Articles | Volume 13, issue 2
https://doi.org/10.5194/essd-13-777-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-777-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
OceanSODA-ETHZ: a global gridded data set of the surface ocean carbonate system for seasonal to decadal studies of ocean acidification
Environmental Physics, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
Nicolas Gruber
Environmental Physics, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
Related authors
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Hongmei Li, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Carla F. Berghoff, Henry C. Bittig, Laurent Bopp, Patricia Cadule, Katie Campbell, Matthew A. Chamberlain, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Thomas Colligan, Jeanne Decayeux, Laique M. Djeutchouang, Xinyu Dou, Carolina Duran Rojas, Kazutaka Enyo, Wiley Evans, Amanda R. Fay, Richard A. Feely, Daniel J. Ford, Adrianna Foster, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul K. Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Xin Lan, Siv K. Lauvset, Nathalie Lefèvre, Zhu Liu, Junjie Liu, Lei Ma, Shamil Maksyutov, Gregg Marland, Nicolas Mayot, Patrick C. McGuire, Nicolas Metzl, Natalie M. Monacci, Eric J. Morgan, Shin-Ichiro Nakaoka, Craig Neill, Yosuke Niwa, Tobias Nützel, Lea Olivier, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Zhangcai Qin, Laure Resplandy, Alizée Roobaert, Thais M. Rosan, Christian Rödenbeck, Jörg Schwinger, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Roland Séférian, Shintaro Takao, Hiroaki Tatebe, Hanqin Tian, Bronte Tilbrook, Olivier Torres, Etienne Tourigny, Hiroyuki Tsujino, Francesco Tubiello, Guido van der Werf, Rik Wanninkhof, Xuhui Wang, Dongxu Yang, Xiaojuan Yang, Zhen Yu, Wenping Yuan, Xu Yue, Sönke Zaehle, Ning Zeng, and Jiye Zeng
Earth Syst. Sci. Data, 17, 965–1039, https://doi.org/10.5194/essd-17-965-2025, https://doi.org/10.5194/essd-17-965-2025, 2025
Short summary
Short summary
The Global Carbon Budget 2024 describes the methodology, main results, and datasets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2024). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Luke Gregor, Judith Hauck, Corinne Le Quéré, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Ramdane Alkama, Almut Arneth, Vivek K. Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Henry C. Bittig, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Wiley Evans, Stefanie Falk, Richard A. Feely, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Lucas Gloege, Giacomo Grassi, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Atul K. Jain, Annika Jersild, Koji Kadono, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Keith Lindsay, Junjie Liu, Zhu Liu, Gregg Marland, Nicolas Mayot, Matthew J. McGrath, Nicolas Metzl, Natalie M. Monacci, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Naiqing Pan, Denis Pierrot, Katie Pocock, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Carmen Rodriguez, Thais M. Rosan, Jörg Schwinger, Roland Séférian, Jamie D. Shutler, Ingunn Skjelvan, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Toste Tanhua, Pieter P. Tans, Xiangjun Tian, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Anthony P. Walker, Rik Wanninkhof, Chris Whitehead, Anna Willstrand Wranne, Rebecca Wright, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-2022, https://doi.org/10.5194/essd-14-4811-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2022 describes the datasets and methodology used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, the land ecosystems, and the ocean. These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Laique M. Djeutchouang, Nicolette Chang, Luke Gregor, Marcello Vichi, and Pedro M. S. Monteiro
Biogeosciences, 19, 4171–4195, https://doi.org/10.5194/bg-19-4171-2022, https://doi.org/10.5194/bg-19-4171-2022, 2022
Short summary
Short summary
Based on observing system simulation experiments using a mesoscale-resolving model, we found that to significantly improve uncertainties and biases in carbon dioxide (CO2) mapping in the Southern Ocean, it is essential to resolve the seasonal cycle (SC) of the meridional gradient of CO2 through high frequency (at least daily) observations that also span the region's meridional axis. We also showed that the estimated SC anomaly and mean annual CO2 are highly sensitive to seasonal sampling biases.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Amanda R. Fay, Luke Gregor, Peter Landschützer, Galen A. McKinley, Nicolas Gruber, Marion Gehlen, Yosuke Iida, Goulven G. Laruelle, Christian Rödenbeck, Alizée Roobaert, and Jiye Zeng
Earth Syst. Sci. Data, 13, 4693–4710, https://doi.org/10.5194/essd-13-4693-2021, https://doi.org/10.5194/essd-13-4693-2021, 2021
Short summary
Short summary
The movement of carbon dioxide from the atmosphere to the ocean is estimated using surface ocean carbon (pCO2) measurements and an equation including variables such as temperature and wind speed; the choices of these variables lead to uncertainties. We introduce the SeaFlux ensemble which provides carbon flux maps calculated in a consistent manner, thus reducing uncertainty by using common choices for wind speed and a set definition of "global" coverage.
Li-Qing Jiang, Amanda Fay, Jens Daniel Müller, Lydia Keppler, Dustin Carroll, Siv K. Lauvset, Tim DeVries, Judith Hauck, Christian Rödenbeck, Luke Gregor, Nicolas Metzl, Andrea J. Fassbender, Jean-Pierre Gattuso, Peter Landschützer, Rik Wanninkhof, Christopher Sabine, Simone R. Alin, Mario Hoppema, Are Olsen, Matthew P. Humphreys, Kumiko Azetsu-Scott, Dorothee C. E. Bakker, Leticia Barbero, Nicholas R. Bates, Nicole Besemer, Henry C. Bittig, Albert E. Boyd, Daniel Broullón, Wei-Jun Cai, Brendan R. Carter, Thi-Tuyet-Trang Chau, Chen-Tung Arthur Chen, Frédéric Cyr, John E. Dore, Ian Enochs, Richard A. Feely, Hernan E. Garcia, Marion Gehlen, Lucas Gloege, Melchor González-Dávila, Nicolas Gruber, Yosuke Iida, Masao Ishii, Esther Kennedy, Alex Kozyr, Nico Lange, Claire Lo Monaco, Derek P. Manzello, Galen A. McKinley, Natalie M. Monacci, Xose A. Padin, Ana M. Palacio-Castro, Fiz F. Pérez, Alizée Roobaert, J. Magdalena Santana-Casiano, Jonathan Sharp, Adrienne Sutton, Jim Swift, Toste Tanhua, Maciej Telszewski, Jens Terhaar, Ruben van Hooidonk, Anton Velo, Andrew J. Watson, Angelicque E. White, Zelun Wu, Hyelim Yoo, and Jiye Zeng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-255, https://doi.org/10.5194/essd-2025-255, 2025
Preprint under review for ESSD
Short summary
Short summary
This review article provides an overview of 60 existing ocean carbonate chemistry data products, encompassing a broad range of types, including compilations of cruise datasets, gap-filled observational products, model simulations, and more. It is designed to help researchers identify and access the data products that best support their scientific objectives, thereby facilitating progress in understanding the ocean's changing carbonate chemistry.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Hongmei Li, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Carla F. Berghoff, Henry C. Bittig, Laurent Bopp, Patricia Cadule, Katie Campbell, Matthew A. Chamberlain, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Thomas Colligan, Jeanne Decayeux, Laique M. Djeutchouang, Xinyu Dou, Carolina Duran Rojas, Kazutaka Enyo, Wiley Evans, Amanda R. Fay, Richard A. Feely, Daniel J. Ford, Adrianna Foster, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul K. Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Xin Lan, Siv K. Lauvset, Nathalie Lefèvre, Zhu Liu, Junjie Liu, Lei Ma, Shamil Maksyutov, Gregg Marland, Nicolas Mayot, Patrick C. McGuire, Nicolas Metzl, Natalie M. Monacci, Eric J. Morgan, Shin-Ichiro Nakaoka, Craig Neill, Yosuke Niwa, Tobias Nützel, Lea Olivier, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Zhangcai Qin, Laure Resplandy, Alizée Roobaert, Thais M. Rosan, Christian Rödenbeck, Jörg Schwinger, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Roland Séférian, Shintaro Takao, Hiroaki Tatebe, Hanqin Tian, Bronte Tilbrook, Olivier Torres, Etienne Tourigny, Hiroyuki Tsujino, Francesco Tubiello, Guido van der Werf, Rik Wanninkhof, Xuhui Wang, Dongxu Yang, Xiaojuan Yang, Zhen Yu, Wenping Yuan, Xu Yue, Sönke Zaehle, Ning Zeng, and Jiye Zeng
