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Abstract. A common strategy for calculating the direction and rate of carbon dioxide gas (CO2) exchange
between the ocean and atmosphere relies on knowledge of the partial pressure of CO2 in surface seawater
(pCO2(sw)), a quantity that is frequently observed by autonomous sensors on ships and moored buoys, albeit
with significant spatial and temporal gaps. Here we present a monthly gridded data product of pCO2(sw) at 0.25◦

latitude by 0.25◦ longitude resolution in the northeastern Pacific Ocean, centered on the California Current Sys-
tem (CCS) and spanning all months from January 1998 to December 2020. The data product (RFR-CCS; Sharp et
al., 2022; https://doi.org/10.5281/zenodo.5523389) was created using observations from the most recent (2021)
version of the Surface Ocean CO2 Atlas (Bakker et al., 2016). These observations were fit against a variety of
collocated and contemporaneous satellite- and model-derived surface variables using a random forest regression
(RFR) model. We validate RFR-CCS in multiple ways, including direct comparisons with observations from sen-
sors on moored buoys, and find that the data product effectively captures seasonal pCO2(sw) cycles at nearshore
sites. This result is notable because global gridded pCO2(sw) products do not capture local variability effectively
in this region, suggesting that RFR-CCS is a better option than regional extractions from global products to
represent pCO2(sw) in the CCS over the last 2 decades. Lessons learned from the construction of RFR-CCS pro-
vide insight into how global pCO2(sw) products could effectively characterize seasonal variability in nearshore
coastal environments. We briefly review the physical and biological processes – acting across a variety of spatial
and temporal scales – that are responsible for the latitudinal and nearshore-to-offshore pCO2(sw) gradients seen
in the RFR-CCS reconstruction of pCO2(sw). RFR-CCS will be valuable for the validation of high-resolution
models, the attribution of spatiotemporal carbonate system variability to physical and biological drivers, and the
quantification of multiyear trends and interannual variability of ocean acidification.
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1 Introduction

The concentration of carbon dioxide gas (CO2) in Earth’s
atmosphere has rapidly increased from about 280 parts per
million in 1750 to over 400 parts per million today (Joos
and Spahni, 2008; Dlugokencky and Tans, 2019). This rise
in CO2 concentration is a direct result of human activities
such as fossil fuel combustion, deforestation, and agriculture
(Ciais et al., 2014; Friedlingstein et al., 2020). The presence
of human-produced or “anthropogenic” CO2 in the atmo-
sphere – along with other anthropogenic greenhouse gases –
leads to planetary warming, with a disproportionate amount
of heat (∼ 90 %) being absorbed by the ocean (von Schuck-
mann et al., 2020). About a quarter of annually produced an-
thropogenic CO2 dissolves directly into the ocean (Friedling-
stein et al., 2020), mitigating its warming potential. How-
ever, dissolved CO2 reacts with seawater to form carbonic
acid, which rapidly dissociates and acidifies (primarily) sur-
face ocean environments (Caldeira and Wickett, 2003), with
adverse effects for many marine organisms and ecosystems
(Orr et al., 2005; Fabry et al., 2008; Pörtner, 2008; Doney et
al., 2009, 2020). Closing the global carbon budget involves
accurately estimating the amount of CO2 taken up by the
ocean (e.g., Hauck et al., 2020). A primary method for cal-
culating the amount of CO2 transferred to the ocean requires
knowing the difference between the partial pressure of CO2
in the atmosphere and surface seawater.

Compared to atmospheric CO2 partial pressure
(pCO2(atm)), which can be determined with some cer-
tainty at a given location even without direct observations
due to the well-mixed nature of the atmosphere, surface
seawater CO2 partial pressure (pCO2(sw)) is more variable
and therefore more difficult to constrain (Wanninkhof, 2014;
Landschützer et al., 2014; Woolf et al., 2019). This variabil-
ity is a result of ocean mixing, equilibration kinetics between
the atmosphere and ocean, biological processes, and thermal
effects on pCO2(sw). Filling temporal and spatial data gaps
in the observational coverage of pCO2(sw) can therefore
be challenging (Hauck et al., 2020; Fay et al., 2021) and
a variety of strategies have been attempted over several
decades (Takahashi et al., 1993; Rödenbeck et al., 2015),
becoming even more prevalent and varied in the literature
over time. Briefly, statistical interpolations (Takahashi et al.,
1993, 2002, 2009; Rödenbeck et al., 2013, 2014; Jones et
al., 2015; Shutler et al., 2016), multiple linear regressions
(Schuster et al., 2013; Iida et al., 2015; Becker et al., 2021),
machine-learning-based regression methods (Landschützer
et al., 2013; 2014, 2016, 2018; Nakaoka et al., 2013; Zeng
et al., 2014; Laruelle et al., 2017; Ritter et al., 2017; Gregor
et al., 2017, 2018; Chen et al., 2019; Denvil-Sommer et
al., 2019), and biogeochemical-model-based approaches
(Valsala and Maksyutov, 2010; Majkut et al., 2014; Verdy
and Mazloff, 2017) have been common tactics, each one
with its own strengths and weaknesses. Recently, ensemble
averages of multiple data- or model-based approaches

have become popular options as well (Gregor et al., 2019;
Lebehot et al., 2019; Fay et al., 2021).

One widely used machine-learning-based pCO2(sw) gap-
filling strategy relies on a two-step approach consisting of
unsupervised clustering using a self-organizing-map (SOM)
followed by construction of a feed-forward neural network
(FFN) for each cluster (Landschützer et al., 2013). This
SOM-FFN approach is well-established in the literature
(Landschützer et al., 2013, 2014, 2015, 2016, 2018; Laruelle
et al., 2017; Ritter et al., 2017; Denvil-Sommer et al., 2019)
and is recognized as one of the most effective approaches
for filling gaps in the observational pCO2(sw) record (Rö-
denbeck et al., 2015). The SOM-FFN approach was recently
applied to coastal ocean areas, resulting in the first globally
continuous, multiyear data product of monthly coastal ocean
pCO2(sw) at 0.25◦ resolution (Laruelle et al., 2017). Even
more recently, that coastal product was combined with an
updated open-ocean product (Landschützer et al., 2020a) to
produce a uniform 12-month climatology of pCO2(sw) across
the coastal to open-ocean continuum (Landschützer et al.,
2020b, c).

The data products provided by Laruelle et al. (2017) and
Landschützer et al. (2020b) – hereafter L17 and L20, respec-
tively – are important advancements toward characterizing
pCO2(sw) across the entire ocean domain for carbon budget
analyses. Most data-based estimates of oceanic CO2 uptake
have considered only the open ocean (e.g., Landschützer et
al., 2014; Iida et al., 2015; Denvil-Sommer et al., 2019; Gre-
gor et al., 2019; Watson et al., 2020) or are based on coarse
spatial representations of the coastal ocean (Rödenbeck et al.,
2013). However, coastal ocean CO2 uptake is estimated to be
about 10 % of the open-ocean figure (Laruelle et al., 2010,
2014; Bourgeois et al., 2016; Roobaert et al., 2019; Chau et
al., 2022), is far more spatially variable (Liu et al., 2010), and
may be changing at a different rate relative to open-ocean
CO2 uptake (Laruelle et al., 2018). Therefore, augmenting
global open-ocean pCO2(sw) data products to include the
coastal ocean is quite valuable (Fay et al., 2021). Despite
the greater spatial coverage and temporal resolution offered
by these new gap-filled pCO2(sw) data products, significant
challenges remain for accurately representing pCO2(sw).

One of those challenges involves characterizing sea-
sonal cycles in pCO2(sw), particularly in the nearshore
coastal ocean. Although the L17 product effectively captures
pCO2(sw) seasonality when averaged across relatively large
coastal ocean regions, the authors assert that “the coastal
SOM-FFN tends to systematically underestimate the ampli-
tude of the seasonal pCO2 cycle” in locations where they
can make comparisons with direct observations. This result
is logical given that (1) direct observations are made at dis-
crete locations and times, whereas gridded products are av-
eraged over some spatial area and time, which tempers ex-
tremes; and (2) fits obtained via least squares regressions
or machine-learning methods generally tend to perform bet-
ter when temporal and spatial variability is low and worse
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when variability is high (Landschützer et al., 2014), such
as in the coastal ocean. However, this problem must be ad-
dressed if we hope to achieve realistic global representations
of pCO2(sw) seasonality, which are necessary for investigat-
ing the processes that drive this variability (Roobaert et al.,
2019) and for ensuring the fidelity of future air–sea CO2
flux projections (Hauck et al., 2020). Addressing carbon ex-
change in coastal margins has recently been highlighted as
a fundamental and emerging research topic in ocean carbon
research (Dai, 2021).

Here, we present a reconstruction of pCO2(sw) (1998–
2020) in a broad region of the northeastern Pacific that in-
cludes the California Current System (CCS), the surrounding
open-ocean regions, and the highly variable continental shelf
of the North American west coast spanning from southern
Alaska to Baja California. We apply a random forest regres-
sion (RFR) approach (Breiman, 2001) to fill observational
gaps, constraining pCO2(sw) across the coastal to open-ocean
continuum. We show that the RFR approach in the north-
eastern Pacific produces realistic monthly maps of surface
pCO2(sw) from 1998 to 2020 and that these maps reliably
capture seasonal pCO2(sw) variability in the coastal and open
ocean.

