Data description paper
29 Apr 2022
Data description paper
| 29 Apr 2022
A monthly surface pCO2 product for the California Current Large Marine Ecosystem
Jonathan D. Sharp et al.
Related authors
Matthew P. Humphreys, Ernie R. Lewis, Jonathan D. Sharp, and Denis Pierrot
Geosci. Model Dev., 15, 15–43, https://doi.org/10.5194/gmd-15-15-2022, https://doi.org/10.5194/gmd-15-15-2022, 2022
Short summary
Short summary
The ocean helps to mitigate our impact on Earth's climate by absorbing about a quarter of the carbon dioxide (CO2) released by human activities each year. However, once absorbed, chemical reactions between CO2 and water reduce seawater pH (
ocean acidification), which may have adverse effects on marine ecosystems. Our Python package, PyCO2SYS, models the chemical reactions of CO2 in seawater, allowing us to quantify the corresponding changes in pH and related chemical properties.
Li-Qing Jiang, Richard A. Feely, Rik Wanninkhof, Dana Greeley, Leticia Barbero, Simone Alin, Brendan R. Carter, Denis Pierrot, Charles Featherstone, James Hooper, Chris Melrose, Natalie Monacci, Jonathan D. Sharp, Shawn Shellito, Yuan-Yuan Xu, Alex Kozyr, Robert H. Byrne, Wei-Jun Cai, Jessica Cross, Gregory C. Johnson, Burke Hales, Chris Langdon, Jeremy Mathis, Joe Salisbury, and David W. Townsend
Earth Syst. Sci. Data, 13, 2777–2799, https://doi.org/10.5194/essd-13-2777-2021, https://doi.org/10.5194/essd-13-2777-2021, 2021
Short summary
Short summary
Coastal ecosystems account for most of the economic activities related to commercial and recreational fisheries and aquaculture industries, supporting about 90 % of the global fisheries yield and 80 % of known species of marine fish. Despite the large potential risks from ocean acidification (OA), internally consistent water column OA data products in the coastal ocean still do not exist. This paper is the first time we report a high quality OA data product in North America's coastal waters.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Chiho Sukigara, Ryuichiro Inoue, Kanako Sato, Yoshihisa Mino, Takeyoshi Nagai, Andrea J. Fassbender, Yuichiro Takeshita, Stuart Bishop, and Eitarou Oka
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-9, https://doi.org/10.5194/bg-2022-9, 2022
Manuscript not accepted for further review
Short summary
Short summary
To investigate the physical changes in the ocean from winter to spring and the corresponding biological activities, two automated floats were used to conduct observations in the western North Pacific from January to April 2018. During the observation, repeated storms passed and mixed the ocean surface layer. Afterwards, active biological activity was observed. Using data from the float, we observed the formation, decomposition, and settling of particulate organic matter.
Matthew P. Humphreys, Ernie R. Lewis, Jonathan D. Sharp, and Denis Pierrot
Geosci. Model Dev., 15, 15–43, https://doi.org/10.5194/gmd-15-15-2022, https://doi.org/10.5194/gmd-15-15-2022, 2022
Short summary
Short summary
The ocean helps to mitigate our impact on Earth's climate by absorbing about a quarter of the carbon dioxide (CO2) released by human activities each year. However, once absorbed, chemical reactions between CO2 and water reduce seawater pH (
ocean acidification), which may have adverse effects on marine ecosystems. Our Python package, PyCO2SYS, models the chemical reactions of CO2 in seawater, allowing us to quantify the corresponding changes in pH and related chemical properties.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Marta Álvarez, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Sara Jutterström, Steve D. Jones, Maren K. Karlsen, Claire Lo Monaco, Patrick Michaelis, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Anton Velo, Rik Wanninkhof, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 13, 5565–5589, https://doi.org/10.5194/essd-13-5565-2021, https://doi.org/10.5194/essd-13-5565-2021, 2021
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2021 is the third update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality control, including systematic evaluation of measurement biases. This version contains data from 989 hydrographic cruises covering the world's oceans from 1972 to 2020.
Li-Qing Jiang, Richard A. Feely, Rik Wanninkhof, Dana Greeley, Leticia Barbero, Simone Alin, Brendan R. Carter, Denis Pierrot, Charles Featherstone, James Hooper, Chris Melrose, Natalie Monacci, Jonathan D. Sharp, Shawn Shellito, Yuan-Yuan Xu, Alex Kozyr, Robert H. Byrne, Wei-Jun Cai, Jessica Cross, Gregory C. Johnson, Burke Hales, Chris Langdon, Jeremy Mathis, Joe Salisbury, and David W. Townsend
Earth Syst. Sci. Data, 13, 2777–2799, https://doi.org/10.5194/essd-13-2777-2021, https://doi.org/10.5194/essd-13-2777-2021, 2021
Short summary
Short summary
Coastal ecosystems account for most of the economic activities related to commercial and recreational fisheries and aquaculture industries, supporting about 90 % of the global fisheries yield and 80 % of known species of marine fish. Despite the large potential risks from ocean acidification (OA), internally consistent water column OA data products in the coastal ocean still do not exist. This paper is the first time we report a high quality OA data product in North America's coastal waters.
Chiho Sukigara, Ryuichiro Inoue, Kanako Sato, Yoshihisa Mino, Takeyoshi Nagai, Andrea J. Fassbender, Yuichiro Takeshita, and Eitarou Oka
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-116, https://doi.org/10.5194/bg-2021-116, 2021
Manuscript not accepted for further review
Short summary
Short summary
We combined ship-borne water sampling with the use of two Argo floats equipped with biogeochemical sensors to determine the changes in primary productivity associated with the passage of storms and resultant disturbance in the subtropical western North Pacific. We found that the episodic influx of carbon to the surface facilitated by storms played a key role in promoting primary production. Particulate carbon transported to the twilight layer were not the major substrate for the respiration.
Andrea J. Fassbender, James C. Orr, and Andrew G. Dickson
Biogeosciences, 18, 1407–1415, https://doi.org/10.5194/bg-18-1407-2021, https://doi.org/10.5194/bg-18-1407-2021, 2021
Short summary
Short summary
A decline in upper-ocean pH with time is typically ascribed to ocean acidification. A more quantitative interpretation is often confused by failing to recognize the implications of pH being a logarithmic transform of hydrogen ion concentration rather than an absolute measure. This can lead to an unwitting misinterpretation of pH data. We provide three real-world examples illustrating this and recommend the reporting of both hydrogen ion concentration and pH in studies of ocean chemical change.
Are Olsen, Nico Lange, Robert M. Key, Toste Tanhua, Henry C. Bittig, Alex Kozyr, Marta Álvarez, Kumiko Azetsu-Scott, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Sara Jutterström, Camilla S. Landa, Siv K. Lauvset, Patrick Michaelis, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Anton Velo, Rik Wanninkhof, and Ryan J. Woosley
Earth Syst. Sci. Data, 12, 3653–3678, https://doi.org/10.5194/essd-12-3653-2020, https://doi.org/10.5194/essd-12-3653-2020, 2020
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by chemical analysis of water bottle samples at scientific cruises. GLODAPv2.2020 is the second update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality control, including systematic evaluation of measurement biases. This version contains data from 946 hydrographic cruises covering the world's oceans from 1972 to 2019.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone Alin, Luiz E. O. C. Aragão, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp, Selma Bultan, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Wiley Evans, Liesbeth Florentie, Piers M. Forster, Thomas Gasser, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Luke Gregor, Nicolas Gruber, Ian Harris, Kerstin Hartung, Vanessa Haverd, Richard A. Houghton, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Koji Kadono, Etsushi Kato, Vassilis Kitidis, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Gregg Marland, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Adam J. P. Smith, Adrienne J. Sutton, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Guido van der Werf, Nicolas Vuichard, Anthony P. Walker, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Xu Yue, and Sönke Zaehle
Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, https://doi.org/10.5194/essd-12-3269-2020, 2020
Short summary
Short summary
The Global Carbon Budget 2020 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Are Olsen, Nico Lange, Robert M. Key, Toste Tanhua, Marta Álvarez, Susan Becker, Henry C. Bittig, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Steve D. Jones, Sara Jutterström, Maren K. Karlsen, Alex Kozyr, Siv K. Lauvset, Claire Lo Monaco, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Maciej Telszewski, Bronte Tilbrook, Anton Velo, and Rik Wanninkhof
Earth Syst. Sci. Data, 11, 1437–1461, https://doi.org/10.5194/essd-11-1437-2019, https://doi.org/10.5194/essd-11-1437-2019, 2019
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by chemical analysis of water bottle samples at scientific cruises. GLODAPv2.2019 is the first update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality control, including systematic evaluation of measurement biases. This version contains data from 840 hydrographic cruises covering the world's oceans from 1972 to 2017.
Katja Fennel, Simone Alin, Leticia Barbero, Wiley Evans, Timothée Bourgeois, Sarah Cooley, John Dunne, Richard A. Feely, Jose Martin Hernandez-Ayon, Xinping Hu, Steven Lohrenz, Frank Muller-Karger, Raymond Najjar, Lisa Robbins, Elizabeth Shadwick, Samantha Siedlecki, Nadja Steiner, Adrienne Sutton, Daniela Turk, Penny Vlahos, and Zhaohui Aleck Wang
Biogeosciences, 16, 1281–1304, https://doi.org/10.5194/bg-16-1281-2019, https://doi.org/10.5194/bg-16-1281-2019, 2019
Short summary
Short summary
We review and synthesize available information on coastal ocean carbon fluxes around North America (NA). There is overwhelming evidence, compiled and discussed here, that the NA coastal margins act as a sink. Our synthesis shows the great diversity in processes driving carbon fluxes in different coastal regions, highlights remaining gaps in observations and models, and discusses current and anticipated future trends with respect to carbon fluxes and acidification.
Adrienne J. Sutton, Richard A. Feely, Stacy Maenner-Jones, Sylvia Musielwicz, John Osborne, Colin Dietrich, Natalie Monacci, Jessica Cross, Randy Bott, Alex Kozyr, Andreas J. Andersson, Nicholas R. Bates, Wei-Jun Cai, Meghan F. Cronin, Eric H. De Carlo, Burke Hales, Stephan D. Howden, Charity M. Lee, Derek P. Manzello, Michael J. McPhaden, Melissa Meléndez, John B. Mickett, Jan A. Newton, Scott E. Noakes, Jae Hoon Noh, Solveig R. Olafsdottir, Joseph E. Salisbury, Uwe Send, Thomas W. Trull, Douglas C. Vandemark, and Robert A. Weller
Earth Syst. Sci. Data, 11, 421–439, https://doi.org/10.5194/essd-11-421-2019, https://doi.org/10.5194/essd-11-421-2019, 2019
Short summary
Short summary
Long-term observations are critical records for distinguishing natural cycles from climate change. We present a data set of 40 surface ocean CO2 and pH time series that suggests the time length necessary to detect a trend in seawater CO2 due to uptake of atmospheric CO2 varies from 8 years in the least variable ocean regions to 41 years in the most variable coastal regions. This data set provides a tool to evaluate natural cycles of ocean CO2, with long-term trends emerging as records lengthen.
Corinne Le Quéré, Robbie M. Andrew, Pierre Friedlingstein, Stephen Sitch, Judith Hauck, Julia Pongratz, Penelope A. Pickers, Jan Ivar Korsbakken, Glen P. Peters, Josep G. Canadell, Almut Arneth, Vivek K. Arora, Leticia Barbero, Ana Bastos, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Philippe Ciais, Scott C. Doney, Thanos Gkritzalis, Daniel S. Goll, Ian Harris, Vanessa Haverd, Forrest M. Hoffman, Mario Hoppema, Richard A. Houghton, George Hurtt, Tatiana Ilyina, Atul K. Jain, Truls Johannessen, Chris D. Jones, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Peter Landschützer, Nathalie Lefèvre, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-ichiro Nakaoka, Craig Neill, Are Olsen, Tsueno Ono, Prabir Patra, Anna Peregon, Wouter Peters, Philippe Peylin, Benjamin Pfeil, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Matthias Rocher, Christian Rödenbeck, Ute Schuster, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Tobias Steinhoff, Adrienne Sutton, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Ingrid T. van der Laan-Luijkx, Guido R. van der Werf, Nicolas Viovy, Anthony P. Walker, Andrew J. Wiltshire, Rebecca Wright, Sönke Zaehle, and Bo Zheng
Earth Syst. Sci. Data, 10, 2141–2194, https://doi.org/10.5194/essd-10-2141-2018, https://doi.org/10.5194/essd-10-2141-2018, 2018
Short summary
Short summary
The Global Carbon Budget 2018 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Melissa Meléndez, Joseph Salisbury, Dwight Gledhill, Chris Langdon, Julio M. Morell, Derek Manzello, Sylvia Musielewicz, and Adrienne Sutton
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-408, https://doi.org/10.5194/bg-2018-408, 2018
Preprint withdrawn
Short summary
Short summary
Using observations from the NOAA CO2 buoy in La Parguera, Puerto Rico along with modeling approaches yield useful indices of biological processes affecting the water column over the reef. This study provided the first long-term monitoring of coral reef biological processes. Results show that processes that produce CO2 dominated over most of the year leading to high dissolution rates. This can have implications on the reef system's ability to recover to other climate-scale stressors (warming).
