
Trichodesmium spp. in the Bay of Bengal, Mar. Ecol. Prog. Ser., 356, 93–101, https://doi.org/10.3354/meps07259, 2008.
Henke, B. A., Turk-Kubo, K. A., Bonnet, S., and Zehr, J. P.: Distributions
and abundances of sublineages of the N2-Fixing Cyanobacterium
Candidatus Atelocyanobacterium thalassa (UCYN-A) in the New Caledonian Coral Lagoon,
Front. Microbiol., 9, 554, https://doi.org/10.3389/fmicb.2018.00554,
2018.
Holl, C. M., Villareal, T. A., Payne, C. D., Clayton, T. D., Hart, C., and
Montoya, J. P.: Trichodesmium in the western Gulf of Mexico: 15N2-fixation and
natural abundance stable isotopic evidence, Limnol. Oceanogr., 52,
2249–2259, https://doi.org/10.4319/lo.2007.52.5.2249, 2007.
Hörstmann, C., Raes, E. J., Buttigieg, P. L., Lo Monaco, C., John, U., and Waite, A. M.: Hydrographic fronts shape productivity, nitrogen fixation, and microbial community composition in the southern Indian Ocean and the Southern Ocean, Biogeosciences, 18, 3733–3749, https://doi.org/10.5194/bg-18-3733-2021, 2021.
Hyman, M. R. and Arp, D. J.: Quantification and removal of some
contaminating gases from acetylene used to study gas-utilizing enzymes and
microorganisms, Appl. Environ. Microbiol., 53, 298–303,
https://doi.org/10.1128/aem.53.2.298-303.1987, 1987.
Ibello, V., Cantoni, C., Cozzi, S., and Civitarese, G.: First basin-wide
experimental results on N2 fixation in the open Mediterranean Sea,
Geophys. Res. Lett., 37, L03608, https://doi.org/10.1029/2009gl041635,
2010.
Jayakumar, A., Chang, B. X., Widner, B., Bernhardt, P., Mulholland, M. R.,
and Ward, B. B.: Biological nitrogen fixation in the oxygen-minimum region
of the eastern tropical North Pacific ocean, ISME J., 11,
2356–2367, https://doi.org/10.1038/ismej.2017.97, 2017.
Jiang, Z., Chen, J., Zhou, F., Zhai, H., Zhang, D., and Yan, X.: Summer
distribution patterns of Trichodesmium spp. in the Changjiang (Yangtze
River) Estuary and adjacent East China Sea shelf, Oceanologia, 59, 248–261,
https://doi.org/10.1016/j.oceano.2017.02.001, 2017.
Jiang, Z., Zhu, Y., Sun, Z., Zhai, H., Zhou, F., Yan, X., Zeng, J., Chen,
J., and Chen, Q.: Enhancement of Summer Nitrogen Fixation by the Kuroshio
Intrusion in the East China Sea and Southern Yellow Sea, J. Geophys. Res.-Biogeo., 128, e2022JG007287, https://doi.org/10.1029/2022JG007287, 2023.
Karlusich, J. J. P., Pelletier, E., Lombard, F., Carsique, M., Dvorak, E.,
Colin, S., Picheral, M., Cornejo-Castillo, F. M., Acinas, S. G., Pepperkok,
R., Karsenti, E., De Vargas, C., Wincker, P., Bowler, C., and Foster, R. A.:
Global distribution patterns of marine nitrogen-fixers by imaging and
molecular methods, Nat. Commun., 12, 4160, https://doi.org/10.1038/s41467-021-24299-y, 2021.
Kitajima, S., Furuya, K., Hashihama, F., Takeda, S., and Kanda, J.:
Latitudinal distribution of diazotrophs and their nitrogen fixation in the
tropical and subtropical western North Pacific, Limnol. Oceanogr.,
54, 537–547, https://doi.org/10.4319/lo.2009.54.2.0537, 2009.
Kittu, L. R., Paul, A. J., Fernández-Méndez, M., Hopwood, M. J., and
Riebesell, U.: Coastal N2 Fixation Rates Coincide Spatially With
Nitrogen Loss in the Humboldt Upwelling System off Peru, Global Biogeochem. Cycles, 37, e2022GB00757, https://doi.org/10.1029/2022gb007578, 2023.
Klawonn, I., Lavik, G., Boning, P., Marchant, H. K., Dekaezemacker, J.,
Mohr, W., and Ploug, H.: Simple approach for the preparation of
15−15N2-enriched water for nitrogen fixation assessments:
evaluation, application and recommendations, Front. Microbiol., 6, 769,
https://doi.org/10.3389/fmicb.2015.00769, 2015.
Knapp, A. N., Casciotti, K. L., Berelson, W. M., Prokopenko, M. G., and
Capone, D. G.: Low rates of nitrogen fixation in eastern tropical South
Pacific surface waters, P. Natl. Acad. Sci. USA, 113, 4398–4403, https://doi.org/10.1073/pnas.1515641113, 2016.
Konno, U., Tsunogai, U., Komatsu, D. D., Daita, S., Nakagawa, F., Tsuda, A., Matsui, T., Eum, Y.-J., and Suzuki, K.: Determination of total N2 fixation rates in the ocean taking into account both the particulate and filtrate fractions, Biogeosciences, 7, 2369–2377, https://doi.org/10.5194/bg-7-2369-2010, 2010.
Kromkamp, J., De Bie, M., Goosen, N., Peene, J., Van Rijswijk, P., Sinke,
J., and Duinevel, G. C. A.: Primary production by phytoplankton along the
Kenyan coast during the SE monsoon and November intermonsoon 1992, and the
occurrence of Trichodesmium, Deep-Sea Res. Pt. II,
44, 1195–1212, https://doi.org/10.1016/s0967-0645(97)00015-5,
1997.
Krupke, A., Musat, N., LaRoche, J., Mohr, W., Fuchs, B. M., Amann, R. I.,
Kuypers, M. M. M., and Foster, R. A.: In situ identification and N2 and
C fixation rates of uncultivated cyanobacteria populations, Syst.
Appl. Microbiol., 36, 259–271, https://doi.org/10.1016/j.syapm.2013.02.002, 2013.
Krupke, A., Lavik, G., Halm, H., Fuchs, B. M., Amann, R. I., and Kuypers, M.
M. M.: Distribution of a consortium between unicellular algae and the
N2 fixing cyanobacterium UCYN-A in the North Atlantic Ocean,
Environ. Microbiol., 16, 3153–3167, https://doi.org/10.1111/1462-2920.12431, 2014.
Krupke, A., Mohr, W., Laroche, J., Fuchs, B. M., Amann, R. I., and Kuypers,
M. M.: The effect of nutrients on carbon and nitrogen fixation by the
UCYN-A–haptophyte symbiosis, ISME J., 9, 1635–1647, https://doi.org/10.1038/ismej.2014.253, 2015.