We compare pCO2(sw) values from our gap-filled product
– RFR-CCS – to coastal ocean mooring measurements and
other direct observations and to the available global-scale
0.25◦ resolution SOM-FFN products in the region (i.e., L17
and L20). We speculate as to why nearshore seasonal cycles
are better represented by RFR-CCS than by global-scale gap-
filled products and discuss implications for how to best cap-
ture seasonal variability in global products going forward.
We describe spatial and seasonal patterns in pCO2(sw) re-
vealed by RFR-CCS and discuss the physical and biologi-
cal processes that likely produce those patterns. Finally, we
compare air–sea CO2 flux computed from RFR-CCS to that
from a recently released CO2 flux product (Gregor and Fay,
2021) and discuss the implications of sporadic sampling for
calculations of CO2 flux in the coastal ocean.

2 Methods

2.1 Sea surface fCO2 data acquisition and conversion to
pCO2

Sea surface CO2 fugacity (fCO2(sw)) data, along with ancil-
lary variables, were obtained from the Surface Ocean CO2
Atlas (SOCAT; Pfeil et al., 2013; Bakker et al., 2016) ver-
sion 2021 (SOCATv2021) for latitudes between 15 and 60◦ N
and longitudes between 105 and 140◦W (hereafter referred
to as “the study region”). SOCAT is an international effort
to synthesize quality-controlled fCO2(sw) observations for the
global surface ocean, and has released datasets of individ-
ual surface ocean fCO2(sw) observations and gridded values
since 2011, with annual releases since 2015. SOCATv2021
contains nearly 30.6 million fCO2(sw) observations globally

and over 1.4 million fCO2(sw) observations within the study
region.

SOCAT data in the study region were filtered to retain
fCO2(sw) observations with a measurement quality control
(QC) flag of 2 (“good”) and dataset QC flags of A through
D (fCO2(sw) accuracy of 5 µatm or better). This is identical to
the QC procedure followed by the SOCAT team for produc-
ing gridded data products (Sabine et al., 2013; Bakker et al.,
2016). SOCATv2021 provides ancillary variables along with
fCO2(sw), including contemporaneous observations of sea
surface temperature (SST) and sea surface salinity (SSS), as
well as atmospheric pressure at the ocean surface (Patm) from
the National Centers for Environmental Prediction (NCEP)
reanalysis; these values were used only for fugacity to partial
pressure conversions (Eq. 1). Though SST and SSS are con-
sidered surface values, it is important to note that these are
primarily underway measurements taken a few meters be-
neath the surface and that nontrivial differences in tempera-
ture and salinity may exist between the measurement depth
and the surface (Robertson and Watson, 1992; Donlon et al.,
2002; Goddijn-Murphy et al., 2015; Woolf et al., 2016; Ho
and Schanze, 2020; Watson et al., 2020). Also, while SST
and SSS are not assigned explicit QC flags in SOCAT, these
parameters do undergo quality control checks during the cal-
culation of fCO2(sw) (Lauvset et al., 2018).

Sea surface CO2 fugacity represents CO2 partial pressure
corrected for the nonideality of CO2 gas. It was converted
to sea surface CO2 partial pressure (pCO2(sw)) following
(Weiss, 1974)

pCO2(sw) = fCO2(sw) · exp
(
Patm

B + 2 · δ
R · T

)−1

, (1)

where B and δ are virial coefficients, R is the ideal gas con-
stant, and T is SST in Kelvin.

2.2 Binning of pCO2(sw) observations

Sea surface CO2 partial pressure data were aggregated onto
a 0.25◦ latitude by 0.25◦ longitude grid for each month
from January 1998 to December 2020 using a bin-averaging
procedure that consisted of computing the means (µ) and
standard deviations (σ ) of all observations of pCO2(sw) in-
cluded within each grid cell. Observations prior to 1998 were
excluded as an increase in fCO2(sw) data coverage occurs
around the start of 1998 and the first full year of SeaW-
iFS chlorophyll observations (which are used in our proce-
dure to fill gaps in the pCO2(sw) dataset) is 1998. For cases
in which observations in a given grid cell originated from
two or more platforms (e.g., cruises or autonomous assets),
platform-weighted µ and σ were computed by first taking
the means and standard deviations of all observations made
by each platform, then taking the means of those values.
This ensured that all platforms contributing observations to
a given grid cell were weighted equally, mitigating unwanted
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Figure 1. Annual mean pCO2(sw) from the 0.25◦ resolution grid-
ded dataset computed as an average over the monthly climatology
from 1998 to 2020 for each grid cell. The two extremes of the color
bar can represent pCO2(sw) values less than or greater than the color
bar limits; the chosen range represents most of the values and em-
phasizes regional contrast.

biases toward high-resolution measurement systems (Sabine
et al., 2013).

This bin-averaging procedure is identical to the one fol-
lowed by the SOCAT team for producing monthly datasets
for coastal regions with 0.25◦ resolution as well as for open-
ocean regions with 1◦ resolution (Sabine et al., 2013; Bakker
et al., 2016). However, here we produced a monthly grid-
ded dataset with 0.25◦ resolution for a region of the north-
eastern Pacific (15 to 60◦ N, 105 to 140◦W) that spans both
the coastal and open ocean. Means of pCO2(sw) from this
gridded dataset (averages over the monthly climatology from
1998 to 2020 for each spatial grid cell) are shown in Fig. 1.
Some of the apparent fine-scale spatial variability in this bin-
averaged map is not indicative of true environmental condi-
tions but originates from the combination of large temporal
variability within each grid cell and uneven sampling of each
grid cell across and within years. This form of temporal vari-
ability is exactly the kind of spurious result that advanced
pCO2(sw) mapping techniques are intended to circumvent.
Figure B1 shows the number of years containing an observa-
tion within each month of our gridded pCO2(sw) dataset. Un-
surprisingly, temporal coverage is highest close to the coast,
especially in the summer months.

2.3 Predictor variable acquisition and processing

Of the 4 014 844 grid cells that represent the surface ocean
gridded in three dimensions at 0.25◦ resolution over 276
months (1998–2020) in the study region, just 1.25 % have
an associated gridded pCO2(sw) value. To fill gaps in this
dataset, relationships between pCO2(sw) and various predic-
tor variables need to be determined. The predictor variables
used in this study are primarily derived from satellite obser-
vations or reanalysis models due to the condition that they
be resolved with temporal and spatial continuity across the
study region and selected time span.

Predictor variables are intended to capture conditions that
mechanistically influence pCO2(sw) (e.g., SST and atmo-
spheric pCO2), serve as a proxy for mechanisms that influ-
ence pCO2(sw) (e.g., sea surface chlorophyll), or, in the case
of temporal and spatial information, constrain additional pat-
terned variability not captured by the mechanistic variables
alone. The chosen predictor variables for this study (Table 1)
have all been used before for pCO2(sw) gap-filling methods
(e.g., Landschützer et al., 2014; Gregor et al., 2018; Denvil-
Sommer et al., 2019; Watson et al., 2020); temporal and spa-
tial predictors were included to ensure robust representation
of pCO2(sw) seasonal cycles (Gregor et al., 2017). Included
in Table 1 are the sources of each dataset, the original resolu-
tions of each dataset, and the steps that were taken to process
each dataset. Appendix A provides more detail about the ac-
quisition and processing of the driver variables and includes
figures showing annual means of selected variables.

2.4 Construction of nonlinear relationships using
random forest regression

We used the random forest regression approach (Breiman,
2001) to identify relationships between pCO2(sw) and pre-
dictor variables in order to fill gaps in the gridded pCO2(sw)
dataset. This method averages the results from a number
of decision and/or regression trees (i.e., a “forest”) built
on bootstrapped replicates of the dataset – which individ-
ually have low bias and high variance – to produce a fi-
nal regression model with reduced variance (Hastie et al.,
2009). RFR is the machine-learning method of choice for
this study as early testing showed better performance than
the SOM-FNN method in the northeastern Pacific. Further,
RFR is less computationally expensive than fitting a neural
network and has been shown to produce results comparable
to the SOM-FFN approach in terms of overall performance
(Gregor et al., 2017). It should be noted, however, that the
two approaches differ mechanistically and therefore adapt
to variability within a training dataset in different ways. Fi-
nally, while RFR has been explored more frequently in recent
years as a method of spatiotemporal pCO2(sw) gap-filling
both globally (Gregor et al., 2017, 2018) and regionally in
the Gulf of Mexico (Chen et al., 2019), far fewer RFR-based
pCO2(sw) products exist than neural-network-based prod-
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Table 1. Sources of data for interpolation of surface pCO2. Chlorophyll a (Chl) and mixed layer depth (MLD) were log10-transformed to
produce a distribution of values that was closer to normal before constructing the regression model. Gaps in CHL data were filled by linear
interpolation over time within each grid cell (see Appendix A). Month of the year was transformed by cosine and sine functions to retain its
cyclical nature.

