Articles | Volume 12, issue 2
https://doi.org/10.5194/essd-12-1347-2020
https://doi.org/10.5194/essd-12-1347-2020
Data description paper
 | 
17 Jun 2020
Data description paper |  | 17 Jun 2020

Vegetation, ground cover, soil, rainfall simulation, and overland-flow experiments before and after tree removal in woodland-encroached sagebrush steppe: the hydrology component of the Sagebrush Steppe Treatment Evaluation Project (SageSTEP)

C. Jason Williams, Frederick B. Pierson, Patrick R. Kormos, Osama Z. Al-Hamdan, and Justin C. Johnson

Related authors

Meteorological, snow, streamflow, topographic, and vegetation height data from four western juniper-dominated experimental catchments in southwestern Idaho, USA
Patrick R. Kormos, Danny G. Marks, Frederick B. Pierson, C. Jason Williams, Stuart P. Hardegree, Alex R. Boehm, Scott C. Havens, Andrew Hedrick, Zane K. Cram, and Tony J. Svejcar
Earth Syst. Sci. Data, 9, 91–98, https://doi.org/10.5194/essd-9-91-2017,https://doi.org/10.5194/essd-9-91-2017, 2017
Short summary
Soil, snow, weather, and sub-surface storage data from a mountain catchment in the rain–snow transition zone
P. R. Kormos, D. Marks, C. J. Williams, H. P. Marshall, P. Aishlin, D. G. Chandler, and J. P. McNamara
Earth Syst. Sci. Data, 6, 165–173, https://doi.org/10.5194/essd-6-165-2014,https://doi.org/10.5194/essd-6-165-2014, 2014

Related subject area

Hydrology
Global hourly, 5 km, all-sky land surface temperature data from 2011 to 2021 based on integrating geostationary and polar-orbiting satellite data
Aolin Jia, Shunlin Liang, Dongdong Wang, Lei Ma, Zhihao Wang, and Shuo Xu
Earth Syst. Sci. Data, 15, 869–895, https://doi.org/10.5194/essd-15-869-2023,https://doi.org/10.5194/essd-15-869-2023, 2023
Short summary
Flood detection using Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage and extreme precipitation data
Jianxin Zhang, Kai Liu, and Ming Wang
Earth Syst. Sci. Data, 15, 521–540, https://doi.org/10.5194/essd-15-521-2023,https://doi.org/10.5194/essd-15-521-2023, 2023
Short summary
The pan-Arctic catchment database (ARCADE)
Niek Jesse Speetjens, Gustaf Hugelius, Thomas Gumbricht, Hugues Lantuit, Wouter R. Berghuijs, Philip A. Pika, Amanda Poste, and Jorien E. Vonk
Earth Syst. Sci. Data, 15, 541–554, https://doi.org/10.5194/essd-15-541-2023,https://doi.org/10.5194/essd-15-541-2023, 2023
Short summary
Multi-hazard susceptibility mapping of cryospheric hazards in a high-Arctic environment: Svalbard Archipelago
Ionut Cristi Nicu, Letizia Elia, Lena Rubensdotter, Hakan Tanyaş, and Luigi Lombardo
Earth Syst. Sci. Data, 15, 447–464, https://doi.org/10.5194/essd-15-447-2023,https://doi.org/10.5194/essd-15-447-2023, 2023
Short summary
High-resolution water level and storage variation datasets for 338 reservoirs in China during 2010–2021
Youjiang Shen, Dedi Liu, Liguang Jiang, Karina Nielsen, Jiabo Yin, Jun Liu, and Peter Bauer-Gottwein
Earth Syst. Sci. Data, 14, 5671–5694, https://doi.org/10.5194/essd-14-5671-2022,https://doi.org/10.5194/essd-14-5671-2022, 2022
Short summary

Cited articles

Al-Hamdan, O. Z., Pierson, F. B., Nearing, M. A., Stone, J. J., Williams, C. J., Moffet, C. A., Kormos, P. R., Boll, J., and Weltz, M. A.: Characteristics of concentrated flow hydraulics for rangeland ecosystems: Implications for hydrologic modeling, Earth Surf. Process. Landf., 37, 157–168, 2012a. 
Al-Hamdan, O. Z., Pierson, F. B., Nearing, M. A., Williams, C. J., Stone, J. J., Kormos, P. R., Boll, J., and Weltz, M. A.: Concentrated flow erodibility for physically based erosion models: Temporal variability in disturbed and undisturbed rangelands, Water Resour. Res., 48, W07504, https://doi.org/10.1029/2011WR011464, 2012b. 
Al-Hamdan, O. Z., Pierson, F. B., Nearing, M. A., Williams, C. J., Stone, J. J., Kormos, P. R., Boll, J., and Weltz, M. A.: Risk assessment of erosion from concentrated flow on rangelands using overland flow distribution and shear stress partitioning, Trans. ASABE, 56, 539–548, 2013. 
Al-Hamdan, O. Z., Hernandez, M., Pierson, F. B., Nearing, M. A., Williams, C. J., Stone, J. J., Boll, J., and Weltz, M. A.: Rangeland Hydrology and Erosion Model (RHEM) enhancements for applications on disturbed rangelands, Hydrol. Process., 29, 445–457, 2015. 
Al-Hamdan, O. Z., Pierson, F. B., Nearing, M. A., Williams, C. J., Hernandez, H., Boll, J., Nouwakpo, S. K., Weltz, M. A., and Spaeth, K. E.: Developing a parameterization approach for soil erodibility for the Rangeland Hydrology and Erosion Model (RHEM), Trans. Am. Soc. Agr. Biol. Eng., 60, 85–94, 2017. 
Download
Short summary
Data were collected at three sites over 10 years to evaluate ecologic impacts of tree encroachment on rangelands and assess impacts of tree-removal practices on vegetation, surface conditions, and hydrologic/erosion processes. The dataset includes 1300 rainfall simulation and 838 overland-flow experiments paired with vegetation, surface cover, and soil data across point to hillslope scales. The data advance hydrology/erosion process understanding and are a source for model development/testing.