Earth Syst. Sci. Data, 17, 965–1039, https://doi.org/10.5194/essd-17-965-2025, https://doi.org/10.5194/essd-17-965-2025, 2025
Short summary
Short summary
The Global Carbon Budget 2024 describes the methodology, main results, and datasets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2024). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Gesa K. Eirund, Matthieu Leclair, Matthias Muennich, and Nicolas Gruber
EGUsphere, https://doi.org/10.5194/egusphere-2024-2922, https://doi.org/10.5194/egusphere-2024-2922, 2024
Short summary
Short summary
To realistically simulate small-scale processes in the atmosphere and ocean, such as clouds or mixing, high-resolution numerical models are needed. However, these models are computationally very demanding. Here, we present a newly developed atmosphere-ocean model, which is able to resolve most of these processes and is less expensive to run, due to its computational design. Our model can be used for a wide range of applications, as the investigation of marine heatwaves or future projections.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Flora Desmet, Matthias Münnich, and Nicolas Gruber
Biogeosciences, 20, 5151–5175, https://doi.org/10.5194/bg-20-5151-2023, https://doi.org/10.5194/bg-20-5151-2023, 2023
Short summary
Short summary
Ocean acidity extremes in the upper 250 m depth of the northeastern Pacific rapidly increase with atmospheric CO2 rise, which is worrisome for marine organisms that rapidly experience pH levels outside their local environmental conditions. Presented research shows the spatiotemporal heterogeneity in this increase between regions and depths. In particular, the subsurface increase is substantially slowed down by the presence of mesoscale eddies, often not resolved in Earth system models.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Christoph Heinze, Thorsten Blenckner, Peter Brown, Friederike Fröb, Anne Morée, Adrian L. New, Cara Nissen, Stefanie Rynders, Isabel Seguro, Yevgeny Aksenov, Yuri Artioli, Timothée Bourgeois, Friedrich Burger, Jonathan Buzan, B. B. Cael, Veli Çağlar Yumruktepe, Melissa Chierici, Christopher Danek, Ulf Dieckmann, Agneta Fransson, Thomas Frölicher, Giovanni Galli, Marion Gehlen, Aridane G. González, Melchor Gonzalez-Davila, Nicolas Gruber, Örjan Gustafsson, Judith Hauck, Mikko Heino, Stephanie Henson, Jenny Hieronymus, I. Emma Huertas, Fatma Jebri, Aurich Jeltsch-Thömmes, Fortunat Joos, Jaideep Joshi, Stephen Kelly, Nandini Menon, Precious Mongwe, Laurent Oziel, Sólveig Ólafsdottir, Julien Palmieri, Fiz F. Pérez, Rajamohanan Pillai Ranith, Juliano Ramanantsoa, Tilla Roy, Dagmara Rusiecka, J. Magdalena Santana Casiano, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Miriam Seifert, Anna Shchiptsova, Bablu Sinha, Christopher Somes, Reiner Steinfeldt, Dandan Tao, Jerry Tjiputra, Adam Ulfsbo, Christoph Völker, Tsuyoshi Wakamatsu, and Ying Ye
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-182, https://doi.org/10.5194/bg-2023-182, 2023
Revised manuscript not accepted
Short summary
Short summary
For assessing the consequences of human-induced climate change for the marine realm, it is necessary to not only look at gradual changes but also at abrupt changes of environmental conditions. We summarise abrupt changes in ocean warming, acidification, and oxygen concentration as the key environmental factors for ecosystems. Taking these abrupt changes into account requires greenhouse gas emissions to be reduced to a larger extent than previously thought to limit respective damage.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Luke Gregor, Judith Hauck, Corinne Le Quéré, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Ramdane Alkama, Almut Arneth, Vivek K. Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Henry C. Bittig, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Wiley Evans, Stefanie Falk, Richard A. Feely, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Lucas Gloege, Giacomo Grassi, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Atul K. Jain, Annika Jersild, Koji Kadono, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Keith Lindsay, Junjie Liu, Zhu Liu, Gregg Marland, Nicolas Mayot, Matthew J. McGrath, Nicolas Metzl, Natalie M. Monacci, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Naiqing Pan, Denis Pierrot, Katie Pocock, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Carmen Rodriguez, Thais M. Rosan, Jörg Schwinger, Roland Séférian, Jamie D. Shutler, Ingunn Skjelvan, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Toste Tanhua, Pieter P. Tans, Xiangjun Tian, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Anthony P. Walker, Rik Wanninkhof, Chris Whitehead, Anna Willstrand Wranne, Rebecca Wright, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-2022, https://doi.org/10.5194/essd-14-4811-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2022 describes the datasets and methodology used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, the land ecosystems, and the ocean. These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Laique M. Djeutchouang, Nicolette Chang, Luke Gregor, Marcello Vichi, and Pedro M. S. Monteiro
Biogeosciences, 19, 4171–4195, https://doi.org/10.5194/bg-19-4171-2022, https://doi.org/10.5194/bg-19-4171-2022, 2022
Short summary
Short summary
Based on observing system simulation experiments using a mesoscale-resolving model, we found that to significantly improve uncertainties and biases in carbon dioxide (CO2) mapping in the Southern Ocean, it is essential to resolve the seasonal cycle (SC) of the meridional gradient of CO2 through high frequency (at least daily) observations that also span the region's meridional axis. We also showed that the estimated SC anomaly and mean annual CO2 are highly sensitive to seasonal sampling biases.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Amanda R. Fay, Luke Gregor, Peter Landschützer, Galen A. McKinley, Nicolas Gruber, Marion Gehlen, Yosuke Iida, Goulven G. Laruelle, Christian Rödenbeck, Alizée Roobaert, and Jiye Zeng
Earth Syst. Sci. Data, 13, 4693–4710, https://doi.org/10.5194/essd-13-4693-2021, https://doi.org/10.5194/essd-13-4693-2021, 2021
Short summary
Short summary
The movement of carbon dioxide from the atmosphere to the ocean is estimated using surface ocean carbon (pCO2) measurements and an equation including variables such as temperature and wind speed; the choices of these variables lead to uncertainties. We introduce the SeaFlux ensemble which provides carbon flux maps calculated in a consistent manner, thus reducing uncertainty by using common choices for wind speed and a set definition of "global" coverage.
Tessa Sophia van der Voort, Thomas Michael Blattmann, Muhammed Usman, Daniel Montluçon, Thomas Loeffler, Maria Luisa Tavagna, Nicolas Gruber, and Timothy Ian Eglinton
Earth Syst. Sci. Data, 13, 2135–2146, https://doi.org/10.5194/essd-13-2135-2021, https://doi.org/10.5194/essd-13-2135-2021, 2021
Short summary
Short summary
Ocean sediments form the largest and longest-term storage of organic carbon. Despite their global importance, information on these sediments is often scattered, incomplete or inaccessible. Here we present MOSAIC (Modern Ocean Sediment Archive and Inventory of Carbon, mosaic.ethz.ch), a (radio)carbon-centric database that addresses this information gap. This database provides a platform for assessing the transport, deposition and storage of carbon in ocean surface sediments.