Kumar, P. K., Singh, A., Ramesh, R., and Nallathambi, T.: N2 Fixation
in the eastern Arabian Sea: probable role of heterotrophic diazotrophs,
Front. Marine Sci., 4, 80, https://doi.org/10.3389/fmars.2017.00080, 2017.
Kumari, V. R., Ghosh, V. R. D., Rao, D. N., Krishna, M. S., and Sarma, V. V.
S. S.: Nitrogen fixation in the western coastal Bay of Bengal: Controlling
factors and contribution to primary production, Regional Studies in Marine
Science, 53, 102410, https://doi.org/10.1016/j.rsma.2022.102410, 2022.
Landou, E., Lazar, B., LaRoche, J., Fennel, K., and Berman-Frank, I.:
Contribution of photic and aphotic N2 fixation to production in an
oligotrophic sea, Limnol. Oceanogr., 68, 692–708, https://doi.org/10.1002/lno.12303, 2023.
Langlois, R., Grokopf, T., Mills, M., Takeda, S., and LaRoche, J.:
Widespread distribution and expression of Gamma A (UMB), an uncultured,
diazotrophic, gamma-proteobacterial nifH phylotype, Plos One, 10, 17, https://doi.org/10.1371/journal.pone.0128912, 2015.
Le Moal, M. and Biegala, I. C.: Diazotrophic unicellular cyanobacteria in
the northwestern Mediterranean Sea: A seasonal cycle, Limnol. Oceanogr., 54,
845–855, https://doi.org/10.4319/lo.2009.54.3.0845, 2009.
Le Moal, M., Collin, H., and Biegala, I. C.: Intriguing diversity among diazotrophic picoplankton along a Mediterranean transect: a dominance of rhizobia, Biogeosciences, 8, 827–840, https://doi.org/10.5194/bg-8-827-2011, 2011.
Letelier, R. and Karl, D.: Role of Trichodesmium spp. in the productivity of
the subtropical North Pacific Ocean, Mar. Ecol. Prog. Ser., 133, 263–273,
https://doi.org/10.3354/meps133263, 1996.
Li, L., Wu, C., Sun, J., Song, S., Ding, C., Huang, D., and Pujari, L.:
Nitrogen fixation driven by mesoscale eddies and the Kuroshio Current in the
northern South China Sea and the East China Sea, Acta Oceanol. Sin., 39,
30–41, https://doi.org/10.1007/s13131-020-1691-0, 2020.
Liu, J. X., Zhou, L. B., Li, J. J., Lin, Y. Y., Ke, Z. X., Zhao, C. Y., Liu,
H. J., Jiang, X., He, Y. H., and Tan, Y. H.: Effect of mesoscale eddies on
diazotroph community structure and nitrogen fixation rates in the South
China Sea, Regional Studies in Marine Science, 35, 14, https://doi.org/10.1016/j.rsma.2020.101106, 2020.
Loescher, C. R., Großkopf, T., Desai, F. D., Gill, D., Schunck, H.,
Croot, P. L., Schlosser, C., Neulinger, S. C., Pinnow, N., Lavik, G.,
Kuypers, M. M. M., LaRoche, J., and Schmitz, R. A.: Facets of diazotrophy in
the oxygen minimum zone waters off Peru, ISME J., 8, 2180–2192,
https://doi.org/10.1038/ismej.2014.71, 2014.
Loick-Wilde, N., Weber, S. C., Conroy, B. J., Capone, D. G., Coles, V. J.,
Medeiros, P. M., Steinberg, D. K., and Montoya, J. P.: Nitrogen sources and
net growth efficiency of zooplankton in three Amazon River plume food webs,
Limnol. Oceanogr., 61, 460–481, https://doi.org/10.1002/lno.10227, 2015.
Loick-Wilde, N., Fernandez-Urruzola, I., Eglite, E., Liskow, I., Nausch, M.,
Schulz-Bull, D., Wodarg, D., Wasmund, N., and Mohrholz, V.: Stratification,
nitrogen fixation, and cyanobacterial bloom stage regulate the planktonic
food web structure, Glob. Chang. Biol., 25, 794–810, https://doi.org/10.1111/gcb.14546, 2019.
Lory, C., Van Wambeke, F., Fourquez, M., Barani, A., Guieu, C., Tilliette,
C., Marie, D., Nunige, S., Berman-Frank, I., and Bonnet, S.: Assessing the
contribution of diazotrophs to microbial Fe uptake using a group specific
approach in the Western Tropical South Pacific Ocean, ISME Commun.,
2, 41, https://doi.org/10.1038/s43705-022-00122-7, 2022.
Löscher, C. R., Bourbonnais, A., Dekaezemacker, J., Charoenpong, C. N., Altabet, M. A., Bange, H. W., Czeschel, R., Hoffmann, C., and Schmitz, R.: N2 fixation in eddies of the eastern tropical South Pacific Ocean, Biogeosciences, 13, 2889–2899, https://doi.org/10.5194/bg-13-2889-2016, 2016.
Löscher, C. R., Mohr, W., Bange, H. W., and Canfield, D. E.: No nitrogen fixation in the Bay of Bengal?, Biogeosciences, 17, 851–864, https://doi.org/10.5194/bg-17-851-2020, 2020.
Lu, Y., Wen, Z., Shi, D., Chen, M., Zhang, Y., Bonnet, S., Li, Y., Tian, J., and Kao, S.-J.: Effect of light on N2 fixation and net nitrogen release of Trichodesmium in a field study, Biogeosciences, 15, 1–12, https://doi.org/10.5194/bg-15-1-2018, 2018.
Luo, Y.-W., Doney, S. C., Anderson, L. A., Benavides, M., Berman-Frank, I., Bode, A., Bonnet, S., Boström, K. H., Böttjer, D., Capone, D. G., Carpenter, E. J., Chen, Y. L., Church, M. J., Dore, J. E., Falcón, L. I., Fernández, A., Foster, R. A., Furuya, K., Gómez, F., Gundersen, K., Hynes, A. M., Karl, D. M., Kitajima, S., Langlois, R. J., LaRoche, J., Letelier, R. M., Marañón, E., McGillicuddy Jr., D. J., Moisander, P. H., Moore, C. M., Mouriño-Carballido, B., Mulholland, M. R., Needoba, J. A., Orcutt, K. M., Poulton, A. J., Rahav, E., Raimbault, P., Rees, A. P., Riemann, L., Shiozaki, T., Subramaniam, A., Tyrrell, T., Turk-Kubo, K. A., Varela, M., Villareal, T. A., Webb, E. A., White, A. E., Wu, J., and Zehr, J. P.: Database of diazotrophs in global ocean: abundance, biomass and nitrogen fixation rates, Earth Syst. Sci. Data, 4, 47–73, https://doi.org/10.5194/essd-4-47-2012, 2012.
