Data description paper 19 May 2020
Data description paper | 19 May 2020
A global compilation of in situ aquatic high spectral resolution inherent and apparent optical property data for remote sensing applications
Kimberly A. Casey et al.
Related authors
Michael Studinger, Brooke C. Medley, Kelly M. Brunt, Kimberly A. Casey, Nathan T. Kurtz, Serdar S. Manizade, Thomas A. Neumann, and Thomas B. Overly
The Cryosphere, 14, 3287–3308, https://doi.org/10.5194/tc-14-3287-2020, https://doi.org/10.5194/tc-14-3287-2020, 2020
Short summary
Short summary
We use repeat airborne geophysical data consisting of laser altimetry, snow, and Ku-band radar and optical imagery to analyze the spatial and temporal variability in surface roughness, slope, wind deposition, and snow accumulation at 88° S. We find small–scale variability in snow accumulation based on the snow radar subsurface layering, indicating areas of strong wind redistribution are prevalent at 88° S. There is no slope–independent relationship between surface roughness and accumulation.
Dominic A. Winski, Tyler J. Fudge, David G. Ferris, Erich C. Osterberg, John M. Fegyveresi, Jihong Cole-Dai, Zayta Thundercloud, Thomas S. Cox, Karl J. Kreutz, Nikolas Ortman, Christo Buizert, Jenna Epifanio, Edward J. Brook, Ross Beaudette, Jeffrey Severinghaus, Todd Sowers, Eric J. Steig, Emma C. Kahle, Tyler R. Jones, Valerie Morris, Murat Aydin, Melinda R. Nicewonger, Kimberly A. Casey, Richard B. Alley, Edwin D. Waddington, Nels A. Iverson, Nelia W. Dunbar, Ryan C. Bay, Joseph M. Souney, Michael Sigl, and Joseph R. McConnell
Clim. Past, 15, 1793–1808, https://doi.org/10.5194/cp-15-1793-2019, https://doi.org/10.5194/cp-15-1793-2019, 2019
Short summary
Short summary
A deep ice core was recently drilled at the South Pole to understand past variations in the Earth's climate. To understand the information contained within the ice, we present the relationship between the depth and age of the ice in the South Pole Ice Core. We found that the oldest ice in our record is from 54 302 ± 519 years ago. Our results show that, on average, 7.4 cm of snow falls at the South Pole each year.
Kimberly A. Casey, Chris M. Polashenski, Justin Chen, and Marco Tedesco
The Cryosphere, 11, 1781–1795, https://doi.org/10.5194/tc-11-1781-2017, https://doi.org/10.5194/tc-11-1781-2017, 2017
Short summary
Short summary
We analyzed Greenland Ice Sheet (GrIS) average summer surface reflectance and albedo (2001–2016). MODIS Collection 6 data show a decreased magnitude of change over time due to sensor calibration corrections. Spectral band maps provide insight into GrIS surface processes likely occurring. Correctly measuring albedo and surface reflectance changes over time is crucial to monitoring atmosphere–ice interactions and ice mass balance. The results are applicable to many long-term MODIS studies.
L. S. Koenig, D. J. Lampkin, L. N. Montgomery, S. L. Hamilton, J. B. Turrin, C. A. Joseph, S. E. Moutsafa, B. Panzer, K. A. Casey, J. D. Paden, C. Leuschen, and P. Gogineni
The Cryosphere, 9, 1333–1342, https://doi.org/10.5194/tc-9-1333-2015, https://doi.org/10.5194/tc-9-1333-2015, 2015
Short summary
Short summary
The Greenland Ice Sheet is storing meltwater through the winter season just below its surface in buried supraglacial lakes. Airborne radar from Operation IceBridge between 2009 and 2012 was used to detect buried lakes, distributed extensively around the margin of the ice sheet. The volume of retained water in the buried lakes is likely insignificant compared to the total mass loss from the ice sheet but has important implications for ice temperatures.
Fei Chai, Yuntao Wang, Xiaogang Xing, Yunwei Yan, Huijie Xue, Mark Wells, and Emmanuel Boss
Biogeosciences, 18, 849–859, https://doi.org/10.5194/bg-18-849-2021, https://doi.org/10.5194/bg-18-849-2021, 2021
Short summary
Short summary
The unique observations by a Biogeochemical Argo float in the NW Pacific Ocean captured the impact of a super typhoon on upper-ocean physical and biological processes. Our result reveals typhoons can increase the surface chlorophyll through strong vertical mixing without bringing nutrients upward from the depth. The vertical redistribution of chlorophyll contributes little to enhance the primary production, which is contradictory to many former satellite-based studies related to this topic.
Paolo Lazzari, Stefano Salon, Elena Terzić, Watson W. Gregg, Fabrizio D'Ortenzio, Vincenzo Vellucci, Emanuele Organelli, and David Antoine
Ocean Sci. Discuss., https://doi.org/10.5194/os-2020-108, https://doi.org/10.5194/os-2020-108, 2020
Preprint under review for OS
Short summary
Short summary
Multi-spectral optical sensors and models are increasingly adopted to study marine systems. In this work, BOUSSOLE mooring and biogeochemical Argo float optical observations are combined with the Ocean–Atmosphere Model (OASIM) to analyse the variability of sunlight at the sea surface. We show that the model skill in simulating data varies according to the wavelength of light and temporal scale considered, and that is significantly affected by cloud dynamics.
Natacha Le Grix, Jakob Zscheischler, Charlotte Laufkötter, Cécile S. Rousseaux, and Thomas L. Frölicher
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-412, https://doi.org/10.5194/bg-2020-412, 2020
Revised manuscript accepted for BG
Short summary
Short summary
Marine ecosystems could suffer severe damage from the co-occurrence of a marine heatwave with extremely low chlorophyll concentration. Here, we provide a first assessment of compound marine heatwave and low chlorophyll events in the global ocean from 1998 to 2018. We reveal hotspots of these compound events in the equatorial Pacific and in the Arabian Sea, show that they mostly occur in summer at high latitudes, and that their frequency is modulated by large-scale modes of climate variability.
Philippe Massicotte, Rainer Amon, David Antoine, Philippe Archambault, Sergio Balzano, Simon Bélanger, Ronald Benner, Dominique Boeuf, Annick Bricaud, Flavienne Bruyant, Gwenaëlle Chaillou, Malik Chami, Bruno Charrière, Jingan Chen, Hervé Claustre, Pierre Coupel, Nicole Delsaut, David Doxaran, Jens Ehn, Cédric Fichot, Marie-Hélène Forget, Pingqing Fu, Jonathan Gagnon, Nicole Garcia, Beat Gasser, Jean-François Ghiglione, Gaby Gorsky, Michel Gosselin, Priscillia Gourvil, Yves Gratton, Pascal Guillot, Hermann J. Heipieper, Serge Heussner, Stanford B. Hooker, Yannick Huot, Christian Jeanthon, Wade Jeffrey, Fabien Joux, Kimitaka Kawamura, Bruno Lansard, Edouard Leymarie, Heike Link, Connie Lovejoy, Claudie Marec, Dominique Marie, Johannie Martin, Guillaume Massé, Atsushi Matsuoka, Vanessa McKague, Alexandre Mignot, William L. Miller, Juan-Carlos Miquel, Alfonso Mucci, Kaori Ono, Eva Ortega-Retuerta, Christos Panagiotopoulos, Tim Papakyriakou, Marc Picheral, Dieter Piepenburg, Louis Prieur, Patrick Raimbault, Joséphine Ras, Rick A. Reynolds, André Rochon, Jean-François Rontani, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Yuan Shen, Guisheng Song, Dariusz Stramski, Dave Stroud G., Eri Tachibana, Alexandre Thirouard, Imma Tolosa, Jean-Éric Tremblay, Mickael Vaïtilingom, Daniel Vaulot, Frédéric Vaultier, John K. Volkman, Jorien E. Vonk, Huixiang Xie, Guangming Zheng, and Marcel Babin
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-252, https://doi.org/10.5194/essd-2020-252, 2020
Revised manuscript accepted for ESSD
Short summary
Short summary
The MALINA oceanographic expedition was conducted in the Mackenzie River and the Beaufort Sea systems. The sampling was performed across seven shelf–basin transects to capture the meridional gradient between the estuary and the open ocean. The main goal of this research program was to better understand how processes, such as primary production, are influencing the fate of organic matter originating from the surrounding terrestrial landscape during its transition toward the Arctic Ocean.