Predictor variable Source Citation
Original resolution

Processing
Spatial Temporal

Sea surface temperature (SST) OISSTv2 Huang et al. (2021) 0.25◦ daily monthly averages

Sea surface salinity (SSS) ECCO2 Menemenlis et al. (2008) 0.25◦ daily monthly averages

Chlorophyll a (Chl;
log10-transformed)

SeaWiFS
(1998–2002);
MODIS (2003–2020)

NASA Ocean Color 1/6◦ monthly interpolated to 0.25◦

resolution

Wind speed (U ) ERA5 Hersbach et al. (2020) 0.25◦ monthly none

Atmospheric pCO2
(pCO2(atm))

NOAA marine
boundary layer
reference xCO2

Dlugokencky et al. (2020) sin(lat) of 0.05 weekly monthly averages,
interpolated to 0.25◦ lat.
resolution, multiplied by
NCEP sea level pressure

Mixed layer depth (MLD;
log10-transformed)

HYCOM Chassignet et al. (2007) 1/6◦ monthly interpolated to 0.25◦

resolution

Distance from shore Calculated from
gridded lat–long

Greene et al. (2019) – – –

Year – – – – –

Month of year (converted to
two separate predictors using
sine and cosine)

– – – – –

ucts. So, this study provides a good opportunity to further
demonstrate the utility of RFR for producing monthly fields
of pCO2(sw), in this case on a regional scale in the northeast-
ern Pacific.

Each decision tree within a random forest regression
model is built on a different subset of the training dataset
(that contains both the predictor variables and corresponding
gridded pCO2(sw) values). This subset is generated by boot-
strapping, in which a random set of training data points is se-
lected with replacement – meaning the same data point can
be selected more than once (Breiman, 1996). The number of
data points in the bootstrapped dataset is equal to a defined
fraction (InBagFraction in Table 2) of the original dataset;
however, a fraction equal to 1 does not mean the bootstrapped
dataset is identical to the original dataset because selection is
made with replacement. Since each regression tree is built on
a different subset of the training data, it will contain some-
what different relationships between the predictor variables
and the corresponding gridded pCO2(sw) values.

The process of building a decision tree begins at the top
“node” of the tree with the values of a single predictor vari-
able being used to split that tree’s bootstrapped subset of the
training dataset into two smaller subsets (not necessarily of
equal size) containing the most similar pCO2(sw) observa-
tions (i.e., sets of pCO2(sw) observations with the smallest
variance among them). These subsets are then further divided

into progressively smaller sets of similar observations un-
til either the variance among the pCO2(sw) observations in
a node drops below a prescribed tolerance level or the num-
ber of observations in the node reaches the user-defined min-
imum (MinLeafSize in Table 2). To ensure that the algorithm
does not always pick the same predictor variable (e.g., the
one most highly correlated with pCO2(sw) overall) for the
split at every node, we limit it to choosing from a different
random subset of the predictor variables (equal in number
to NumPredictorsToSample in Table 2) at each node. This
introduces another “random” element into the tree-building
process. The random forest contains a large number of these
regression trees (NumTrees in Table 2) each built on a dif-
ferent, random bootstrapped subsample of the training data.
Once the random forest is built, a set of predictor vari-
ables can be provided to the model and the average of the
pCO2(sw) values provided by each regression tree is used as
the pCO2(sw) prediction for that particular set of inputs.

We constructed an RFR model using the MATLAB Tree-
Bagger function with the predictor variables given in Ta-
ble 1 and the parameters given in Table 2, along with
gridded pCO2(sw) values that were obtained as described
in Sect. 2.1 and 2.2. To produce the northeastern Pa-
cific random forest regressionpCO2(sw) product (RFR-CCS)
that is the main result of this work (Sharp et al., 2022;
https://doi.org/10.5281/zenodo.5523389), the full dataset of
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Table 2. Model parameters for the random forest regression. Parameter names are the default property names for the MATLAB TreeBagger
class.

Parameter Explanation Value

NumTrees Number of decision trees to build for random forest 1200
MinLeafSize Minimum number of observations in a given terminal node (i.e., the last node in a decision tree) 5
NumPredictorsToSample Number of randomly selected predictor variables to choose from at each node split 6
InBagFraction Fraction of input data to sample with replacement for each bootstrapped dataset 1.0

gridded pCO2(sw) values was used. For optimization and
evaluation, subsets of the full dataset were used as described
in the following sections.

2.5 Optimization of random forest regression model

The predictor variables used (Table 1) and the values for the
model parameters (Table 2) were determined by iteratively
optimizing the model performance. First, default model pa-
rameters were used to train an RFR model using a subset
of the data for training (80 % of full dataset, distributed ran-
domly across the space and time domains of interest) and a
number of possible predictor variables: latitude, longitude,
sea surface height, bottom depth, and those given in Table 1.
During model selection, the generalization skill for the RFR
model was assessed using a validation dataset comprised
of 10 % of the full dataset, none of which was included in
the training data. After the initial model fit, predictors with
a “feature importance” (computed during the RFR fit) sig-
nificantly lower than all other predictors were sequentially
dropped (latitude, longitude, and sea surface height), and
this did not substantially change the training or validation
root mean squared error (RMSE). Remaining predictor vari-
ables were dropped one at a time for subsequent fits, and the
goodness-of-fit and generalization skill of the model were as-
sessed using the RMSE values calculated from applying the
model to the training and validation datasets, respectively.
The set of predictors with the lowest RMSE after dropping
one predictor was carried into the next iteration. If remov-
ing a predictor did not increase the validation RMSE sig-
nificantly, then that predictor was removed from the set of
predictors (only bottom depth was dropped in this step). The
final set of predictor variables is shown in Table 1.

Next, different values for model parameters (Table 2) were
tried iteratively with the retained predictors to identify the
optimal values, again by minimizing the RMSE of the vali-
dation dataset. Although lower values for the minimum ter-
minal node size performed better in this analysis, additional
testing indicated that retaining the default value of 5 was
important to prevent overfitting. To determine the appropri-
ate number of trees, we examined how the out-of-bag mean
squared error changed as more and more trees were included
in the random forest (up to 5000 trees) and selected a num-
ber of trees well past the point at which this error had sta-
bilized (1200 trees). Finally, the remaining 10 % of the full

dataset that was withheld from both the model training and
model validation (i.e., the “test data”) was used to quantify
the mapping uncertainties from the RFR approach (discussed
further in Sects. 2.7 and 3.5). The predictor variable feature
importances for the final RFR-CCS fit are given in Fig. B2.

2.6 Evaluation of random forest regression approach
and resulting data product

Once predictor variables and model parameters were opti-
mized, the skill of the RFR approach was further evaluated
by splitting the full dataset into different subsets of train-
ing data and test data. Evaluation models (RFR-CCS-Evals)
were constructed in three different ways: (1) by removing a
random (20 %) subset of cruises and/or measurement plat-
forms from the training data (repeated 10 times with dif-
ferent subsets removed each time; n= 10), (2) by removing
all observations from every fifth year from the training data
(repeated five times such that data from every year was re-
moved from one of the trials; n= 5), and (3) by removing
all moored autonomous pCO2(sw) measurements (i.e., dis-
crete time series sites primarily located in the coastal ocean)
from the training data (n= 1). The first two strategies were
relevant for assessing bulk error statistics for the method ap-
plied across the region and the third strategy for evaluating
the ability of the RFR to represent local seasonal variability
without the use of high-temporal-resolution mooring data.
These RFR-CCS-Evals are distinct model variants that are
only used for assessment; the final RFR-CCS model uses all
available training data.

Each data split for an RFR-CCS-Eval was applied di-
rectly to SOCATv2021 observations, before bin-averaging
the data according to the procedure given in Sect. 2.2; as a
result, a gridded training dataset and a gridded test dataset
were produced from each split. Data splits were performed
in this way to ensure that autocorrelation among measure-
ments from a specific platform did not bias the error statis-
tics. Each split was repeated n times, and error statistics (bias,
RMSE, and R2) from comparing pCO2(sw) predicted from
the RFR-CCS-Eval models versus pCO2(sw) from the grid-
ded test dataset were averaged.

The final RFR-CCS data product was evaluated through
comparisons with gridded pCO2(sw) observations from SO-
CATv4 (Bakker et al., 2016) and pCO2(sw) observations from
surface ocean moorings (Sutton et al., 2019). Of the sur-
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face ocean moorings within the study site that are not lo-
cated within an inland sea and have available data from all
12 months of the year, four (CCE2, NH10, Cape Elizabeth,
Châ bá) are located within 40 km of shore and one (CCE1)
is about 215 km from shore. RFR-CCS was also compared to
global-scale gap-filled pCO2(sw) products that are available
in the region. Namely, we focused on the coastal multi-month
pCO2(sw) product from Laruelle et al. (2017; i.e., L17) and
the combined coastal and open-ocean pCO2(sw) climatology
from Landschützer et al. (2020b; i.e., L20).