Giulia Bonino, Elisa Lovecchio, Nicolas Gruber, Matthias Münnich, Simona Masina, and Doroteaciro Iovino
Biogeosciences, 18, 2429–2448, https://doi.org/10.5194/bg-18-2429-2021, https://doi.org/10.5194/bg-18-2429-2021, 2021
Short summary
Short summary
Seasonal variations of processes such as upwelling and biological production that happen along the northwestern African coast can modulate the temporal variability of the biological activity of the adjacent open North Atlantic hundreds of kilometers away from the coast thanks to the lateral transport of coastal organic carbon. This happens with a temporal delay, which is smaller than a season up to roughly 500 km from the coast due to the intense transport by small-scale filaments.
Anne-Marie Wefing, Núria Casacuberta, Marcus Christl, Nicolas Gruber, and John N. Smith
Ocean Sci., 17, 111–129, https://doi.org/10.5194/os-17-111-2021, https://doi.org/10.5194/os-17-111-2021, 2021
Short summary
Short summary
Atlantic Water that carries heat and anthropogenic carbon into the Arctic Ocean plays an important role in the Arctic sea-ice cover decline, but its pathways and travel times remain unclear. Here we used two radionuclides of anthropogenic origin (129I and 236U) to track Atlantic-derived waters along their way through the Arctic Ocean, estimating their travel times and mixing properties. Results help to understand how future changes in Atlantic Water properties will spread through the Arctic.
Derara Hailegeorgis, Zouhair Lachkar, Christoph Rieper, and Nicolas Gruber
Biogeosciences, 18, 303–325, https://doi.org/10.5194/bg-18-303-2021, https://doi.org/10.5194/bg-18-303-2021, 2021
Short summary
Short summary
Using a Lagrangian modeling approach, this study provides a quantitative analysis of water and nitrogen offshore transport in the Canary Current System. We investigate the timescales, reach and structure of offshore transport and demonstrate that the Canary upwelling is a key source of nutrients to the open North Atlantic Ocean. Our findings stress the need for improving the representation of the Canary system and other eastern boundary upwelling systems in global coarse-resolution models.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone Alin, Luiz E. O. C. Aragão, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp, Selma Bultan, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Wiley Evans, Liesbeth Florentie, Piers M. Forster, Thomas Gasser, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Luke Gregor, Nicolas Gruber, Ian Harris, Kerstin Hartung, Vanessa Haverd, Richard A. Houghton, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Koji Kadono, Etsushi Kato, Vassilis Kitidis, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Gregg Marland, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Adam J. P. Smith, Adrienne J. Sutton, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Guido van der Werf, Nicolas Vuichard, Anthony P. Walker, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Xu Yue, and Sönke Zaehle
Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, https://doi.org/10.5194/essd-12-3269-2020, 2020
Short summary
Short summary
The Global Carbon Budget 2020 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Cited articles
Bakker, D. C. E., Hoppema, M., Schröder, M., Geibert, W., and de Baar, H. J. W.: A rapid transition from ice covered CO2–rich waters to a biologically mediated CO2 sink in the eastern Weddell Gyre, Biogeosciences, 5, 1373–1386, https://doi.org/10.5194/bg-5-1373-2008, 2008. a, b
Bakker, D. C., Pfeil, B., Landa, C. S., Metzl, N., O'Brien, K. M., Olsen, A.,
Smith, K., Cosca, C., Harasawa, S., Jones, S. D., Nakaoka, S.-I., Nojiri, Y.,
Schuster, U., Steinhoff, T., Sweeney, C., Takahashi, T. T., Tilbrook, B.,
Wada, C., Wanninkhof, R. H., Alin, S. R., Balestrini, C. F., Barbero, L.,
Bates, N. R., Bianchi, A. A., Bonou, F., Boutin, J., Bozec, Y., Burger,
E. F., Cai, W.-J., Castle, R. D., Chen, L., Chierici, M., Currie, K., Evans,
W., Featherstone, C., Feely, R. A., Fransson, A., Goyet, C., Greenwood, N.,
Gregor, L., Hankin, S., Hardman-Mountford, N. J., Harlay, J., Hauck, J.,
Hoppema, M., Humphreys, M. P., Hunt, C. W., Huss, B., Ibánhez, J.
S. P., Johannessen, T., Keeling, R., Kitidis, V., Körtzinger, A.,
Kozyr, A., Krasakopoulou, E., Kuwata, A., Landschützer, P., Lauvset,
S. K., Lefèvre, N., Lo Monaco, C., Manke, A., Mathis, J. T.,
Merlivat, L., Millero, F. J., Monteiro, P. M. S., Munro, D. R., Murata, A.,
Newberger, T., Omar, A. M., Ono, T., Paterson, K., Pearce, D., Pierrot, D.,
Robbins, L. L., Saito, S., Salisbury, J., Schlitzer, R., Schneider, B.,
Schweitzer, R., Sieger, R., Skjelvan, I., Sullivan, K. F., Sutherland, S. C.,
Sutton, A. J., Tadokoro, K., Telszewski, M., Tuma, M., Van Heuven, S. M.,
Vandemark, D., Ward, B., Watson, A. J., and Xu, S.: A multi-decade record of
high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT),
Earth Syst. Sci. Data, 8, 383–413, https://doi.org/10.5194/essd-8-383-2016, 2016. a, b, c, d, e, f, g, h, i, j
Bates, N. R. and Peters, A. J.: The contribution of atmospheric acid
deposition to ocean acidification in the subtropical North Atlantic Ocean,
Mar. Chem., 107, 547–558, https://doi.org/10.1016/j.marchem.2007.08.002, 2007. a, b
Bates, N. R., Astor, Y. M., Church, M. J., Currie, K., Dore, J. E.,
González-Dávila, M., Lorenzoni, L., Muller-Karger, F., Olafsson,
J., and Santana-Casiano, J. M.: A time-series view of changing surface ocean
chemistry due to ocean uptake of anthropogenic CO2 and ocean acidification,
Oceanography, 27, 126–141, https://doi.org/10.5670/oceanog.2014.16, 2014. a, b, c
Bednaršek, N., Feely, R. A., Howes, E. L., Hunt, B. P. V., Kessouri, F.,
León, P., Lischka, S., Maas, A. E., McLaughlin, K., Nezlin, N. P.,
Sutula, M., and Weisberg, S. B.: Systematic Review and Meta-Analysis Toward
Synthesis of Thresholds of Ocean Acidification Impacts on Calcifying
Pteropods and Interactions With Warming, Front. Mar. Sci., 6, 227 pp.,
https://doi.org/10.3389/fmars.2019.00227, 2019. a
Bittig, H. C., Steinhoff, T., Claustre, H., Fiedler, B., Williams, N. L.,
Sauzède, R., Körtzinger, A., and Gattuso, J.-P.: An alternative