Michael Studinger, Brooke C. Medley, Kelly M. Brunt, Kimberly A. Casey, Nathan T. Kurtz, Serdar S. Manizade, Thomas A. Neumann, and Thomas B. Overly
The Cryosphere, 14, 3287–3308, https://doi.org/10.5194/tc-14-3287-2020, https://doi.org/10.5194/tc-14-3287-2020, 2020
Short summary
Short summary
We use repeat airborne geophysical data consisting of laser altimetry, snow, and Ku-band radar and optical imagery to analyze the spatial and temporal variability in surface roughness, slope, wind deposition, and snow accumulation at 88° S. We find small–scale variability in snow accumulation based on the snow radar subsurface layering, indicating areas of strong wind redistribution are prevalent at 88° S. There is no slope–independent relationship between surface roughness and accumulation.
Meng Gao, Peng-Wang Zhai, Bryan A. Franz, Kirk Knobelspiesse, Amir Ibrahim, Brian Cairns, Susanne E. Craig, Guangliang Fu, Otto Hasekamp, Yongxiang Hu, and P. Jeremy Werdell
Atmos. Meas. Tech., 13, 3939–3956, https://doi.org/10.5194/amt-13-3939-2020, https://doi.org/10.5194/amt-13-3939-2020, 2020
Emilio Marañón, France Van Wambeke, Julia Uitz, Emmanuel S. Boss, María Pérez-Lorenzo, Julie Dinasquet, Nils Haëntjens, Céline Dimier, and Vincent Taillandier
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-261, https://doi.org/10.5194/bg-2020-261, 2020
Revised manuscript accepted for BG
Short summary
Short summary
The concentration of chlorophyll is commonly used as an indicator of the abundance of photosynthetic plankton (phytoplankton) in lakes and oceans. Our study investigates why a deep chlorophyll maximum, located near the bottom of the upper, illuminated layer, develops in the Mediterranean Sea. We find that the acclimation of cells to low light is the main mechanism involved, and that this deep maximum represents also a maximum in the biomass and carbon fixation activity of phytoplankton.
Philippe Massicotte, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Mathieu Ardyna, Laurent Arnaud, Lise Artigue, Cyril Aubry, Pierre Ayotte, Guislain Bécu, Simon Bélanger, Ronald Benner, Henry C. Bittig, Annick Bricaud, Éric Brossier, Flavienne Bruyant, Laurent Chauvaud, Debra Christiansen-Stowe, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Christine Cox, Aurelie Delaforge, Thibaud Dezutter, Céline Dimier, Florent Domine, Francis Dufour, Christiane Dufresne, Dany Dumont, Jens Ehn, Brent Else, Joannie Ferland, Marie-Hélène Forget, Louis Fortier, Martí Galí, Virginie Galindo, Morgane Gallinari, Nicole Garcia, Catherine Gérikas Ribeiro, Margaux Gourdal, Priscilla Gourvil, Clemence Goyens, Pierre-Luc Grondin, Pascal Guillot, Caroline Guilmette, Marie-Noëlle Houssais, Fabien Joux, Léo Lacour, Thomas Lacour, Augustin Lafond, José Lagunas, Catherine Lalande, Julien Laliberté, Simon Lambert-Girard, Jade Larivière, Johann Lavaud, Anita LeBaron, Karine Leblanc, Florence Le Gall, Justine Legras, Mélanie Lemire, Maurice Levasseur, Edouard Leymarie, Aude Leynaert, Adriana Lopes dos Santos, Antonio Lourenço, David Mah, Claudie Marec, Dominique Marie, Nicolas Martin, Constance Marty, Sabine Marty, Guillaume Massé, Atsushi Matsuoka, Lisa Matthes, Brivaela Moriceau, Pierre-Emmanuel Muller, Christopher-John Mundy, Griet Neukermans, Laurent Oziel, Christos Panagiotopoulos, Jean-Jacques Pangrazi, Ghislain Picard, Marc Picheral, France Pinczon du Sel, Nicole Pogorzelec, Ian Probert, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Erin Reimer, Jean-François Rontani, Søren Rysgaard, Blanche Saint-Béat, Makoto Sampei, Julie Sansoulet, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Caroline Sévigny, Yuan Shen, Margot Tragin, Jean-Éric Tremblay, Daniel Vaulot, Gauthier Verin, Frédéric Vivier, Anda Vladoiu, Jeremy Whitehead, and Marcel Babin
Earth Syst. Sci. Data, 12, 151–176, https://doi.org/10.5194/essd-12-151-2020, https://doi.org/10.5194/essd-12-151-2020, 2020
Short summary
Short summary
The Green Edge initiative was developed to understand the processes controlling the primary productivity and the fate of organic matter produced during the Arctic spring bloom (PSB). In this article, we present an overview of an extensive and comprehensive dataset acquired during two expeditions conducted in 2015 and 2016 on landfast ice southeast of Qikiqtarjuaq Island in Baffin Bay.
Dominic A. Winski, Tyler J. Fudge, David G. Ferris, Erich C. Osterberg, John M. Fegyveresi, Jihong Cole-Dai, Zayta Thundercloud, Thomas S. Cox, Karl J. Kreutz, Nikolas Ortman, Christo Buizert, Jenna Epifanio, Edward J. Brook, Ross Beaudette, Jeffrey Severinghaus, Todd Sowers, Eric J. Steig, Emma C. Kahle, Tyler R. Jones, Valerie Morris, Murat Aydin, Melinda R. Nicewonger, Kimberly A. Casey, Richard B. Alley, Edwin D. Waddington, Nels A. Iverson, Nelia W. Dunbar, Ryan C. Bay, Joseph M. Souney, Michael Sigl, and Joseph R. McConnell
Clim. Past, 15, 1793–1808, https://doi.org/10.5194/cp-15-1793-2019, https://doi.org/10.5194/cp-15-1793-2019, 2019
Short summary
Short summary
A deep ice core was recently drilled at the South Pole to understand past variations in the Earth's climate. To understand the information contained within the ice, we present the relationship between the depth and age of the ice in the South Pole Ice Core. We found that the oldest ice in our record is from 54 302 ± 519 years ago. Our results show that, on average, 7.4 cm of snow falls at the South Pole each year.
Meng Gao, Peng-Wang Zhai, Bryan A. Franz, Yongxiang Hu, Kirk Knobelspiesse, P. Jeremy Werdell, Amir Ibrahim, Brian Cairns, and Alison Chase
Atmos. Meas. Tech., 12, 3921–3941, https://doi.org/10.5194/amt-12-3921-2019, https://doi.org/10.5194/amt-12-3921-2019, 2019
Jens K. Ehn, Rick A. Reynolds, Dariusz Stramski, David Doxaran, Bruno Lansard, and Marcel Babin
Biogeosciences, 16, 1583–1605, https://doi.org/10.5194/bg-16-1583-2019, https://doi.org/10.5194/bg-16-1583-2019, 2019
Short summary
Short summary
Beam attenuation at 660 nm and suspended particle matter (SPM) relationships were determined during the MALINA cruise in August 2009 to the Canadian Beaufort Sea in order to expand our knowledge of particle distributions in Arctic shelf seas. The relationship was then used to determine SPM distributions for four other expeditions to the region. SPM patterns on the shelf were explained by an interplay between wind forcing, river discharge, and melting sea ice that controls the circulation.