2.7 Uncertainty analysis

Uncertainty in pCO2(sw) for each grid cell was calculated ac-
cording to the approach used by Landschützer et al. (2014,
2018) and Roobaert et al. (2019), in which total uncertainty
in pCO2(sw) results from a combination of observational un-
certainty, mapping uncertainty, and gridding uncertainty. Ob-
servational uncertainty (θobs) is uncertainty inherent to the
original measurements of pCO2(sw) evaluated as the average
of reported uncertainties in the fCO2(sw) observations from
our training dataset, which are flagged by SOCAT with a
dataset QC flag of A or B (fCO2(sw) accuracy of 2 µatm or
better) and of C or D (fCO2(sw) accuracy of 5 µatm or bet-
ter); we weighted θobs by the number of observations as-
signed each flag. Mapping uncertainty (θmap) is uncertainty
contributed by the RFR mapping procedure and was evalu-
ated as separate values for the coastal (< 400 km from shore)
and open ocean (> 400 km from shore) using the mean of
the root mean squared errors for a subset of test data (10 %)
withheld from both the model training data (80 %) and model
validation data (10 %) (see Sect. 2.5). Gridding uncertainty
(θgrid) is uncertainty attributable to aggregating observations
into monthly 0.25◦ resolution grid cells and was evaluated
as separate values for the coastal and open ocean by taking
the average unweighted standard deviation among pCO2(sw)
values within each grid cell in which two or more platforms
were represented. Grid cells with mooring observations were
excluded from the θgrid calculation to avoid the high num-
ber of observations swamping the signal from other plat-
forms. These three components were combined to obtain to-
tal pCO2(sw) uncertainty (θpCO2 ) applicable to each open-
ocean grid cell and to each coastal grid cell:

θpCO2 =

√
θ2

obs+ θ
2
map+ θ

2
grid. (2)

Whereas θpCO2 represents the uncertainty in pCO2(sw) for a
given grid cell in a given month, uncertainty averaged re-
gionally or over time will not scale exactly with θpCO2 due
to the spatial correlation of pCO2(sw) values and the autocor-
relation features of the model error (e.g., Landschützer et al.,
2014).

2.8 Calculation of CO2 flux

The flux of CO2 across the ocean–atmosphere interface
(FCO2 ) was calculated using a bulk formula:

FCO2 = kw×K0×1pCO2, (3)

where kw is the gas transfer velocity, K0 is the CO2
solubility constant, and 1pCO2 is the difference be-
tween CO2 partial pressure in seawater and in the overly-
ing atmosphere (pCO2(sw)−pCO2(atm)) The salinity- and
temperature-dependent equations of Weiss (1974) were used
to calculate K0.

Gas transfer velocities were parameterized using a
quadratic dependence on wind speed (Wanninkhof, 1992):

kw = 0660 ·U
2
·
√

660/Sc, (4)

where 0660 is a gas exchange coefficient normalized to Sc
= 660, U2 is the squared wind speed, and Sc is the Schmidt
number for CO2. Our calculations used 0660 = 0.276, which
is a gas exchange coefficient that is specific to ERA5 re-
analysis winds and scaled to a bomb-14C flux estimate of
16.5 cm h−1 (Fay et al., 2021). Sc was calculated using the
fourth-order polynomial fit of Wanninkhof (2014). U was
obtained from ERA5 reanalysis (Hersbach et al., 2020). Flux
calculations used monthly averages of squared 3-hourly wind
speeds to retain the influence of the quadratic wind term (Fay
et al., 2021).

3 Results and discussion

3.1 Evaluation by comparison to withheld data

As described in Sect. 2.6, training and test datasets were cre-
ated by splitting the full dataset prior to bin-averaging. Eval-
uation models (RFR-CCS-Evals) were constructed by fitting
RFR models using the various gridded training datasets. Val-
ues of pCO2(sw) predicted by RFR-CCS-Evals were com-
pared to corresponding values from gridded test datasets. Er-
ror statistics (bias, RMSE, and R2) averaged over the n sets
of evaluation tests are given in Table 3. When RFR-CCS is
compared against all the gridded observations used to con-
struct it, error statistics are predictably strong (last row in
Table 3), with a mean bias of 0.00 µatm and an RMSE of
13.33 µatm (R2

= 0.93). These error statistics demonstrate
the ability of the RFR model to fit the training data; the eval-
uation tests provide insight into the model’s ability to predict
independent data.

Tests 1 and 2 are good indicators of the overall skill of
RFR-CCS. The mean absolute bias for each of those tests is
less than 2 µatm, and the RMSEs are near or below 30 µatm.
These error statistics can be compared with those of L17,
who obtained biases with a mean of 0.0 and RMSEs ranging
from 20.5 to 53.1 µatm (mean of 39.2 µatm) for independent
evaluations of coastal pCO2(sw) values fit using the SOM-
FFN method in 10 separate global subregions at 0.25◦ res-
olution. For an open-ocean comparison, Denvil-Sommer et
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Table 3. Error statistics for comparisons of predicted pCO2(sw) from evaluation models versus gridded pCO2(sw) from test datasets. The
number of times each test was repeated is given by n; where n is greater than 1, different subsets of data were removed for each iteration of
the test and error statistics are the mean of all iterations.

Test no.
Removed from Mean bias RMSE

R2
training dataset (µatm) (µatm)

1 (n= 10) Random (20 %) subset of cruises −0.37 26.96 0.66
2 (n= 5) Every fifth year 1.57 30.03 0.63
3 (n= 1) Moored autonomous observations 8.39 43.28 0.55
RFR-CCS None; full dataset used 0.00∗ 13.33∗ 0.93∗

∗ These statistics represent model training statistics (i.e., evaluated with the same data used to train the
model) rather than model validation statistics.

al. (2019) obtained an RMSE of 15.86 for an independent
evaluation of pCO2(sw) values fit using a similar neural net-
work approach (LSCE-FFNN) for the subtropical North Pa-
cific (18 to 49◦ N) at 1◦ resolution. The error statistics for
our study region, which spans the coastal to open-ocean con-
tinuum on a finely resolved spatial grid, lie comfortably be-
tween those coastal and open-ocean comparison points.

Test 3 is a good indicator of how well the RFR approach
is able to reproduce the values and seasonalities of coastal
pCO2(sw) at fixed locations when mooring data at a given lo-
cation are not provided as training data, as each of the moor-
ings makes continuous pCO2(sw) measurements throughout
the year and all but one of the mooring locations included
in SOCATv2021 in this region are within 40 km of shore.
The positive mean bias (8.39 µatm) suggests that RFR-CCS
somewhat overestimates pCO2(sw) at grid cells correspond-
ing to mooring locations, but this is strongly influenced by
high biases at the Cape Elizabeth and Châ bá mooring loca-
tions (Table B1). The relatively high RMSE (43.28 µatm) is
a result of higher variability in coastal grid cells compared
to the open ocean; this is confirmed by a comparison to the
offshore CCE1 mooring (Table B1), where the RMSE from
the mooring-excluded RFR-CCS-Eval is just 10.5 µatm.

Figure 2 provides an example of one coastal mooring
record (CCE2, which is positioned on the shelf break off the
coast of Point Conception, CA, at 34.324◦ N, 120.814◦W)
compared to pCO2(sw) predicted in the corresponding grid
cell (centered at 34.375◦ N, 120.875◦W) by the mooring-
excluded RFR-CCS-Eval model (Test 3) as well as the full
RFR-CCS model. For comparison, pCO2(sw) in the same grid
cell provided by the L17 coastal product is also shown. At
the CCE2 mooring location, RFR-CCS reproduces mooring-
observed monthly pCO2(sw) with a mean bias of −2.2 µatm
and an RMSE of 16.1 µatm (R2

= 0.81). These error statis-
tics are expected to be relatively favorable, as the RFR-CCS
model is trained using mooring observations from CCE2. In
contrast, the mooring-excluded RFR-CCS-Eval reproduces
monthly mooring-observed pCO2(sw) at CCE2 with a mean
bias of −4.6 µatm and an RMSE of 28.9 µatm (R2

= 0.41).
This can be compared to the L17 coastal pCO2(sw) prod-
uct, which reproduces monthly mooring-observed pCO2(sw)

at CCE2 with a mean bias of −44.2 µatm and an RMSE of
57.3 µatm (R2

= 0.06). Notably, the mooring-excluded RFR-
CCS-Eval captures pCO2(sw) variability at CCE2 more ef-
fectively than the L17 product, even though RFR-CCS-Eval
was trained without mooring observations and the L17 train-
ing dataset (i.e., SOCATv4) includes CCE2 mooring obser-
vations through 2014. Similar results are obtained for com-
parisons to other mooring records (Table B1; Fig. B3), with
RFR-CCS always producing the best error statistics (as ex-
pected) and RFR-CCS-Eval always producing a better R2

than L17, indicating that coastal seasonality at mooring loca-
tions is better captured by our regional random forest regres-
sion model, even when mooring observations themselves are
not included in the model training. This is an important con-
clusion, especially in light of the recommendation by Hauck
et al. (2020) that the inclusion of coastal areas and marginal
seas in pCO2(sw) mapping methods will be critical for im-
proving the ocean carbon sink estimate. If these areas are to
be included, it is sensible to attempt to capture their unique
modes of variability as accurately as possible.