Luo, Y.-W., Lima, I. D., Karl, D. M., Deutsch, C. A., and Doney, S. C.: Data-based assessment of environmental controls on global marine nitrogen fixation, Biogeosciences, 11, 691–708, https://doi.org/10.5194/bg-11-691-2014, 2014.
Mague, T. H., Weare, N. M., and Holm-Hansen, O.: Nitrogen fixation in the
North Pacific Ocean, Mar. Biol., 24, 109–119, https://doi.org/10.1007/bf00389344, 1974.
Martínez-Pérez, C., Mohr, W., Loscher, C. R., Dekaezemacker, J.,
Littmann, S., Yilmaz, P., Lehnen, N., Fuchs, B. M., Lavik, G., Schmitz, R.
A., LaRoche, J., and Kuypers, M. M.: The small unicellular diazotrophic
symbiont, UCYN-A, is a key player in the marine nitrogen cycle, Nat.
Microbiol., 1, 16163, https://doi.org/10.1038/nmicrobiol.2016.163, 2016.
Masotti, I., Ruiz-Pino, D., and Le Bouteiller, A.: Photosynthetic
characteristics of Trichodesmium in the southwest Pacific Ocean: importance and
significance, Mar. Ecol. Prog. Ser., 338, 47–59, https://doi.org/10.3354/meps338047, 2007.
McCarthy, J. J. and Carpenter, E. J.: Oscillatoria (Trichodesmium) Thiebautii
(cyanophyta) the central North Atlantic Ocean, J. Phycol., 15,
75–82, https://doi.org/10.1111/j.1529-8817.1979.tb02965.x,
1979.
Meiler, S., Britten, G. L., Dutkiewicz, S., Gradoville, M. R., Moisander, P.
H., Jahn, O., and Follows, M. J.: Constraining uncertainties of diazotroph
biogeography from nifH gene abundance, Limnol. Oceanogr., 67, 816–829,
https://doi.org/10.1002/lno.12036, 2022.
Meiler, S., Britten, G. L., Dutkiewicz, S., Moisander, P. H., and Follows,
M. J.: Challenges and opportunities in connecting gene count observations
with ocean biogeochemical models: Reply to Zehr and Riemann (2023), Limnol.
Oceanogr., 68, 1413–1416, https://doi.org/10.1002/lno.12363,
2023.
Menden-Deuer, S. and Lessard, E. J.: Carbon to volume relationships for
dinoflagellates, diatoms, and other protist plankton, Limnol. Oceanogr., 45, 569–579, https://doi.org/10.4319/lo.2000.45.3.0569, 2000.
Messer, L. F., Mahaffey, C., M Robinson, C., Jeffries, T. C., Baker, K. G.,
Bibiloni Isaksson, J., Ostrowski, M., Doblin, M. A., Brown, M. V., and
Seymour, J. R.: High levels of heterogeneity in diazotroph diversity and
activity within a putative hotspot for marine nitrogen fixation, ISME J., 10, 1499–1513, https://doi.org/10.1038/ismej.2015.205,
2016.
Messer, L. F., Brown, M. V., Van Ruth, P. D., Doubell, M., and Seymour, J.
R.: Temperate southern Australian coastal waters are characterised by
surprisingly high rates of nitrogen fixation and diversity of diazotrophs,
PeerJ, 9, e10809, https://doi.org/10.7717/peerj.10809, 2021.
Meyer, N. R., Fortney, J. L., and Dekas, A. E.: NanoSIMS sample preparation
decreases isotope enrichment: magnitude, variability and implications for
single-cell rates of microbial activity, Environ. Microbiol., 23, 81–98,
https://doi.org/10.1111/1462-2920.15264, 2021.
Mills, M. M., Turk-Kubo, K. A., van Dijken, G. L., Henke, B. A., Harding,
K., Wilson, S. T., Arrigo, K. R., and Zehr, J. P.: Unusual marine
cyanobacteria/haptophyte symbiosis relies on N2 fixation even in
N-rich environments, ISME J., 14, 2395–2406, https://doi.org/10.1038/s41396-020-0691-6, 2020.
Mohr, W., Grosskopf, T., Wallace, D. W., and LaRoche, J.: Methodological
underestimation of oceanic nitrogen fixation rates, PLoS One, 5, e12583,
https://doi.org/10.1371/journal.pone.0012583, 2010.
Moisander, P. H., Zhang, R., Boyle, E. A., Hewson, I., Montoya, J. P., and
Zehr, J. P.: Analogous nutrient limitations in unicellular diazotrophs and
Prochlorococcus in the South Pacific Ocean, ISME J., 6, 733–744, https://doi.org/10.1038/ismej.2011.152, 2012.
Moisander, P. H., Serros, T., Paerl, R. W., Beinart, R. A., and Zehr, J. P.:
Gammaproteobacterial diazotrophs and nifH gene expression in surface waters of
the South Pacific Ocean, ISME J, 8, 1962–1973, https://doi.org/10.1038/ismej.2014.49, 2014.
Moisander, P. H., Benavides, M., Bonnet, S., Berman-Frank, I., White, A. E.,
and Riemann, L.: Chasing after non-cyanobacterial nitrogen fixation in
marine pelagic environments, Front. Microbiol., 8, 1736, https://doi.org/10.3389/fmicb.2017.01736, 2017.
Mompeán, C., Bode, A., Benítez-Barrios, V. M.,
Domínguez-Yanes, J. F., Escánez, J., and Fraile-Nuez, E.: Spatial
patterns of plankton biomass and stable isotopes reflect the influence of
the nitrogen-fixer Trichodesmium along the subtropical North Atlantic,
J. Plankton Res., 35, 513–525, https://doi.org/10.1093/plankt/fbt011, 2013.
Mompeán, C., Bode, A., Latasa, M., Fernández-Castro, B.,
Mouriño-Carballido, B., and Irigoien, X.: The influence of nitrogen
inputs on biomass and trophic structure of ocean plankton: a study using
biomass and stable isotope size-spectra, J. Plankton Res., 38,
1163–1177, https://doi.org/10.1093/plankt/fbw052, 2016.
Montoya, J. P., Voss, M., Kahler, P., and Capone, D. G.: A Simple,
High-Precision, High-Sensitivity Tracer Assay for N2 Fixation, Appl.
Environ. Microbiol., 62, 986–993, https://doi.org/10.1128/aem.62.3.986-993.1996, 1996.
Moore, R. M., Grefe, I., Zorz, J., Shan, S., Thompson, K., Ratten, J., and
LaRoche, J.: On the relationship between hydrogen saturation in the tropical
Atlantic Ocean and nitrogen fixation by the symbiotic diazotroph UCYN-A, J. Geophys. Res.-Oceans, 123, 2353–2362, https://doi.org/10.1002/2017jc013047, 2018.