Adrienne J. Sutton, Richard A. Feely, Stacy Maenner-Jones, Sylvia Musielwicz, John Osborne, Colin Dietrich, Natalie Monacci, Jessica Cross, Randy Bott, and Alex Kozyr
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2018-77, https://doi.org/10.5194/essd-2018-77, 2018
Preprint withdrawn
Short summary
Short summary
Long-term observations are critical records for distinguishing natural cycles from climate change. We present a data set of 40 surface ocean CO2 and pH time series that suggest the time length necessary to detect a trend in seawater CO2 due to uptake of atmospheric CO2 varies from 8 years in the least variable ocean regions to 41 years in the most variable coastal regions. This data set provides a tool to evaluate natural cycles of ocean CO2, with long-term trends emerging as records lengthen.
Andrea J. Fassbender, Simone R. Alin, Richard A. Feely, Adrienne J. Sutton, Jan A. Newton, Christopher Krembs, Julia Bos, Mya Keyzers, Allan Devol, Wendi Ruef, and Greg Pelletier
Earth Syst. Sci. Data, 10, 1367–1401, https://doi.org/10.5194/essd-10-1367-2018, https://doi.org/10.5194/essd-10-1367-2018, 2018
Short summary
Short summary
Ocean acidification (OA) is difficult to identify in coastal marine waters due to the magnitude of natural variability and lack of historical baseline information. To provide regional context for ongoing research, adaptation, and management efforts, we have collated high-quality publicly available data to characterize seasonal cycles of OA-relevant parameters in the Pacific Northwest marine surface waters. Large nonstationary chemical gradients from the open ocean into the Salish Sea are found.
Corinne Le Quéré, Robbie M. Andrew, Josep G. Canadell, Stephen Sitch, Jan Ivar Korsbakken, Glen P. Peters, Andrew C. Manning, Thomas A. Boden, Pieter P. Tans, Richard A. Houghton, Ralph F. Keeling, Simone Alin, Oliver D. Andrews, Peter Anthoni, Leticia Barbero, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Philippe Ciais, Kim Currie, Christine Delire, Scott C. Doney, Pierre Friedlingstein, Thanos Gkritzalis, Ian Harris, Judith Hauck, Vanessa Haverd, Mario Hoppema, Kees Klein Goldewijk, Atul K. Jain, Etsushi Kato, Arne Körtzinger, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Danica Lombardozzi, Joe R. Melton, Nicolas Metzl, Frank Millero, Pedro M. S. Monteiro, David R. Munro, Julia E. M. S. Nabel, Shin-ichiro Nakaoka, Kevin O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Christian Rödenbeck, Joe Salisbury, Ute Schuster, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Benjamin D. Stocker, Adrienne J. Sutton, Taro Takahashi, Hanqin Tian, Bronte Tilbrook, Ingrid T. van der Laan-Luijkx, Guido R. van der Werf, Nicolas Viovy, Anthony P. Walker, Andrew J. Wiltshire, and Sönke Zaehle
Earth Syst. Sci. Data, 8, 605–649, https://doi.org/10.5194/essd-8-605-2016, https://doi.org/10.5194/essd-8-605-2016, 2016
Short summary
Short summary
The Global Carbon Budget 2016 is the 11th annual update of emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land, and ocean. This data synthesis brings together measurements, statistical information, and analyses of model results in order to provide an assessment of the global carbon budget and their uncertainties for years 1959 to 2015, with a projection for year 2016.
Dorothee C. E. Bakker, Benjamin Pfeil, Camilla S. Landa, Nicolas Metzl, Kevin M. O'Brien, Are Olsen, Karl Smith, Cathy Cosca, Sumiko Harasawa, Stephen D. Jones, Shin-ichiro Nakaoka, Yukihiro Nojiri, Ute Schuster, Tobias Steinhoff, Colm Sweeney, Taro Takahashi, Bronte Tilbrook, Chisato Wada, Rik Wanninkhof, Simone R. Alin, Carlos F. Balestrini, Leticia Barbero, Nicholas R. Bates, Alejandro A. Bianchi, Frédéric Bonou, Jacqueline Boutin, Yann Bozec, Eugene F. Burger, Wei-Jun Cai, Robert D. Castle, Liqi Chen, Melissa Chierici, Kim Currie, Wiley Evans, Charles Featherstone, Richard A. Feely, Agneta Fransson, Catherine Goyet, Naomi Greenwood, Luke Gregor, Steven Hankin, Nick J. Hardman-Mountford, Jérôme Harlay, Judith Hauck, Mario Hoppema, Matthew P. Humphreys, Christopher W. Hunt, Betty Huss, J. Severino P. Ibánhez, Truls Johannessen, Ralph Keeling, Vassilis Kitidis, Arne Körtzinger, Alex Kozyr, Evangelia Krasakopoulou, Akira Kuwata, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Claire Lo Monaco, Ansley Manke, Jeremy T. Mathis, Liliane Merlivat, Frank J. Millero, Pedro M. S. Monteiro, David R. Munro, Akihiko Murata, Timothy Newberger, Abdirahman M. Omar, Tsuneo Ono, Kristina Paterson, David Pearce, Denis Pierrot, Lisa L. Robbins, Shu Saito, Joe Salisbury, Reiner Schlitzer, Bernd Schneider, Roland Schweitzer, Rainer Sieger, Ingunn Skjelvan, Kevin F. Sullivan, Stewart C. Sutherland, Adrienne J. Sutton, Kazuaki Tadokoro, Maciej Telszewski, Matthias Tuma, Steven M. A. C. van Heuven, Doug Vandemark, Brian Ward, Andrew J. Watson, and Suqing Xu
Earth Syst. Sci. Data, 8, 383–413, https://doi.org/10.5194/essd-8-383-2016, https://doi.org/10.5194/essd-8-383-2016, 2016
Short summary
Short summary
Version 3 of the Surface Ocean CO2 Atlas (www.socat.info) has 14.5 million CO2 (carbon dioxide) values for the years 1957 to 2014 covering the global oceans and coastal seas. Version 3 is an update to version 2 with a longer record and 44 % more CO2 values. The CO2 measurements have been made on ships, fixed moorings and drifting buoys. SOCAT enables quantification of the ocean carbon sink and ocean acidification, as well as model evaluation, thus informing climate negotiations.
Adrienne J. Sutton, Christopher L. Sabine, Richard A. Feely, Wei-Jun Cai, Meghan F. Cronin, Michael J. McPhaden, Julio M. Morell, Jan A. Newton, Jae-Hoon Noh, Sólveig R. Ólafsdóttir, Joseph E. Salisbury, Uwe Send, Douglas C. Vandemark, and Robert A. Weller
Biogeosciences, 13, 5065–5083, https://doi.org/10.5194/bg-13-5065-2016, https://doi.org/10.5194/bg-13-5065-2016, 2016
Short summary
Short summary
Ocean carbonate observations from surface buoys reveal that marine life is currently exposed to conditions outside preindustrial bounds at 12 study locations around the world. Seasonal conditions in the California Current Ecosystem and Gulf of Maine also exceed thresholds that may impact shellfish larvae. High-resolution observations place long-term change in the context of large natural variability: a necessary step to understand ocean acidification impacts under real-world conditions.
C. Le Quéré, R. Moriarty, R. M. Andrew, J. G. Canadell, S. Sitch, J. I. Korsbakken, P. Friedlingstein, G. P. Peters, R. J. Andres, T. A. Boden, R. A. Houghton, J. I. House, R. F. Keeling, P. Tans, A. Arneth, D. C. E. Bakker, L. Barbero, L. Bopp, J. Chang, F. Chevallier, L. P. Chini, P. Ciais, M. Fader, R. A. Feely, T. Gkritzalis, I. Harris, J. Hauck, T. Ilyina, A. K. Jain, E. Kato, V. Kitidis, K. Klein Goldewijk, C. Koven, P. Landschützer, S. K. Lauvset, N. Lefèvre, A. Lenton, I. D. Lima, N. Metzl, F. Millero, D. R. Munro, A. Murata, J. E. M. S. Nabel, S. Nakaoka, Y. Nojiri, K. O'Brien, A. Olsen, T. Ono, F. F. Pérez, B. Pfeil, D. Pierrot, B. Poulter, G. Rehder, C. Rödenbeck, S. Saito, U. Schuster, J. Schwinger, R. Séférian, T. Steinhoff, B. D. Stocker, A. J. Sutton, T. Takahashi, B. Tilbrook, I. T. van der Laan-Luijkx, G. R. van der Werf, S. van Heuven, D. Vandemark, N. Viovy, A. Wiltshire, S. Zaehle, and N. Zeng
Earth Syst. Sci. Data, 7, 349–396, https://doi.org/10.5194/essd-7-349-2015, https://doi.org/10.5194/essd-7-349-2015, 2015
Short summary
Short summary
Accurate assessment of anthropogenic carbon dioxide emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to understand the global carbon cycle, support the development of climate policies, and project future climate change. We describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on a range of data and models and their interpretation by a broad scientific community.
C. Le Quéré, R. Moriarty, R. M. Andrew, G. P. Peters, P. Ciais, P. Friedlingstein, S. D. Jones, S. Sitch, P. Tans, A. Arneth, T. A. Boden, L. Bopp, Y. Bozec, J. G. Canadell, L. P. Chini, F. Chevallier, C. E. Cosca, I. Harris, M. Hoppema, R. A. Houghton, J. I. House, A. K. Jain, T. Johannessen, E. Kato, R. F. Keeling, V. Kitidis, K. Klein Goldewijk, C. Koven, C. S. Landa, P. Landschützer, A. Lenton, I. D. Lima, G. Marland, J. T. Mathis, N. Metzl, Y. Nojiri, A. Olsen, T. Ono, S. Peng, W. Peters, B. Pfeil, B. Poulter, M. R. Raupach, P. Regnier, C. Rödenbeck, S. Saito, J. E. Salisbury, U. Schuster, J. Schwinger, R. Séférian, J. Segschneider, T. Steinhoff, B. D. Stocker, A. J. Sutton, T. Takahashi, B. Tilbrook, G. R. van der Werf, N. Viovy, Y.-P. Wang, R. Wanninkhof, A. Wiltshire, and N. Zeng
Earth Syst. Sci. Data, 7, 47–85, https://doi.org/10.5194/essd-7-47-2015, https://doi.org/10.5194/essd-7-47-2015, 2015
Short summary
Short summary
Carbon dioxide (CO2) emissions from human activities (burning fossil fuels and cement production, deforestation and other land-use change) are set to rise again in 2014.
This study (updated yearly) makes an accurate assessment of anthropogenic CO2 emissions and their redistribution between the atmosphere, ocean, and terrestrial biosphere in order to better understand the global carbon cycle, support the development of climate policies, and project future climate change.
A. J. Sutton, C. L. Sabine, S. Maenner-Jones, N. Lawrence-Slavas, C. Meinig, R. A. Feely, J. T. Mathis, S. Musielewicz, R. Bott, P. D. McLain, H. J. Fought, and A. Kozyr
Earth Syst. Sci. Data, 6, 353–366, https://doi.org/10.5194/essd-6-353-2014, https://doi.org/10.5194/essd-6-353-2014, 2014
Short summary
Short summary
In an effort to track ocean change, sustained ocean observations are becoming increasingly important. Advancements in the ocean carbon observation network over the last decade have dramatically improved our ability to understand how rising atmospheric CO2 and climate change affect the chemistry of the oceans and their marine ecosystems. Here we describe one of those advancements, the MAPCO2 system, and the climate-quality data produced from 14 ocean CO2 observatories.