to static climatologies: Robust estimation of open ocean CO2 variables and
nutrient concentrations from T, S, and O2 data using Bayesian neural
networks, Front. Mar. Sci., 5, 1–29,
https://doi.org/10.3389/fmars.2018.00328, 2018. a, b
Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M.,
Halloran, P. R., Heinze, C., Ilyina, T., Séférian, R., Tjiputra,
J., and Vichi, M.: Multiple stressors of ocean ecosystems in the 21st
century: Projections with CMIP5 models, Biogeosciences, 10, 6225–6245,
https://doi.org/10.5194/bg-10-6225-2013, 2013. a
Boutin, J., Vergely, J. L., Marchand, S., D'Amico, F., Hasson, A.,
Kolodziejczyk, N., Reul, N., Reverdin, G., and Vialard, J.: New SMOS Sea
Surface Salinity with reduced systematic errors and improved variability,
Remote Sens. Environ., 214, 115–134,
https://doi.org/10.1016/j.rse.2018.05.022, 2018. a
Boyer, T. P., Antonov, J. I., Baranova, O. K., Garcia, H. E., Johnson, D. R.,
Mishonov, A. V., O'Brien, T. D., Seidov, D., Smolyar, I. I., Zweng, M. M.,
Paver, C. R., Locarnini, R. A., Reagan, J. R., Forgy, C. C., Grodsky, A., and
Levitus, S.: World ocean database 2013, Tech. Rep., National Oceanographic
Data Center (U.S.), Ocean Climate Laboratory, 208 pp., https://doi.org/10.7289/V5NZ85MT, 2013. a, b
Breiman, L.: Random forests, Mach. Learn., 45, 5–32,
https://doi.org/10.1023/A:1010933404324, 2001. a
Broecker, W. S. and Peng, T.-H.: Gas exchange rates between air and
sea, Tellus, 26, 21–35, https://doi.org/10.3402/tellusa.v26i1-2.9733, 1974. a
Broullón, D., Pérez, F. F., Velo, A., Hoppema, M., Olsen, A., Takahashi, T., Key, R. M., Tanhua, T., González-Dávila, M., Jeansson, E., Kozyr, A., and van Heuven, S. M. A. C.: A global monthly climatology of total alkalinity: a neural network approach, Earth Syst. Sci. Data, 11, 1109–1127, https://doi.org/10.5194/essd-11-1109-2019, 2019. a, b, c, d, e, f, g, h
Bushinsky, S. M., Landschützer, P., Rödenbeck, C., Gray, A. R.,
Baker, D., Mazloff, M. R., Resplandy, L., Johnson, K. S., and Sarmiento,
J. L.: Reassessing Southern Ocean air-sea CO2 flux estimates with the
addition of biogeochemical float observations, Global Biogeochem. Cy.,
33, 1370–1388, https://doi.org/10.1029/2019GB006176, 2019. a, b
Carter, B. R., Williams, N. L., Gray, A. R., and Feely, R. A.: Locally
interpolated alkalinity regression for global alkalinity estimation,
Limnol. Oceanogr.-Method., 14, 268–277, https://doi.org/10.1002/lom3.10087,
2016. a
Carton, J. A., Chepurin, G. A., and Chen, L.: SODA3: A new ocean climate
reanalysis, J. Clim., 31, 6967–6983,
https://doi.org/10.1175/JCLI-D-17-0149.1, 2018. a, b, c, d
Cheng, L., Trenberth, K. E., Gruber, N., Abraham, J. P., Fasullo, J. T., Li,
G., Mann, M. E., Zhao, X., and Zhu, J.: Improved Estimates of Changes in
Upper Ocean Salinity and the Hydrological Cycle, J. Clim., 33,
10357–10381, https://doi.org/10.1175/JCLI-D-20-0366.1, 2020. a
Claustre, H., Johnson, K. S., and Takeshita, Y.: Observing the Global Ocean
with Biogeochemical-Argo, Ann. Rev. Mar. Sci., 12, 23–48,
https://doi.org/10.1146/annurev-marine-010419-010956, 2020. a
Cooley, S. R. and Doney, S. C.: Anticipating ocean acidification's economic
consequences for commercial fisheries, Environ. Res. Lett., 4, 8 pp.,
https://doi.org/10.1088/1748-9326/4/2/024007, 2009. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), https://doi.org/10.24381/cds.adbb2d47, 2018. a, b
Dickson, A. G., Wesolowski, D. J., Palmer, D. A., and Mesmer, R. E.:
Dissociation constant of bisulfate ion in aqueous sodium chloride solutions
to 250 ∘C, J. Phys. Chem., 94, 7978–7985,
https://doi.org/10.1021/j100383a042, 1990. a
Dickson, A. G., Sabine, C. L., and Christian, J. R. (Eds.): Guide to best
practices for ocean CO2 measurements, North Pacific Marine Science
Organization, Sidney, British Columbia, 3rd Edn., available at:
https://www.oceanbestpractices.net/handle/11329/249 (last access: 22 May 2019), 2007. a, b, c, d, e, f, g
Dlugokencky, E., Thoning, K., Lang, P., and Tans, P.: NOAA Greenhouse Gas
Reference from Atmospheric Carbon Dioxide Dry Air Mole Fractions from the
NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network, available at:
ftp://aftp.cmdl.noaa.gov/data/trace_gases/co2/flask/surface/ (last accessed: 14 September 2020),
2019. a
Doney, S. C., Fabry, V. J., Feely, R. A., and Kleypas, J. A.: Ocean
Acidification: The Other CO2 Problem, Ann. Rev. Mar. Sci., 1,
169–192, https://doi.org/10.1146/annurev.marine.010908.163834, 2009. a, b
Doney, S. C., Busch, D. S., Cooley, S. R., and Kroeker, K. J.: The Impacts of
Ocean Acidification on Marine Ecosystems and Reliant Human Communities,
Ann. Rev. Environ. Resour., 45, 1–30,
https://doi.org/10.1146/annurev-environ-012320-083019, 2020. a, b
Dore, J. E., Lukas, R., Sadler, D. W., Church, M. J., and Karl, D. M.:
Physical and biogeochemical modulation of ocean acidification in the central
North Pacific, P. Natl. Acad. Sci. USA, 106,
12235–12240, https://doi.org/10.1073/pnas.0906044106, 2009. a, b
Fabry, V. J., Seibel, B. A., Feely, R. A., and Orr, J. C.: Impacts of ocean
acidification on marine fauna and ecosystem processes, ICES J.
Mar. Sci., 65, 414–432, https://doi.org/10.1093/icesjms/fsn048, 2008. a
Fabry, V. J., McClintock, J. B., Mathis, J. T., and Grebmeier, J. M.: Ocean
acidification at high latitudes: The Bellwether, Oceanography, 22, 160–171,
https://doi.org/10.5670/oceanog.2009.105, 2009. a
Fassbender, A. J., Rodgers, K. B., Palevsky, H. I., and Sabine, C. L.:
Seasonal Asymmetry in the Evolution of Surface Ocean pCO2 and pH
Thermodynamic Drivers and the Influence on Sea-Air CO2 Flux, Global
Biogeochem. Cy., 32, 1476–1497, https://doi.org/10.1029/2017GB005855, 2018. a
Fay, A. R. and McKinley, G. A.: Global open-ocean biomes: Mean and temporal
variability, Earth Syst. Sc. Data, 6, 273–284,
https://doi.org/10.5194/essd-6-273-2014, 2014. a
Feely, R. A., Doney, S., and Cooley, S.: Ocean Acidification: Present
Conditions and Future Changes in a High-CO2 World, Oceanography, 22, 36–47,
https://doi.org/10.5670/oceanog.2009.95, 2009. a, b
Franco, A. C., Gruber, N., Frölicher, T. L., and Kropuenske Artman, L.:
Contrasting Impact of Future CO2 Emission Scenarios on the Extent of CaCO3
Mineral Undersaturation in the Humboldt Current System, J.