Moreira-Coello, V., Mourino-Carballido, B., Maranon, E., Fernandez-Carrera,
A., Bode, A., and Varela, M. M.: Biological N2 fixation in the
upwelling region off NW Iberia: magnitude, relevance, and players, Front.
Mar. Sci., 4, 303, https://doi.org/10.3389/fmars.2017.00303,
2017.
Mulholland, M. R.: The fate of nitrogen fixed by diazotrophs in the ocean, Biogeosciences, 4, 37–51, https://doi.org/10.5194/bg-4-37-2007, 2007.
Mulholland, M. R., Bernhardt, P. W., Heil, C. A., Bronk, D. A., and O'Neil,
J. M.: Nitrogen fixation and release of fixed nitrogen by Trichodesmium spp. in the Gulf
of Mexico, Limnol. Oceanogr., 51, 1762–1776, https://doi.org/10.4319/lo.2006.51.4.1762, 2006.
Mulholland, M. R., Bernhardt, P. W., Blanco-Garcia, J. L., Mannino, A.,
Hyde, K., Mondragon, E., Turk, K., Moisander, P. H., and Zehr, J. P.: Rates
of dinitrogen fixation and the abundance of diazotrophs in North American
coastal waters between Cape Hatteras and Georges Bank, Limnol. Oceanogr., 57, 1067–1083, https://doi.org/10.4319/lo.2012.57.4.1067, 2012.
Mulholland, M. R., Bernhardt, P. W., Widner, B. N., Selden, C. R., Chappell,
P. D., Clayton, S., Mannino, A., and Hyde, K.: High rates of N2 fixation in temperate, western North Atlantic coastal waters expand the
realm of marine diazotrophy, Global Biogeochem. Cycles, 33, 826–840,
https://doi.org/10.1029/2018gb006130, 2019.
Musat, N., Stryhanyuk, H., Bombach, P., Adrian, L., Audinot, J.-N., and
Richnow, H. H.: The effect of FISH and CARD-FISH on the isotopic composition
of 13C- and 15N-labeled Pseudomonas putida cells measured by nanoSIMS,
Syst. Appl. Microbiol., 37, 267–276, https://doi.org/10.1016/j.syapm.2014.02.002, 2014.
Needoba, J. A., Foster, R. A., Sakamoto, C., Zehr, J. P., and Johnson, K.
S.: Nitrogen fixation by unicellular diazotrophic cyanobacteria in the
temperate oligotrophic North Pacific Ocean, Limnol. Oceanogr., 52, 1317–1327,
https://doi.org/10.4319/lo.2007.52.4.1317, 2007.
Palter, J. B., Ames, E. J., Benavides, M., Goncalves Neto, A., Granger, J.,
Moisander, P. H., Watkins-Brandt, K. S., and White, A. E.: High N2
fixation in and near the Gulf Stream consistent with a circulation control
on diazotrophy, Geophys. Res. Lett., 47, e2020GL089103, https://doi.org/10.1111/j.1365-2656.2010.01695.x, 2020.
Postgate, J. R.: Nitrogen Fixation, 3rd Edn., Cambridge University
Press, Cambridge, United Kingdom, 1998.
Raes, E., van de Kamp, J., Bodrossy, L., Fong, A., Riekenberg, J., Holmes,
B., Erler, D., Eyre, B., Weil, S.-S., and Waite, A.: N2 fixation and
new insights into nitrification from the ice-edge to the equator in the
South Pacific Ocean, Front. Marine Sci., 7, 389, https://doi.org/10.3389/fmars.2020.00389, 2020.
Raes, E. J., Waite, A. M., McInnes, A. S., Olsen, H., Nguyen, H. M.,
Hardman-Mountford, N., and Thompson, P. A.: Changes in latitude and dominant
diazotrophic community alter N2 fixation, Marine Ecol. Prog.
Ser., 516, 85–102, https://doi.org/10.3354/meps11009, 2014.
Rahav, E., Bar-Zeev, E., Ohayon, S., Elifantz, H., Belkin, N., Herut, B.,
Mulholland, M. R., and Berman-Frank, I.: Dinitrogen fixation in aphotic
oxygenated marine environments, Front. Microbiol., 4, 227, https://doi.org/10.3389/fmicb.2013.00227, 2013a.
Rahav, E., Herut, B., Levi, A., Mulholland, M. R., and Berman-Frank, I.: Springtime contribution of dinitrogen fixation to primary production across the Mediterranean Sea, Ocean Sci., 9, 489–498, https://doi.org/10.5194/os-9-489-2013, 2013b.
Rahav, E., Herut, B., Mulholland, M., Belkin, N., Elifantz, H., and
Berman-Frank, I.: Heterotrophic and autotrophic contribution to dinitrogen
fixation in the Gulf of Aqaba, Marine Ecol. Prog. Ser., 522, 67–77,
https://doi.org/10.3354/meps11143, 2015.
Rahav, E., Giannetto, M. J., and Bar-Zeev, E.: Contribution of mono and
polysaccharides to heterotrophic N2 fixation at the eastern
Mediterranean coastline, Sci. Rep.-UK, 6, 27858, https://doi.org/10.1038/srep27858, 2016.
Ratten, J.-M., LaRoche, J., Desai, D. K., Shelley, R. U., Landing, W. M.,
Boyle, E., Cutter, G. A., and Langlois, R. J.: Sources of iron and phosphate
affect the distribution of diazotrophs in the North Atlantic, Deep-Sea
Res. Pt. II, 116, 332–341, https://doi.org/10.1016/j.dsr2.2014.11.012, 2015.
Reeder, C. F., Stoltenberg, I., Javidpour, J., and Löscher, C. R.: Salinity as a key control on the diazotrophic community composition in the southern Baltic Sea, Ocean Sci., 18, 401–417, https://doi.org/10.5194/os-18-401-2022, 2022.
Riou, V., Fonseca-Batista, D., Roukaerts, A., Biegala, I. C., Prakya, S. R.,
Magalhães Loureiro, C., Santos, M., Muniz-Piniella, A. E., Schmiing, M.,
Elskens, M., Brion, N., Martins, M. A., and Dehairs, F.: Importance of
N2-fixation on the productivity at the North-Western Azores
Current/Front System, and the abundance of diazotrophic unicellular
cyanobacteria, PLoS One, 11, e0150827, https://doi.org/10.1371/journal.pone.0150827, 2016.
Sahoo, D., Saxena, H., Nazirahmed, S., Kumar, S., Sudheer, A. K., Bhushan,
R., Sahay, A., and Singh, A.: Role of eddies and N2 fixation in
regulating proportions in the Bay of Bengal, Biogeochemistry, 155,
413–429, https://doi.org/10.1007/s10533-021-00833-4, 2021.