Marie Barbieux, Julia Uitz, Bernard Gentili, Orens Pasqueron de Fommervault, Alexandre Mignot, Antoine Poteau, Catherine Schmechtig, Vincent Taillandier, Edouard Leymarie, Christophe Penkerc'h, Fabrizio D'Ortenzio, Hervé Claustre, and Annick Bricaud
Biogeosciences, 16, 1321–1342, https://doi.org/10.5194/bg-16-1321-2019, https://doi.org/10.5194/bg-16-1321-2019, 2019
Short summary
Short summary
As commonly observed in oligotrophic stratified waters, a subsurface (or deep) chlorophyll maximum (SCM) frequently characterizes the vertical distribution of phytoplankton chlorophyll in the Mediterranean Sea. SCMs often result from photoacclimation of the phytoplankton organisms. However they can also result from an actual increase in phytoplankton carbon biomass. Our results also suggest that a variety of intermediate types of SCMs are encountered between these two endmember situations.
Emanuele Organelli, Marie Barbieux, Hervé Claustre, Catherine Schmechtig, Antoine Poteau, Annick Bricaud, Emmanuel Boss, Nathan Briggs, Giorgio Dall'Olmo, Fabrizio D'Ortenzio, Edouard Leymarie, Antoine Mangin, Grigor Obolensky, Christophe Penkerc'h, Louis Prieur, Collin Roesler, Romain Serra, Julia Uitz, and Xiaogang Xing
Earth Syst. Sci. Data, 9, 861–880, https://doi.org/10.5194/essd-9-861-2017, https://doi.org/10.5194/essd-9-861-2017, 2017
Short summary
Short summary
Autonomous robotic platforms such as Biogeochemical-Argo floats allow observation of the ocean, from the surface to the interior, in a new and systematic way. A fleet of 105 of these platforms have collected several biological, biogeochemical, and optical variables in still unexplored regions. The quality-controlled databases presented here will enable scientists to improve knowledge on the functioning of marine ecosystems and investigate the climatic implications.
Kimberly A. Casey, Chris M. Polashenski, Justin Chen, and Marco Tedesco
The Cryosphere, 11, 1781–1795, https://doi.org/10.5194/tc-11-1781-2017, https://doi.org/10.5194/tc-11-1781-2017, 2017
Short summary
Short summary
We analyzed Greenland Ice Sheet (GrIS) average summer surface reflectance and albedo (2001–2016). MODIS Collection 6 data show a decreased magnitude of change over time due to sensor calibration corrections. Spectral band maps provide insight into GrIS surface processes likely occurring. Correctly measuring albedo and surface reflectance changes over time is crucial to monitoring atmosphere–ice interactions and ice mass balance. The results are applicable to many long-term MODIS studies.
Colleen B. Mouw, Audrey B. Ciochetto, Brice Grunert, and Angela Yu
Earth Syst. Sci. Data, 9, 497–509, https://doi.org/10.5194/essd-9-497-2017, https://doi.org/10.5194/essd-9-497-2017, 2017
Short summary
Short summary
Lake Superior is one of the largest freshwater lakes on our planet, but few optical observations have been made to allow for the development and validation of visible spectral satellite remote sensing products. The dataset described here focuses on coincidently observing optical properties along with biogeochemical parameters and substantially increases the optical knowledge of the lake.
Xiang Gong, Wensheng Jiang, Linhui Wang, Huiwang Gao, Emmanuel Boss, Xiaohong Yao, Shuh-Ji Kao, and Jie Shi
Biogeosciences, 14, 2371–2386, https://doi.org/10.5194/bg-14-2371-2017, https://doi.org/10.5194/bg-14-2371-2017, 2017
Short summary
Short summary
The subsurface chlorophyll maximum layer (SCML) forms near the nitracline. By incorporating a piecewise function for the approximate Gaussian vertical profile of chlorophyll, we derive analytical solutions of a specified nutrient–phytoplankton model. Nitracline depth is deeper than SCML depth, and a thinner SCML corresponds to a steeper nitracline. A higher light attenuation coefficient leads to a shallower but steeper nitracline. Nitracline steepness is independent of surface light intensity.
Colleen B. Mouw, Audrey Barnett, Galen A. McKinley, Lucas Gloege, and Darren Pilcher
Earth Syst. Sci. Data, 8, 531–541, https://doi.org/10.5194/essd-8-531-2016, https://doi.org/10.5194/essd-8-531-2016, 2016
Short summary
Short summary
Particulate organic carbon (POC) flux estimated from POC concentration observations from sediment traps and 234Th are compiled across the global ocean. By providing merged coincident satellite imagery products, the dataset can be used to link phytoplankton surface process with POC flux. Due to rapid remineralization within the first 500 m of the water column, shallow observations from 234Th supplement the more extensive sediment trap record.
L. S. Koenig, D. J. Lampkin, L. N. Montgomery, S. L. Hamilton, J. B. Turrin, C. A. Joseph, S. E. Moutsafa, B. Panzer, K. A. Casey, J. D. Paden, C. Leuschen, and P. Gogineni
The Cryosphere, 9, 1333–1342, https://doi.org/10.5194/tc-9-1333-2015, https://doi.org/10.5194/tc-9-1333-2015, 2015
Short summary
Short summary
The Greenland Ice Sheet is storing meltwater through the winter season just below its surface in buried supraglacial lakes. Airborne radar from Operation IceBridge between 2009 and 2012 was used to detect buried lakes, distributed extensively around the margin of the ice sheet. The volume of retained water in the buried lakes is likely insignificant compared to the total mass loss from the ice sheet but has important implications for ice temperatures.