3.2 Evaluation by comparison to global pCO2(sw)
products

Across the study area, values of pCO2(sw) from RFR-CCS
were compared against corresponding values from L17 and
L20. For temporal compatibility with L17 and L20, a cli-
matology of average monthly values from RFR-CCS span-
ning 1998 to 2015 (RFR-CCS-clim) was created for these
comparisons. Figure 3 shows mapped differences in annual
means and seasonal amplitudes (calculated as the maximum
climatological pCO2(sw) minus the minimum) of pCO2(sw)
between RFR-CCS-clim versus L20 (top panels) and RFR-
CCS-clim versus a climatological average of L17 (bottom
panels); monthly mean differences in are given in Fig. B4.

The most notable feature of the annual mean difference
maps is that RFR-CCS-clim produces much higher annual
mean pCO2(sw) than both L17 and L20 in the nearshore
coastal ocean and slightly higher pCO2(sw) in the remain-
der of the study area. Similarly, RFR-CCS-clim produces
much higher seasonal variability than both L17 and L20 in
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Figure 2. Monthly values of pCO2(sw) from mooring observations (black), RFR-CCS (blue), the mooring-excluded RFR-CCS-Eval model
(orange), and L17 (green). The envelope around the black line equals the standard deviation of all mooring observations within each month,
representing the natural variability of the 3-hourly mooring measurements; the envelopes around the blue and orange lines represent the
RFR-CCS and RFR-CCS-Eval results plus 1 standard uncertainty (43.6 µatm; Sect. 3.5); the envelope around the green line represents the
L17 data product plus the RMSE of an independent data evaluation in the province associated with CCE2 (52.5 µatm; Table 3 of Laruelle et
al., 2017; Province P7).

Figure 3. Differences between annual means (a, c) and seasonal
amplitudes (b, d) of pCO2(sw) from RFR-CCS-clim versus the L20
climatology (a, b; RFR-CCS-clim – L20) and versus a climatologi-
cal average of the L17 product (c, d; RFR-CCS-clim – L17).

the nearshore coastal ocean, especially north of about 34◦ N.
On average, RFR-CCS-clim produces an area-weighted an-
nual mean pCO2(sw) that is greater than L17 by 19.0 µatm
and L20 by 8.4 µatm, as well as an area-weighted seasonal
amplitude that is greater than L17 by 13.0 µatm and L20 by
5.6 µatm.

3.3 Evaluation by comparison to gridded observations
of pCO2(sw)

Values of pCO2(sw) from RFR-CCS, L17, and L20 were
compared against the SOCATv4 gridded pCO2(sw) data
product. SOCATv4 was used in the development of the
coastal L17 product, whereas SOCATv5 was used in the de-
velopment of the open-ocean product for the merged L20 cli-
matology, and SOCATv2021 was used in the development of
RFR-CCS. Therefore, comparisons were made to both the
gridded open-ocean observations (1◦ resolution) and gridded
coastal observations (0.25◦ resolution) from SOCATv4 to in-
clude only data points that were available to the training of
all three data products. To match the resolution of the gridded
open-ocean observations from SOCATv4, aggregation from
a 0.25◦ resolution grid to a 1◦ resolution grid was performed
for RFR-CCS, RFR-CCS-clim, and L20. L17 was only com-
pared to gridded coastal observations from SOCATv4 be-
cause the two are gridded to the same spatial resolution and
cover the same coastally limited spatial domain.

Figure 4 shows two-dimensional histograms of bin-
averaged differences between RFR-CCS-clim, L20, RFR-
CCS, and L17, each compared against gridded observations
from SOCATv4. For comparisons to climatological products
(RFR-CCS-clim and L20), gridded SOCATv4 observations
were averaged to a monthly climatology across 1998–2015
for consistency with the products. The regional RFR-CCS
product and its climatology outperform both global SOM-
FFN products: RFR-CCS-clim shows better agreement with
gridded monthly means of observations from SOCATv4 than
L20 (R2

= 0.85 versus R2
= 0.73), and RFR-CCS (within

the coastally limited spatial domain of L17) shows better
agreement with gridded observations from SOCATv4 than
L17 (R2

= 0.96 versus R2
= 0.61). In particular, the two

global products (L20 and L17) struggle to match pCO2(sw)
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values in the nearshore coastal ocean (within 100 km of the
coast), indicated by dark blue cells in Fig. 4.

Mismatches between global pCO2(sw) products and obser-
vations in the nearshore coastal ocean are not unexpected, as
regional error statistics for reconstructed global pCO2(sw) are
typically larger than the global mean error statistics (Laruelle
et al., 2017; Landschützer et al., 2020c), and it is generally
more challenging to model pCO2(sw) in environments with
high temporal and spatial variability, such as in the nearshore
coastal ocean (Landschützer et al., 2014). This result em-
phasizes the importance of carefully addressing nearshore
pCO2(sw) when constructing global products if one hopes to
achieve an accurate representation of coastal ocean variabil-
ity. This may be achieved (1) by using a greater number of
model clusters for coastal ocean reconstructions (L17 uses
just 10 biogeochemical clusters for the global coastal ocean),
(2) by increasing the spatial and/or temporal resolution of
pCO2(sw) data products to better account for small-scale vari-
ability (Gregor et al., 2019), (3) by carefully accounting for
mismatches between the temperature (and salinity) at which
pCO2(sw) is measured versus that at which it is reported in
surface data products (Ho and Schanze, 2020; Watson et al.,
2020), or (4) by taking an ensemble approach to pCO2(sw)
gap-filling to reduce errors overall, especially in undersam-
pled regions (Gregor et al., 2019; Fay et al., 2021). Ulti-
mately, it will be critical to continue to expand our observa-
tional capabilities by means of shipboard underway systems
(Pierrot et al., 2009), uncrewed surface vehicles (Meinig et
al., 2015; Sutton et al., 2021), biogeochemical Argo floats
(Roemmich et al., 2019), moored buoys (Sutton et al., 2019),
and other platforms, as well as to make strides toward incor-
porating these novel measurements into pCO2(sw) gap-filling
schemes (Gregor et al., 2019; Djeutchouang et al., 2022).

3.4 Evaluation by comparison to seasonal observations
of pCO2(sw) at ocean moorings

Values of pCO2(sw) from RFR-CCS-clim, L17, and L20 were
compared against monthly climatologies from mooring ob-
servations to evaluate how well each product captured sea-
sonal variability at fixed time series sites. Figure 5 shows
climatologies of mooring-observed pCO2(sw) (each averaged
over available years and normalized to their annual mean)
compared to pCO2(sw) from RFR-CCS-clim, L20, and clima-
tological monthly averages of L17 (each normalized to their
annual mean) in the grid cell corresponding to the mooring
location. Overall, RFR-CCS-clim does a much better job of
capturing the variability in mooring observations than either
L17 or L20 (Table 4).

3.5 Uncertainty calculations

Three components comprised the estimate of uncertainty for
pCO2(sw) values from RFR-CCS: observational uncertainty
(θobs), mapping uncertainty (θmap), and gridding uncertainty
(θgrid). According to the procedure detailed in Sect. 2.7,
θobs was calculated as 3.3 µatm, θmap as 4.4 µatm for the
open ocean and 35.3 µatm for the coastal ocean, and θgrid as
3.7 µatm for the open ocean (n= 268) and 25.1 µatm for the
coastal ocean (n= 889). These three components were com-
bined to obtain total pCO2(sw) uncertainty (θpCO2 ) accord-
ing to Eq. (2), resulting in θpCO2 equal to 6.6 µatm for the
open ocean and 43.4 µatm for the coastal ocean. The open-
ocean value determined through this analysis compares well
with the grid-level uncertainty estimated in open-ocean grid
cells by Landschützer et al. (2014), which ranged from 8.6 to
17.7 µatm for different regions. The large coastal uncertainty
value emphasizes the high degree of variability in monthly
pCO2(sw) near ocean margins.

As noted in Sect. 2.7, uncertainties reported here are ap-
propriate for a given grid cell (i.e., monthly 0.25◦ latitude
by 0.25◦ longitude bin). Values averaged over time or over
larger regions will have reduced pCO2(sw) (and CO2 flux) un-
certainties due to the spatiotemporal correlation of pCO2(sw)
and the autocorrelation features of the model error (e.g.,
Landschützer et al., 2014).

