Articles | Volume 14, issue 11
https://doi.org/10.5194/essd-14-4793-2022
https://doi.org/10.5194/essd-14-4793-2022
Data description paper
 | 
02 Nov 2022
Data description paper |  | 02 Nov 2022

HRLT: a high-resolution (1 d, 1 km) and long-term (1961–2019) gridded dataset for surface temperature and precipitation across China

Rongzhu Qin, Zeyu Zhao, Jia Xu, Jian-Sheng Ye, Feng-Min Li, and Feng Zhang

Related authors

Modeling impacts of climate change and grazing effects on plant biomass and soil organic carbon in the Qinghai–Tibetan grasslands
Wenjuan Zhang, Feng Zhang, Jiaguo Qi, and Fujiang Hou
Biogeosciences, 14, 5455–5470, https://doi.org/10.5194/bg-14-5455-2017,https://doi.org/10.5194/bg-14-5455-2017, 2017
Short summary
Soil carbon sequestration by three perennial legume pastures is greater in deeper soil layers than in the surface soil
X.-K. Guan, N. C. Turner, L. Song, Y.-J. Gu, T.-C. Wang, and F.-M. Li
Biogeosciences, 13, 527–534, https://doi.org/10.5194/bg-13-527-2016,https://doi.org/10.5194/bg-13-527-2016, 2016
Short summary

Related subject area

Domain: ESSD – Land | Subject: Hydrology
Multivariate characterisation of a blackberry–alder agroforestry system in South Africa: hydrological, pedological, dendrological and meteorological measurements
Sibylle Kathrin Hassler, Rafael Bohn Reckziegel, Ben du Toit, Svenja Hoffmeister, Florian Kestel, Anton Kunneke, Rebekka Maier, and Jonathan Paul Sheppard
Earth Syst. Sci. Data, 16, 3935–3948, https://doi.org/10.5194/essd-16-3935-2024,https://doi.org/10.5194/essd-16-3935-2024, 2024
Short summary
SHIFT: a spatial-heterogeneity improvement in DEM-based mapping of global geomorphic floodplains
Kaihao Zheng, Peirong Lin, and Ziyun Yin
Earth Syst. Sci. Data, 16, 3873–3891, https://doi.org/10.5194/essd-16-3873-2024,https://doi.org/10.5194/essd-16-3873-2024, 2024
Short summary
First comprehensive stable isotope dataset of diverse water units in a permafrost-dominated catchment on the Qinghai–Tibet Plateau
Yuzhong Yang, Qingbai Wu, Xiaoyan Guo, Lu Zhou, Helin Yao, Dandan Zhang, Zhongqiong Zhang, Ji Chen, and Guojun Liu
Earth Syst. Sci. Data, 16, 3755–3770, https://doi.org/10.5194/essd-16-3755-2024,https://doi.org/10.5194/essd-16-3755-2024, 2024
Short summary
LamaH-Ice: LArge-SaMple DAta for Hydrology and Environmental Sciences for Iceland
Hordur Bragi Helgason and Bart Nijssen
Earth Syst. Sci. Data, 16, 2741–2771, https://doi.org/10.5194/essd-16-2741-2024,https://doi.org/10.5194/essd-16-2741-2024, 2024
Short summary
High-resolution mapping of monthly industrial water withdrawal in China from 1965 to 2020
Chengcheng Hou, Yan Li, Shan Sang, Xu Zhao, Yanxu Liu, Yinglu Liu, and Fang Zhao
Earth Syst. Sci. Data, 16, 2449–2464, https://doi.org/10.5194/essd-16-2449-2024,https://doi.org/10.5194/essd-16-2449-2024, 2024
Short summary

Cited articles

Aalto, J., Pirinen, P., Heikkinen, J., and Venäläinen, A.: Spatial interpolation of monthly climate data for Finland: comparing the performance of kriging and generalized additive models, Theor. Appl. Climatol., 112, 99–111, https://doi.org/10.1007/s00704-012-0716-9, 2013. 
Alpert, P., Ben-Gai, T., Baharad, A., Benjamini, Y., Yekutieli, D., Colacino, M., Diodato, L., Ramis, C., Homar, V., Romero, R., Michaelides, S., and Manes, A.: The paradoxical increase of Mediterranean extreme daily rainfall in spite of decrease in total values, Geophys. Res. Lett., 29, 31–1, https://doi.org/10.1029/2001GL013554, 2002. 
Appelhans, T., Mwangomo, E., Hardy, D. R., Hemp, A., and Nauss, T.: Evaluating machine learning approaches for the interpolation of monthly air temperature at Mt. Kilimanjaro, Tanzania, Spatial Stat., 14, 91–113, https://doi.org/10.1016/j.spasta.2015.05.008, 2015. 
Belaid, S. and Mellit, A.: Prediction of daily and mean monthly global solar radiation using support vector machine in an arid climate, Energ. Convers. Manage., 118, 105–118, https://doi.org/10.1016/j.enconman.2016.03.082, 2016. 
Bishop, C. M.: Neural networks and their applications, Rev. Sci. Instr., 65, 1803–1832, https://doi.org/10.1063/1.1144830, 1994. 
Download
Short summary
This work presents a new high-resolution daily gridded maximum temperature, minimum temperature, and precipitation dataset for China (HRLT) with a spatial resolution of 1 × 1 km for the period 1961 to 2019. This dataset is valuable for crop modelers and climate change studies. We created the HRLT dataset using comprehensive statistical analyses, which included machine learning, the generalized additive model, and thin-plate splines.
Altmetrics
Final-revised paper
Preprint