M. L. Estapa, K. Buesseler, E. Boss, and G. Gerbi
Biogeosciences, 10, 5517–5531, https://doi.org/10.5194/bg-10-5517-2013, https://doi.org/10.5194/bg-10-5517-2013, 2013
C. S. Rousseaux, T. Hirata, and W. W. Gregg
Biogeosciences Discuss., https://doi.org/10.5194/bgd-10-1083-2013, https://doi.org/10.5194/bgd-10-1083-2013, 2013
Revised manuscript not accepted
Related subject area
Data, Algorithms, and Models
Crowdsourced air traffic data from the OpenSky Network 2019–2020
A restructured and updated global soil respiration database (SRDB-V5)
The Berkeley Earth Land/Ocean Temperature Record
Dielectric database of organic Arctic soils (DDOAS)
Global Carbon Budget 2020
A global long-term (1981–2000) land surface temperature product for NOAA AVHRR
A coastally improved global dataset of wet tropospheric corrections for satellite altimetry
Development of a standard database of reference sites for validating global burned area products
A Last Glacial Maximum forcing dataset for ocean modelling
An update of IPCC climate reference regions for subcontinental analysis of climate model data: definition and aggregated datasets
Shipborne lidar measurements showing the progression of the tropical reservoir of volcanic aerosol after the June 1991 Pinatubo eruption
Improved estimate of global gross primary production for reproducing its long-term variation, 1982–2017
Hyperspectral longwave infrared reflectance spectra of naturally dried algae, anthropogenic plastics, sands and shells
Merging ground-based sunshine duration with satellite cloud and aerosol data to produce high resolution long-term surface solar radiation over China
Hyperspectral reflectance dataset of dry, wet and submerged marine litter
The PetroPhysical Property Database (P3) – a global compilation of lab-measured rock properties
A Climate Service for Ecologists: Sharing pre-processed EUROCORDEX Regional Climate Scenario Data using the eLTER Information System
WFDE5: bias-adjusted ERA5 reanalysis data for impact studies
Database of Petrophysical Properties of the Mid-German Crystalline High
A high-resolution reanalysis of global fire weather from 1979 to 2018 – overwintering the Drought Code
Improving the usability of the Multi-angle Imaging SpectroRadiometer (MISR) L1B2 Georectified Radiance Product (2000–present) in land surface applications
Annual dynamics of global land cover and its long-term changes from 1982 to 2015
A digital archive of human activity in the McMurdo Dry Valleys, Antarctica
An integrated compilation of data sources for the development of a marine protected area in the Weddell Sea
European anthropogenic AFOLU greenhouse gas emissions: a review and benchmark data
Asset exposure data for global physical risk assessment
Historic photographs of glaciers and glacial landforms from the Ralph Stockman Tarr collection at Cornell University
A Fundamental Climate Data Record of SMMR, SSM/I, and SSMIS brightness temperatures
Replacing missing values in the standard Multi-angle Imaging SpectroRadiometer (MISR) radiometric camera-by-camera cloud mask (RCCM) data product
High-resolution meteorological forcing data for hydrological modelling and climate change impact analysis in the Mackenzie River Basin
Geometric accuracy assessment of coarse-resolution satellite datasets: a study based on AVHRR GAC data at the sub-pixel level
A national dataset of 30 m annual urban extent dynamics (1985–2015) in the conterminous United States
Reconstructing three decades of total international trawling effort in the North Sea
Remote sensing of lake water volumes on the Arctic Coastal Plain of Northern Alaska
The European Radiological Data Exchange Platform (EURDEP): 25 years of monitoring data exchange
The UK Environmental Change Network datasets – integrated and co-located data for long-term environmental research (1993–2015)
Hyperspectral ultraviolet to shortwave infrared characteristics of marine-harvested, washed-ashore and virgin plastics
Cloud_cci Advanced Very High Resolution Radiometer post meridiem (AVHRR-PM) dataset version 3: 35-year climatology of global cloud and radiation properties
Reference crop evapotranspiration database in Spain (1961–2014)
A 16-year dataset (2000–2015) of high-resolution (3 h, 10 km) global surface solar radiation
Comprehensive aerosol and gas data set from the Sydney Particle Study
Geostrophic currents in the northern Nordic Seas from a combination of multi-mission satellite altimetry and ocean modeling
The BernClim plant phenological data set from the canton of Bern (Switzerland) 1970–2018
High-temporal-resolution water level and storage change data sets for lakes on the Tibetan Plateau during 2000–2017 using multiple altimetric missions and Landsat-derived lake shoreline positions
Djankuat glacier station in the North Caucasus, Russia: a database of glaciological, hydrological, and meteorological observations and stable isotope sampling results during 2007–2017
The spatial allocation of population: a review of large-scale gridded population data products and their fitness for use
The Environment and Climate Change Canada solid precipitation intercomparison data from Bratt's Lake and Caribou Creek, Saskatchewan
A decade of detailed observations (2008–2018) in steep bedrock permafrost at the Matterhorn Hörnligrat (Zermatt, CH)
STEAD: a high-resolution daily gridded temperature dataset for Spain
Time series of the Inland Surface Water Dataset in China (ISWDC) for 2000–2016 derived from MODIS archives
Martin Strohmeier, Xavier Olive, Jannis Lübbe, Matthias Schäfer, and Vincent Lenders
Earth Syst. Sci. Data, 13, 357–366, https://doi.org/10.5194/essd-13-357-2021, https://doi.org/10.5194/essd-13-357-2021, 2021
Short summary
Short summary
Flight data have been used widely for research by academic researchers and (supra)national institutions. Example domains range from epidemiology (e.g. examining the spread of COVID-19 via air travel) to economics (e.g. use as proxy for immediate forecasting of the state of a country's economy) and Earth sciences (climatology in particular). Until now, accurate flight data have been available only in small pieces from closed, proprietary sources. This work changes this with a crowdsourced effort.
Jinshi Jian, Rodrigo Vargas, Kristina Anderson-Teixeira, Emma Stell, Valentine Herrmann, Mercedes Horn, Nazar Kholod, Jason Manzon, Rebecca Marchesi, Darlin Paredes, and Ben Bond-Lamberty
Earth Syst. Sci. Data, 13, 255–267, https://doi.org/10.5194/essd-13-255-2021, https://doi.org/10.5194/essd-13-255-2021, 2021
Short summary
Short summary
Field soil-to-atmosphere CO2 flux (soil respiration, Rs) observations were compiled into a global database (SRDB) a decade ago. Here, we restructured and updated the database to the fifth version, SRDB-V5, with data published through 2017 included. SRDB-V5 aims to be a data framework for the scientific community to share seasonal to annual field Rs measurements, and it provides opportunities for the scientific community to better understand the spatial and temporal variability of Rs.
Robert A. Rohde and Zeke Hausfather
Earth Syst. Sci. Data, 12, 3469–3479, https://doi.org/10.5194/essd-12-3469-2020, https://doi.org/10.5194/essd-12-3469-2020, 2020
Short summary
Short summary
A global land and ocean temperature record was created by combining the Berkeley Earth monthly land temperature field with a newly interpolated version of the HadSST3 ocean dataset. The resulting dataset covers the period from 1850 to present.
This paper describes the methods used to create that combination and compares the results to other estimates of global temperature and the associated recent climate change, giving similar results.
Igor Savin, Valery Mironov, Konstantin Muzalevskiy, Sergey Fomin, Andrey Karavayskiy, Zdenek Ruzicka, and Yuriy Lukin
Earth Syst. Sci. Data, 12, 3481–3487, https://doi.org/10.5194/essd-12-3481-2020, https://doi.org/10.5194/essd-12-3481-2020, 2020
Short summary
Short summary
This article presents a dielectric database of organic Arctic soils. This database was created based on dielectric measurements of seven samples of organic soils collected in various parts of the Arctic tundra. The created database can serve not only as a source of experimental data for the development of new soil dielectric models for the Arctic tundra but also as a source of training data for artificial intelligence satellite algorithms of soil moisture retrievals based on neural networks.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone Alin, Luiz E. O. C. Aragão, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp, Selma Bultan, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Wiley Evans, Liesbeth Florentie, Piers M. Forster, Thomas Gasser, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Luke Gregor, Nicolas Gruber, Ian Harris, Kerstin Hartung, Vanessa Haverd, Richard A. Houghton, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Koji Kadono, Etsushi Kato, Vassilis Kitidis, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Gregg Marland, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Adam J. P. Smith, Adrienne J. Sutton, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Guido van der Werf, Nicolas Vuichard, Anthony P. Walker, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Xu Yue, and Sönke Zaehle
Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, https://doi.org/10.5194/essd-12-3269-2020, 2020
Short summary
Short summary
The Global Carbon Budget 2020 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Jin Ma, Ji Zhou, Frank-Michael Göttsche, Shunlin Liang, Shaofei Wang, and Mingsong Li
Earth Syst. Sci. Data, 12, 3247–3268, https://doi.org/10.5194/essd-12-3247-2020, https://doi.org/10.5194/essd-12-3247-2020, 2020
Short summary
Short summary
Land surface temperature is an important parameter in the research of climate change and many land surface processes. This article describes the development and testing of an algorithm for generating a consistent global long-term land surface temperature product from 20 years of NOAA AVHRR radiance data. The preliminary validation results indicate good accuracy of this new long-term product, which has been designed to simplify applications and support the scientific research community.
Clara Lázaro, Maria Joana Fernandes, Telmo Vieira, and Eliana Vieira
Earth Syst. Sci. Data, 12, 3205–3228, https://doi.org/10.5194/essd-12-3205-2020, https://doi.org/10.5194/essd-12-3205-2020, 2020
Short summary
Short summary
In satellite altimetry (SA), the wet tropospheric correction (WTC) accounts for the path delay induced mainly by atmospheric water vapour. In coastal regions, the accuracy of the WTC determined by the on-board radiometer deteriorates. The GPD+ methodology, developed by the University of Porto in the remit of ESA-funded projects, computes improved WTCs for SA. Global enhanced products are generated for all past and operational altimetric missions, forming a relevant dataset for coastal altimetry.