D. C. E. Bakker, B. Pfeil, K. Smith, S. Hankin, A. Olsen, S. R. Alin, C. Cosca, S. Harasawa, A. Kozyr, Y. Nojiri, K. M. O'Brien, U. Schuster, M. Telszewski, B. Tilbrook, C. Wada, J. Akl, L. Barbero, N. R. Bates, J. Boutin, Y. Bozec, W.-J. Cai, R. D. Castle, F. P. Chavez, L. Chen, M. Chierici, K. Currie, H. J. W. de Baar, W. Evans, R. A. Feely, A. Fransson, Z. Gao, B. Hales, N. J. Hardman-Mountford, M. Hoppema, W.-J. Huang, C. W. Hunt, B. Huss, T. Ichikawa, T. Johannessen, E. M. Jones, S. D. Jones, S. Jutterström, V. Kitidis, A. Körtzinger, P. Landschützer, S. K. Lauvset, N. Lefèvre, A. B. Manke, J. T. Mathis, L. Merlivat, N. Metzl, A. Murata, T. Newberger, A. M. Omar, T. Ono, G.-H. Park, K. Paterson, D. Pierrot, A. F. Ríos, C. L. Sabine, S. Saito, J. Salisbury, V. V. S. S. Sarma, R. Schlitzer, R. Sieger, I. Skjelvan, T. Steinhoff, K. F. Sullivan, H. Sun, A. J. Sutton, T. Suzuki, C. Sweeney, T. Takahashi, J. Tjiputra, N. Tsurushima, S. M. A. C. van Heuven, D. Vandemark, P. Vlahos, D. W. R. Wallace, R. Wanninkhof, and A. J. Watson
Earth Syst. Sci. Data, 6, 69–90, https://doi.org/10.5194/essd-6-69-2014, https://doi.org/10.5194/essd-6-69-2014, 2014
Related subject area
Oceanography – Chemical
Climatological distribution of dissolved inorganic nutrients in the western Mediterranean Sea (1981–2017)
An updated version of the global interior ocean biogeochemical data product, GLODAPv2.2021
Revisiting five decades of 234Th data: a comprehensive global oceanic compilation
Coastal Ocean Data Analysis Product in North America (CODAP-NA) – an internally consistent data product for discrete inorganic carbon, oxygen, and nutrients on the North American ocean margins
Feasibility of reconstructing the summer basin-scale sea surface partial pressure of carbon dioxide from sparse in situ observations over the South China Sea
OceanSODA-ETHZ: a global gridded data set of the surface ocean carbonate system for seasonal to decadal studies of ocean acidification
An updated version of the global interior ocean biogeochemical data product, GLODAPv2.2020
ARIOS: a database for ocean acidification assessment in the Iberian upwelling system (1976–2018)
A uniform pCO2 climatology combining open and coastal oceans
Dissolved inorganic nutrients in the western Mediterranean Sea (2004–2017)
A global monthly climatology of oceanic total dissolved inorganic carbon: a neural network approach
A 17-year dataset of surface water fugacity of CO2 along with calculated pH, aragonite saturation state and air–sea CO2 fluxes in the northern Caribbean Sea
Global database of ratios of particulate organic carbon to thorium-234 in the ocean: improving estimates of the biological carbon pump
Global certified-reference-material- or reference-material-scaled nutrient gridded dataset GND13
GLODAPv2.2019 – an update of GLODAPv2
A global monthly climatology of total alkalinity: a neural network approach
Environmental parameters of shallow water habitats in the SW Baltic Sea
A comprehensive global oceanic dataset of helium isotope and tritium measurements
Autonomous seawater pCO2 and pH time series from 40 surface buoys and the emergence of anthropogenic trends
A rare intercomparison of nutrient analysis at sea: lessons learned and recommendations to enhance comparability of open-ocean nutrient data
SURATLANT: a 1993–2017 surface sampling in the central part of the North Atlantic subpolar gyre
FerryBox data in the North Sea from 2002 to 2005
Seasonal carbonate chemistry variability in marine surface waters of the US Pacific Northwest
The Ocean Carbon States Database: a proof-of-concept application of cluster analysis in the ocean carbon cycle
An internally consistent dataset of δ13C-DIC in the North Atlantic Ocean – NAC13v1
A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT)
The Global Ocean Data Analysis Project version 2 (GLODAPv2) – an internally consistent data product for the world ocean
A new global interior ocean mapped climatology: the 1° × 1° GLODAP version 2
Stable carbon isotopes of dissolved inorganic carbon for a zonal transect across the subpolar North Atlantic Ocean in summer 2014
In situ measurement of the biogeochemical properties of Southern Ocean mesoscale eddies in the Southwest Indian Ocean, April 2014
A high-frequency atmospheric and seawater pCO2 data set from 14 open-ocean sites using a moored autonomous system
Measurements of total alkalinity and inorganic dissolved carbon in the Atlantic Ocean and adjacent Southern Ocean between 2008 and 2010
Measurements of the dissolved inorganic carbon system and associated biogeochemical parameters in the Canadian Arctic, 1974–2009
An update to the Surface Ocean CO2 Atlas (SOCAT version 2)
Winter measurements of oceanic biogeochemical parameters in the Rockall Trough (2009–2012)
Repeat hydrography in the Mediterranean Sea, data from the Meteor cruise 84/3 in 2011
A uniform, quality controlled Surface Ocean CO2 Atlas (SOCAT)
Surface Ocean CO2 Atlas (SOCAT) gridded data products
Assessing the internal consistency of the CARINA data base in the Pacific sector of the Southern Ocean
CARINA TCO2 data in the Atlantic Ocean
CARINA data synthesis project: pH data scale unification and cruise adjustments
Nordic Seas dissolved oxygen data in CARINA
The CARINA data synthesis project: introduction and overview
The Irminger Sea and the Iceland Sea time series measurements of sea water carbon and nutrient chemistry 1983–2008
Assessing the internal consistency of the CARINA database in the Indian sector of the Southern Ocean
CARINA oxygen data in the Atlantic Ocean
Consistency of cruise data of the CARINA database in the Atlantic sector of the Southern Ocean
Malek Belgacem, Katrin Schroeder, Alexander Barth, Charles Troupin, Bruno Pavoni, Patrick Raimbault, Nicole Garcia, Mireno Borghini, and Jacopo Chiggiato
Earth Syst. Sci. Data, 13, 5915–5949, https://doi.org/10.5194/essd-13-5915-2021, https://doi.org/10.5194/essd-13-5915-2021, 2021
Short summary
Short summary
The Mediterranean Sea exhibits an anti-estuarine circulation, responsible for its low productivity. Understanding this peculiar character is still a challenge since there is no exact quantification of nutrient sinks and sources. Because nutrient in situ observations are generally infrequent and scattered in space and time, climatological mapping is often applied to sparse data in order to understand the biogeochemical state of the ocean. The dataset presented here partly addresses these issues.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Marta Álvarez, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Sara Jutterström, Steve D. Jones, Maren K. Karlsen, Claire Lo Monaco, Patrick Michaelis, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Anton Velo, Rik Wanninkhof, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 13, 5565–5589, https://doi.org/10.5194/essd-13-5565-2021, https://doi.org/10.5194/essd-13-5565-2021, 2021
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2021 is the third update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality control, including systematic evaluation of measurement biases. This version contains data from 989 hydrographic cruises covering the world's oceans from 1972 to 2020.
Elena Ceballos-Romero, Ken O. Buesseler, and María Villa-Alfageme
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-259, https://doi.org/10.5194/essd-2021-259, 2021
Revised manuscript accepted for ESSD
Short summary
Short summary
Thorium-234 is widely used for studying the removal rate of material on sinking particles from the upper ocean and for determining the downward flux of carbon. In this study, we present a compilation of the 50 years of 234Th measurements in the ocean and provide a broad overview of the character of the datasets. This provides a valuable resource useful to better understand and quantify how the contemporary oceanic carbon uptake functions and how it will change in future.
Li-Qing Jiang, Richard A. Feely, Rik Wanninkhof, Dana Greeley, Leticia Barbero, Simone Alin, Brendan R. Carter, Denis Pierrot, Charles Featherstone, James Hooper, Chris Melrose, Natalie Monacci, Jonathan D. Sharp, Shawn Shellito, Yuan-Yuan Xu, Alex Kozyr, Robert H. Byrne, Wei-Jun Cai, Jessica Cross, Gregory C. Johnson, Burke Hales, Chris Langdon, Jeremy Mathis, Joe Salisbury, and David W. Townsend
Earth Syst. Sci. Data, 13, 2777–2799, https://doi.org/10.5194/essd-13-2777-2021, https://doi.org/10.5194/essd-13-2777-2021, 2021
Short summary
Short summary
Coastal ecosystems account for most of the economic activities related to commercial and recreational fisheries and aquaculture industries, supporting about 90 % of the global fisheries yield and 80 % of known species of marine fish. Despite the large potential risks from ocean acidification (OA), internally consistent water column OA data products in the coastal ocean still do not exist. This paper is the first time we report a high quality OA data product in North America's coastal waters.
Guizhi Wang, Samuel S. P. Shen, Yao Chen, Yan Bai, Huan Qin, Zhixuan Wang, Baoshan Chen, Xianghui Guo, and Minhan Dai
Earth Syst. Sci. Data, 13, 1403–1417, https://doi.org/10.5194/essd-13-1403-2021, https://doi.org/10.5194/essd-13-1403-2021, 2021
Short summary
Short summary
This study reconstructs a complete field of summer sea surface partial pressure of CO2 (pCO2) over the South China Sea (SCS) with a 0.5° resolution in the period of 2000–2017 using the scattered underway pCO2 observations. The spectral optimal gridding method was used in this reconstruction with empirical orthogonal functions computed from remote sensing data. Our reconstructed data show that the rate of sea surface pCO2 increase in the SCS is 2.4 ± 0.8 µatm yr-1 during 2000–2017.
Luke Gregor and Nicolas Gruber
Earth Syst. Sci. Data, 13, 777–808, https://doi.org/10.5194/essd-13-777-2021, https://doi.org/10.5194/essd-13-777-2021, 2021
Short summary
Short summary
Ocean acidification (OA) has altered the ocean's carbonate chemistry, with consequences for marine life. Yet, no observation-based data set exists that permits us to study changes in OA. We fill this gap with a global data set of relevant surface ocean parameters over the period 1985–2018. This data set, OceanSODA-ETHZ, was created by using satellite and other data to extrapolate ship-based measurements of carbon dioxide and total alkalinity from which parameters for OA were computed.
Are Olsen, Nico Lange, Robert M. Key, Toste Tanhua, Henry C. Bittig, Alex Kozyr, Marta Álvarez, Kumiko Azetsu-Scott, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Sara Jutterström, Camilla S. Landa, Siv K. Lauvset, Patrick Michaelis, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Anton Velo, Rik Wanninkhof, and Ryan J. Woosley
Earth Syst. Sci. Data, 12, 3653–3678, https://doi.org/10.5194/essd-12-3653-2020, https://doi.org/10.5194/essd-12-3653-2020, 2020
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by chemical analysis of water bottle samples at scientific cruises. GLODAPv2.2020 is the second update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality control, including systematic evaluation of measurement biases. This version contains data from 946 hydrographic cruises covering the world's oceans from 1972 to 2019.
Xosé Antonio Padin, Antón Velo, and Fiz F. Pérez
Earth Syst. Sci. Data, 12, 2647–2663, https://doi.org/10.5194/essd-12-2647-2020, https://doi.org/10.5194/essd-12-2647-2020, 2020
Short summary
Short summary
The ARIOS (Acidification in the Rias and the Iberian Continental Shelf) database holds biogeochemical information from 3357 oceanographic stations, giving 17 653 discrete samples. This unique collection is a starting point for evaluating ocean acidification in the Iberian upwelling system, characterized by intense biogeochemical interactions as an observation-based analysis, or for use as inputs in a coupled physical–biogeochemical model to disentangle these interactions at the ecosystem level.
Peter Landschützer, Goulven G. Laruelle, Alizee Roobaert, and Pierre Regnier
Earth Syst. Sci. Data, 12, 2537–2553, https://doi.org/10.5194/essd-12-2537-2020, https://doi.org/10.5194/essd-12-2537-2020, 2020
Short summary
Short summary
In recent years, multiple estimates of the global air–sea CO2 flux emerged from upscaling shipboard pCO2 measurements. They are however limited to the open-ocean domain and do not consider the coastal ocean, i.e. a significant marine sink for CO2. We build towards an integrated pCO2 product that combines both the open-ocean and coastal-ocean domain and focus on the evaluation of the common overlap area of these products and how well the aquatic continuum is represented in the new climatology.
Malek Belgacem, Jacopo Chiggiato, Mireno Borghini, Bruno Pavoni, Gabriella Cerrati, Francesco Acri, Stefano Cozzi, Alberto Ribotti, Marta Álvarez, Siv K. Lauvset, and Katrin Schroeder
Earth Syst. Sci. Data, 12, 1985–2011, https://doi.org/10.5194/essd-12-1985-2020, https://doi.org/10.5194/essd-12-1985-2020, 2020
Short summary
Short summary
Long-term time series are a fundamental prerequisite to understanding and detecting climate shifts and trends. In marginal seas, such as the Mediterranean Sea, there are still monitoring gaps. An extensive dataset of dissolved inorganic nutrient profiles were collected between 2004 and 2017 in the western Mediterranean Sea to provide to the scientific community a publicly available, long-term, quality-controlled, internally consistent new database.
Daniel Broullón, Fiz F. Pérez, Antón Velo, Mario Hoppema, Are Olsen, Taro Takahashi, Robert M. Key, Toste Tanhua, J. Magdalena Santana-Casiano, and Alex Kozyr
Earth Syst. Sci. Data, 12, 1725–1743, https://doi.org/10.5194/essd-12-1725-2020, https://doi.org/10.5194/essd-12-1725-2020, 2020
Short summary
Short summary
This work offers a vision of the global ocean regarding the carbon cycle and the implications of ocean acidification through a climatology of a changing variable in the context of climate change: total dissolved inorganic carbon. The climatology was designed through artificial intelligence techniques to represent the mean state of the present ocean. It is very useful to introduce in models to evaluate the state of the ocean from different perspectives.
Rik Wanninkhof, Denis Pierrot, Kevin Sullivan, Leticia Barbero, and Joaquin Triñanes
Earth Syst. Sci. Data, 12, 1489–1509, https://doi.org/10.5194/essd-12-1489-2020, https://doi.org/10.5194/essd-12-1489-2020, 2020
Short summary
Short summary
This paper describes a 17-year dataset of over a million data points of automated partial pressure of CO2 (pCO2) measurements on large luxury cruise ships of Royal Caribbean Cruise Lines (RCCL). These data are used to provide trends of ocean acidification and air–sea CO2 fluxes. The effort was possible through a unique continuing industry (RCCL), academic (University of Miami) and governmental (NOAA) partnership.