Geophys. Res.-Ocean., 123, 2018–2036, https://doi.org/10.1002/2018JC013857,
2018. a
Friedlingstein, P., Jones, M. W., O'Sullivan, M., Andrew, R. M., Hauck, J.,
Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Le Quéré,
C., DBakker, O. C., Canadell1, J. G., Ciais1, P., Jackson, R. B., Anthoni1,
P., Barbero, L., Bastos, A., Bastrikov, V., Becker, M., Bopp, L., Buitenhuis,
E., Chandra, N., Chevallier, F., Chini, L. P., Currie, K. I., Feely, R. A.,
Gehlen, M., Gilfillan, D., Gkritzalis, T., Goll, D. S., Gruber, N.,
Gutekunst, S., Harris, I., Haverd, V., Houghton, R. A., Hurtt, G., Ilyina,
T., Jain, A. K., Joetzjer, E., Kaplan, J. O., Kato, E., Goldewijk, K. K.,
Korsbakken, J. I., Landschützer, P., Lauvset, S. K., Lefèvre, N.,
Lenton, A., Lienert, S., Lombardozzi, D., Marland, G., McGuire, P. C.,
Melton, J. R., Metzl, N., Munro, D. R., Nabel, J. E., Nakaoka, S. I., Neill,
C., Omar, A. M., Ono, T., Peregon, A., Pierrot, D., Poulter, B., Rehder, G.,
Resplandy, L., Robertson, E., Rödenbeck, C., Séférian, R.,
Schwinger, J., Smith, N., Tans, P. P., Tian, H., Tilbrook, B., Tubiello,
F. N., Van Der Werf, G. R., Wiltshire, A. J., and Zaehle, S.: Global
carbon budget 2019, Earth Syst. Sci. Data, 11, 1783–1838,
https://doi.org/10.5194/essd-11-1783-2019, 2019. a
Gallego, M. A., Timmermann, A., Friedrich, T., and Zeebe, R. E.: Drivers of
future seasonal cycle changes in oceanic pCO2, Biogeosciences, 15,
5315–5327, https://doi.org/10.5194/bg-15-5315-2018, 2018. a
Gattuso, J.-P., Frankignoulle, M., Bourge, I., Romaine, S., and Buddemeier,
R. W.: Effect of calcium carbonate saturation of seawater on coral
calcification, Glob. Planet. Change, 18, 37–46,
https://doi.org/10.1016/S0921-8181(98)00035-6, 1998. a
Goddijn‐Murphy, L., Woolf, D. K., Land, P. E., Shutler, J. D., and Donlon,
C. J.: The OceanFlux Greenhouse Gases methodology for deriving a sea surface
climatology of CO2 fugacity in support of air-sea gas flux studies, Ocean
Sci., 11, 519–541, https://doi.org/10.5194/os-11-519-2015, 2015. a
Good, S. A., Martin, M. J., and Rayner, N. A.: EN4: Quality controlled ocean
temperature and salinity profiles and monthly objective analyses with
uncertainty estimates, J. Geophys. Res.-Ocean., 118,
6704–6716, https://doi.org/10.1002/2013JC009067, 2013. a
Good, S. A., Embury, O., Bulgin, C., and Mittaz, J.: ESA Sea Surface
Temperature Climate Change Initiative (SST_cci): Level 4 Analysis Climate
Data Record, version 2.1, https://doi.org/10.5285/aced40d7cb964f23a0fd3e85772f2d48,
2019. a
Good, S. A., Fiedler, E., Mao, C., Martin, M. J., Maycock, A., Reid, R.,
Roberts-Jones, J., Searle, T., Waters, J., While, J., and Worsfold, M.: The
current configuration of the OSTIA system for operational production of
foundation sea surface temperature and ice concentration analyses, Remote
Sens., 12, 1–20, https://doi.org/10.3390/rs12040720, 2020. a, b, c, d, e
Gray, A. R., Johnson, K. S., Bushinsky, S. M., Riser, S. C., Russell, J. L.,
Talley, L. D., Wanninkhof, R. H., Williams, N. L., and Sarmiento, J. L.:
Autonomous Biogeochemical Floats Detect Significant Carbon Dioxide
Outgassing in the High-Latitude Southern Ocean, Geophys. Res.
Lett., 45, 9049–9057, https://doi.org/10.1029/2018GL078013, 2018. a, b
Gregor, L.: luke-gregor/OceanSODA-ETHZ: code, Zenodo, https://doi.org/10.5281/zenodo.4455354, 2021. a, b
Gregor, L. and Gruber, N.: OceanSODA-ETHZ: A global gridded data set of the
surface ocean carbonate system for seasonal to decadal studies of ocean
acidification (NCEI Accession 0220059), Tech. Rep., NOAA National Centers
for Environmental Information, https://doi.org/10.25921/m5wx-ja34,
2020. a, b
Gregor, L., Kok, S., and Monteiro, P. M. S.: Interannual drivers of the
seasonal cycle of CO2 in the Southern Ocean, Biogeosciences, 15, 2361–2378,
https://doi.org/10.5194/bg-15-2361-2018, 2018. a, b, c
Gregor, L., Lebehot, A. D., Kok, S., and Scheel Monteiro, P. M.: A
comparative assessment of the uncertainties of global surface ocean CO2
estimates using a machine-learning ensemble (CSIR-ML6 version 2019a) – have
we hit the wall?, Geosci. Model Dev., 12, 5113–5136,
https://doi.org/10.5194/gmd-12-5113-2019, 2019. a, b, c, d, e, f, g, h, i, j, k, l, m, n
Gruber, N. and Sarmiento, J. L.: Global patterns of marine nitrogen fixation
and denitrification, Global Biogeochem. Cy., 11, 235–266,
https://doi.org/10.1029/97GB00077, 1997. a
Gruber, N., Sarmiento, J. L., and Stocker, T. F.: An improved method for
detecting anthropogenic CO2 in the oceans, Global Biogeochem. Cy., 10,
809–837, https://doi.org/10.1029/96GB01608, 1996. a, b, c
Gruber, N., Hauri, C., Lachkar, Z., Loher, D., Frölicher, T. L., and
Plattner, G.-K.: Rapid Progression of Ocean Acidification in the California
Current System, Science, 337, 220–223, https://doi.org/10.1126/science.1216773, 2012. a
Gruber, N., Clement, D., Carter, B. R., Feely, R. A., van Heuven, S., Hoppema,
M., Ishii, M., Key, R. M., Kozyr, A., Lauvset, S. K., Lo Monaco, C.,
Mathis, J. T., Murata, A., Olsen, A., Perez, F. F., Sabine, C. L., Tanhua,
T., and Wanninkhof, R. H.: The oceanic sink for anthropogenic CO2 from 1994
to 2007, Science, 363, 1193–1199, https://doi.org/10.1126/science.aau5153, 2019. a
Hauri, C., Friedrich, T., and Timmermann, A.: Abrupt onset and prolongation of
aragonite undersaturation events in the Southern Ocean, Nat. Clim.
Change, 6, 172–176, https://doi.org/10.1038/nclimate2844, 2016. a
Holte, J., Talley, L. D., Gilson, J., and Roemmich, D.: An Argo mixed layer
climatology and database, Geophys. Res. Lett., 44, 5618–5626,
https://doi.org/10.1002/2017GL073426, 2017. a, b
Humphreys, M. P., Gregor, L., Pierrot, D., van Heuven, S., Lewis, E. R., and
Wallace, D. W. R.: PyCO2SYS: marine carbonate system calculations in
Python, Zenodo, https://doi.org/10.5281/zenodo.3967359, 2020. a, b, c, d
Iida, Y., Kojima, A., Takatani, Y., Nakano, T., Sugimoto, H., Midorikawa, T.,
and Ishii, M.: Trends in pCO2 and sea–air CO2 flux over the global open
oceans for the last two decades, J. Oceanogr., 71, 637–661,
https://doi.org/10.1007/s10872-015-0306-4, 2015. a, b
Jiang, L.-q., Carter, B. R., Feely, R. A., Lauvset, S. K., and Olsen, A.:
Surface ocean pH and buffer capacity: past, present and future, Sci.
Rep., 9, 18624, https://doi.org/10.1038/s41598-019-55039-4, 2019. a, b
Johnson, K. S., Jannasch, H. W., Coletti, L. J., Elrod, V. A., Martz, T. R.,
Takeshita, Y., Carlson, R. J., and Connery, J. G.: Deep-Sea DuraFET: A
Pressure Tolerant pH Sensor Designed for Global Sensor Networks, Anal.