Magí Franquesa, Melanie K. Vanderhoof, Dimitris Stavrakoudis, Ioannis Z. Gitas, Ekhi Roteta, Marc Padilla, and Emilio Chuvieco
Earth Syst. Sci. Data, 12, 3229–3246, https://doi.org/10.5194/essd-12-3229-2020, https://doi.org/10.5194/essd-12-3229-2020, 2020
Short summary
Short summary
The article presents a database of reference sites for the validation of burned area products. We have compiled 2661 reference files from different international projects. The paper describes the methods used to generate and standardize the data. The Burned Area Reference Data (BARD) is publicly available and will facilitate the arduous task of validating burned area algorithms.
Anne L. Morée and Jörg Schwinger
Earth Syst. Sci. Data, 12, 2971–2985, https://doi.org/10.5194/essd-12-2971-2020, https://doi.org/10.5194/essd-12-2971-2020, 2020
Short summary
Short summary
This dataset consists of eight variables needed in ocean modelling and is made to support modelers of the Last Glacial Maximum (LGM; 21 000 years ago) ocean. The LGM is a time of specific interest for climate researchers. The data are based on the results of state-of-the-art climate models and are the best available estimate of these variables for the LGM. The dataset shows clear spatial patterns but large uncertainties and is presented in a way that facilitates applications in any ocean model.
Maialen Iturbide, José M. Gutiérrez, Lincoln M. Alves, Joaquín Bedia, Ruth Cerezo-Mota, Ezequiel Cimadevilla, Antonio S. Cofiño, Alejandro Di Luca, Sergio Henrique Faria, Irina V. Gorodetskaya, Mathias Hauser, Sixto Herrera, Kevin Hennessy, Helene T. Hewitt, Richard G. Jones, Svitlana Krakovska, Rodrigo Manzanas, Daniel Martínez-Castro, Gemma T. Narisma, Intan S. Nurhati, Izidine Pinto, Sonia I. Seneviratne, Bart van den Hurk, and Carolina S. Vera
Earth Syst. Sci. Data, 12, 2959–2970, https://doi.org/10.5194/essd-12-2959-2020, https://doi.org/10.5194/essd-12-2959-2020, 2020
Short summary
Short summary
We present an update of the IPCC WGI reference regions used in AR5 for the synthesis of climate change information. This revision was guided by the basic principles of climatic consistency and model representativeness (in particular for the new CMIP6 simulations). We also present a new dataset of monthly CMIP5 and CMIP6 spatially aggregated information using the new reference regions and describe a worked example of how to use this dataset to inform regional climate change studies.
Juan-Carlos Antuña-Marrero, Graham W. Mann, Philippe Keckhut, Sergey Avdyushin, Bruno Nardi, and Larry W. Thomason
Earth Syst. Sci. Data, 12, 2843–2851, https://doi.org/10.5194/essd-12-2843-2020, https://doi.org/10.5194/essd-12-2843-2020, 2020
Short summary
Short summary
We report the recovery of lidar measurements of the 1991 Pinatubo eruption. Two Soviet ships crossing the tropical Atlantic in July–September 1991 and January–February 1992 measured the vertical profile of the Pinatubo cloud at different points in its spatio-temporal evolution. The datasets provide valuable new information on the eruption's impacts on climate, with the SAGE-II satellite measurements not able to measure most of the lower half of the Pinatubo cloud in the tropics in this period.
Yi Zheng, Ruoque Shen, Yawen Wang, Xiangqian Li, Shuguang Liu, Shunlin Liang, Jing M. Chen, Weimin Ju, Li Zhang, and Wenping Yuan
Earth Syst. Sci. Data, 12, 2725–2746, https://doi.org/10.5194/essd-12-2725-2020, https://doi.org/10.5194/essd-12-2725-2020, 2020
Short summary
Short summary
Accurately reproducing the interannual variations in vegetation gross primary production (GPP) is a major challenge. A global GPP dataset was generated by integrating the regulations of several major environmental variables with long-term changes. The dataset can effectively reproduce the spatial, seasonal, and particularly interannual variations in global GPP. Our study will contribute to accurate carbon flux estimates at long timescales.
Shungudzemwoyo P. Garaba, Tomás Acuña-Ruz, and Cristian B. Mattar
Earth Syst. Sci. Data, 12, 2665–2678, https://doi.org/10.5194/essd-12-2665-2020, https://doi.org/10.5194/essd-12-2665-2020, 2020
Short summary
Short summary
Technologies to support detection and tracking of plastic litter in aquatic environments capable of repeated observations at a wide-area scale have been getting increased interest from scientists and stakeholders. We report findings about thermal infrared optical properties of naturally dried samples of algae, sands, sea shells and synthetic plastics obtained in Chile. Diagnostic features of the dataset are foreseen to contribute towards research relevant in thermal infrared sensing of plastics.
Fei Feng and Kaicun Wang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-231, https://doi.org/10.5194/essd-2020-231, 2020
Revised manuscript accepted for ESSD
Els Knaeps, Sindy Sterckx, Gert Strackx, Johan Mijnendonckx, Mehrdad Moshtaghi, Shungudzemwoyo P. Garaba, and Dieter Meire
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-294, https://doi.org/10.5194/essd-2020-294, 2020
Revised manuscript accepted for ESSD
Short summary
Short summary
This paper describes a dataset consisting of 47 hyperspectral reflectance measurements of plastic litter samples. The plastic litter samples include virgin and real samples. They were measured in dry conditions and a selection of the samples was also measured in wet conditions and submerged in a watertank. The dataset can be used to better understand the effect of water absorption on the plastics and develop algorithms to detect and characterize marine plastics.
Kristian Bär, Thomas Reinsch, and Judith Bott
Earth Syst. Sci. Data, 12, 2485–2515, https://doi.org/10.5194/essd-12-2485-2020, https://doi.org/10.5194/essd-12-2485-2020, 2020
Short summary
Short summary
Petrophysical properties are key to populating numerical models of subsurface process simulations and the interpretation of many geophysical exploration methods. The P3 database presented here aims at providing easily accessible, peer-reviewed information on physical rock properties in one single compilation. The uniqueness of P3 emerges from its coverage and metadata structure. Each measured value is complemented by the corresponding location, petrography, stratigraphy and original reference.
Susannah Rennie, Klaus Goergen, Christoph Wohner, Sander Apweiler, Johannes Peterseil, and John Watkins
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-225, https://doi.org/10.5194/essd-2020-225, 2020
Revised manuscript accepted for ESSD
Short summary
Short summary
This paper describes a climate service data product intended for the ecological researchers. Access to regional climate scenario data will save ecological researchers time, and for many it will allow them to work with data resources that they will not previously have had due to a lack of knowledge and skills to access them. Providing easy access to climate scenario data in this way enhances long term ecological research; for example in general regional climate change or impact assessments.
Marco Cucchi, Graham P. Weedon, Alessandro Amici, Nicolas Bellouin, Stefan Lange, Hannes Müller Schmied, Hans Hersbach, and Carlo Buontempo
Earth Syst. Sci. Data, 12, 2097–2120, https://doi.org/10.5194/essd-12-2097-2020, https://doi.org/10.5194/essd-12-2097-2020, 2020
Short summary
Short summary
WFDE5 is a novel meteorological forcing dataset for running land surface and global hydrological models. It has been generated using the WATCH Forcing Data methodology applied to surface meteorological variables from the ERA5 reanalysis. It is publicly available, along with its source code, through the C3S Climate Data Store at ECMWF. Results of the evaluations described in the paper highlight the benefits of using WFDE5 compared to both ERA5 and its predecessor WFDEI.
Sebastian Weinert, Kristian Bär, and Ingo Sass
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-211, https://doi.org/10.5194/essd-2020-211, 2020
Revised manuscript accepted for ESSD
Short summary
Short summary
Physical rock properties are a key element for resource exploration, the interpretation of results from geophysical methods or the parameterization of physical or geological models. Despite the need of physical rock properties, data is still very scarce and often not available for the area of interest.
