Articles | Volume 12, issue 2
Earth Syst. Sci. Data, 12, 1217–1243, 2020
https://doi.org/10.5194/essd-12-1217-2020
Earth Syst. Sci. Data, 12, 1217–1243, 2020
https://doi.org/10.5194/essd-12-1217-2020

Data description paper 03 Jun 2020

Data description paper | 03 Jun 2020

Annual dynamics of global land cover and its long-term changes from 1982 to 2015

Han Liu et al.

Related authors

A temporally consistent 8-day 0.05° gap-free snow cover extent dataset over the Northern Hemisphere for the period 1981–2019
Xiaona Chen, Shunlin Liang, Lian He, Yaping Yang, and Cong Yin
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-279,https://doi.org/10.5194/essd-2021-279, 2021
Preprint under review for ESSD
Short summary
A 1 km global dataset of historical (1979–2013) and future (2020–2100) Köppen–Geiger climate classification and bioclimatic variables
Diyang Cui, Shunlin Liang, Dongdong Wang, and Zheng Liu
Earth Syst. Sci. Data, 13, 5087–5114, https://doi.org/10.5194/essd-13-5087-2021,https://doi.org/10.5194/essd-13-5087-2021, 2021
Short summary
Exploration of a novel geoengineering solution: lighting up tropical forests at night
Xueyuan Gao, Shunlin Liang, Dongdong Wang, Yan Li, Bin He, and Aolin Jia
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2021-85,https://doi.org/10.5194/esd-2021-85, 2021
Revised manuscript accepted for ESD
Short summary
An all-sky 1 km daily land surface air temperature product over mainland China for 2003–2019 from MODIS and ancillary data
Yan Chen, Shunlin Liang, Han Ma, Bing Li, Tao He, and Qian Wang
Earth Syst. Sci. Data, 13, 4241–4261, https://doi.org/10.5194/essd-13-4241-2021,https://doi.org/10.5194/essd-13-4241-2021, 2021
Short summary
Oil palm modelling in the global land surface model ORCHIDEE-MICT
Yidi Xu, Philippe Ciais, Le Yu, Wei Li, Xiuzhi Chen, Haicheng Zhang, Chao Yue, Kasturi Kanniah, Arthur P. Cracknell, and Peng Gong
Geosci. Model Dev., 14, 4573–4592, https://doi.org/10.5194/gmd-14-4573-2021,https://doi.org/10.5194/gmd-14-4573-2021, 2021
Short summary

Related subject area

Data, Algorithms, and Models
A Landsat-derived annual inland water clarity dataset of China between 1984 and 2018
Hui Tao, Kaishan Song, Ge Liu, Qiang Wang, Zhidan Wen, Pierre-Andre Jacinthe, Xiaofeng Xu, Jia Du, Yingxin Shang, Sijia Li, Zongming Wang, Lili Lyu, Junbin Hou, Xiang Wang, Dong Liu, Kun Shi, Baohua Zhang, and Hongtao Duan
Earth Syst. Sci. Data, 14, 79–94, https://doi.org/10.5194/essd-14-79-2022,https://doi.org/10.5194/essd-14-79-2022, 2022
Short summary
A harmonized global land evaporation dataset from model-based products covering 1980–2017
Jiao Lu, Guojie Wang, Tiexi Chen, Shijie Li, Daniel Fiifi Tawia Hagan, Giri Kattel, Jian Peng, Tong Jiang, and Buda Su
Earth Syst. Sci. Data, 13, 5879–5898, https://doi.org/10.5194/essd-13-5879-2021,https://doi.org/10.5194/essd-13-5879-2021, 2021
Short summary
Estimating population and urban areas at risk of coastal hazards, 1990–2015: how data choices matter
Kytt MacManus, Deborah Balk, Hasim Engin, Gordon McGranahan, and Rya Inman
Earth Syst. Sci. Data, 13, 5747–5801, https://doi.org/10.5194/essd-13-5747-2021,https://doi.org/10.5194/essd-13-5747-2021, 2021
Short summary
Landsat-based Irrigation Dataset (LANID): 30 m resolution maps of irrigation distribution, frequency, and change for the US, 1997–2017
Yanhua Xie, Holly K. Gibbs, and Tyler J. Lark
Earth Syst. Sci. Data, 13, 5689–5710, https://doi.org/10.5194/essd-13-5689-2021,https://doi.org/10.5194/essd-13-5689-2021, 2021
Short summary
GRQA: Global River Water Quality Archive
Holger Virro, Giuseppe Amatulli, Alexander Kmoch, Longzhu Shen, and Evelyn Uuemaa
Earth Syst. Sci. Data, 13, 5483–5507, https://doi.org/10.5194/essd-13-5483-2021,https://doi.org/10.5194/essd-13-5483-2021, 2021
Short summary

Cited articles

Achard, F., Eva, H. D., Mayaux, P., Stibig, H. J., and Belward, A.: Improved estimates of net carbon emissions from land cover change in the tropics for the 1990s, Global Biogeochem. Cy., 18, 1–11, https://doi.org/10.1029/2003GB002142, 2004. 
Andrew K, S., Nathalie, P., Nicholas C, C., Gary N, G., Matthew, H., Richard, L., Caspar A, M., Brian, O. C., Marc, P., and Henrique Miguel, P.: Environmental science: Agree on biodiversity metrics to track from space, Nature, 523, 403–405, https://doi.org/10.1038/523403a, 2015. 
Bai, Z. G., Dent, D. L., Olsson, L., and Schaepman, M. E.: Proxy global assessment of land degradation, Soil Use Manage., 24, 223–234, https://doi.org/10.1111/j.1475-2743.2008.00169.x, 2008. 
Ban, Y., Gong, P., and Gini, C.: Global land cover mapping using Earth observation satellite data: Recent progresses and challenges, ISPRS J. Photogramm., 103, 1–6, https://doi.org/10.1016/j.isprsjprs.2015.01.001, 2015. 
Bartholome, E. and Belward, A. S.: GLC2000: a new approach to global land cover mapping from Earth observation data, Int. J. Remote Sens., 26, 1959–1977, https://doi.org/10.1080/01431160412331291297, 2005. 
Download
Short summary
We built the first set of 5 km resolution CDRs to record the annual dynamics of global land cover (GLASS-GLC) from 1982 to 2015. The average overall accuracy is 82 %. By conducting long-term change analysis, significant land cover changes and spatiotemporal patterns at various scales were found, which can improve our understanding of global environmental change and help achieve sustainable development goals. This will be further applied in Earth system modeling to facilitate relevant studies.