Chem., 88, 3249–3256, https://doi.org/10.1021/acs.analchem.5b04653, 2016. a, b
Johnson, K. S., Plant, J. N., Coletti, L. J., Jannasch, H. W., Sakamoto, C. M.,
Riser, S. C., Swift, D. D., Williams, N. L., Boss, E., Haëntjens, N.,
Talley, L. D., and Sarmiento, J. L.: Biogeochemical sensor performance in
the SOCCOM profiling float array, J. Geophys. Res.-Ocean., 122, 6416–6436,
https://doi.org/10.1002/2017JC012838, 2017. a
Keppler, L. and Landschützer, P.: Regional Wind Variability Modulates
the Southern Ocean Carbon Sink, Sci. Rep., 9, 7384,
https://doi.org/10.1038/s41598-019-43826-y, 2019. a
Keppler, L., Landschützer, P., Gruber, N., Lauvset, S. K., and Stemmler,
I.: Seasonal carbon dynamics in the global ocean based on a neural network
mapping of observations, Global Biogeochem. Cy., 34, e2020GB006571, https://doi.org/10.1029/2020GB006571, 2020. a
Kwiatkowski, L., Torres, O., Bopp, L., Aumont, O., Chamberlain, M., Christian, J. R., Dunne, J. P., Gehlen, M., Ilyina, T., John, J. G., Lenton, A., Li, H., Lovenduski, N. S., Orr, J. C., Palmieri, J., Santana-Falcón, Y., Schwinger, J., Séférian, R., Stock, C. A., Tagliabue, A., Takano, Y., Tjiputra, J., Toyama, K., Tsujino, H., Watanabe, M., Yamamoto, A., Yool, A., and Ziehn, T.: Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections, Biogeosciences, 17, 3439–3470, https://doi.org/10.5194/bg-17-3439-2020, 2020. a
Land, P. E., Findlay, H. S., Shutler, J. D., Ashton, I. G., Holding, T.,
Grouazel, A., Girard-Ardhuin, F., Reul, N., Piolle, J. F., Chapron, B.,
Quilfen, Y., Bellerby, R. G., Bhadury, P., Salisbury, J., Vandemark, D., and
Sabia, R.: Optimum satellite remote sensing of the marine carbonate system
using empirical algorithms in the global ocean, the Greater Caribbean, the
Amazon Plume and the Bay of Bengal, Remote Sens. Environ., 235,
111469, https://doi.org/10.1016/j.rse.2019.111469, 2019. a, b
Landschützer, P., Gruber, N., Bakker, D. C., Schuster, U., Nakaoka, S.,
Payne, M. R., Sasse, T. P., and Zeng, J.: A neural network-based estimate of
the seasonal to inter-annual variability of the Atlantic Ocean carbon sink,
Biogeosciences, 10, 7793–7815, https://doi.org/10.5194/bg-10-7793-2013, 2013. a, b, c, d, e, f
Landschützer, P., Gruber, N., Bakker, D. C., and Schuster, U.: Recent variability of the global ocean carbon sink, Global Biogeochem. Cy., 28, 927–949, https://doi.org/10.1002/2014GB004853, 2014. a
Landschützer, P., Gruber, N., Haumann, F. A., Rödenbeck, C.,
Bakker, D. C., Van Heuven, S. M., Hoppema, M., Metzl, N., Sweeney, C.,
Takahashi, T. T., Tilbrook, B., and Wanninkhof, R. H.: The reinvigoration of
the Southern Ocean carbon sink, Science, 349, 1221–1224,
https://doi.org/10.1126/science.aab2620, 2015. a, b, c
Landschützer, P., Laruelle, G. G., Roobaert, A., and Regnier, P.: A uniform pCO2 climatology combining open and coastal oceans, Earth Syst. Sci. Data, 12, 2537–2553, https://doi.org/10.5194/essd-12-2537-2020, 2020. a, b
Laruelle, G. G., Dürr, H. H., Lauerwald, R., Hartmann, J., Slomp, C. P.,
Goossens, N., and Regnier, P. A.: Global multi-scale segmentation of
continental and coastal waters from the watersheds to the continental
margins, Hydrol. Earth Syst. Sci., 17, 2029–2051,
https://doi.org/10.5194/hess-17-2029-2013, 2013. a, b, c, d
Laruelle, G. G., Landschützer, P., Gruber, N., Ti, J. L., Delille, B.,
Regnier, P., Tison, J.-L., Delille, B., and Regnier, P.: Global
high-resolution monthly pCO2 climatology for the coastal ocean derived from
neural network interpolation, Biogeosciences, 14, 4545–4561,
https://doi.org/10.5194/bg-14-4545-2017, 2017. a, b, c, d, e
Lauvset, S. K., Gruber, N., Landschützer, P., Olsen, A., and Tjiputra,
J.: Trends and drivers in global surface ocean pH over the past 3 decades,
Biogeosciences, 12, 1285–1298, https://doi.org/10.5194/bg-12-1285-2015, 2015. a
Lauvset, S. K., Key, R. M., Olsen, A., van Heuven, S., Velo, A., Lin, X.,
Schirnick, C., Kozyr, A., Tanhua, T., Hoppema, M., Jutterström, S.,
Steinfeldt, R., Jeansson, E., Ishii, M., Perez, F. F., Suzuki, T., and
Watelet, S.: A new global interior ocean mapped climatology: the
GLODAP version 2, Earth Syst. Sci. Data, 8, 325–340,
https://doi.org/10.5194/essd-8-325-2016, 2016. a, b
Lee, K., Wanninkhof, R. H., Feely, R. A., Millero, F. J., and Peng, T. H.:
Global relationships of total inorganic carbon with temperature and nitrate
in surface seawater, Global Biogeochem. Cy., 14, 979–994,
https://doi.org/10.1029/1998GB001087, 2000. a
Lee, K., Tong, L. T., Millero, F. J., Sabine, C. L., Dickson, A. G., Goyet, C.,
Park, G.-H., Wanninkhof, R. H., Feely, R. A., and Key, R. M.: Global
relationships of total alkalinity with salinity and temperature in surface
waters of the world's oceans, Geophys. Res. Lett., 33, L19605,
https://doi.org/10.1029/2006GL027207, 2006. a, b, c, d, e
Lefèvre, N. and Taylor, A.: Estimating pCO2 from sea surface
temperatures in the Atlantic gyres, Deep-Sea Res. Pt. I, 49, 539–554, https://doi.org/10.1016/S0967-0637(01)00064-4, 2002. a
Lewis, E., Wallace, D., and Allison, L. J.: Program developed for CO2 system
calculations, CDIAC, https://doi.org/10.15485/1464255, 1998. a
Lovenduski, N. S., Gruber, N., Doney, S. C., and Lima, I. D.: Enhanced CO2
outgassing in the Southern Ocean from a positive phase of the Southern
Annular Mode, Global Biogeochem. Cy., 21, 1–14,
https://doi.org/10.1029/2006GB002900, 2007. a
Maritorena, S., Fanton D'andon, O. H., Mangin, A., Siegel, D. A., D'Andon, O.