The database presented aims to provide easy access to physical rock properties measured on 224 locations in Bavaria, Hesse, Rhineland-Palatinate and Thuringia (Germany).
Megan McElhinny, Justin F. Beckers, Chelene Hanes, Mike Flannigan, and Piyush Jain
Earth Syst. Sci. Data, 12, 1823–1833, https://doi.org/10.5194/essd-12-1823-2020, https://doi.org/10.5194/essd-12-1823-2020, 2020
Short summary
Short summary
The Canadian Fire Weather Index uses temperature, relative humidity, wind speed, and rainfall to provide a fire danger rating that is crucial for fire managers and communities for risk assessment. We provide a global calculation of this index and other relevant indices using high-resolution modelled weather data for 1979–2018. These data will be useful for research studies aiming to quantify the relationships between fire occurrence, growth, or severity and weather or for trend analysis studies.
Michel M. Verstraete, Linda A. Hunt, and Veljko M. Jovanovic
Earth Syst. Sci. Data, 12, 1321–1346, https://doi.org/10.5194/essd-12-1321-2020, https://doi.org/10.5194/essd-12-1321-2020, 2020
Short summary
Short summary
The L1B2 Georectified Radiance Product, available for each of the nine cameras of the MISR instrument, contains a variable number of missing values, especially wherever and whenever the instrument is switched from the Global to the Local Mode. This paper proposes an algorithm to effectively replace those missing values and demonstrates the performance of the process. MISR data and software tools are obtainable from public domain websites to explore this issue further.
Han Liu, Peng Gong, Jie Wang, Nicholas Clinton, Yuqi Bai, and Shunlin Liang
Earth Syst. Sci. Data, 12, 1217–1243, https://doi.org/10.5194/essd-12-1217-2020, https://doi.org/10.5194/essd-12-1217-2020, 2020
Short summary
Short summary
We built the first set of 5 km resolution CDRs to record the annual dynamics of global land cover (GLASS-GLC) from 1982 to 2015. The average overall accuracy is 82 %. By conducting long-term change analysis, significant land cover changes and spatiotemporal patterns at various scales were found, which can improve our understanding of global environmental change and help achieve sustainable development goals. This will be further applied in Earth system modeling to facilitate relevant studies.
Adrian Howkins, Stephen M. Chignell, Poppie Gullett, Andrew G. Fountain, Melissa Brett, and Evelin Preciado
Earth Syst. Sci. Data, 12, 1117–1122, https://doi.org/10.5194/essd-12-1117-2020, https://doi.org/10.5194/essd-12-1117-2020, 2020
Short summary
Short summary
Historical data have much to offer current research activities and environmental management in Antarctica, but such information is often widely scattered and difficult to access. We addressed this need in the McMurdo Dry Valleys by compiling over 5000 historical photographs, maps, oral interviews, and other archival resources into a user-friendly digital archive. This can be used to identify benchmarks for understanding change over time, as well as the date and extent of past human activities.
Katharina Teschke, Hendrik Pehlke, Volker Siegel, Horst Bornemann, Rainer Knust, and Thomas Brey
Earth Syst. Sci. Data, 12, 1003–1023, https://doi.org/10.5194/essd-12-1003-2020, https://doi.org/10.5194/essd-12-1003-2020, 2020
Short summary
Short summary
Successful nature conservation depends on well-founded decisions. Such decisions rely on valid and comprehensive information and data. This paper compiles data sources on the environment and ecology of the Weddell Sea (Antarctica), primarily to support the development of a marine protected area in this region. However, future projects can also benefit from our systematic data overview, as it can be used to develop specific data collections, thus saving a time-consuming data search from scratch.
Ana Maria Roxana Petrescu, Glen P. Peters, Greet Janssens-Maenhout, Philippe Ciais, Francesco N. Tubiello, Giacomo Grassi, Gert-Jan Nabuurs, Adrian Leip, Gema Carmona-Garcia, Wilfried Winiwarter, Lena Höglund-Isaksson, Dirk Günther, Efisio Solazzo, Anja Kiesow, Ana Bastos, Julia Pongratz, Julia E. M. S. Nabel, Giulia Conchedda, Roberto Pilli, Robbie M. Andrew, Mart-Jan Schelhaas, and Albertus J. Dolman
Earth Syst. Sci. Data, 12, 961–1001, https://doi.org/10.5194/essd-12-961-2020, https://doi.org/10.5194/essd-12-961-2020, 2020
Short summary
Short summary
This study is topical and provides a state-of-the-art scientific overview of data availability from bottom-up GHG anthropogenic emissions from agriculture, forestry and other land use (AFOLU) in the EU28. The data integrate recent AFOLU emission inventories with ecosystem data and land carbon models, aiming at reconciling GHG budgets with official country-level UNFCCC inventories. We provide comprehensive emission assessments in support to policy, facilitating real-time verification procedures.
Samuel Eberenz, Dario Stocker, Thomas Röösli, and David N. Bresch
Earth Syst. Sci. Data, 12, 817–833, https://doi.org/10.5194/essd-12-817-2020, https://doi.org/10.5194/essd-12-817-2020, 2020
Short summary
Short summary
The modeling of economic disaster risk on a global scale requires high-resolution maps of exposed asset values. We have developed a generic and scalable method to downscale national asset value estimates proportional to a combination of nightlight intensity and population data. Here, we present the methodology together with an evaluation of its performance for the subnational downscaling of GDP. The resulting exposure data for 224 countries and the open-source Python code are available online.
Julie Elliott and Matthew E. Pritchard
Earth Syst. Sci. Data, 12, 771–787, https://doi.org/10.5194/essd-12-771-2020, https://doi.org/10.5194/essd-12-771-2020, 2020
Short summary
Short summary
We have digitized a collection of photographs of glaciated and formerly glaciated regions in Alaska, Canada, Greenland, and New York taken during the late 1800s and early 1900s, and we compiled related information just as photo locations, photo dates, and photographic techniques. The photos document dramatic landscape transformations related to climate change and preserve records of everyday life in the Arctic during the early 20th century.
Karsten Fennig, Marc Schröder, Axel Andersson, and Rainer Hollmann
Earth Syst. Sci. Data, 12, 647–681, https://doi.org/10.5194/essd-12-647-2020, https://doi.org/10.5194/essd-12-647-2020, 2020
Short summary
Short summary
A Fundamental Climate Data Record (FCDR) from satellite-borne microwave radiometers has been created, covering the time period from October 1978 to December 2015. This article describes how the observations are processed, calibrated, corrected, inter-calibrated, and evaluated in order to provide a homogeneous data record of brightness temperatures across 10 different instruments aboard three different satellite platforms.
Michel M. Verstraete, Linda A. Hunt, Hugo De Lemos, and Larry Di Girolamo
Earth Syst. Sci. Data, 12, 611–628, https://doi.org/10.5194/essd-12-611-2020, https://doi.org/10.5194/essd-12-611-2020, 2020
Short summary
Short summary
The radiometric camera-by-camera cloud mask product, available for each of the nine cameras of the MISR instrument, contains a variable number of missing values, especially wherever and whenever the instrument is switched from the Global to Local Mode of operation. This paper proposes a simple method for effectively replacing those missing values and demonstrates the performance of the process. MISR data and software tools are obtainable from public domain websites to explore this issue further.
Zilefac Elvis Asong, Mohamed Ezzat Elshamy, Daniel Princz, Howard Simon Wheater, John Willard Pomeroy, Alain Pietroniro, and Alex Cannon
Earth Syst. Sci. Data, 12, 629–645, https://doi.org/10.5194/essd-12-629-2020, https://doi.org/10.5194/essd-12-629-2020, 2020
Short summary
Short summary
This dataset provides an improved set of forcing data for large-scale hydrological models for climate change impact assessment in the Mackenzie River Basin (MRB). Here, the strengths of two historical datasets were blended to produce a less-biased long-record product for hydrological modelling and climate change impact assessment over the MRB. This product is then used to bias-correct climate projections from the Canadian Regional Climate Model under RCP8.5.