Sahu, B. K., Baliarsingh, S. K., Lotliker, A. A., Parida, C., Srichandan,
S., and Sahu, K. C.: Winter thermal inversion and Trichodesmium dominance in north-western
Bay of Bengal, Ocean Sci. J., 52, 301–306, https://doi.org/10.1007/s12601-017-0028-1, 2017.
Sargent, E. C., Hitchcock, A., Johansson, S. A., Langlois, R., Moore, C. M.,
LaRoche, J., Poulton, A. J., and Bibby, T. S.: Evidence for polyploidy in
the globally important diazotroph Trichodesmium, FEMS Microbiol. Lett., 363, fnw244,
https://doi.org/10.1093/femsle/fnw244, 2016.
Sarma, V. V. S. S., Vivek, R., Rao, D. N., and Ghosh, V. R. D.: Severe
phosphate limitation on nitrogen fixation in the Bay of Bengal, Cont. Shelf Res., 205, 104199, https://doi.org/10.1016/j.csr.2020.104199, 2020.
Sato, T., Shiozaki, T., Taniuchi, Y., Kasai, H., and Takahashi, K.: Nitrogen
fixation and diazotroph community in the subarctic Sea of Japan and Sea of
Okhotsk, J. Geophys. Res.-Oceans, 126, e2020JC017071, https://doi.org/10.1029/2020jc017071, 2021.
Sato, T., Shiozaki, T., Hashihama, F., Sato, M., Murata, A., Sasaoka, K.,
Umeda, S.-i., and Takahashi, K.: Low Nitrogen Fixation Related to Shallow
Nitracline Across the Eastern Indian Ocean, J. Geophys. Res.-Biogeo., 127, e2022JG007104, https://doi.org/10.1029/2022JG007104, 2022.
Saulia, E., Benavides, M., Henke, B., Turk-Kubo, K., Cooperguard, H.,
Grosso, O., Desnues, A., Rodier, M., Dupouy, C., Riemann, L., and Bonnet,
S.: Seasonal Shifts in Diazotrophs Players: Patterns Observed Over a
Two-Year Time Series in the New Caledonian Lagoon (Western Tropical South
Pacific Ocean), Front. Marine Sci., 7, 581755, https://doi.org/10.3389/fmars.2020.581755, 2020.
Saxena, H., Sahoo, D., Khan, M. A., Kumar, S., Sudheer, A. K., and Singh,
A.: Dinitrogen fixation rates in the Bay of Bengal during summer monsoon,
Environ. Res. Commun., 2, 051007, https://doi.org/10.1088/2515-7620/ab89fa, 2020.
Scavotto, R. E., Dziallas, C., Bentzon-Tilia, M., Riemann, L., and
Moisander, P. H.: Nitrogen-fixing bacteria associated with copepods in
coastal waters of the North Atlantic Ocean, Environ. Microbiol., 17,
3754–3765, https://doi.org/10.1111/1462-2920.12777, 2015.
Schvarcz, C. R., Wilson, S. T., Caffin, M., Stancheva, R., Li, Q.,
Turk-Kubo, K. A., White, A. E., Karl, D. M., Zehr, J. P., and Steward, G.
F.: Overlooked and widespread pennate diatom-diazotroph symbioses in the
sea, Nat. Commun., 13, 799, https://doi.org/10.1038/s41467-022-28065-6, 2022.
Selden, C. R., Mulholland, M. R., Bernhardt, P. W., Widner, B.,
Macías-Tapia, A., Ji, Q., and Jayakumar, A.: Dinitrogen Fixation Across
Physico-Chemical Gradients of the Eastern Tropical North Pacific Oxygen
Deficient Zone, Global Biogeochem. Cycles, 33, 1187–1202, https://doi.org/10.1029/2019gb006242, 2019.
Selden, C. R., Chappell, P. D., Clayton, S., Macías-Tapia, A.,
Bernhardt, P. W., and Mulholland, M. R.: A coastal N2 fixation hotspot
at the Cape Hatteras front: Elucidating spatial heterogeneity in diazotroph
activity via supervised machine learning, Limnol. Oceanogr., 66,
1832–1849, https://doi.org/10.1002/lno.11727, 2021a.
Selden, C. R., Mulholland, M. R., Widner, B., Bernhardt, P., and Jayakumar,
A.: Toward resolving disparate accounts of the extent and magnitude of
nitrogen fixation in the Eastern Tropical South Pacific oxygen deficient
zone, Limnol. Oceanogr., 66, 1950–1960, https://doi.org/10.1002/lno.11735, 2021b.
Selden, C. R., Einarsson, S. V., Lowry, K. E., Crider, K. E., Pickart, R.
S., Lin, P., Ashjian, C. J., and Chappell, P. D.: Coastal upwelling enhances
abundance of a symbiotic diazotroph (UCYN-A) and its haptophyte host in the
Arctic Ocean, Front. Mar. Sci., 9, 877562, https://doi.org/10.3389/fmars.2022.877562, 2022.
Shao, Z. and Luo, Y.-W.: Controlling factors on the global distribution of a representative marine non-cyanobacterial diazotroph phylotype (Gamma A), Biogeosciences, 19, 2939–2952, https://doi.org/10.5194/bg-19-2939-2022, 2022.
Shao, Z., Xu, Y., Wang, H., Luo, W., Wang, L., Huang, Y., and Luo, Y.-W.:
Version 2 of the global oceanic diazotroph database, Figshare [data set],
https://doi.org/10.6084/m9.figshare.21677687, 2022.
Shiozaki, T., Kodama, T., Kitajima, S., Sato, M., and Furuya, K.: Advective
transport of diazotrophs and importance of their nitrogen fixation on new
and primary production in the western Pacific warm pool, Limnol. Oceanogr.,
58, 49–60, https://doi.org/10.4319/lo.2013.58.1.0049, 2013.
Shiozaki, T., Chen, Y. L. L., Lin, Y. H., Taniuchi, Y., Sheu, D. S., Furuya,
K., and Chen, H. Y.: Seasonal variations of unicellular diazotroph groups A
and B, and Trichodesmium in the northern South China Sea and neighboring upstream
Kuroshio Current, Cont. Shelf Res., 80, 20–31, https://doi.org/10.1016/j.csr.2014.02.015, 2014a.
Shiozaki, T., Ijichi, M., Kodama, T., Takeda, S., and Furuya, K.:
Heterotrophic bacteria as major nitrogen fixers in the euphotic zone of the
Indian Ocean, Global Biogeochem. Cycles, 28, 1096–1110, https://doi.org/10.1002/2014gb004886, 2014b.
Shiozaki, T., Kodama, T., and Furuya, K.: Large-scale impact of the island
mass effect through nitrogen fixation in the western South Pacific Ocean,
Geophys. Res. Lett., 41, 2907–2913, https://doi.org/10.1002/2014GL059835, 2014c.