3.6 Spatial and seasonal patterns of sea surface pCO2

In the open ocean, relatively high pCO2(sw) values can be
observed off southern Baja California (Fig. 6a) and extend-
ing toward the northwest, especially during summer months
and into autumn (Fig. 7) when higher sea surface tempera-
tures drive higher pCO2(sw) (Nakaoka et al., 2013). This area
also corresponds to low chlorophyll (Fig. A2) and the low-
est wind speeds across the study region (Fig. A4), suggesting
that a lack of nutrient delivery from deep convection may be
limiting biological production, also driving high pCO2(sw).
Relatively low open-ocean pCO2(sw) values can be observed
in the northern part of the study region from about 45 to
60◦ N (Fig. 6a). Wintertime cooling drives low pCO2(sw) in
this area, though that effect is compensated for by dissolved
inorganic carbon (DIC) brought to the surface by deep win-
ter mixing (Ishii et al., 2014). Figure B5 illustrates competing
effects between temperature and winds by displaying corre-
lations between SST and pCO2(sw), which are mainly pos-
itive below 50◦ N, and between wind speed and pCO2(sw),
which are mainly positive above 50◦ N.

In the summer, high biological production in the northern
portion of the study region (Fig. A2) removes DIC, keep-
ing pCO2(sw) relatively low. This low-pCO2(sw) region ex-
tends southward along the California coast to about 34◦ N
between both offshore and nearshore high-pCO2(sw) waters.
The southward extension of the low-pCO2(sw) region is con-
sistent with what we know about the dynamics of the CCS:
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Figure 4. Two-dimensional histograms showing bin-averaged comparisons of pCO2(sw) from (a) RFR-CCS-clim and (b) L20 to SOCATv4
gridded observations that have been averaged to a climatology, as well as comparisons of pCO2(sw) from (c) RFR-CCS and (d) L17 to
SOCATv4 gridded monthly observations in the coastally limited spatial domain of L17. Grid cells are color-coded by the average base-10
logarithm of distance from shore (km) of the observations included within each bin; the transparency of each grid cell is set by the relative
number of observations within each bin.

Table 4. Seasonal amplitudes of pCO2(sw) (µatm) from mooring observations and corresponding grid cells of climatological averages (from
1998–2015) of RFR-CCS-clim, L17, and L20.

Mooring CCE1 CCE2 Cape Elizabeth Châ bá NH10

Mooring 36.3 76.5 116.7 163.0 94.5
RFR-CCS-clim 32.4 64.0 133.6 129.5 97.4
L17 21.1 6.3 37.2 35.6 26.9
L20 23.0 6.3 22.1 21.2 18.9

a narrow band of nearshore waters is high in DIC in the
spring and summer due to the direct effects of wind-driven
upwelling (Fig. 7), but a wider band of waters farther off-
shore is lower in DIC due to drawdown by high biologi-
cal production stimulated by nutrients delivered to the eu-
photic zone by upwelling (Hales et al., 2005; Fassbender et
al., 2011; Fiechter et al., 2014; Turi et al., 2014).

In the coastal ocean, high pCO2(sw) occurs in the central
CCS (∼ 34 to ∼ 42◦ N), with values of 400 µatm or greater
beginning in April off Pt. Conception (34◦ N) and propagat-
ing northward to around Cape Arago (43◦ N) through Oc-
tober (Fig. 7). This corresponds to the latitudinal band of
the CCS with the strongest and most consistent equatorward
winds (Huyer, 1983), which induce upwelling of CO2-rich
subsurface waters by wind-driven Ekman transport very near
the coast and wind-stress-curl-driven Ekman pumping far-
ther offshore (Checkley and Barth, 2009). This nearshore
band of high summertime pCO2(sw) has been previously re-
ported by observational (Hales et al., 2012) and modeling

(Fiechter et al., 2014; Turi et al., 2014; Deutsch et al., 2021)
studies. It corresponds to naturally low surface pH values
and aragonite saturation states, which will be exacerbated
by increasing atmospheric CO2 concentrations (Gruber et al.,
2012; Hauri et al., 2013), with likely deleterious effects for
calcifying organisms (Feely et al., 2008).

Relatively low coastal pCO2(sw) values (340 µatm or
lower) develop during April off the coasts of Oregon, Wash-
ington, and Vancouver Island and propagate northward to-
ward southern Alaska through September (Fig. 7). Low sum-
mertime pCO2(sw) in the northern CCS (∼ 42 to∼ 50◦ N) has
been demonstrated before (Hales et al., 2005, 2012; Evans
et al., 2011; Fassbender et al., 2018) and corresponds to the
weaker and more variable equatorward winds in summer in
the northern CCS (Checkley and Barth, 2009) as well as
the effect of DIC drawdown by high primary productivity,
which offsets upwelling-induced increases in pCO2(sw). Pri-
mary productivity in the northern CCS can be enhanced rel-
ative to the rest of the CCS due to factors like riverine nu-
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Figure 5. Climatological mean pCO2(sw) from five NOAA ocean moorings and the corresponding grid cells in RFR-CCS-clim, L20, and a
climatological average of L17. Shading represents the standard deviation of all monthly values for each mooring or data product.

trient delivery and distribution, submarine canyon-enhanced
upwelling, and physical retention of phytoplankton blooms
(Hickey and Banas, 2008).

The coastal ocean from Vancouver Island northward is a
high-pCO2(sw) region from October to March (Fig. 7), which
is broadly consistent with observations of high pCO2(sw) in
the western Canadian coastal ocean during autumn and win-
ter (Evans et al., 2012, 2022). This high pCO2(sw) is per-
haps due to the influence of deep tidal mixing (Tortell et al.,
2012) and wintertime light limitation of DIC drawdown by
primary production. The northern coastal area shifts to a low-
pCO2(sw) region from April to September, again consistent
with observations (Evans et al., 2012, 2022) and likely re-
flecting surface DIC drawdown by primary production in the
region (Ianson et al., 2003).

The coastal ocean from the Southern California Bight
(SCB) southward along Baja California (∼ 22 to ∼ 34◦ N)
shows relatively low pCO2(sw) seasonality (Fig. 6b). In this

region, pCO2(sw) is generally lower than in offshore waters
of the same latitude, which matches previous results well
(Fig. 6a; Hales et al., 2012; Deutsch et al., 2021). One ex-
ception is directly off the southern tip of Baja California,
where especially high summertime pCO2(sw) is observed.
This may in part reflect the tendency for wind-driven up-
welling to bring significant amounts of CO2-rich subsurface
waters to the surface just south of major topographic features
(Van Geen et al., 2000; Friederich et al., 2002; Fiechter et al.,
2014). Coastal pCO2(sw) within the Gulf of California (GoC)
appears to be strongly influenced by thermally induced sea-
sonal effects, though the lack of observational data coverage
in the GoC within SOCATv2021 (Fig. 1), especially within
the nonsummer months (Fig. B1), may mask more dynamic
variability.

The seasonal amplitude of pCO2(sw) (Fig. 6b) exhibits in-
teresting variation in the central and northern CCS. Here,
nearshore seasonality is extremely high due to dominant ef-
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Figure 6. Annual mean pCO2(sw) (a) and the seasonal amplitude of pCO2(sw) (b) from RFR-CCS. Also shown are annual mean pCO2(sw)
and the seasonal amplitude of pCO2(sw) measured at ocean mooring locations.

Figure 7. Monthly mean pCO2(sw) fields from RFR-CCS.

fects from upwelling and primary production; however, sea-
sonality farther offshore is extremely low, likely due to com-
pensating effects by thermally driven changes to pCO2(sw)
(high temperature in summer increases pCO2(sw), low tem-
perature in winter decreases pCO2(sw)) and biologically or
physically driven changes to pCO2(sw) (high primary produc-
tion in summer decreases pCO2(sw), deep mixing in winter
increases pCO2(sw)). Elsewhere, a hotspot of high seasonal-
ity exists offshore around 40◦ N, possibly due to thermal con-
trol of pCO2(sw) without strong biophysical compensatory
effects.

3.7 Carbon uptake in the RFR-CCS domain

A recently published data product (SeaFlux; Gregor and Fay,
2021) described by Fay et al. (2021) harmonizes calculations
of global CO2 flux by standardizing the areas covered by dif-
ferent global pCO2(sw) products and by scaling the gas ex-
change coefficient to different wind products. As part of this
procedure, the L20 climatology is used to fill spatial gaps in
some of the pCO2(sw) products. As we have demonstrated
here, filling gaps with this climatology may result in an un-
derestimate of the seasonal pCO2(sw) cycle in certain loca-
tions, especially nearshore (Fig. 5). For comparison we cal-
culate monthly CO2 flux in our study region from SeaFlux
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and from RFR-CCS, resulting in the monthly climatologies
shown in Fig. 8.

Overall, the SeaFlux ensemble (with ERA5 winds) sug-
gests an oceanic uptake of 69.2 Tg C yr−1 for the RFR-CCS
domain between 1998 and 2019 (inclusive) compared to
an uptake of 60.0 Tg C yr−1 calculated from RFR-CCS. Of
the excess 9.2 Tg C yr−1 uptake from SeaFlux, 5.7 Tg C yr−1

comes from the open ocean and 3.5 Tg C yr−1 from the
nearshore coastal ocean (within 100 km of the coast). Given
that the nearshore coastal ocean only comprises about 9 % of
the RFR-CCS region yet ∼ 38 % of the discrepancy, the dis-
crepancy in coastal uptake is more significant on a per area
basis than the open-ocean discrepancy, as can be observed
visually in Fig. 8. This discrepancy may reflect more coastal
outgassing captured by RFR-CCS than the SeaFlux ensem-
ble, consistent with the annual mean differences shown in
Fig. 3a and c. Still, the RFR-CCS results do lie within the
variability of SeaFlux pCO2(sw) products (Fig. 8a and b).