Xiaodan Wu, Kathrin Naegeli, and Stefan Wunderle
Earth Syst. Sci. Data, 12, 539–553, https://doi.org/10.5194/essd-12-539-2020, https://doi.org/10.5194/essd-12-539-2020, 2020
Short summary
Short summary
Based on the idea of the co-registration method, this study proposes a method named correlation-based patch matching method (CPMM), which is capable of quantifying the geometric accuracy of coarse-resolution satellite data. The assessment is conducted at the sub-pixel level and not affected by the mixed-pixel problem. It is not limited to a certain landmark such as a lake or sea shoreline and thus enables a more comprehensive assessment.
Xuecao Li, Yuyu Zhou, Zhengyuan Zhu, and Wenting Cao
Earth Syst. Sci. Data, 12, 357–371, https://doi.org/10.5194/essd-12-357-2020, https://doi.org/10.5194/essd-12-357-2020, 2020
Short summary
Short summary
The information of urban dynamics with fine spatial and temporal resolutions is highly needed in urban studies. In this study, we generated a long-term (1985–2015), fine-resolution (30 m) product of annual urban extent dynamics in the conterminous United States using all available Landsat images on the Google Earth Engine (GEE) platform. The data product is of great use for relevant studies such as urban growth projection, urban sprawl modeling, and urbanization impacts on environments.
Elena Couce, Michaela Schratzberger, and Georg H. Engelhard
Earth Syst. Sci. Data, 12, 373–386, https://doi.org/10.5194/essd-12-373-2020, https://doi.org/10.5194/essd-12-373-2020, 2020
Short summary
Short summary
Fishing – especially trawling – is one of the most ubiquitous anthropogenic pressures on marine ecosystems, yet very few long-term, spatially explicit datasets on trawling effort exist, greatly hampering our understanding of its medium- to long-term impacts. Here we provide a dataset on the spatial distribution of total international otter and beam trawling effort in the North Sea, for the period 1985–2015, reconstructed using compiled effort datasets with data gaps filled by estimations.
Claire E. Simpson, Christopher D. Arp, Yongwei Sheng, Mark L. Carroll, Benjamin M. Jones, and Laurence C. Smith
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2019-226, https://doi.org/10.5194/essd-2019-226, 2020
Revised manuscript accepted for ESSD
Short summary
Short summary
Sonar depth point measurements collected at 17 lakes on the Arctic Coastal Plain of Alaska are used to train and validate models to map lake bathymetry. These models predict depth from remotely sensed lake color and are able to explain 58.5–97.6 % of depth variability. To calculate water volumes, we integrate this modeled bathymetry with lake surface area. Knowledge of Alaskan lake bathymetries and volumes is crucial to better understanding water storage, energy balance and ecological habitat.
Marco Sangiorgi, Miguel Angel Hernández-Ceballos, Kevin Jackson, Giorgia Cinelli, Konstantins Bogucarskis, Luca De Felice, Andrei Patrascu, and Marc De Cort
Earth Syst. Sci. Data, 12, 109–118, https://doi.org/10.5194/essd-12-109-2020, https://doi.org/10.5194/essd-12-109-2020, 2020
Short summary
Short summary
After the Chernobyl accident in 1986 the European Commission has invested resources for developing and improving a complete system called the European Radiological Data Exchange Platform (EURDEP) to exchange real-time monitoring data to competent authorities and the public. We provide two complete datasets (air-concentration samples and gamma dose rates) for the recent radiological release of 106Ru in Europe, which occurred between the end of September and early October 2017.
Susannah Rennie, Chris Andrews, Sarah Atkinson, Deborah Beaumont, Sue Benham, Vic Bowmaker, Jan Dick, Bev Dodd, Colm McKenna, Denise Pallett, Rob Rose, Stefanie M. Schäfer, Tony Scott, Carol Taylor, and Helen Watson
Earth Syst. Sci. Data, 12, 87–107, https://doi.org/10.5194/essd-12-87-2020, https://doi.org/10.5194/essd-12-87-2020, 2020
Short summary
Short summary
This paper describes the meteorological, biological and biogeochemical datasets of the UK Environmental Change Network, a nationally unique long-term record environmental variability across UK habitats. The co-location of these measurements provides a rare opportunity to directly investigate relationships between environmental variables over significant time scales (1992–2015). This data record also provides the UK contribution to a global system of long-term environmental research networks.
Shungudzemwoyo P. Garaba and Heidi M. Dierssen
Earth Syst. Sci. Data, 12, 77–86, https://doi.org/10.5194/essd-12-77-2020, https://doi.org/10.5194/essd-12-77-2020, 2020
Short summary
Short summary
As remote sensing is becoming more integral in future plastic litter monitoring strategies, there is need to improve our understanding of the optical properties of plastics. We present spectral reflectance data (350–2500 nm) of wet and dry marine-harvested (Atlantic and Pacific oceans), washed-ashore, and virgin plastics. Absorption features were identified at ~ 931, 1215, 1417 and 1732 nm in both the marine-harvested and washed-ashore plastics.
Martin Stengel, Stefan Stapelberg, Oliver Sus, Stephan Finkensieper, Benjamin Würzler, Daniel Philipp, Rainer Hollmann, Caroline Poulsen, Matthew Christensen, and Gregory McGarragh
Earth Syst. Sci. Data, 12, 41–60, https://doi.org/10.5194/essd-12-41-2020, https://doi.org/10.5194/essd-12-41-2020, 2020
Short summary
Short summary
The Cloud_cci AVHRR-PMv3 dataset contains global, cloud and radiative flux properties covering the period of 1982 to 2016. The properties were retrieved from AVHRR measurements recorded by afternoon satellites of the NOAA POES missions. Validation against CALIOP, BSRN and CERES demonstrates the high quality of the data. The Cloud_cci AVHRR-PMv3 dataset allows for a large variety of climate applications that build on cloud properties, radiative flux properties and/or the link between them.
Miquel Tomas-Burguera, Sergio M. Vicente-Serrano, Santiago Beguería, Fergus Reig, and Borja Latorre
Earth Syst. Sci. Data, 11, 1917–1930, https://doi.org/10.5194/essd-11-1917-2019, https://doi.org/10.5194/essd-11-1917-2019, 2019
Short summary
Short summary
A database of reference evapotranspiration (ETo) was obtained and made publicly available for Spain covering the 1961–2014 period at a spatial resolution of 1.1 km. Previous to ETo calculation, data of required climate variables were interpolated and validated, and the uncertainty was estimated. Obtained ETo values can be used to calculate irrigation requirements, improve drought studies (our main motivation) and study the impact of climate change, as a positive trend was detected.
Wenjun Tang, Kun Yang, Jun Qin, Xin Li, and Xiaolei Niu
Earth Syst. Sci. Data, 11, 1905–1915, https://doi.org/10.5194/essd-11-1905-2019, https://doi.org/10.5194/essd-11-1905-2019, 2019
Short summary
Short summary
This study produced a 16-year (2000–2015) global surface solar radiation dataset (3 h, 10 km) based on recently updated ISCCP H-series cloud products with a physically based retrieval scheme. Its spatial resolution and accuracy are both higher than those of the ISCCP-FD, GEWEX-SRB and CERES. The dataset will contribute to photovoltaic applications and research related to the simulation of land surface processes.