Shiozaki, T., Nagata, T., Ijichi, M., and Furuya, K.: Nitrogen fixation and the diazotroph community in the temperate coastal region of the northwestern North Pacific, Biogeosciences, 12, 4751–4764, https://doi.org/10.5194/bg-12-4751-2015, 2015a.
Shiozaki, T., Takeda, S., Itoh, S., Kodama, T., Liu, X., Hashihama, F., and Furuya, K.: Why is Trichodesmium abundant in the Kuroshio?, Biogeosciences, 12, 6931–6943, https://doi.org/10.5194/bg-12-6931-2015, 2015b.
Shiozaki, T., Bombar, D., Riemann, L., Hashihama, F., Takeda, S., Yamaguchi,
T., Ehama, M., Hamasaki, K., and Furuya, K.: Basin scale variability of
active diazotrophs and nitrogen fixation in the North Pacific, from the
tropics to the subarctic Bering Sea, Global Biogeochem. Cycles, 31,
996–1009, https://doi.org/10.1002/2017gb005681, 2017.
Shiozaki, T., Bombar, D., Riemann, L., Sato, M., Hashihama, F., Kodama, T.,
Tanita, I., Takeda, S., Saito, H., Hamasaki, K., and Furuya, K.: Linkage
Between Dinitrogen Fixation and Primary Production in the Oligotrophic South
Pacific Ocean, Global Biogeochem. Cycles, 32, 1028–1044, https://doi.org/10.1029/2017GB005869, 2018a.
Shiozaki, T., Fujiwara, A., Ijichi, M., Harada, N., Nishino, S., Nishi, S.,
Nagata, T., and Hamasaki, K.: Diazotroph community structure and the role of
nitrogen fixation in the nitrogen cycle in the Chukchi Sea (western Arctic
Ocean), Limnol. Oceanogr., 63, 2191–2205, https://doi.org/10.1002/lno.10933, 2018b.
Shiozaki, T., Kondo, Y., Yuasa, D., and Takeda, S.: Distribution of major
diazotrophs in the surface water of the Kuroshio from northeastern Taiwan to
south of mainland Japan, J. Plankton Res., 40, 407–419, https://doi.org/10.1093/plankt/fby027, 2018c.
Shiozaki, T., Fujiwara, A., Inomura, K., Hirose, Y., Hashihama, F., and
Harada, N.: Biological nitrogen fixation detected under Antarctic sea ice,
Nat. Geosci., 13, 729, https://doi.org/10.1038/s41561-020-00651-7, 2020.
Short, S. M. and Zehr, J. P.: Quantitative Analysis of nifH Genes and
Transcripts from Aquatic Environments, in: Methods in Enzymology, Academic
Press, 397, 380–394, https://doi.org/10.1016/S0076-6879(05)97023-7,
2005.
Singh, A., Bach, L. T., Fischer, T., Hauss, H., Kiko, R., Paul, A. J.,
Stange, P., Vandromme, P., and Riebesell, U.: Niche construction by
non-diazotrophs for N2 fixers in the eastern tropical North Atlantic
Ocean, Geophys. Res. Lett., 44, 6904–6913, https://doi.org/10.1002/2017gl074218, 2017.
Singh, A., Gandhi, N., and Ramesh, R.: Surplus supply of bioavailable
nitrogen through N2 fixation to primary producers in the eastern
Arabian Sea during autumn, Cont. Shelf Res., 181, 103–110,
https://doi.org/10.1016/j.csr.2019.05.012, 2019.
Sipler, R. E., Gong, D., Baer, S. E., Sanderson, M. P., Roberts, Q. N.,
Mulholland, M. R., and Bronk, D. A.: Preliminary estimates of the
contribution of Arctic nitrogen fixation to the global nitrogen budget,
Limnol. Oceanogr. Lett., 2, 159–166, https://doi.org/10.1002/lol2.10046, 2017.
Sohm, J. A., Hilton, J. A., Noble, A. E., Zehr, J. P., Saito, M. A., and
Webb, E. A.: Nitrogen fixation in the South Atlantic Gyre and the Benguela
upwelling system, Geophys. Res. Lett., 38, L16608, https://doi.org/10.1029/2011GL048315, 2011.
Staal, M., Lintel-Hekkert, S. t., Harren, F., and Stal, L.: Nitrogenase
activity in cyanobacteria measured by the acetylene reduction assay: a
comparison between batch incubation and on-line monitoring, Environ. Microbiol., 3, 343–351, https://doi.org/10.1046/j.1462-2920.2001.00201.x, 2001.
Staal, M., te Lintel Hekkert, S., Jan Brummer, G., Veldhuis, M., Sikkens,
C., Persijn, S., and Stal, L. J.: Nitrogen fixation along a north-south
transect in the eastern Atlantic Ocean, Limnol. Oceanogr., 52,
1305–1316, https://doi.org/10.4319/lo.2007.52.4.1305, 2007.
Stenegren, M., Berg, C., Padilla, C., David, S.-S., Montoya, J., Yager, P.,
and Foster, R.: Piecewise Structural Equation Model (SEM) Disentangles the
Environmental Conditions Favoring Diatom Diazotroph Associations (DDAs) in
the Western Tropical North Atlantic (WTNA), Front. Microbiol., 8, 810, https://doi.org/10.3389/fmicb.2017.00810, 2017.
Stenegren, M., Caputo, A., Berg, C., Bonnet, S., and Foster, R. A.: Distribution and drivers of symbiotic and free-living diazotrophic cyanobacteria in the western tropical South Pacific, Biogeosciences, 15, 1559–1578, https://doi.org/10.5194/bg-15-1559-2018, 2018.
Subramaniam, A., Yager, P., Carpenter, E., Mahaffey, C., Björkman, K.,
Cooley, S., Kustka, A., Montoya, J., Sañudo-Wilhelmy, S., and Shipe, R.:
Amazon River enhances diazotrophy and carbon sequestration in the tropical
North Atlantic Ocean, P. Natl. Acad. Sci. USA, 105,
10460–10465, https://doi.org/10.1073/pnas.0710279105, 2008.
Subramaniam, A., Mahaffey, C., Johns, W., and Mahowald, N.: Equatorial
upwelling enhances nitrogen fixation in the Atlantic Ocean, Geophys. Res. Lett., 40, 1766–1771, https://doi.org/10.1002/grl.50250, 2013.
Suzuki, S., Kawachi, M., Tsukakoshi, C., Nakamura, A., Hagino, K., Inouye,
I., and Ishida, K.-I.: Unstable relationship between Braarudosphaera bigelowii (= Chrysochromulina parkeae) and its
nitrogen-fixing endosymbiont, Front. Plant Sci., 12, 749895, https://doi.org/10.3389/fpls.2021.749895, 2021.