H. F., Mangin, A., and Siegel, D. A.: Merged satellite ocean color data
products using a bio-optical model: Characteristics, benefits and issues,
Remote Sens. Environ., 114, 1791–1804,
https://doi.org/10.1016/j.rse.2010.04.002, 2010. a, b
Marshall, J. C. and Speer, K.: Closure of the meridional overturning
circulation through Southern Ocean upwelling, Nat. Geosci., 5,
171–180, https://doi.org/10.1038/ngeo1391, 2012. a
Matsumoto, K. and Gruber, N.: How accurate is the estimation of anthropogenic
carbon in the ocean? An evaluation of the ΔC* method, Global
Biogeochem. Cy., 19, 1–17, https://doi.org/10.1029/2004GB002397, 2005. a
Mehrbach, C., Culberson, C. H., Hawley, J. E., and Pytkowicx, R. M.:
Measurement of the Apparent Dissociation Constants of Carbonic Acid in
Seawater At Atmospheric Pressure, Limnol. Oceanogr., 18, 897–907,
https://doi.org/10.4319/lo.1973.18.6.0897, 1973. a
Millero, F. J., Lee, K., and Roche, M.: Distribution of alkalinity in the
surface waters of the major oceans, Mar. Chem., 60, 111–130,
https://doi.org/10.1016/S0304-4203(97)00084-4, 1998. a
Monteiro, P. M. S., Gregor, L., Lévy, M., Maenner, S., Sabine, C. L., and
Swart, S.: Intraseasonal variability linked to sampling alias in air-sea CO2
fluxes in the Southern Ocean, Geophys. Res. Lett., 42, 8507–8514,
https://doi.org/10.1002/2015GL066009, 2015. a
Negrete-García, G., Lovenduski, N. S., Hauri, C., Krumhardt, K. M., and
Lauvset, S. K.: Sudden emergence of a shallow aragonite saturation horizon
in the Southern Ocean, Nat. Clim. Change, 9, 313–317,
https://doi.org/10.1038/s41558-019-0418-8, 2019. a
Olafsson, J., Olafsdottir, S. R., Benoit-Cattin, A., and Takahashi, T. T.: The
irminger sea and the Iceland sea time series measurements of sea water carbon
and nutrient chemistry 1983–2008, Earth Syst. Sci. Data, 2, 99–104,
https://doi.org/10.5194/essd-2-99-2010, 2010. a
Olsen, A., Key, R. M., van Heuven, S., Lauvset, S. K., Velo, A., Lin, X.,
Schirnick, C., Kozyr, A., Tanhua, T., Hoppema, M., Jutterström, S.,
Steinfeldt, R., Jeansson, E., Ishii, M., Pérez, F. F., and Suzuki, T.:
The Global Ocean Data Analysis Project version 2 (GLODAPv2) – an
internally consistent data product for the world ocean, Earth Syst. Sci.
Data, 8, 297–323, https://doi.org/10.5194/essd-8-297-2016, 2016. a
Olsen, A., Lange, N., Key, R. M., Tanhua, T., Álvarez, M., Becker, S.,
Bittig, H. C., Carter, B. R., Cotrim Da Cunha, L., Feely, R. A., Van
Heuven, S., Hoppema, M., Ishii, M., Jeansson, E., Jones, S. D.,
Jutterström, S., Karlsen, M. K., Kozyr, A., Lauvset, S. K., Lo
Monaco, C., Murata, A., Pérez, F. F., Pfeil, B., Schirnick, C.,
Steinfeldt, R., Suzuki, T., Telszewski, M., Tilbrook, B., Velo, A., and
Wanninkhof, R.: GLODAPv2.2019 – An update of GLODAPv2, Earth Syst. Sci.
Data, 11, 1437–1461, https://doi.org/10.5194/essd-11-1437-2019, 2019. a, b, c, d, e, f, g, h, i, j
Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A.,
Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R. M., Lindsay, K.,
Maier-Reimer, E., Matear, R. J., Monfray, P., Mouchet, A., Najjar, R. G.,
Plattner, G.-K. K., Rodgers, K. B., Sabine, C. L., Sarmiento, J. L.,
Schlitzer, R., Slater, R. D., Totterdell, I. J., Weirig, M.-F. F., Yamanaka,
Y., Yool, A., Doney, S. C., Gnanadesikan, A., Gruber, N., Ishida, A., Joos,
F., Key, R. M., Lindsay, K., Maier-Reimer, E., Matear, R. J., Monfray, P.,
Mouchet, A., Najjar, R. G., Plattner, G.-K. K., Rodgers, K. B., Sabine,
C. L., Sarmiento, J. L., Schlitzer, R., Slater, R. D., Totterdell, I. J.,
Weirig, M.-F. F., Yamanaka, Y., Yool, A., Feely, R. A., Gnanadesikan, A.,
Gruber, N., Ishida, A., Joos, F., Key, R. M., Lindsay, K., Maier-Reimer, E.,
Matear, R. J., Monfray, P., Mouchet, A., Najjar, R. G., Plattner, G.-K. K.,
Rodgers, K. B., Sabine, C. L., Sarmiento, J. L., Schlitzer, R., Slater,
R. D., Totterdell, I. J., Weirig, M.-F. F., Yamanaka, Y., and Yool, A.:
Anthropogenic ocean acidification over the twenty-first century and its
impact on calcifying organisms, Nature, 437, 681–686,
https://doi.org/10.1038/nature04095, 2005. a, b, c
Orr, J. C., Epitalon, J. M., and Gattuso, J.-P.: Comparison of ten packages
that compute ocean carbonate chemistry, Biogeosciences, 12, 1483–1510,
https://doi.org/10.5194/bg-12-1483-2015, 2015. a
Orr, J. C., Epitalon, J.-M., Dickson, A. G., and Gattuso, J.-P.: Routine
uncertainty propagation for the marine carbon dioxide system, Mar.
Chem., 2018, 84–107, https://doi.org/10.1016/j.marchem.2018.10.006, 2018. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, C., Thirion, B., Grisel,
O., Blondel, M., Prettenhoffer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., and Cournapeau, D.: Scikit-learn: Machine learning in Python,
J. Mach. Learn. Res., 12, 2825–2830, 2011. a
Pierrot, D., Neill, C., Sullivan, K. F., Castle, R. D., Wanninkhof, R. H.,
Lüger, H., Johannessen, T., Olsen, A., Feely, R. A., and Cosca, C. E.:
Recommendations for autonomous underway pCO2 measuring systems and
data-reduction routines, Deep-Sea Res. Pt. II, 56, 512–522, https://doi.org/10.1016/j.dsr2.2008.12.005, 2009. a
Pörtner, H.-O. and Farrell, A. P.: Physiology and Climate Change,
Science, 322, 690–692, https://doi.org/10.1126/science.1163156, 2008. a
Raimondi, L., Matthews, J. B. R., Atamanchuk, D., Azetsu-Scott, K., and
Wallace, D. W.: The internal consistency of the marine carbon dioxide system
for high latitude shipboard and in situ monitoring, Mar. Chem., 213,
49–70, https://doi.org/10.1016/j.marchem.2019.03.001, 2019. a, b, c, d
Resplandy, L., Lévy, M., D'Ovidio, F., and Merlivat, L.: Impact of
submesoscale variability in estimating the air-sea CO2 exchange: Results from
a model study of the POMME experiment, Global Biogeochem. Cy., 23,
1–19, https://doi.org/10.1029/2008GB003239, 2009. a
Rödenbeck, C., Bakker, D. C., Metzl, N., Olsen, A., Sabine, C. L.,
Cassar, N., Reum, F., Keeling, R. F., and Heimann, M.: Interannual sea–air
CO2 flux variability from an observation-driven ocean mixed-layer scheme,
Biogeosciences, 11, 4599–4613, https://doi.org/10.5194/bg-11-4599-2014, 2014. a, b, c, d
Rödenbeck, C., Bakker, D. C., Gruber, N., Iida, Y., Jacobson, A. R.,
Jones, S. D., Landschützer, P., Metzl, N., Nakaoka, S., Olsen, A.,
Park, G.-H. H., Peylin, P., Rodgers, K. B., Sasse, T. P., Schuster, U.,