Viena Puigcorbé, Pere Masqué, and Frédéric A. C. Le Moigne
Earth Syst. Sci. Data, 12, 1267–1285, https://doi.org/10.5194/essd-12-1267-2020, https://doi.org/10.5194/essd-12-1267-2020, 2020
Short summary
Short summary
The biological carbon pump is a mechanism by which the oceans capture atmospheric carbon dioxide thanks to microscopic marine algae. Quantifying its strength and efficiency is crucial to understand the global carbon budget and be able to forecast its trends. The radioactive pair 234Th : 238U has been extensively used for that purpose. This is a global compilation of carbon-to-234Th ratios (needed to convert the 234Th fluxes to carbon fluxes) that will contribute to improve our modeling efforts.
Michio Aoyama
Earth Syst. Sci. Data, 12, 487–499, https://doi.org/10.5194/essd-12-487-2020, https://doi.org/10.5194/essd-12-487-2020, 2020
Short summary
Short summary
A global nutrient gridded dataset that might be the basis for studies of more accurate spatial distributions of nutrients and their changes in the global ocean was created. This is an SI-traceable dataset of nitrate, phosphate, and silicate concentrations based on certified reference materials or reference materials (CRMs/RMs) of seawater nutrient concentration measurements used during many cruises by the author.
Are Olsen, Nico Lange, Robert M. Key, Toste Tanhua, Marta Álvarez, Susan Becker, Henry C. Bittig, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Steve D. Jones, Sara Jutterström, Maren K. Karlsen, Alex Kozyr, Siv K. Lauvset, Claire Lo Monaco, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Maciej Telszewski, Bronte Tilbrook, Anton Velo, and Rik Wanninkhof
Earth Syst. Sci. Data, 11, 1437–1461, https://doi.org/10.5194/essd-11-1437-2019, https://doi.org/10.5194/essd-11-1437-2019, 2019
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by chemical analysis of water bottle samples at scientific cruises. GLODAPv2.2019 is the first update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality control, including systematic evaluation of measurement biases. This version contains data from 840 hydrographic cruises covering the world's oceans from 1972 to 2017.
Daniel Broullón, Fiz F. Pérez, Antón Velo, Mario Hoppema, Are Olsen, Taro Takahashi, Robert M. Key, Toste Tanhua, Melchor González-Dávila, Emil Jeansson, Alex Kozyr, and Steven M. A. C. van Heuven
Earth Syst. Sci. Data, 11, 1109–1127, https://doi.org/10.5194/essd-11-1109-2019, https://doi.org/10.5194/essd-11-1109-2019, 2019
Short summary
Short summary
In this work, we are contributing to the knowledge of the consequences of climate change in the ocean. We have focused on a variable related to this process: total alkalinity. We have designed a monthly climatology of total alkalinity using artificial intelligence techniques, that is, a representation of the average capacity of the ocean in the last decades to decelerate the consequences of climate change. The climatology is especially useful to infer the evolution of the ocean through models.
Markus Franz, Christian Lieberum, Gesche Bock, and Rolf Karez
Earth Syst. Sci. Data, 11, 947–957, https://doi.org/10.5194/essd-11-947-2019, https://doi.org/10.5194/essd-11-947-2019, 2019
Short summary
Short summary
The water parameters in coastal zones are highly variable, making predictions about its dynamics difficult. However, in situ measurements performed in these habitats are still scarce. Therefore we designed a monitoring study to record the environmental conditions in shallow waters by using data loggers and the collection of water samples. The data reveal great variabilities of water parameters and could be used to support experimental and modeling approaches.
William J. Jenkins, Scott C. Doney, Michaela Fendrock, Rana Fine, Toshitaka Gamo, Philippe Jean-Baptiste, Robert Key, Birgit Klein, John E. Lupton, Robert Newton, Monika Rhein, Wolfgang Roether, Yuji Sano, Reiner Schlitzer, Peter Schlosser, and Jim Swift
Earth Syst. Sci. Data, 11, 441–454, https://doi.org/10.5194/essd-11-441-2019, https://doi.org/10.5194/essd-11-441-2019, 2019
Short summary
Short summary
This paper describes an assembled dataset containing measurements of certain trace substances in the ocean, their distributions, and evolution with time. These substances, called tracers, result from a combination of natural and artificial processes, and their distribution and evolution provide important clues about ocean circulation, mixing, and ventilation. In addition, they give information about the global hydrologic cycle and volcanic and hydrothermal processes.
Adrienne J. Sutton, Richard A. Feely, Stacy Maenner-Jones, Sylvia Musielwicz, John Osborne, Colin Dietrich, Natalie Monacci, Jessica Cross, Randy Bott, Alex Kozyr, Andreas J. Andersson, Nicholas R. Bates, Wei-Jun Cai, Meghan F. Cronin, Eric H. De Carlo, Burke Hales, Stephan D. Howden, Charity M. Lee, Derek P. Manzello, Michael J. McPhaden, Melissa Meléndez, John B. Mickett, Jan A. Newton, Scott E. Noakes, Jae Hoon Noh, Solveig R. Olafsdottir, Joseph E. Salisbury, Uwe Send, Thomas W. Trull, Douglas C. Vandemark, and Robert A. Weller
Earth Syst. Sci. Data, 11, 421–439, https://doi.org/10.5194/essd-11-421-2019, https://doi.org/10.5194/essd-11-421-2019, 2019
Short summary
Short summary
Long-term observations are critical records for distinguishing natural cycles from climate change. We present a data set of 40 surface ocean CO2 and pH time series that suggests the time length necessary to detect a trend in seawater CO2 due to uptake of atmospheric CO2 varies from 8 years in the least variable ocean regions to 41 years in the most variable coastal regions. This data set provides a tool to evaluate natural cycles of ocean CO2, with long-term trends emerging as records lengthen.
Triona McGrath, Margot Cronin, Elizabeth Kerrigan, Douglas Wallace, Clynton Gregory, Claire Normandeau, and Evin McGovern
Earth Syst. Sci. Data, 11, 355–374, https://doi.org/10.5194/essd-11-355-2019, https://doi.org/10.5194/essd-11-355-2019, 2019
Short summary
Short summary
We report results from an intercomparison exercise on the analysis of nutrients at sea. Two independent teams (Marine Institute, Ireland and Dalhousie University Canada) carried out an analysis of a GO-SHIP hydrographic section. The cruise provided a unique opportunity to assess the likely comparability of nutrient data collected following GO-SHIP protocols. Datasets were high quality and compared well but highlighted a number of issues relevant to the comparability of global nutrient data.
Gilles Reverdin, Nicolas Metzl, Solveig Olafsdottir, Virginie Racapé, Taro Takahashi, Marion Benetti, Hedinn Valdimarsson, Alice Benoit-Cattin, Magnus Danielsen, Jonathan Fin, Aicha Naamar, Denis Pierrot, Kevin Sullivan, Francis Bringas, and Gustavo Goni
Earth Syst. Sci. Data, 10, 1901–1924, https://doi.org/10.5194/essd-10-1901-2018, https://doi.org/10.5194/essd-10-1901-2018, 2018
Short summary
Short summary
This paper presents the SURATLANT data set (SURveillance ATLANTique), consisting of individual data of temperature, salinity, parameters of the carbonate system, nutrients, and water stable isotopes (δ18O and δD) collected mostly from ships of opportunity since 1993 along transects between Iceland and Newfoundland. These data are used to quantify the seasonal cycle and can be used to investigate long-term tendencies in the surface ocean, including of pCO2 and pH.
Wilhelm Petersen, Susanne Reinke, Gisbert Breitbach, Michail Petschatnikov, Henning Wehde, and Henrike Thomas
Earth Syst. Sci. Data, 10, 1729–1734, https://doi.org/10.5194/essd-10-1729-2018, https://doi.org/10.5194/essd-10-1729-2018, 2018
Short summary
Short summary
From 2002 to 2005 a FerryBox system was installed aboard two different ferries traveling between Cuxhaven (Germany) and Harwich (UK) on a daily basis. The FerryBox system is an automated flow-through monitoring system for measuring oceanographic and biogeochemical parameters installed on ships of opportunity. The data set provides the parameters water temperature, salinity, dissolved oxygen and chlorophyll a fluorescence.
Andrea J. Fassbender, Simone R. Alin, Richard A. Feely, Adrienne J. Sutton, Jan A. Newton, Christopher Krembs, Julia Bos, Mya Keyzers, Allan Devol, Wendi Ruef, and Greg Pelletier
Earth Syst. Sci. Data, 10, 1367–1401, https://doi.org/10.5194/essd-10-1367-2018, https://doi.org/10.5194/essd-10-1367-2018, 2018
Short summary
Short summary
Ocean acidification (OA) is difficult to identify in coastal marine waters due to the magnitude of natural variability and lack of historical baseline information. To provide regional context for ongoing research, adaptation, and management efforts, we have collated high-quality publicly available data to characterize seasonal cycles of OA-relevant parameters in the Pacific Northwest marine surface waters. Large nonstationary chemical gradients from the open ocean into the Salish Sea are found.
Rebecca Latto and Anastasia Romanou
Earth Syst. Sci. Data, 10, 609–626, https://doi.org/10.5194/essd-10-609-2018, https://doi.org/10.5194/essd-10-609-2018, 2018
Short summary
Short summary
It is crucial to study the ocean’s role in the global carbon cycle in order to understand and predict the increasing concentrations of CO2 in the atmosphere, which is regarded as one of the main drivers of global warming. By analyzing the relationship between surface ocean CO2 and temperature, we seek to understand the pathways by which the ocean controls carbon fluctuations in the atmosphere. We employ cluster analysis as a tool for revealing patterns in where and when this relationship occurs.
Meike Becker, Nils Andersen, Helmut Erlenkeuser, Matthew P. Humphreys, Toste Tanhua, and Arne Körtzinger
Earth Syst. Sci. Data, 8, 559–570, https://doi.org/10.5194/essd-8-559-2016, https://doi.org/10.5194/essd-8-559-2016, 2016
Short summary
Short summary
The stable carbon isotope composition of dissolved inorganic carbon (δ13C-DIC) can be used to quantify fluxes within the marine carbon system such as the exchange between ocean and atmosphere or the amount of anthropogenic carbon in the water column. In this study, an internally consistent δ13C-DIC dataset for the North Atlantic is presented. The data have undergone a secondary quality control during which systematic biases between the respective cruises have been quantified and adjusted.
Dorothee C. E. Bakker, Benjamin Pfeil, Camilla S. Landa, Nicolas Metzl, Kevin M. O'Brien, Are Olsen, Karl Smith, Cathy Cosca, Sumiko Harasawa, Stephen D. Jones, Shin-ichiro Nakaoka, Yukihiro Nojiri, Ute Schuster, Tobias Steinhoff, Colm Sweeney, Taro Takahashi, Bronte Tilbrook, Chisato Wada, Rik Wanninkhof, Simone R. Alin, Carlos F. Balestrini, Leticia Barbero, Nicholas R. Bates, Alejandro A. Bianchi, Frédéric Bonou, Jacqueline Boutin, Yann Bozec, Eugene F. Burger, Wei-Jun Cai, Robert D. Castle, Liqi Chen, Melissa Chierici, Kim Currie, Wiley Evans, Charles Featherstone, Richard A. Feely, Agneta Fransson, Catherine Goyet, Naomi Greenwood, Luke Gregor, Steven Hankin, Nick J. Hardman-Mountford, Jérôme Harlay, Judith Hauck, Mario Hoppema, Matthew P. Humphreys, Christopher W. Hunt, Betty Huss, J. Severino P. Ibánhez, Truls Johannessen, Ralph Keeling, Vassilis Kitidis, Arne Körtzinger, Alex Kozyr, Evangelia Krasakopoulou, Akira Kuwata, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Claire Lo Monaco, Ansley Manke, Jeremy T. Mathis, Liliane Merlivat, Frank J. Millero, Pedro M. S. Monteiro, David R. Munro, Akihiko Murata, Timothy Newberger, Abdirahman M. Omar, Tsuneo Ono, Kristina Paterson, David Pearce, Denis Pierrot, Lisa L. Robbins, Shu Saito, Joe Salisbury, Reiner Schlitzer, Bernd Schneider, Roland Schweitzer, Rainer Sieger, Ingunn Skjelvan, Kevin F. Sullivan, Stewart C. Sutherland, Adrienne J. Sutton, Kazuaki Tadokoro, Maciej Telszewski, Matthias Tuma, Steven M. A. C. van Heuven, Doug Vandemark, Brian Ward, Andrew J. Watson, and Suqing Xu
Earth Syst. Sci. Data, 8, 383–413, https://doi.org/10.5194/essd-8-383-2016, https://doi.org/10.5194/essd-8-383-2016, 2016
Short summary
Short summary
Version 3 of the Surface Ocean CO2 Atlas (www.socat.info) has 14.5 million CO2 (carbon dioxide) values for the years 1957 to 2014 covering the global oceans and coastal seas. Version 3 is an update to version 2 with a longer record and 44 % more CO2 values. The CO2 measurements have been made on ships, fixed moorings and drifting buoys. SOCAT enables quantification of the ocean carbon sink and ocean acidification, as well as model evaluation, thus informing climate negotiations.