Tang, W., Cerdán-García, E., Berthelot, H., Polyviou, D., Wang, S.,
Baylay, A., Whitby, H., Planquette, H., Mowlem, M., Robidart, J., and
Cassar, N.: New insights into the distributions of nitrogen fixation and
diazotrophs revealed by high-resolution sensing and sampling methods, ISME J., 14, 2514–2526, https://doi.org/10.1038/s41396-020-0703-6, 2020.
Tang, W. Y. and Cassar, N.: Data-driven modeling of the distribution of
diazotrophs in the global ocean, Geophys. Res. Lett., 46,
12258–12269, https://doi.org/10.1029/2019gl084376, 2019.
Tang, W. Y., Wang, S., Fonseca-Batista, D., Dehairs, F., Gifford, S.,
Gonzalez, A. G., Gallinari, M., Planquette, H., Sarthou, G., and Cassar, N.:
Revisiting the distribution of oceanic N2 fixation and estimating
diazotrophic contribution to marine production, Nat. Commun., 10,
https://doi.org/10.1038/s41467-019-08640-0, 2019.
Tenório, M. M. B., Dupouy, C., Rodier, M., and Neveux, J.:
Trichodesmium and other planktonic cyanobacteria in New Caledonian waters (SW tropical
Pacific) during an El Niño episode, Aquat. Microb. Ecol., 81,
219–241, https://doi.org/10.3354/ame01873, 2018.
Thomas, B. L. K.: Geometric means and measures of dispersion, Biometrics,
35, 908–909, 1979.
Thompson, A., Carter, B. J., Turk-Kubo, K., Malfatti, F., Azam, F., and
Zehr, J. P.: Genetic diversity of the unicellular nitrogen-fixing
cyanobacteria UCYN-A and its prymnesiophyte host, Environ. Microbiol., 16,
3238–3249, https://doi.org/10.1111/1462-2920.12490, 2014.
Thompson, A. W., Foster, R. A., Krupke, A., Carter, B. J., Musat, N.,
Vaulot, D., Kuypers, M. M. M., and Zehr, J. P.: Unicellular cyanobacterium
symbiotic with a single-celled eukaryotic alga, Science,
337, 1546–1550, https://doi.org/10.1126/science.1222700, 2012.
Tuo, S.-h., Mulholland, M. R., Taniuchi, Y., Chen, H.-Y., Jane, W.-N., Lin,
Y.-H., and Chen, Y.-l. L.: Trichome lengths of the heterocystous
N2-fixing cyanobacteria in the tropical marginal seas of the western
north pacific, Front. Marine Sci., 8, 678607, https://doi.org/10.3389/fmars.2021.678607, 2021.
Turk-Kubo, K., Achilles, K., Serros, T., Ochiai, M., Montoya, J., and Zehr,
J.: Nitrogenase (nifH) gene expression in diazotrophic cyanobacteria in the
Tropical North Atlantic in response to nutrient amendments., Front.
Aquat. Microbiol., 3, 1–17, https://doi.org/10.3389/fmicb.2012.00386, 2012.
Turk-Kubo, K. A., Karamchandani, M., Capone, D. G., and Zehr, J. P.: The
paradox of marine heterotrophic nitrogen fixation: abundances of
heterotrophic diazotrophs do not account for nitrogen fixation rates in the
Eastern Tropical South Pacific, Environ. Microbiol., 16, 3095–3114, https://doi.org/10.1111/1462-2920.12346, 2014.
Turk-Kubo, K. A., Mills, M. M., Arrigo, K. R., van Dijken, G., Henke, B. A.,
Stewart, B., Wilson, S. T., and Zehr, J. P.: UCYN-A/haptophyte symbioses
dominate N2 fixation in the Southern California Current System, ISME
Commun., 1, 42, https://doi.org/10.1038/s43705-021-00039-7, 2021.
Turk-Kubo, K., Gradoville, M., Cheung, S., Cornejo Castillo, F. M., Harding,
K., Morando, M., Mills, M., and Zehr, J.: Non-cyanobacterial diazotrophs:
Global diversity, distribution, ecophysiology, and activity in marine
waters, FEMS Microbiol. Rev., fuac046, https://doi.org/10.1093/femsre/fuac046, 2022.
Verity, P. G., Robertson, C. Y., Tronzo, C. R., Andrews, M. G., Nelson, J.
R., and Sieracki, M. E.: Relationships between cell volume and the carbon
and nitrogen content of marine photosynthetic nanoplankton, Limnol. Oceanogr., 37, 1434–1446, https://doi.org/10.4319/lo.1992.37.7.1434, 1992.
Villareal, T. A., Adornato, L., Wilson, C., and Schoenbaechler, C. A.:
Summer blooms of diatom-diazotroph assemblages and surface chlorophyll in
the North Pacific gyre: A disconnect, J. Geophys. Res., 116, C03001,
https://doi.org/10.1029/2010jc006268, 2011.
Wang, S., Tang, W., Delage, E., Gifford, S., Whitby, H., González, A.
G., Eveillard, D., Planquette, H., and Cassar, N.: Investigating the
microbial ecology of coastal hotspots of marine nitrogen fixation in the
western North Atlantic, Sci. Rep.-UK, 11, 5508, https://doi.org/10.1038/s41598-021-84969-1, 2021.
Wang, W. L., Moore, J. K., Martiny, A. C., and Primeau, F. W.: Convergent
estimates of marine nitrogen fixation, Nature, 566, 205–213, https://doi.org/10.1038/s41586-019-0911-2, 2019.
Wannicke, N., Benavides, M., Dalsgaard, T., Dippner, J. W., Montoya, J. P.,
and Voss, M.: New perspectives on nitrogen Fixation measurements using
15N2 Gas, Front. Marine Sci., 5, 120, https://doi.org/10.3389/fmars.2018.00120, 2018.
Wasmund, N., Struck, U., Hansen, A., Flohr, A., Nausch, G.,
Grüttmüller, A., and Voss, M.: Missing nitrogen fixation in the
Benguela region, Deep-Sea Res. Pt. I,
106, 30–41, https://doi.org/10.1016/j.dsr.2015.10.007, 2015.
Watkins-Brandt, K., Letelier, R., Spitz, Y., Church, M., Böttjer, D.,
and White, A.: Addition of inorganic or organic phosphorus enhances nitrogen
and carbon fixation in the oligotrophic North Pacific, Marine Ecol.
Prog. Ser., 432, 17–29, https://doi.org/10.3354/meps09147,
2011.
Wen, Z., Lin, W., Shen, R., Hong, H., Kao, S.-J., and Shi, D.: Nitrogen
fixation in two coastal upwelling regions of the Taiwan Strait, Sci. Rep.-UK, 7, 17601, https://doi.org/10.1038/s41598-017-18006-5,
2017.