3.8 Effect of sporadic sampling on coastal CO2 flux
calculations

RFR-CCS includes pCO2(sw) values for the coastal and off-
shore ocean in the northeastern Pacific that are representa-
tive of monthly conditions. However, air–sea carbon dioxide
exchange, which is driven by the difference between oceanic
and atmospheric pCO2, operates on shorter timescales. It has
been demonstrated in the past that inadequate sampling fre-
quency can be a significant factor biasing CO2 flux (FCO2 )
estimates (e.g., Monteiro et al., 2015).

To demonstrate this potential bias, Fig. 9 shows FCO2 at
the CCE2 mooring over the course of 2015 (1) calculated
from RFR-CCS monthly pCO2(sw) matched to NOAA ma-
rine boundary layer monthly pCO2(atm) and monthly av-
erages of squared 3-hourly ERA5 winds (blue), (2) cal-
culated from 3-hourly mooring measurements of pCO2(sw)
and pCO2(atm) matched to squared 3-hourly ERA5 winds
(grey), and (3) as the 1-standard-deviation envelope obtained
by the following Monte Carlo process: assigning one ran-
domly selected pair of 3-hourly mooring measurements of
pCO2(sw) and pCO2(atm) from each month as the monthly
values, matching them with squared 3-hourly ERA5 winds
to calculate FCO2 , and repeating this 100 000 times to obtain
statistically meaningful values (green).

The FCO2 values provided by the 3-hourly mooring mea-
surements are as close as possible to the true flux. Those
provided by RFR-CCS are a best-case scenario for monthly
flux approximations in the absence of continuous measure-
ments (because the RFR model was trained on monthly
mean pCO2(sw) values from 3-hourly observations at CCE2).
Those provided by the Monte Carlo analysis provided rea-
sonable ranges of FCO2 that might be obtained from sporadic
sampling of one measurement per month without the benefit
of an advanced interpolation routine like RFR-CCS.

The annual FCO2 calculated from RFR-CCS
(−0.26 mol C m−2 yr−1) agrees fairly well with that from the
3-hourly mooring measurements (−0.18 mol C m−2 yr−1).
The smaller uptake from the mooring measurements likely
reflects the effect of transient outgassing events in the spring
and summer, when positive 1pCO2 coincides with high
wind speeds. The range from the Monte Carlo analysis
(−0.00 to −0.36 mol C m−2 yr−1) highlights the variety of
outcomes in calculated FCO2 that might result from sporadic
sampling in the coastal ocean, representative of a region
with no high-resolution mooring measurements that may be
observed by a ship’s underway system only a few times a
year.

In large portions of the open ocean, low temporal variabil-
ity and high spatial correlation mean that the aliasing prob-
lem may be a relatively low-priority concern for calculations
of FCO2 from sporadic pCO2(sw) measurements (Bushinsky
et al., 2019). However, the dynamic coastal ocean is dom-
inated by processes that influence pCO2(sw) and FCO2 on
short spatial and temporal scales, making observational fre-
quency a significant factor that can bias annual FCO2 cal-
culations. This bolsters the case for the expansion and en-
hancement of coastal carbon observing systems even with
pCO2(sw) gap-filling methods, such as the one described
here, at our disposal.

4 Data availability

The RFR-CCS data product (Sharp et al., 2022)
is available as a NetCDF and MATLAB file at
https://doi.org/10.5281/zenodo.5523389.

5 Code availability

MATLAB code used to process data and create figures
included in this paper is provided at https://github.com/
jonathansharp/RFR-CCS (last access: 1 April 2022) and
https://doi.org/10.5281/zenodo.6484875 (Sharp, 2022). The
majority of this code is also compatible with the open-source
software GNU Octave.

6 Conclusions

This work presents a data product, called RFR-CCS, of sur-
face ocean pCO2 in the California Current System and sur-
rounding ocean regions. RFR-CCS was constructed from
pCO2(sw) observations in the Surface Ocean CO2 Atlas ver-
sion 2021 (Bakker et al., 2016), which were related to pre-
dictor variables (Table 1) using a random forest regression
approach. Validation exercises (Table 3) reveal that this ap-
proach is able to predict independent pCO2(sw) values with
a skill commensurate with expectations (mean bias near
zero and RMSE ≈ 30 µatm), considering the highly variable
coastal ocean comprises a large portion of the study region.
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Figure 8. Monthly CO2 flux per unit area for the nearshore coastal (a) and open-ocean (b) portions of the RFR-CCS domain calculated
from the SeaFlux ensemble average (dotted black line; individual products in thin dotted lines) and from RFR-CCS (solid blue line). The
grey shaded area represents variability in SeaFlux pCO2(sw) products calculated as plus and minus 1 standard deviation. Also shown is
the spatially distributed CO2 flux per unit area calculated from RFR-CCS (c) and from SeaFlux (d), as well as the difference between
them (e). Red in panels (c) and (d) indicates net release of CO2 to the atmosphere, whereas blue indicates net uptake of CO2; in panel (e),
red indicates where the RFR-CCS CO2 flux per unit area is greater and blue where the SeaFlux CO2 flux per unit area is greater. The solid
black line denotes the boundary between the nearshore coastal (a) and open ocean (b) calculated as 100 km from the coast. All calculations
are performed using ERA5 winds and an identical gas exchange coefficient (0660 = 0.276).

Figure 9. Hourly flux of CO2 across the air–sea interface (FCO2 ) calculated from 3-hourly mooring observations (grey), monthly values
from RFR-CCS (blue), and the 1-standard-deviation envelope of a Monte Carlo analysis (n= 100 000) whereby one randomly selected 3-
hourly mooring observation from each month is selected to represent that month (green). The bar chart on the right gives annual FCO2 based
on 3-hourly mooring observations (−0.18 mol C m−2 yr−1) and RFR-CCS (−0.26 mol C m−2 yr−1), along with the uncertainty in annual
FCO2 from mooring measurements based on the Monte Carlo analysis (−0.00 to −0.36 mol C m−2 yr−1).

RFR-CCS captures variability in pCO2(sw) in the north-
eastern Pacific, especially at coastal time series locations,
more effectively than global-scale data products of pCO2(sw).
This is evident through comparisons to gridded monthly ob-
servations in the SOCAT database (Fig. 4), to monthly ob-
servations at fixed mooring sites (Figs. 2 and B3; Table B1),

and to seasonal amplitudes of pCO2(sw) measured at those
moorings (Fig. 5; Table 4). The improvements made by RFR-
CCS mainly represent the enhanced ability of regional data
fits to capture local-scale variability compared to global data
fits. Going forward, perhaps global-scale gap-filled pCO2(sw)
products that include a clustering step would benefit from the
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creation of a greater number of clusters in the coastal ocean,
allowing for more robust reconstruction of local variability.
Improvements detailed here may also be due to the flexibility
of RFR in capturing multiple different length scales of vari-
ability (Gregor et al., 2017), which may make the method es-
pecially useful for regions that span both the coastal and open
ocean. The CCS is also particularly data-rich, and this work
demonstrates the excellent resolution of nearshore variability
that can be achieved in gap-filled pCO2(sw) products when
coastal observing systems are sustained over time. Examina-
tion of the spatiotemporal distribution of pCO2(sw) observa-
tions contained in the SOCAT database (Bakker et al., 2016;
http://www.socat.info, last access: 7 March 2022) suggests
that analyses similar to this one could be effective for other
coastal regions around North America, the western North Pa-
cific, and the eastern North Atlantic. However, different pre-
dictor variable–pCO2(sw) relationships are likely to exist in
these distinct ocean regions since each has a unique physical
and biogeochemical setting.

Spatial and seasonal patterns of pCO2(sw) revealed by
RFR-CCS reflect interactions of physical and biological pro-
cesses that differ substantially with latitude, season, and dis-
tance from shore (Figs. 6 and 7). For example, high an-
nual mean pCO2(sw) in a narrow band of the central coastal
CCS reflects spring and summer upwelling; low annual mean
pCO2(sw) and CO2 uptake in the northern coastal CCS and
the offshore CCS in general reflects CO2 drawdown by pri-
mary production, largely stimulated by nutrients delivered
by coastal upwelling. Generally, across the study region, in-
terpretations of pCO2(sw) variability and the processes that
drive it coincide with local-scale explanations in the coastal
environment, suggesting high heterogeneity in coastal carbon
cycling.