Are Olsen, Robert M. Key, Steven van Heuven, Siv K. Lauvset, Anton Velo, Xiaohua Lin, Carsten Schirnick, Alex Kozyr, Toste Tanhua, Mario Hoppema, Sara Jutterström, Reiner Steinfeldt, Emil Jeansson, Masao Ishii, Fiz F. Pérez, and Toru Suzuki
Earth Syst. Sci. Data, 8, 297–323, https://doi.org/10.5194/essd-8-297-2016, https://doi.org/10.5194/essd-8-297-2016, 2016
Short summary
Short summary
The GLODAPv2 data product collects data from more than 700 hydrographic cruises into a global and internally calibrated product. It provides access to the data from almost all ocean carbon cruises carried out since the 1970s and is a unique resource for marine science, in particular regarding the ocean carbon cycle. GLODAPv2 will form the foundation for future routine synthesis of hydrographic data of the same sort.
Siv K. Lauvset, Robert M. Key, Are Olsen, Steven van Heuven, Anton Velo, Xiaohua Lin, Carsten Schirnick, Alex Kozyr, Toste Tanhua, Mario Hoppema, Sara Jutterström, Reiner Steinfeldt, Emil Jeansson, Masao Ishii, Fiz F. Perez, Toru Suzuki, and Sylvain Watelet
Earth Syst. Sci. Data, 8, 325–340, https://doi.org/10.5194/essd-8-325-2016, https://doi.org/10.5194/essd-8-325-2016, 2016
Short summary
Short summary
This paper describes the mapped climatologies that are part of the Global Ocean Data Analysis Project Version 2 (GLODAPv2). GLODAPv2 is a uniformly calibrated open ocean data product on inorganic carbon and carbon-relevant variables. Global mapped climatologies of the total dissolved inorganic carbon, total alkalinity, pH, saturation state of calcite and aragonite, anthropogenic carbon, preindustrial carbon content, inorganic macronutrients, oxygen, salinity, and temperature have been created.
Matthew P. Humphreys, Florence M. Greatrix, Eithne Tynan, Eric P. Achterberg, Alex M. Griffiths, Claudia H. Fry, Rebecca Garley, Alison McDonald, and Adrian J. Boyce
Earth Syst. Sci. Data, 8, 221–233, https://doi.org/10.5194/essd-8-221-2016, https://doi.org/10.5194/essd-8-221-2016, 2016
Short summary
Short summary
This paper reports the stable isotope composition of dissolved inorganic carbon in seawater for a transect from west to east across the North Atlantic Ocean. The results can be used to study oceanic uptake of anthropogenic carbon dioxide, and also to investigate the natural biological carbon pump. We also provide stable DIC isotope results for two batches of Dickson seawater CRMs to enable intercomparisons with other studies.
S. de Villiers, K. Siswana, and K. Vena
Earth Syst. Sci. Data, 7, 415–422, https://doi.org/10.5194/essd-7-415-2015, https://doi.org/10.5194/essd-7-415-2015, 2015
Short summary
Short summary
A "young" warm-core eddy and an "older" warm-core eddy further south were surveyed in the Southern Ocean to study differences in their heat, salt and nutrient characteristics. Results show that warm eddies that migrate from the polar front further south lose heat but gain dissolved silicate and exhibit much higher levels of chlorophyll-a. This demonstrates important heat and nutrient exchange processes associated with eddy transport in the ocean.
A. J. Sutton, C. L. Sabine, S. Maenner-Jones, N. Lawrence-Slavas, C. Meinig, R. A. Feely, J. T. Mathis, S. Musielewicz, R. Bott, P. D. McLain, H. J. Fought, and A. Kozyr
Earth Syst. Sci. Data, 6, 353–366, https://doi.org/10.5194/essd-6-353-2014, https://doi.org/10.5194/essd-6-353-2014, 2014
Short summary
Short summary
In an effort to track ocean change, sustained ocean observations are becoming increasingly important. Advancements in the ocean carbon observation network over the last decade have dramatically improved our ability to understand how rising atmospheric CO2 and climate change affect the chemistry of the oceans and their marine ecosystems. Here we describe one of those advancements, the MAPCO2 system, and the climate-quality data produced from 14 ocean CO2 observatories.
U. Schuster, A. J. Watson, D. C. E. Bakker, A. M. de Boer, E. M. Jones, G. A. Lee, O. Legge, A. Louwerse, J. Riley, and S. Scally
Earth Syst. Sci. Data, 6, 175–183, https://doi.org/10.5194/essd-6-175-2014, https://doi.org/10.5194/essd-6-175-2014, 2014
K. E. Giesbrecht, L. A. Miller, M. Davelaar, S. Zimmermann, E. Carmack, W. K. Johnson, R. W. Macdonald, F. McLaughlin, A. Mucci, W. J. Williams, C. S. Wong, and M. Yamamoto-Kawai
Earth Syst. Sci. Data, 6, 91–104, https://doi.org/10.5194/essd-6-91-2014, https://doi.org/10.5194/essd-6-91-2014, 2014
D. C. E. Bakker, B. Pfeil, K. Smith, S. Hankin, A. Olsen, S. R. Alin, C. Cosca, S. Harasawa, A. Kozyr, Y. Nojiri, K. M. O'Brien, U. Schuster, M. Telszewski, B. Tilbrook, C. Wada, J. Akl, L. Barbero, N. R. Bates, J. Boutin, Y. Bozec, W.-J. Cai, R. D. Castle, F. P. Chavez, L. Chen, M. Chierici, K. Currie, H. J. W. de Baar, W. Evans, R. A. Feely, A. Fransson, Z. Gao, B. Hales, N. J. Hardman-Mountford, M. Hoppema, W.-J. Huang, C. W. Hunt, B. Huss, T. Ichikawa, T. Johannessen, E. M. Jones, S. D. Jones, S. Jutterström, V. Kitidis, A. Körtzinger, P. Landschützer, S. K. Lauvset, N. Lefèvre, A. B. Manke, J. T. Mathis, L. Merlivat, N. Metzl, A. Murata, T. Newberger, A. M. Omar, T. Ono, G.-H. Park, K. Paterson, D. Pierrot, A. F. Ríos, C. L. Sabine, S. Saito, J. Salisbury, V. V. S. S. Sarma, R. Schlitzer, R. Sieger, I. Skjelvan, T. Steinhoff, K. F. Sullivan, H. Sun, A. J. Sutton, T. Suzuki, C. Sweeney, T. Takahashi, J. Tjiputra, N. Tsurushima, S. M. A. C. van Heuven, D. Vandemark, P. Vlahos, D. W. R. Wallace, R. Wanninkhof, and A. J. Watson
Earth Syst. Sci. Data, 6, 69–90, https://doi.org/10.5194/essd-6-69-2014, https://doi.org/10.5194/essd-6-69-2014, 2014
T. McGrath, C. Kivimäe, E. McGovern, R. R. Cave, and E. Joyce
Earth Syst. Sci. Data, 5, 375–383, https://doi.org/10.5194/essd-5-375-2013, https://doi.org/10.5194/essd-5-375-2013, 2013
T. Tanhua, D. Hainbucher, V. Cardin, M. Álvarez, G. Civitarese, A. P. McNichol, and R. M. Key
Earth Syst. Sci. Data, 5, 289–294, https://doi.org/10.5194/essd-5-289-2013, https://doi.org/10.5194/essd-5-289-2013, 2013
B. Pfeil, A. Olsen, D. C. E. Bakker, S. Hankin, H. Koyuk, A. Kozyr, J. Malczyk, A. Manke, N. Metzl, C. L. Sabine, J. Akl, S. R. Alin, N. Bates, R. G. J. Bellerby, A. Borges, J. Boutin, P. J. Brown, W.-J. Cai, F. P. Chavez, A. Chen, C. Cosca, A. J. Fassbender, R. A. Feely, M. González-Dávila, C. Goyet, B. Hales, N. Hardman-Mountford, C. Heinze, M. Hood, M. Hoppema, C. W. Hunt, D. Hydes, M. Ishii, T. Johannessen, S. D. Jones, R. M. Key, A. Körtzinger, P. Landschützer, S. K. Lauvset, N. Lefèvre, A. Lenton, A. Lourantou, L. Merlivat, T. Midorikawa, L. Mintrop, C. Miyazaki, A. Murata, A. Nakadate, Y. Nakano, S. Nakaoka, Y. Nojiri, A. M. Omar, X. A. Padin, G.-H. Park, K. Paterson, F. F. Perez, D. Pierrot, A. Poisson, A. F. Ríos, J. M. Santana-Casiano, J. Salisbury, V. V. S. S. Sarma, R. Schlitzer, B. Schneider, U. Schuster, R. Sieger, I. Skjelvan, T. Steinhoff, T. Suzuki, T. Takahashi, K. Tedesco, M. Telszewski, H. Thomas, B. Tilbrook, J. Tjiputra, D. Vandemark, T. Veness, R. Wanninkhof, A. J. Watson, R. Weiss, C. S. Wong, and H. Yoshikawa-Inoue
Earth Syst. Sci. Data, 5, 125–143, https://doi.org/10.5194/essd-5-125-2013, https://doi.org/10.5194/essd-5-125-2013, 2013
C. L. Sabine, S. Hankin, H. Koyuk, D. C. E. Bakker, B. Pfeil, A. Olsen, N. Metzl, A. Kozyr, A. Fassbender, A. Manke, J. Malczyk, J. Akl, S. R. Alin, R. G. J. Bellerby, A. Borges, J. Boutin, P. J. Brown, W.-J. Cai, F. P. Chavez, A. Chen, C. Cosca, R. A. Feely, M. González-Dávila, C. Goyet, N. Hardman-Mountford, C. Heinze, M. Hoppema, C. W. Hunt, D. Hydes, M. Ishii, T. Johannessen, R. M. Key, A. Körtzinger, P. Landschützer, S. K. Lauvset, N. Lefèvre, A. Lenton, A. Lourantou, L. Merlivat, T. Midorikawa, L. Mintrop, C. Miyazaki, A. Murata, A. Nakadate, Y. Nakano, S. Nakaoka, Y. Nojiri, A. M. Omar, X. A. Padin, G.-H. Park, K. Paterson, F. F. Perez, D. Pierrot, A. Poisson, A. F. Ríos, J. Salisbury, J. M. Santana-Casiano, V. V. S. S. Sarma, R. Schlitzer, B. Schneider, U. Schuster, R. Sieger, I. Skjelvan, T. Steinhoff, T. Suzuki, T. Takahashi, K. Tedesco, M. Telszewski, H. Thomas, B. Tilbrook, D. Vandemark, T. Veness, A. J. Watson, R. Weiss, C. S. Wong, and H. Yoshikawa-Inoue
Earth Syst. Sci. Data, 5, 145–153, https://doi.org/10.5194/essd-5-145-2013, https://doi.org/10.5194/essd-5-145-2013, 2013
C. L. Sabine, M. Hoppema, R. M. Key, B. Tilbrook, S. van Heuven, C. Lo Monaco, N. Metzl, M. Ishii, A. Murata, and S. Musielewicz
Earth Syst. Sci. Data, 2, 195–204, https://doi.org/10.5194/essd-2-195-2010, https://doi.org/10.5194/essd-2-195-2010, 2010
D. Pierrot, P. Brown, S. Van Heuven, T. Tanhua, U. Schuster, R. Wanninkhof, and R. M. Key
Earth Syst. Sci. Data, 2, 177–187, https://doi.org/10.5194/essd-2-177-2010, https://doi.org/10.5194/essd-2-177-2010, 2010
A. Velo, F. F. Pérez, X. Lin, R. M. Key, T. Tanhua, M. de la Paz, A. Olsen, S. van Heuven, S. Jutterström, and A. F. Ríos
Earth Syst. Sci. Data, 2, 133–155, https://doi.org/10.5194/essd-2-133-2010, https://doi.org/10.5194/essd-2-133-2010, 2010
E. Falck and A. Olsen
Earth Syst. Sci. Data, 2, 123–131, https://doi.org/10.5194/essd-2-123-2010, https://doi.org/10.5194/essd-2-123-2010, 2010
R. M. Key, T. Tanhua, A. Olsen, M. Hoppema, S. Jutterström, C. Schirnick, S. van Heuven, A. Kozyr, X. Lin, A. Velo, D. W. R. Wallace, and L. Mintrop
Earth Syst. Sci. Data, 2, 105–121, https://doi.org/10.5194/essd-2-105-2010, https://doi.org/10.5194/essd-2-105-2010, 2010
J. Olafsson, S. R. Olafsdottir, A. Benoit-Cattin, and T. Takahashi
Earth Syst. Sci. Data, 2, 99–104, https://doi.org/10.5194/essd-2-99-2010, https://doi.org/10.5194/essd-2-99-2010, 2010
C. Lo Monaco, M. Álvarez, R. M. Key, X. Lin, T. Tanhua, B. Tilbrook, D. C. E. Bakker, S. van Heuven, M. Hoppema, N. Metzl, A. F. Ríos, C. L. Sabine, and A. Velo
Earth Syst. Sci. Data, 2, 51–70, https://doi.org/10.5194/essd-2-51-2010, https://doi.org/10.5194/essd-2-51-2010, 2010
I. Stendardo, N. Gruber, and A. Körtzinger
Earth Syst. Sci. Data, 1, 87–100, https://doi.org/10.5194/essd-1-87-2009, https://doi.org/10.5194/essd-1-87-2009, 2009
M. Hoppema, A. Velo, S. van Heuven, T. Tanhua, R. M. Key, X. Lin, D. C. E. Bakker, F. F. Perez, A. F. Ríos, C. Lo Monaco, C. L. Sabine, M. Álvarez, and R. G. J. Bellerby
Earth Syst. Sci. Data, 1, 63–75, https://doi.org/10.5194/essd-1-63-2009, https://doi.org/10.5194/essd-1-63-2009, 2009
Cited articles
Bakker, D. C. E., Pfeil, B., Landa, C. S., Metzl, N., O'Brien, K. M., Olsen, A., Smith, K., Cosca, C., Harasawa, S., Jones, S. D., Nakaoka, S., Nojiri, Y., Schuster, U., Steinhoff, T., Sweeney, C., Takahashi, T., Tilbrook, B., Wada, C., Wanninkhof, R., Alin, S. R., Balestrini, C. F., Barbero, L., Bates, N. R., Bianchi, A. A., Bonou, F., Boutin, J., Bozec, Y., Burger, E. F., Cai, W.-J., Castle, R. D., Chen, L., Chierici, M., Currie, K., Evans, W., Featherstone, C., Feely, R. A., Fransson, A., Goyet, C., Greenwood, N., Gregor, L., Hankin, S., Hardman-Mountford, N. J., Harlay, J., Hauck, J., Hoppema, M., Humphreys, M. P., Hunt, C. W., Huss, B., Ibánhez, J. S. P., Johannessen, T., Keeling, R., Kitidis, V., Körtzinger, A., Kozyr, A., Krasakopoulou, E., Kuwata, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lo Monaco, C., Manke, A., Mathis, J. T., Merlivat, L., Millero, F. J., Monteiro, P. M. S., Munro, D. R., Murata, A., Newberger, T., Omar, A. M., Ono, T., Paterson, K., Pearce, D., Pierrot, D., Robbins, L. L., Saito, S., Salisbury, J., Schlitzer, R., Schneider, B., Schweitzer, R., Sieger, R., Skjelvan, I., Sullivan, K. F., Sutherland, S. C., Sutton, A. J., Tadokoro, K., Telszewski, M., Tuma, M., van Heuven, S. M. A. C., Vandemark, D., Ward, B., Watson, A. J., and Xu, S.: A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT), Earth Syst. Sci. Data, 8, 383–413, https://doi.org/10.5194/essd-8-383-2016, 2016.