Shutler, J. D., Valsala, V., Wanninkhof, R. H., and Zeng, J.: Data-based
estimates of the ocean carbon sink variability – first results of the
Surface Ocean pCO2 Mapping intercomparison (SOCOM), Biogeosciences, 12,
7251–7278, https://doi.org/10.5194/bg-12-7251-2015, 2015. a, b
Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J. L.,
Wanninkhof, R. H., Wong, C. S., Wallace, D. W. R., Tilbrook, B., Millero,
F. J., Peng, T.-H., Kozyr, A., Ono1, T., and Rios, A. F.: The Oceanic Sink
for Anthropogenic CO2, Science, 305, 367–371,
https://doi.org/10.1126/science.1097403, 2004. a
Sasse, T. P., McNeil, B. I., and Abramowitz, G.: A novel method for diagnosing
seasonal to inter-annual surface ocean carbon dynamics from bottle data using
neural networks, Biogeosciences, 10, 4319–4340,
https://doi.org/10.5194/bg-10-4319-2013, 2013. a, b, c, d
Siegel, D. A., Doney, S. C., and Yoder, J. A.: The North Atlantic spring
phytoplankton bloom and Sverdrup's critical depth hypothesis, Science, 296,
730–733, https://doi.org/10.1126/science.1069174, 2002. a
Steinacher, M., Joos, F., Frölicher, T. L., Plattner, G.-K., and Doney, S. C.: Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model, Biogeosciences, 6, 515–533, https://doi.org/10.5194/bg-6-515-2009, 2009. a
Tagliabue, A., Bowie, A. R., Boyd, P. W., Buck, K. N., Johnson, K. S., Saito,
M. A., Philip, W., Buck, K. N., Johnson, K. S., Saito, M. A., Boyd, P. W.,
Buck, K. N., Johnson, K. S., and Saito, M. A.: The integral role of iron in
ocean biogeochemistry, Nature, 543, 51–59, https://doi.org/10.1038/nature21058, 2017. a
Takahashi, T., Sutherland, S. C., Chipman, D. W., Goddard, J. G., Ho, C., Newberger, T., Sweeney, C., and Munro, D. R.: Climatological distributions of pH, pCO2, total CO2, alkalinity, and CaCO3 saturation in the global surface ocean, and temporal changes at selected locations,
Mar. Chem., 164, 95–125, https://doi.org/10.1016/j.marchem.2014.06.004,
2014. a, b, c
Takahashi, T., Sutherland, S., and Kozyr, A.: Global Ocean Surface Water Partial Pressure of CO2 Database: Measurements Performed During 1957–2019 (LDEO Database Version 2019) (NCEI Accession 0160492), Version 9.9, NOAA National Centers for Environmental Information, Dataset, https://doi.org/10.3334/CDIAC/OTG.NDP088(V2015), 2020. a, b, c
Takahashi, T. T., Olafsson, J., Goddard, J. G., Chipman, D. W., and Sutherland,
S. C.: Seasonal variation of CO2 and nutrients in the high-latitude surface
oceans: A comparative study, Global Biogeochem. Cy., 7, 843–878,
https://doi.org/10.1029/93GB02263, 1993. a, b, c
Takahashi, T. T., Sutherland, S. C., Sweeney, C., Poisson, A., Metzl, N.,
Tilbrook, B., Bates, N. R., Wanninkhof, R. H., Feely, R. A., Sabine, C. L.,
Olafsson, J., and Nojiri, Y.: Global sea-air CO2 flux based on
climatological surface ocean pCO2, and seasonal biological and temperature
effects, Deep-Sea Res. Pt. II, 49,
1601–1622, https://doi.org/10.1016/S0967-0645(02)00003-6, 2002. a
Takahashi, T. T., Sutherland, S. C., Chipman, D. W., Goddard, J. G., and Ho,
C.: Climatological distributions of pH, pCO2, total CO2, alkalinity, and
CaCO3 saturation in the global surface ocean, and temporal changes at
selected locations, Mar. Chem., 164, 95–125,
https://doi.org/10.1016/j.marchem.2014.06.004, 2014. a, b
Tilbrook, B., Jewett, E. B., DeGrandpre, M. D., Hernandez-Ayon, J. M., Feely,
R. A., Gledhill, D. K., Hansson, L., Isensee, K., Kurz, M. L., Newton, J. A.,
Siedlecki, S. A., Chai, F., Dupont, S., Graco, M., Calvo, E., Greeley, D.,
Kapsenberg, L., Lebrec, M., Pelejero, C., Schoo, K. L., and Telszewski, M.:
An enhanced ocean acidification observing network: From people to technology
to data synthesis and information exchange, Front. Mar. Sci., 6,
1–21, https://doi.org/10.3389/fmars.2019.00337, 2019. a
Turk, D., Dowd, M., Lauvset, S. K., Koelling, J., Alonso-Pérez, F., and
Pérez, F. F.: Can empirical algorithms successfully estimate aragonite
saturation state in the subpolar North Atlantic?, Front. Mar.
Sci., 4, 385 pp., https://doi.org/10.3389/fmars.2017.00385, 2017. a
Uppström, L. R.: The boron/chlorinity ratio of deep-sea water from the
Pacific Ocean, Deep-Sea Res. Oceanogr. Abstracts, 21, 161–162,
https://doi.org/10.1016/0011-7471(74)90074-6, 1974.
a
Watson, A. J., Bakker, D. C., Ridgwell, A. J., Boyd, P. W., and Law, C. S.:
Effect of iron supply on Southern Ocean CO2 uptake and implications for
glacial atmospheric CO2, Nature, 407, 730–733, https://doi.org/10.1038/35037561,
2000. a
Watson, A. J., Schuster, U., Shutler, J. D., Holding, T., Ashton, I. G.,
Landschützer, P., Woolf, D. K., and Goddijn-Murphy, L.: Revised
estimates of ocean-atmosphere CO2 flux are consistent with ocean carbon
inventory, Nat. Commun., 11, 1–6,
https://doi.org/10.1038/s41467-020-18203-3, 2020. a, b, c
Williams, N. L., Juranek, L. W., Feely, R. A., Johnson, K. S., Sarmiento,
J. L., Talley, L. D., Dickson, A. G., Gray, A. R., Wanninkhof, R. H.,
Russell, J. L., Riser, S. C., and Takeshita, Y.: Calculating surface ocean
pCO2 from biogeochemical Argo floats equipped with pH: An uncertainty
analysis, Global Biogeochem. Cy., 31, 591–604,
https://doi.org/10.1002/2016GB005541, 2017. a
Wolf-Gladrow, D. A., Zeebe, R. E., Klaas, C., Körtzinger, A., and
Dickson, A. G.: Total alkalinity: The explicit conservative expression and
its application to biogeochemical processes, Mar. Chem., 106,
287–300, https://doi.org/10.1016/j.marchem.2007.01.006, 2007. a
Zeng, J., Nojiri, Y., Landschützer, P., Telszewski, M., and Nakaoka,
S.-I.: A global surface ocean fCO2 climatology based on a feed-forward
neural network, J. Atmos. Ocean. Technol., 31,
1838–1849, https://doi.org/10.1175/JTECH-D-13-00137.1, 2014. a, b
Short summary
Ocean acidification (OA) has altered the ocean's carbonate chemistry, with consequences for marine life. Yet, no observation-based data set exists that permits us to study changes in OA. We fill this gap with a global data set of relevant surface ocean parameters over the period 1985–2018. This data set, OceanSODA-ETHZ, was created by using satellite and other data to extrapolate ship-based measurements of carbon dioxide and total alkalinity from which parameters for OA were computed.
Ocean acidification (OA) has altered the ocean's carbonate chemistry, with consequences for...
Altmetrics
Final-revised paper
Preprint