Wen, Z., Browning, T. J., Cai, Y., Dai, R., Zhang, R., Du, C., Jiang, R.,
Lin, W., Liu, X., Cao, Z., Hong, H., Dai, M., and Shi, D.: Nutrient
regulation of biological nitrogen fixation across the tropical western North
Pacific, Sci. Adv., 8, eabl7564, https://doi.org/10.1126/sciadv.abl7564, 2022.
White, A. E., Watkins-Brandt, K. S., and Church, M. J.: Temporal variability
of Trichodesmium spp. and diatom-diazotroph assemblages in the North Pacific Subtropical
Gyre, Front. Mar. Sci., 5, 27, https://doi.org/10.3389/fmars.2018.00027, 2018.
White, A. E., Granger, J., Selden, C., Gradoville, M. R., Potts, L.,
Bourbonnais, A., Fulweiler, R. W., Knapp, A. N., Mohr, W., Moisander, P. H.,
Tobias, C. R., Caffin, M., Wilson, S. T., Benavides, M., Bonnet, S.,
Mulholland, M. R., and Chang, B. X.: A critical review of the 15N2
tracer method to measure diazotrophic production in pelagic ecosystems,
Limnol. Oceanogr.-Methods, 18, 129–147, https://doi.org/10.1002/lom3.10353, 2020.
White, A. E., Granger, J., and Turk-Kubo, K.: Questioning high nitrogen fixation rate measurements in the Southern Ocean, Nat. Geosci., 15, 29–30, https://doi.org/10.1038/s41561-021-00873-3, 2022.
Wilson, S. T., Böttjer, D., Church, M. J., and Karl, D. M.: Comparative
assessment of nitrogen fixation methodologies, conducted in the oligotrophic
North Pacific Ocean, Appl. Environ. Microbiol., 78, 6516–6523,
https://doi.org/10.1128/aem.01146-12, 2012.
Wilson, S. T., Aylward, F. O., Ribalet, F., Barone, B., Casey, J. R.,
Connell, P. E., Eppley, J. M., Ferrón, S., Fitzsimmons, J. N., Hayes, C.
T., Romano, A. E., Turk-Kubo, K. A., Vislova, A., Armbrust, E. V., Caron, D.
A., Church, M. J., Zehr, J. P., Karl, D. M., and DeLong, E. F.: Coordinated
regulation of growth, activity and transcription in natural populations of
the unicellular nitrogen-fixing cyanobacterium Crocosphaera, Nat. Microbiol., 2,
17118, https://doi.org/10.1038/nmicrobiol.2017.118, 2017.
Woebken, D., Burow, L. C., Behnam, F., Mayali, X., Schintlmeister, A.,
Fleming, E. D., Prufert-Bebout, L., Singer, S. W., Cortés, A. L.,
Hoehler, T. M., Pett-Ridge, J., Spormann, A. M., Wagner, M., Weber, P. K.,
and Bebout, B. M.: Revisiting N2 fixation in Guerrero Negro intertidal
microbial mats with a functional single-cell approach, ISME J., 9, 485–496,
https://doi.org/10.1038/ismej.2014.144, 2015.
Wu, C., Kan, J., Liu, H., Pujari, L., Guo, C., Wang, X., and Sun, J.:
Heterotrophic bacteria dominate the diazotrophic community in the Eastern
Indian Ocean (EIO) during pre-southwest monsoon, Microb. Ecol., 78, 804–819,
https://doi.org/10.1007/s00248-019-01355-1, 2019.
Wu, C., Sun, J., Liu, H., Xu, W., Zhang, G., Lu, H., and Guo, Y.: Evidence
of the significant contribution of heterotrophic diazotrophs to nitrogen
fixation in the Eastern Indian Ocean during pre-southwest monsoon period,
Ecosystems, 25, 1066–1083, https://doi.org/10.1007/s10021-021-00702-z, 2021.
Yeung, L. Y., Berelson, W. M., Young, E. D., Prokopenko, M. G., Rollins, N.,
Coles, V. J., Montoya, J. P., Carpenter, E. J., Steinberg, D. K., Foster, R.
A., Capone, D. G., and Yager, P. L.: Impact of diatom-diazotroph
associations on carbon export in the Amazon River plume, Geophys. Res. Lett., 39, L18609, https://doi.org/10.1029/2012GL053356,
2012.
Yogev, T., Rahav, E., Bar-Zeev, E., Man-Aharonovich, D., Stambler, N.,
Kress, N., Béjà, O., Mulholland, M. R., Herut, B., and Berman-Frank,
I.: Is dinitrogen fixation significant in the Levantine Basin, East
Mediterranean Sea?, Environ. Microbiol., 13, 854–871, https://doi.org/10.1111/j.1462-2920.2010.02402.x, 2011.
Zehr, J. P.: Nitrogen fixation by marine cyanobacteria, Trends Microbiol.,
19, 162–173, https://doi.org/10.1016/j.tim.2010.12.004, 2011.
Zehr, J. P. and Capone, D. G.: Marine nitrogen fixation, Springer, https://doi.org/10.1007/978-3-030-67746-6, 2021.
Zehr, J. P. and Riemann, L.: Quantification of gene copy numbers is valuable
in marine microbial ecology: A comment to Meiler et al. (2022), Limnol.
Oceanogr., 68, 1406–1412, https://doi.org/10.1002/lno.12364,
2023.
Zhang, R., Chen, M., Yang, Q., Lin, Y., Mao, H., Qiu, Y., Tong, J., Lv, E.,
Yang, Z., Yang, W., and Cao, J.: Physical-biological coupling of N2
fixation in the northwestern South China Sea coastal upwelling during
summer, Limnol. Oceanogr., 60, 1411–1425, https://doi.org/10.1002/lno.10111, 2015.
Zhang, R., Zhang, D., Chen, M., Jiang, Z., Wang, C., Zheng, M., Qiu, Y., and
Huang, J.: N2 fixation rate and diazotroph community structure in the
western tropical North Pacific Ocean, Acta Oceanol. Sin., 38, 26–34,
https://doi.org/10.1007/s13131-019-1513-4, 2019.
Zhang, X., Ward, B. B., and Sigman, D. M.: Global nitrogen cycle: critical
enzymes, organisms, and processes for nitrogen budgets and dynamics, Chem.
Rev., 120, 5308–5351, https://doi.org/10.1021/acs.chemrev.9b00613, 2020.
Short summary
N2 fixation by marine diazotrophs is an important bioavailable N source to the global ocean. This updated global oceanic diazotroph database increases the number of in situ measurements of N2 fixation rates, diazotrophic cell abundances, and nifH gene copy abundances by 184 %, 86 %, and 809 %, respectively. Using the updated database, the global marine N2 fixation rate is estimated at 223 ± 30 Tg N yr−1, which triplicates that using the original database.
N2 fixation by marine diazotrophs is an important bioavailable N source to the global ocean....
Altmetrics
Final-revised paper
Preprint