Becker, M., Olsen, A., Landschützer, P., Omar, A., Rehder, G., Rödenbeck, C., and Skjelvan, I.: The northern European shelf as an increasing net sink for CO2, Biogeosciences, 18, 1127–1147, https://doi.org/10.5194/bg-18-1127-2021, 2021.
Bourgeois, T., Orr, J. C., Resplandy, L., Terhaar, J., Ethé, C., Gehlen, M., and Bopp, L.: Coastal-ocean uptake of anthropogenic carbon, Biogeosciences, 13, 4167–4185, https://doi.org/10.5194/bg-13-4167-2016, 2016.
Breiman, L.: Bagging predictors, Mach. Learn. 24, 123–140, https://doi.org/10.1007/BF00058655, 1996.
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001.
Bushinsky, S. M., Landschützer, P., Rödenbeck, C., Gray, A. R.,
Baker, D., Mazloff, M. R., Resplandy, L., Johnson, K. S., and Sarmiento, J.
L.: Reassessing Southern Ocean Air-Sea CO2 Flux Estimates With the
Addition of Biogeochemical Float Observations, Global Biogeochem. Cy.,
33, 1370–1388, https://doi.org/10.1029/2019GB006176, 2019.
Caldeira, K. and Wickett, M. E.: Anthropogenic carbon and ocean pH, Nature,
425, 365, https://doi.org/10.1038/425365a, 2003.
Chassignet, E. P., Hurlburt, H. E., Smedstad, O. M., Halliwell, G. R.,
Hogan, P. J., Wallcraft, A. J., Baraille, R., and Bleck, R.: The HYCOM (hybrid
coordinate ocean model) data assimilative system, J. Mar. Syst., 65,
60–83, https://doi.org/10.1016/j.jmarsys.2005.09.016, 2007.
Chau, T. T. T., Gehlen, M., and Chevallier, F.: A seamless ensemble-based reconstruction of surface ocean pCO2 and air–sea CO2 fluxes over the global coastal and open oceans, Biogeosciences, 19, 1087–1109, https://doi.org/10.5194/bg-19-1087-2022, 2022.
Checkley, D. M. and Barth, J. A.: Patterns and processes in the California
Current System, Prog. Oceanogr., 83, 49–64, https://doi.org/10.1016/j.pocean.2009.07.028, 2009.
Chen, S., Hu, C., Barnes, B. B., Wanninkhof, R., Cai, W. J., Barbero, L.,
and Pierrot, D.: A machine learning approach to estimate surface ocean
pCO2 from satellite measurements, Remote Sens. Environ., 228, 203–226,
https://doi.org/10.1016/j.rse.2019.04.019, 2019.
Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J.,
Chhabra, A., DeFries, R., Galloway, J., Heimann, M., and Jones, C.: Carbon and
other biogeochemical cycles, in: Climate change 2013: the physical science
basis, Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, 465–570, Cambridge
University Press, 465–570, https://doi.org/10.1017/CBO9781107415324.015, 2014.
Dai, M.: What are the exchanges of carbon between the land-ocean-ice
continuum, in: Integrated Ocean Carbon Research: A Summary of Ocean Carbon
Research, and Vision of Coordinated Ocean Carbon Research and Observations
for the Next Decade, edited by: Wanninkhof, R., Sabine, C., and Aricò, S., IOC
Technical Series, 158, Paris, UNESCO, 20, https://doi.org/10.25607/h0gj-pq41, 2021.
Denvil-Sommer, A., Gehlen, M., Vrac, M., and Mejia, C.: LSCE-FFNN-v1: a two-step neural network model for the reconstruction of surface ocean pCO2 over the global ocean, Geosci. Model Dev., 12, 2091–2105, https://doi.org/10.5194/gmd-12-2091-2019, 2019.
Deutsch, C., Frenzel, H., McWilliams, J. C., Renault, L., Kessouri, F.,
Howard, E., Liang, J. H., Bianchi, D., and Yang, S.: Biogeochemical
variability in the California Current system, Prog. Oceanogr., 102565,
https://doi.org/10.1016/j.pocean.2021.102565, 2021.
Dickson, A. G., Sabine, C. L., and Christian, J. R. (Eds.): Guide to Best Practices for Ocean CO2 Measurements. North Pacific Marine Science Organization, PICES Special Publication 3, Sidney, B.C., Canada, 2007.
Djeutchouang, L. M., Chang, N., Gregor, L., Vichi, M., and Monteiro, P. M. S.: The sensitivity of pCO2 reconstructions in the Southern Ocean to sampling scales: a semi-idealized model sampling and reconstruction approach, Biogeosciences Discuss. [preprint], https://doi.org/10.5194/bg-2021-344, in review, 2022.
Dlugokencky, E. and Tans, P.: Trends in atmospheric carbon dioxide, National
Oceanic & Atmospheric Administration, Earth System Research Laboratory
(NOAA/ESRL), http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html (last access: 17 August 2021), 2019.
Dlugokencky, E. J., Mund, J. W., Crotwell, A. M., Crotwell, M. J., and
Thoning, K. W.: Atmospheric carbon dioxide dry air mole fractions from the
NOAA ESRL carbon cycle cooperative global air sampling network, 1968–2018,
Version: 2019–2007, https://doi.org/10.15138/wkgj-f215, 2020.
Doney, S. C., Fabry, V. J., Feely, R. A., and Kleypas, J. A.: Ocean
Acidification: The other CO2 problem, Annu. Rev. Mar. Sci., 1, 169–192,
https://doi.org/10.1146/annurev.marine.010908.163834, 2009.
Doney, S. C., Busch, D. S., Cooley, S. R., and Kroeker, K. J.: The impacts of
ocean acidification on marine ecosystems and reliant human communities, Annu.
Rev. Environ. Res., 45, 83–112, https://doi.org/10.1146/annurev-environ-012320-083019, 2020.
Donlon, C. J., Minnett, P. J., Gentemann, C., Nightingale, T. J., Barton, I.
J., Ward, B., and Murray, M. J.: Toward improved validation of satellite sea
surface skin temperature measurements for climate research, J. Climate, 15,
353–369, https://doi.org/10.1175/1520-0442(2002)015<0353:TIVOSS>2.0.CO;2, 2002.
Evans, W., Hales, B., and Strutton, P. G.: Seasonal cycle of surface ocean
pCO2 on the Oregon shelf, J. Geophys. Res.-Oceans, 116, C05012, https://doi.org/10.1029/2010JC006625, 2011.
Evans, W., Lebon, G. T., Harrington, C. D., Takeshita, Y., and Bidlack, A.: Marine CO2 system variability along the northeast Pacific Inside Passage determined from an Alaskan ferry, Biogeosciences, 19, 1277–1301, https://doi.org/10.5194/bg-19-1277-2022, 2022.
Fabry, V. J., Seibel, B. A., Feely, R. A., and Orr, J. C.: Impacts of ocean
acidification on marine fauna and ecosystem processes, ICES J. Mar. Sci.,
65, 414–432, https://doi.org/10.1093/icesjms/fsn048, 2008.
Fassbender, A. J., Sabine, C. L., Feely, R. A., Langdon, C., and Mordy, C.
W.: Inorganic carbon dynamics during northern California coastal upwelling,
Cont. Shelf Res., 31, 1180–1192, https://doi.org/10.1016/j.csr.2011.04.006, 2011.
Fassbender, A. J., Alin, S. R., Feely, R. A., Sutton, A. J., Newton, J. A., Krembs, C., Bos, J., Keyzers, M., Devol, A., Ruef, W., and Pelletier, G.: Seasonal carbonate chemistry variability in marine surface waters of the US Pacific Northwest, Earth Syst. Sci. Data, 10, 1367–1401, https://doi.org/10.5194/essd-10-1367-2018, 2018.
Fay, A. R., Gregor, L., Landschützer, P., McKinley, G. A., Gruber, N., Gehlen, M., Iida, Y., Laruelle, G. G., Rödenbeck, C., Roobaert, A., and Zeng, J.: SeaFlux: harmonization of air–sea CO2 fluxes from surface pCO2 data products using a standardized approach, Earth Syst. Sci. Data, 13, 4693–4710, https://doi.org/10.5194/essd-13-4693-2021, 2021.
Feely, R. A., Sabine, C. L., Hernandez-Ayon, J. M., Ianson, D., and Hales,
B.: Evidence for upwelling of corrosive “acidified” water onto the
continental shelf, Science, 320, 1490–1492, https://doi.org/10.1126/science.1155676, 2008.
Fiechter, J., Curchitser, E. N., Edwards, C. A., Chai, F., Goebel, N. L.,
and Chavez, F. P.: Air-sea CO2 fluxes in the California Current: Impacts
of model resolution and coastal topography, Global Biogeochem. Cy., 28,
371–385, https://doi.org/10.1002/2013GB004683, 2014.
Gloege, L., McKinley, G. A., Landschützer, P., Fay, A. R.,
Frölicher, T. L., Fyfe, J. C., Ilyina, T., Jones, S., Lovenduski, N. S.,
Rodgers, K. B., Schlunegger, S., and Takano, Y.: Quantifying errors in
observationally based estimates of ocean carbon sink variability, Global
Biogeochem. Cy., 35, e2020GB006788, https://doi.org/10.1029/2020GB006788, 2021.
Goddijn-Murphy, L. M., Woolf, D. K., Land, P. E., Shutler, J. D., and Donlon, C.: The OceanFlux Greenhouse Gases methodology for deriving a sea surface climatology of CO2 fugacity in support of air–sea gas flux studies, Ocean Sci., 11, 519–541, https://doi.org/10.5194/os-11-519-2015, 2015.
Greene, C. A., Thirumalai, K., Kearney, K. A., Delgado, J. M., Schwanghart,
W., Wolfenbarger, N. S., Thyng, K. M., Gwyther, D. E., Gardner, A. S., and
Blankenship, D. D.: The Climate Data Toolbox for MATLAB, Geochem. Geophy.
Geosy., 20, 3774–3781, https://doi.org/10.1029/2019GC008392,
2019.
Gregor, L. and Fay, A.: SeaFlux: harmonised sea-air CO2 fluxes from
surface pCO2 data products using a standardised approach (2021.04.03), Zenodo [data set], https://doi.org/10.5281/zenodo.5148795,
2021.
Gregor, L., Kok, S., and Monteiro, P. M. S.: Empirical methods for the estimation of Southern Ocean CO2: support vector and random forest regression, Biogeosciences, 14, 5551–5569, https://doi.org/10.5194/bg-14-5551-2017, 2017.
Gregor, L., Kok, S., and Monteiro, P. M. S.: Interannual drivers of the seasonal cycle of CO2 in the Southern Ocean, Biogeosciences, 15, 2361–2378, https://doi.org/10.5194/bg-15-2361-2018, 2018.
Gregor, L., Lebehot, A. D., Kok, S., and Scheel Monteiro, P. M.: A comparative assessment of the uncertainties of global surface ocean CO2 estimates using a machine-learning ensemble (CSIR-ML6 version 2019a) – have we hit the wall?, Geosci. Model Dev., 12, 5113–5136, https://doi.org/10.5194/gmd-12-5113-2019, 2019.
Gruber, N., Hauri, C., Lachkar, Z., Loher, D., Frolicher, T. L., and
Plattner, G.-K.: Rapid Progression of Ocean Acidification in the California
Current System, Science, 337, 220–223, https://doi.org/10.1126/science.1216773, 2012.