Finally, in the context of sea surface pCO2 gap-filling
strategies, this study highlights important factors that should
be considered when working in coastal areas or regions
that span the coastal to open-ocean continuum. For one, al-
though a global gap-filled product may demonstrate mean
annual values and average seasonal amplitudes of pCO2(sw)
that represent a broad region effectively, this does not mean
that local-scale variability within that region has been cap-
tured just as well. Data-rich regions like the CCS confirm
this notion, especially when variability at fixed time series
sites like moored autonomous platforms is considered. Mis-
representation errors of this nature are especially concern-
ing in dynamic nearshore environments, where local-scale
processes can result in surface biogeochemical characteris-
tics that change rapidly over short timescales. These rapid
changes can have direct consequences for local biological re-
sponses and for CO2 flux, both of which operate on relatively
short timescales. To address potential errors associated with
misrepresentation of pCO2(sw) variability, the spatiotempo-
ral coverage of carbon observing systems must be improved,
especially at ocean margins. Further, innovative implemen-
tation and assessment of machine-learning approaches (Gre-

gor et al., 2017; Gloege et al., 2021), biogeochemical models
(DeVries et al., 2019; Friedlingstein et al., 2020), and ensem-
ble approaches (Lebehot et al., 2019; Fay et al., 2021) should
continue to be explored to best leverage the existing data.

Appendix A: Processing of predictor variables

SST (Fig. A1) was obtained from the NOAA daily Opti-
mum Interpolation Sea Surface Temperature (OISST) anal-
ysis product (Reynolds et al., 2007; Huang et al., 2021). This
data product combines satellite and in situ observations of
SST using an optimum interpolation (OI) technique, provid-
ing daily SST values at 0.25◦ resolution. We averaged daily
gridded SST values from OISSTv2.1 for each month from
1998 to 2020 to obtain the required monthly 0.25◦ resolution
datasets to match with our gridded pCO2.

Sea surface salinity (SSS) was obtained from the NASA
Estimating the Circulation and Climate of the Ocean (ECCO)
project. The ECCO2 state estimate (Menemenlis et al., 2008)
uses a Green’s function approach (Menemenlis et al., 2005)
to make optimal adjustments to parameters, initial condi-
tions, and boundary conditions of a general circulation model
to produce a daily ocean state estimate. We averaged daily
gridded SSS values from the ECCO2 state estimate for each
month from 1998 to 2020 to obtain the required monthly
0.25◦ resolution datasets to match with our gridded pCO2.

Sea surface chlorophyll a concentration estimates (Chl;
Fig. A2), based on Sea-Viewing Wide Field-of-View Sen-
sor (SeaWiFS) and Moderate Resolution Imaging Spectro-
radiometer (MODIS) satellite data, were obtained from the
Oregon State University (OSU) Ocean Productivity web-
site (http://www.science.oregonstate.edu/ocean.productivity,
last access: 16 June 2021). The OSU Ocean Productivity
website provides both monthly and 8 d Chl files at either
1/6◦ or 1/12◦ resolution. We obtained monthly 1/6◦ reso-
lution files for 1998–2002 (SeaWiFS-based) and 2003–2020
(MODIS-based) and interpolated each to a 0.25◦ resolu-
tion grid using a standard two-dimensional linear interpo-
lation for each monthly file. For high-latitude wintertime
gaps in the Chl datasets, we interpolated Chl for each grid
cell through time using one-dimensional linear interpolation
when observations in the previous and subsequent month
were available. To avoid anomalous values at the beginning
and end of the time series, empty grid cells were filled with
nearest-neighbor interpolation when a previous or subse-
quent observation was not available (Fig. A3). Chl was log10-
transformed to produce a distribution of values that was
closer to normal before constructing the regression model.

Wind speed data (Fig. A4) were obtained from the ERA5
reanalysis product (Hersbach et al., 2020), produced by
the European Centre for Medium-Range Weather Forecasts
(ECMWF). The ERA5 atmospheric reanalysis provides a de-
tailed record of atmospheric parameters from 1950 to the
present day. We obtained monthly, 0.25◦ resolution wind

Earth Syst. Sci. Data, 14, 2081–2108, 2022 https://doi.org/10.5194/essd-14-2081-2022

http://www.socat.info
http://www.science.oregonstate.edu/ocean.productivity


J. D. Sharp et al.: A monthly surface pCO2 product for the CCS 2097

speed data at 10 m above the surface from the Copernicus
Climate Change Service (C3S) Climate Data Store (CDS).
Wind speed (U ) was calculated from its vector components
(north–south wind, vw, and east–west wind, uw).

U =

√
v2

w+ u
2
w (A1)

Atmospheric CO2 partial pressure (pCO2(atm)) was obtained
from the NOAA marine boundary layer (MBL) reference
(Dlugokencky et al., 2020). This data product is derived
from weekly air samples of atmospheric CO2 mole fraction
(xCO2) at a subset of sites from the NOAA Cooperative
Global Air Sampling Network. The product is provided as
weekly latitudinal averages with a resolution of sin(lat) =
0.5. We interpolated weekly xCO2 values to monthly xCO2
values relative to the middle of each month. To convert xCO2
to pCO2(atm), xCO2 was multiplied by monthly sea level
pressure (P ) from NCEP reanalysis, which was corrected
for water vapor pressure (VPH2O) as described by Dickson
et al. (2007).

pCO2(sw) = xCO2
[
P −VPH2O

]
(A2)

Mixed layer depths (MLDs), based on output from the Hy-
brid Coordinate Ocean Model (HYCOM) (Chassignet et al.,
2007), were obtained from the OSU Ocean Productivity web-
site. We obtained monthly 1/6◦ resolution MLD files and in-
terpolated each to a 0.25◦ resolution grid using a standard
two-dimensional linear interpolation for each monthly file.
MLD was log10-transformed to produce a distribution of val-
ues that was closer to normal before constructing the regres-
sion model.

Distance from shore (Dist.) for each grid cell was calcu-
lated using the dist2coast.m function from the Climate Data
Toolbox for MATLAB (Greene et al., 2019), applied to each
latitude–longitude grid cell. That function accepts input of
latitude and longitude coordinates and returns the great cir-
cle distance to the nearest coastline.

Year (yr) was normalized to an epoch of 1997 (i.e., yrnorm
= yr – 1997). Month of year (mn) was transformed into two
separate predictor variables (mnsin and mncos) using sine and
cosine functions to maintain its cyclical nature (after Gregor
et al., 2018).

mnsin = sin(2π ·mn/12) (A3)
mncos = cos(2π ·mn/12) (A4)

Figure A1. Gridded means of SST from satellite observations from
1998–2020.

Figure A2. Gridded means of chlorophyll a concentration from
satellite observations from 1998–2020.
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Figure A3. Sea surface chlorophyll concentration at 55◦ N, 135◦W. Data from satellite observations are in orange and interpolated data are
in blue.

Figure A4. Gridded means of wind speed from ERA5 reanalysis from 1998–2020.
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Appendix B: Supplementary figures and tables

Figure B1. The number of years containing a pCO2(sw) observation within each month over the 23 years of our gridded pCO2(sw) data
product from 1998–2020.

Figure B2. Predictor variable feature importances calculated for the random forest regression model fit used to produce RFR-CCS (Sharp et
al., 2022; https://doi.org/10.5281/zenodo.5523389).
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Figure B3. Like Fig. 2 in the main text, showing monthly values of pCO2(sw) from mooring observations (black), RFR-CCS (blue), the
mooring-excluded RFR-CCS-Eval model (orange), and L17 (green). The envelopes around the black lines equal the standard deviations
of all mooring observations within each month, representing the natural variability of the 3-hourly mooring measurements; the envelopes
around the blue and orange lines represent the RFR-CCS and RFR-CCS-Eval results plus 1 standard uncertainty (43.6 µatm; Sect. 3.5); the
envelopes around the green lines represents the L17 data product plus the RMSE of an independent data evaluation in the province most
closely associated with the mooring locations (52.5 µatm; Table 3 of Laruelle et al., 2017; Province P7).
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Figure B4. Monthly mean differences in pCO2(sw) values between RFR-CCS-clim and L20 (top) and between RFR-CCS-clim and L17
(bottom).
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Figure B5. Correlations (a, b) and the p values of those correlations (c, d) in each grid cell of RFR-CCS between pCO2(sw) and SST (a, c)
and between pCO2(sw) and wind speed (b, d).

Table B1. Mean biases (MBs), root mean squared errors (RMSEs), and coefficients of determination (R2) for comparisons of RFR-CCS,
the mooring-excluded RFR-CCS-Eval, and L17 to mooring observations.

Model
CCE1 CCE2 Cape Elizabeth Châ bá NH10

MB RMSE R2 MB RMSE R2 MB RMSE R2 MB RMSE R2 MB RMSE R2

RFR-CCS −1.5 8.0 0.86 −2.2 16.1 0.81 8.0 24.6 0.82 12.8 29.4 0.84 −7.1 26.3 0.66

RFR-CCS-Eval −2.0 10.5 0.77 −4.6 28.9 0.41 25.8 54.8 0.47 34.9 60.5 0.48 −9.2 34.3 0.49

L17 −11.7 21.5 0.39 −44.2 57.3 0.06 5.1 48.9 0.18 21.2 64.1 0.09 2.8 33.4 0.27
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