Hales, B., Takahashi, T., and Bandstra, L.: Atmospheric CO2 uptake by a
coastal upwelling system, Global Biogeochem. Cy., 19, 1–11, https://doi.org/10.1029/2004GB002295, 2005.
Hales, B., Strutton, P. G., Saraceno, M., Letelier, R., Takahashi, T.,
Feely, R., Sabine, C., and Chavez, F.: Satellite-based prediction of
pCO2 in coastal waters of the eastern North Pacific, Prog. Oceanogr.,
103, 1–15, https://doi.org/10.1016/j.pocean.2012.03.001, 2012.
Hastie, T., Tibshirani, R., and Friedman, J. H.: The elements of statistical learning: data mining, inference, and prediction, 2nd Edn., Springer, New York, NY, https://doi.org/10.1007/978-0-387-84858-7, 2009.
Hauck, J., Zeising, M., Le Quéré, C., Gruber, N., Bakker, D. C. E.,
Bopp, L., Chau, T. T. T., Gürses, Ö., Ilyina, T., Landschützer,
P., Lenton, A., Resplandy, L., Rödenbeck, C., Schwinger, J., and
Séférian, R.: Consistency and Challenges in the Ocean Carbon Sink
Estimate for the Global Carbon Budget, Front. Mar. Sci., 7, 1–22,
https://doi.org/10.3389/fmars.2020.571720, 2020.
Hauri, C., Gruber, N., Vogt, M., Doney, S. C., Feely, R. A., Lachkar, Z., Leinweber, A., McDonnell, A. M. P., Munnich, M., and Plattner, G.-K.: Spatiotemporal variability and long-term trends of ocean acidification in the California Current System, Biogeosciences, 10, 193–216, https://doi.org/10.5194/bg-10-193-2013, 2013.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay,
P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.: The ERA5 global
reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hickey, B. M. and Banas, N. S.: Why is the northern end of the California
Current System so productive?, Oceanography, 21, 90–107, https://doi.org/10.5670/oceanog.2008.07, 2008.
Ho, D. T. and Schanze, J. J. Precipitation-Induced Reduction in Surface
Ocean pCO2: Observations From the Eastern Tropical Pacific Ocean,
Geophys. Res. Lett., 47, e2020GL088252, https://doi.org/10.1029/2020GL088252, 2020.
Huang, B., Liu, C., Banzon, V., Freeman, E., Graham, G., Hankins, B., Smith, T.,
and Zhang, H.-M.: Improvements of the Daily Optimum Interpolation Sea Surface
Temperature (DOISST) Version 2.1, J. Climate, 34, 2923–2939, https://doi.org/10.1175/JCLI-D-20-0166.1, 2021.
Huyer, A.: Coastal upwelling in the California Current system, Prog.
Oceanogr., 12, 259–284, https://doi.org/10.1016/0079-6611(83)90010-1, 1983.
Ianson, D., Allen, S. E., Harris, S. L., Orians, K. J., Varela, D. E., and
Wong, C. S.: The inorganic carbon system in the coastal upwelling region west
of Vancouver Island, Canada, Deep-Sea Res. Pt. I, 50, 1023–1042, https://doi.org/10.1016/S0967-0637(03)00114-6, 2003.
Iida, Y., Kojima, A., Takatani, Y., Nakano, T., Sugimoto, H., Midorikawa,
T., and Ishii, M.: Trends in pCO2 and sea–air CO2 flux over the
global open oceans for the last two decades, J. Oceanogr., 71, 637–661,
https://doi.org/10.1007/s10872-015-0306-4, 2015.
Ishii, M., Feely, R. A., Rodgers, K. B., Park, G.-H., Wanninkhof, R., Sasano, D., Sugimoto, H., Cosca, C. E., Nakaoka, S., Telszewski, M., Nojiri, Y., Mikaloff Fletcher, S. E., Niwa, Y., Patra, P. K., Valsala, V., Nakano, H., Lima, I., Doney, S. C., Buitenhuis, E. T., Aumont, O., Dunne, J. P., Lenton, A., and Takahashi, T.: Air–sea CO2 flux in the Pacific Ocean for the period 1990–2009, Biogeosciences, 11, 709–734, https://doi.org/10.5194/bg-11-709-2014, 2014.
Jones, S. D., Le Quéré, C., Rödenbeck, C., Manning, A. C., and
Olsen, A.: A statistical gap-filling method to interpolate global monthly
surface ocean carbon dioxide data, J. Adv. Model. Earth Sy., 7, 1554–1575,
https://doi.org/10.1002/2014MS000416, 2015.
Landschützer, P., Gruber, N., Bakker, D. C. E., Schuster, U., Nakaoka, S., Payne, M. R., Sasse, T. P., and Zeng, J.: A neural network-based estimate of the seasonal to inter-annual variability of the Atlantic Ocean carbon sink, Biogeosciences, 10, 7793–7815, https://doi.org/10.5194/bg-10-7793-2013, 2013.
Landschützer, P., Gruber, N., Bakker, D. C. E., and Schuster, U.: Recent
variability of the global ocean carbon sink, Global Biogeochem. Cy., 28,
927–949, https://doi.org/10.1002/2014GB004853, 2014.
Landschützer, P., Gruber, N., Haumann, F. A., Rödenbeck, C.,
Bakker, D. C. E., van Heuven, S., Hoppema, M., Metzl, N., Sweeney, C.,
Takahashi, T., Tilbrook, B., and Wanninkhof, R.: The reinvigoration of the
Southern Ocean carbon sink, Science, 349, 1221–1224, https://doi.org/10.1126/science.aab2620, 2015.
Landschützer, P., Gruber, N., and Bakker, D. C. E.: Decadal variations
and trends of the global ocean carbon sink, Global Biogeochem. Cy.,
30, 1396–1417, https://doi.org/10.1002/2015GB005359, 2016.
Landschützer, P., Gruber, N., Bakker, D. C. E., Stemmler, I., and Six,
K. D.: Strengthening seasonal marine CO2 variations due to increasing
atmospheric CO2, Nat. Clim. Change, 8, 146–150, https://doi.org/10.1038/s41558-017-0057-x, 2018.
Landschützer, P., Gruber, N., and Bakker, D. C. E.: An observation-based
global monthly gridded sea surface pCO2 product from 1982 onward and its
monthly climatology (NCEI Accession 0160558), Version 5.5, NOAA National
Centers for Environmental Information [data set], https://doi.org/10.7289/V5Z899N6, 2020a.
Landschützer, P., Laruelle, G., Roobaert, A., Regnier, P.: A combined
global ocean pCO2 climatology combining open ocean and coastal areas
(NCEI Accession 0209633), NOAA National Centers for Environmental
Information [data set], https://doi.org/10.25921/qb25-f418,
2020b.
Landschützer, P., Laruelle, G. G., Roobaert, A., and Regnier, P.: A uniform pCO2 climatology combining open and coastal oceans, Earth Syst. Sci. Data, 12, 2537–2553, https://doi.org/10.5194/essd-12-2537-2020, 2020c.
Laruelle, G. G., Dürr, H. H., Slomp, C. P., and Borges, A. V.: Evaluation
of sinks and sources of CO2 in the global coastal ocean using a
spatially-explicit typology of estuaries and continental shelves. Geophys.
Res. Lett., 37, L15607, https://doi.org/10.1029/2010GL043691,
2010.
Laruelle, G. G., Lauerwald, R., Pfeil, B., and Regnier, P.: Regionalized
global budget of the CO2 exchange at the air-water interface in
continental shelf seas, Global Biogeochem. Cy., 28, 1199–1214,
https://doi.org/10.1111/1462-2920.13280, 2014.
Laruelle, G. G., Landschützer, P., Gruber, N., Tison, J.-L., Delille, B., and Regnier, P.: Global high-resolution monthly pCO2 climatology for the coastal ocean derived from neural network interpolation, Biogeosciences, 14, 4545–4561, https://doi.org/10.5194/bg-14-4545-2017, 2017.
Laruelle, G. G., Cai, W. J., Hu, X., Gruber, N., Mackenzie, F. T., and
Regnier, P.: Continental shelves as a variable but increasing global sink for
atmospheric carbon dioxide, Nat. Commun., 9, 1–11, https://doi.org/10.1038/s41467-017-02738-z, 2018.
Lauvset, S., Currie, K., Metzl, N., Nakaoka, S. I., Bakker, D., Sullivan,
K., Sutton, A., O'Brien, K., and Olsen, A.: SOCAT Quality Control Cookbook:
for SOCAT version 7, SOCAT, https://doi.org/10.25607/OBP-1665, 2018.
Lebehot, A. D., Halloran, P. R., Watson, A. J., McNeall, D., Ford, D. A.,
Landschützer, P., Lauvset, S. K., and Schuster, U.: Reconciling
Observation and Model Trends in North Atlantic Surface CO2, Global
Biogeochem. Cy., 33, 1204–1222 https://doi.org/10.1029/2019GB006186, 2019.
Majkut, J. D., Sarmiento, J. L., and Rodgers, K. B.: A growing oceanic
carbon uptake: Results from an inversion study of surface pCO2 data,
Global Biochem. Cy., 28, 335–351, https://doi.org/10.1002/2013GB004585, 2014.
Meinig, C., Burger, E. F., Cohen, N., Cokelet, E. D., Cronin, M. F., Cross, J. N., de Halleux, S., Jenkins, R., Jessup, A. T., Mordy, C. W., Lawrence-Slavas, N., Sutton, A. J., Zhang, D., and Zhang, C.: Public–private partnerships to advance regional ocean-observing capabilities: a saildrone and NOAA-PMEL case study and future considerations to expand to global scale observing, Front. Mar. Sci., 13, 448, https://doi.org/10.3389/fmars.2019.00448, 2015.
Menemenlis, D., Fukumori, I., and Lee, T.: Using Green's functions to
calibrate an ocean general circulation model, Mon. Weather Rev., 133,
1224–1240, https://doi.org/10.1175/MWR2912.1, 2005.
Menemenlis, D., Campin, J. M., Heimbach, P., Hill, C., Lee, T., Nguyen, A.,
Schodlok, M., and Zhang, H.: ECCO2: High resolution global ocean and sea ice
data synthesis, Mercator Ocean Quarterly Newsletter, 31, 13–21,
2008.
Monteiro, P. M. S., Gregor, L., Lévy, M., Maenner, S., Sabine, C. L.,
and Swart, S.: Intraseasonal variability linked to sampling alias in air-sea
CO2 fluxes in the Southern Ocean, Geophys. Res. Lett., 42, 8507–8514,
https://doi.org/10.1002/2015GL066009, 2015.
Nakaoka, S., Telszewski, M., Nojiri, Y., Yasunaka, S., Miyazaki, C., Mukai, H., and Usui, N.: Estimating temporal and spatial variation of ocean surface pCO2 in the North Pacific using a self-organizing map neural network technique, Biogeosciences, 10, 6093–6106, https://doi.org/10.5194/bg-10-6093-2013, 2013.
Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A.,
Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R. M., Lindsay, K.,
Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A., Najjar, R. G.,
Plattner, G. K., Rodgers, K. B., Sabine, C. L., Sarmiento, J. L., Schlitzer,
R., Slater, R. D., Totterdell, I. J., Weirig, M.-F., Yamanaka, Y., and Yool,
A.: Anthropogenic ocean acidification over the twenty-first century and its
impact on calcifying organisms, Nature, 437, 681–686, https://doi.org/10.1038/nature04095, 2005.
Pfeil, B., Olsen, A., Bakker, D. C. E., Hankin, S., Koyuk, H., Kozyr, A., Malczyk, J., Manke, A., Metzl, N., Sabine, C. L., Akl, J., Alin, S. R., Bates, N., Bellerby, R. G. J., Borges, A., Boutin, J., Brown, P. J., Cai, W.-J., Chavez, F. P., Chen, A., Cosca, C., Fassbender, A. J., Feely, R. A., González-Dávila, M., Goyet, C., Hales, B., Hardman-Mountford, N., Heinze, C., Hood, M., Hoppema, M., Hunt, C. W., Hydes, D., Ishii, M., Johannessen, T., Jones, S. D., Key, R. M., Körtzinger, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lenton, A., Lourantou, A., Merlivat, L., Midorikawa, T., Mintrop, L., Miyazaki, C., Murata, A., Nakadate, A., Nakano, Y., Nakaoka, S., Nojiri, Y., Omar, A. M., Padin, X. A., Park, G.-H., Paterson, K., Perez, F. F., Pierrot, D., Poisson, A., Ríos, A. F., Santana-Casiano, J. M., Salisbury, J., Sarma, V. V. S. S., Schlitzer, R., Schneider, B., Schuster, U., Sieger, R., Skjelvan, I., Steinhoff, T., Suzuki, T., Takahashi, T., Tedesco, K., Telszewski, M., Thomas, H., Tilbrook, B., Tjiputra, J., Vandemark, D., Veness, T., Wanninkhof, R., Watson, A. J., Weiss, R., Wong, C. S., and Yoshikawa-Inoue, H.: A uniform, quality controlled Surface Ocean CO2 Atlas (SOCAT), Earth Syst. Sci. Data, 5, 125–143, https://doi.org/10.5194/essd-5-125-2013, 2013.
Pierrot, D., Neill, C., Sullivan, K., Castle, R., Wanninkhof, R., Lüger, H., Johannessen, T., Olsen, A., Feely, R. A., and Cosca, C. E.: Recommendations for autonomous underway pCO2 measuring systems and data-reduction routines, Deep-Sea Res. II, 56, 512–522, https://doi.org/10.1016/j.dsr2.2008.12.005, 2009.
Pörtner, H. O.: Ecosystem effects of ocean acidification in times of
ocean warming: a physiologist's view, Mar. Ecol. Prog. Ser., 373, 203–217,
https://doi.org/10.3354/meps07768, 2008.
Reynolds, R. W., Smith, T. M., Liu, C., Chelton, D. B., Casey, K. S., and
Schlax, M. G.: Daily high-resolution-blended analyses for sea surface temperature,
J. Climate, 20, 5473–5496, https://doi.org/10.1175/2007JCLI1824.1, 2007.
Ritter, R., Landschützer, P., Gruber, N., Fay, A. R., Iida, Y., Jones,
S., and Zeng, J.: Observation-Based Trends of the Southern Ocean Carbon Sink,
Geophys. Res. Lett., 2, 339–348, https://doi.org/10.1002/2017GL074837, 2017.
Robertson, J. E. and Watson, A. J.: Thermal skin effect of the surface ocean
and its implications for CO2 uptake, Nature, 358, 738–740, https://doi.org/10.1038/358738a0, 1992.
Rödenbeck, C., Keeling, R. F., Bakker, D. C. E., Metzl, N., Olsen, A., Sabine, C., and Heimann, M.: Global surface-ocean pCO2 and sea–air CO2 flux variability from an observation-driven ocean mixed-layer scheme, Ocean Sci., 9, 193–216, https://doi.org/10.5194/os-9-193-2013, 2013.
Rödenbeck, C., Bakker, D. C. E., Metzl, N., Olsen, A., Sabine, C., Cassar, N., Reum, F., Keeling, R. F., and Heimann, M.: Interannual sea–air CO2 flux variability from an observation-driven ocean mixed-layer scheme, Biogeosciences, 11, 4599–4613, https://doi.org/10.5194/bg-11-4599-2014, 2014.
Rödenbeck, C., Bakker, D. C. E., Gruber, N., Iida, Y., Jacobson, A. R., Jones, S., Landschützer, P., Metzl, N., Nakaoka, S., Olsen, A., Park, G.-H., Peylin, P., Rodgers, K. B., Sasse, T. P., Schuster, U., Shutler, J. D., Valsala, V., Wanninkhof, R., and Zeng, J.: Data-based estimates of the ocean carbon sink variability – first results of the Surface Ocean pCO2 Mapping intercomparison (SOCOM), Biogeosciences, 12, 7251–7278, https://doi.org/10.5194/bg-12-7251-2015, 2015.
Sabine, C. L., Hankin, S., Koyuk, H., Bakker, D. C. E., Pfeil, B., Olsen, A., Metzl, N., Kozyr, A., Fassbender, A., Manke, A., Malczyk, J., Akl, J., Alin, S. R., Bellerby, R. G. J., Borges, A., Boutin, J., Brown, P. J., Cai, W.-J., Chavez, F. P., Chen, A., Cosca, C., Feely, R. A., González-Dávila, M., Goyet, C., Hardman-Mountford, N., Heinze, C., Hoppema, M., Hunt, C. W., Hydes, D., Ishii, M., Johannessen, T., Key, R. M., Körtzinger, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lenton, A., Lourantou, A., Merlivat, L., Midorikawa, T., Mintrop, L., Miyazaki, C., Murata, A., Nakadate, A., Nakano, Y., Nakaoka, S., Nojiri, Y., Omar, A. M., Padin, X. A., Park, G.-H., Paterson, K., Perez, F. F., Pierrot, D., Poisson, A., Ríos, A. F., Salisbury, J., Santana-Casiano, J. M., Sarma, V. V. S. S., Schlitzer, R., Schneider, B., Schuster, U., Sieger, R., Skjelvan, I., Steinhoff, T., Suzuki, T., Takahashi, T., Tedesco, K., Telszewski, M., Thomas, H., Tilbrook, B., Vandemark, D., Veness, T., Watson, A. J., Weiss, R., Wong, C. S., and Yoshikawa-Inoue, H.: Surface Ocean CO2 Atlas (SOCAT) gridded data products, Earth Syst. Sci. Data, 5, 145–153, https://doi.org/10.5194/essd-5-145-2013, 2013.
Schuster, U., McKinley, G. A., Bates, N., Chevallier, F., Doney, S. C., Fay, A. R., González-Dávila, M., Gruber, N., Jones, S., Krijnen, J., Landschützer, P., Lefèvre, N., Manizza, M., Mathis, J., Metzl, N., Olsen, A., Rios, A. F., Rödenbeck, C., Santana-Casiano, J. M., Takahashi, T., Wanninkhof, R., and Watson, A. J.: An assessment of the Atlantic and Arctic sea–air CO2 fluxes, 1990–2009, Biogeosciences, 10, 607–627, https://doi.org/10.5194/bg-10-607-2013, 2013.
Sharp, J. D.: RFR-CCS Code (v1.0), Zenodo [code], https://doi.org/10.5281/zenodo.6484875, 2022.
Sharp, J. D., Fassbender, A. J., Carter, B. R., Lavin, P. D., and Sutton, A. J.: RFR-CCS: A monthly surface pCO2 product for the California Current Large Marine Ecosystem (v1.1), Zenodo [data set], https://doi.org/10.5281/zenodo.5523389, 2022.
Shutler, J. D., Land, P. E., Piolle, J. F., Woolf, D. K., Goddijn-Murphy,
L., Paul, F., Girard-Ardhuin, F., Chapron, B., and Donlon, C. J.: FluxEngine:
a flexible processing system for calculating atmosphere–ocean carbon
dioxide gas fluxes and climatologies, J. Atmos. Ocean. Tech., 33,
741–756, https://doi.org/10.1175/JTECH-D-14-00204.1, 2016.
Sutton, A. J., Feely, R. A., Maenner-Jones, S., Musielwicz, S., Osborne, J., Dietrich, C., Monacci, N., Cross, J., Bott, R., Kozyr, A., Andersson, A. J., Bates, N. R., Cai, W.-J., Cronin, M. F., De Carlo, E. H., Hales, B., Howden, S. D., Lee, C. M., Manzello, D. P., McPhaden, M. J., Meléndez, M., Mickett, J. B., Newton, J. A., Noakes, S. E., Noh, J. H., Olafsdottir, S. R., Salisbury, J. E., Send, U., Trull, T. W., Vandemark, D. C., and Weller, R. A.: Autonomous seawater pCO2 and pH time series from 40 surface buoys and the emergence of anthropogenic trends, Earth Syst. Sci. Data, 11, 421–439, https://doi.org/10.5194/essd-11-421-2019, 2019.
Sutton, A. J., Williams, N. L., and Tilbrook, B.: Constraining Southern Ocean
CO2 Flux Uncertainty Using Uncrewed Surface Vehicle Observations,
Geophys. Res. Lett., 48, e2020GL091748, https://doi.org/10.1029/2020GL091748,
2021.
Takahashi, T., Olafsson, J., Goddard, J. G., Chipman, D. W., and Sutherland,
S. C.: Seasonal variation of CO2 and nutrients in the high-latitude
surface oceans: A comparative study, Global Biogeochem. Cy., 7, 843–878,
https://doi.org/10.1029/93GB02263, 1993.
Takahashi, T., Sutherland, S. C., Sweeney, C., Poisson, A., Metzl, N.,
Tilbrook, B., Bates, N., Wanninkhof, R., Feely, R. A., Sabine, C., Olafsson,
J., and Nojiri, Y.: Global sea-air CO2 flux based on climatological
surface ocean pCO2, and seasonal biological and temperature effects,
Deep-Sea Res. Pt. II, 49, 1601–1622, https://doi.org/10.1016/S0967-0645(02)00003-6, 2002.
Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R.
A., Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C.,
Watson, A., Bakker, D. C. E., Schuster, U., Metzl, N., Yoshikawa-Inoue, H.,
Ishii, M., Midorikawa, T., Nojiri, Y., Kortzinger, A., Steinhoff, T.,
Hoppema, M., Olafsson, J., Arnarson, T. S., Tillbrook, B., Johannessen, T.,
Olsen, A., Bellerby, R., Wong, C. S., Delille, B., Bates, N. R., and de
Baar, H. J. W.: Climatological mean and decadal change in surface ocean
pCO2 and net sea-air CO2 flux over the global oceans, Deep-Sea Res.
Pt. II, 56, 554–577, https://doi.org/10.1016/j.dsr2.2008.12.009, 2009.
Turi, G., Lachkar, Z., and Gruber, N.: Spatiotemporal variability and drivers of pCO2 and air–sea CO2 fluxes in the California Current System: an eddy-resolving modeling study, Biogeosciences, 11, 671–690, https://doi.org/10.5194/bg-11-671-2014, 2014.
Valsala, K. V. and Maksyutov, S.: Simulation and assimilation of global
ocean pCO2 and air-sea CO2 fluxes using ship observations of
surface ocean pCO2 in a simplified Biogeochemical offline model, Tellus,
62B, 821–840, https://doi.org/10.1111/j.1600-0889.2010.00495.x, 2010.
Van Geen, A., Takesue, R. K., Goddard, J., Takahashi, T., Barth, J. A., and
Smith, R. L.: Carbon and nutrient dynamics during coastal upwelling off Cape
Blanco, Oregon, Deep-Sea Res. Pt. II, 47, 975–1002, https://doi.org/10.1016/S0967-0645(99)00133-2, 2000.
Verdy, A. and Mazloff, M. R.: A data assimilating model for estimating
Southern Ocean biogeochemistry, J. Geophys. Res.-Oceans, 122, 6968–6988,
https://doi.org/10.1002/2016JC012650, 2017.
von Schuckmann, K., Cheng, L., Palmer, M. D., Hansen, J., Tassone, C., Aich, V., Adusumilli, S., Beltrami, H., Boyer, T., Cuesta-Valero, F. J., Desbruyères, D., Domingues, C., García-García, A., Gentine, P., Gilson, J., Gorfer, M., Haimberger, L., Ishii, M., Johnson, G. C., Killick, R., King, B. A., Kirchengast, G., Kolodziejczyk, N., Lyman, J., Marzeion, B., Mayer, M., Monier, M., Monselesan, D. P., Purkey, S., Roemmich, D., Schweiger, A., Seneviratne, S. I., Shepherd, A., Slater, D. A., Steiner, A. K., Straneo, F., Timmermans, M.-L., and Wijffels, S. E.: Heat stored in the Earth system: where does the energy go?, Earth Syst. Sci. Data, 12, 2013–2041, https://doi.org/10.5194/essd-12-2013-2020, 2020.
Wanninkhof, R.: Relationship between wind speed and gas exchange over the
ocean, J. Geophys. Res.-Oceans, 97, 7373–7382, https://doi.org/10.1029/92JC00188, 1992.
Wanninkhof, R.: Relationship between wind speed and gas exchange over the
ocean revisited, Limnol. Oceanogr. Meth., 12, 351–362, https://doi.org/10.4319/lom.2014.12.351, 2014.
Watson, A. J., Schuster, U., Shutler, J. D., Holding, T., Ashton, I. G. C.,
Woolf, D. K., and Goddijn-Murphy, L.: Revised estimates of ocean-atmosphere
CO2 flux are consistent with ocean carbon inventory, Nat. Commun., 11,
1–4422, https://doi.org/10.1038/s41467-020-18203-3, 2020.
Woolf, D. K., Land, P. E., Shutler, J. D., Goddijn-Murphy, L., and Donlon,
C. J.: On the calculation of air-sea fluxes of CO2 in the presence of
temperature and salinity gradients, J. Geophys. Res.-Oceans, 121,
1229–1248, https://doi.org/10.1002/2015JC011427, 2016.
Woolf, D. K., Shutler, J. D., Goddijn-Murphy, L., Watson, A. J., Chapron,
B., Nightingale, P. D., Donlon, C. J., Piskozub, J., Yelland, M. J., Ashton,
I., Holding, T., Schuster, U., Girard-Ardhuin, F., Grouazel, A., Piolle, J.
F., Warren, M., Wrobel-Niedzwiecka, I., Land, P. E., Torres, R., Prytherch,
P., Hanafin, J., Ardhuin, F., and Paul, F.: Key Uncertainties in the Recent
Air-Sea Flux of CO2, Global Biogeochem. Cy., 33, 1548–1563,
https://doi.org/10.1029/2018GB006041, 2019.
Weiss, R. F.: Carbon dioxide in water and seawater: the solubility of a
non-ideal gas, Mar. Chem., 2, 203–215, https://doi.org/10.1016/0304-4203(74)90015-2, 1974.
Short summary
Oceanographers calculate the exchange of carbon between the ocean and atmosphere by comparing partial pressures of carbon dioxide (pCO2). Because seawater pCO2 is not measured everywhere at all times, interpolation schemes are required to fill observational gaps. We describe a monthly gap-filled dataset of pCO2 in the northeast Pacific Ocean off the west coast of North America created by machine-learning interpolation. This dataset is unique in its robust representation of coastal seasonality.
Oceanographers calculate the exchange of carbon between the ocean and atmosphere by comparing...