Melita Keywood, Paul Selleck, Fabienne Reisen, David Cohen, Scott Chambers, Min Cheng, Martin Cope, Suzanne Crumeyrolle, Erin Dunne, Kathryn Emmerson, Rosemary Fedele, Ian Galbally, Rob Gillett, Alan Griffiths, Elise-Andree Guerette, James Harnwell, Ruhi Humphries, Sarah Lawson, Branka Miljevic, Suzie Molloy, Jennifer Powell, Jack Simmons, Zoran Ristovski, and Jason Ward
Earth Syst. Sci. Data, 11, 1883–1903, https://doi.org/10.5194/essd-11-1883-2019, https://doi.org/10.5194/essd-11-1883-2019, 2019
Short summary
Short summary
The Sydney Particle Study increased scientific knowledge of the processes leading to particle formation and transformations in Sydney through two comprehensive observation programs which are described in detail here. The data set and its analysis underpin comprehensive chemical transport modelling tools that can be used to assist in the development of a long-term control strategy for particles in Sydney and thus reduce the impact of particles on human health.
Felix L. Müller, Denise Dettmering, Claudia Wekerle, Christian Schwatke, Marcello Passaro, Wolfgang Bosch, and Florian Seitz
Earth Syst. Sci. Data, 11, 1765–1781, https://doi.org/10.5194/essd-11-1765-2019, https://doi.org/10.5194/essd-11-1765-2019, 2019
Short summary
Short summary
Polar regions by satellite-altimetry-derived geostrophic currents (GCs) suffer from irregular and sparse data coverage. Therefore, a new dataset is presented, combining along-track derived dynamic ocean topography (DOT) heights with simulated differential water heights. For this purpose, a combination method, based on principal component analysis, is used. The results are combined with spatio-temporally consistent DOT and derived GC representations on unstructured, triangular formulated grids.
This Rutishauser, François Jeanneret, Robert Brügger, Yuri Brugnara, Christian Röthlisberger, August Bernasconi, Peter Bangerter, Céline Portenier, Leonie Villiger, Daria Lehmann, Lukas Meyer, Bruno Messerli, and Stefan Brönnimann
Earth Syst. Sci. Data, 11, 1645–1654, https://doi.org/10.5194/essd-11-1645-2019, https://doi.org/10.5194/essd-11-1645-2019, 2019
Short summary
Short summary
This paper reports 7414 quality-controlled plant phenological observations of the BernClim phenological network in Switzerland. The data from 1304 sites at 110 stations were recorded between 1970 and 2018. The quality control (QC) points to very good internal consistency (only 0.2 % flagged as internally inconsistent) and likely to high quality of the data. BernClim data originally served in regional planning and agricultural suitability and are now valuable for climate change impact studies.
Xingdong Li, Di Long, Qi Huang, Pengfei Han, Fanyu Zhao, and Yoshihide Wada
Earth Syst. Sci. Data, 11, 1603–1627, https://doi.org/10.5194/essd-11-1603-2019, https://doi.org/10.5194/essd-11-1603-2019, 2019
Short summary
Short summary
Lakes on the Tibetan Plateau experienced rapid changes (mainly expanding) in the past 2 decades. Here we provide a data set of high temporal resolution and accuracy reflecting changes in water level and storage of Tibetan lakes. A novel source of water levels generated from Landsat archives was validated with in situ data and adopted to resolve the inconsistency in existing studies, benefiting monitoring of lake overflow floods, seasonal and interannual variability, and long-term trends.
Ekaterina P. Rets, Viktor V. Popovnin, Pavel A. Toropov, Andrew M. Smirnov, Igor V. Tokarev, Julia N. Chizhova, Nadine A. Budantseva, Yurij K. Vasil'chuk, Maria B. Kireeva, Alexey A. Ekaykin, Arina N. Veres, Alexander A. Aleynikov, Natalia L. Frolova, Anatoly S. Tsyplenkov, Aleksei A. Poliukhov, Sergey R. Chalov, Maria A. Aleshina, and Ekaterina D. Kornilova
Earth Syst. Sci. Data, 11, 1463–1481, https://doi.org/10.5194/essd-11-1463-2019, https://doi.org/10.5194/essd-11-1463-2019, 2019
Short summary
Short summary
As climate change completely restructures hydrological processes and ecosystems in alpine areas, monitoring is fundamental to adaptation. Here we present a database on more than 10 years of hydrometeorological monitoring at the Djankuat station in the North Caucasus, which is one of 30 unique world reference sites with annual mass balance series longer than 50 years. We hope it will be useful for scientists studying various aspects of hydrological processes in mountain areas.
Stefan Leyk, Andrea E. Gaughan, Susana B. Adamo, Alex de Sherbinin, Deborah Balk, Sergio Freire, Amy Rose, Forrest R. Stevens, Brian Blankespoor, Charlie Frye, Joshua Comenetz, Alessandro Sorichetta, Kytt MacManus, Linda Pistolesi, Marc Levy, Andrew J. Tatem, and Martino Pesaresi
Earth Syst. Sci. Data, 11, 1385–1409, https://doi.org/10.5194/essd-11-1385-2019, https://doi.org/10.5194/essd-11-1385-2019, 2019
Short summary
Short summary
Population data are essential for studies on human–nature relationships, disaster or environmental health. Several global and continental gridded population data have been produced but have never been systematically compared. This article fills this gap and critically compares these gridded population datasets. Through the lens of the
fitness for useconcept it provides users with the knowledge needed to make informed decisions about appropriate data use in relation to the target application.
Craig D. Smith, Daqing Yang, Amber Ross, and Alan Barr
Earth Syst. Sci. Data, 11, 1337–1347, https://doi.org/10.5194/essd-11-1337-2019, https://doi.org/10.5194/essd-11-1337-2019, 2019
Short summary
Short summary
During and following the WMO Solid Precipitation Inter-Comparison Experiment (SPICE), winter (2013–2017) precipitation intercomparison data sets were collected at two test sites in Saskatchewan: Caribou Creek in the southern boreal forest and Bratt's Lake on the prairies. Precipitation was measured by the WMO automated reference and can be compared to measurements made by gauge configurations commonly used in Canada to examine issues with systematic bias.
Samuel Weber, Jan Beutel, Reto Da Forno, Alain Geiger, Stephan Gruber, Tonio Gsell, Andreas Hasler, Matthias Keller, Roman Lim, Philippe Limpach, Matthias Meyer, Igor Talzi, Lothar Thiele, Christian Tschudin, Andreas Vieli, Daniel Vonder Mühll, and Mustafa Yücel
Earth Syst. Sci. Data, 11, 1203–1237, https://doi.org/10.5194/essd-11-1203-2019, https://doi.org/10.5194/essd-11-1203-2019, 2019
Short summary
Short summary
In this paper, we describe a unique 10-year or more data record obtained from in situ measurements in steep bedrock permafrost in an Alpine environment on the Matterhorn Hörnligrat, Zermatt, Switzerland, at 3500 m a.s.l. By documenting and sharing these data in this form, we contribute to facilitating future research based on them, e.g., in the area of analysis methodology, comparative studies, assessment of change in the environment, natural hazard warning and the development of process models.
Roberto Serrano-Notivoli, Santiago Beguería, and Martín de Luis
Earth Syst. Sci. Data, 11, 1171–1188, https://doi.org/10.5194/essd-11-1171-2019, https://doi.org/10.5194/essd-11-1171-2019, 2019
Short summary
Short summary
Spanish TEmperature At Daily scale (STEAD) is a new daily gridded maximum and minimum temperature dataset for Spain. It covers the whole territory of peninsular Spain and the Balearic and Canary Islands at a 5 km × 5 km spatial resolution for the 1901–2014 period. This product is useful not only for climatic analysis but also to provide support to any other climate-related variable and for decision-making purposes.
Shanlong Lu, Jin Ma, Xiaoqi Ma, Hailong Tang, Hongli Zhao, and Muhammad Hasan Ali Baig
Earth Syst. Sci. Data, 11, 1099–1108, https://doi.org/10.5194/essd-11-1099-2019, https://doi.org/10.5194/essd-11-1099-2019, 2019
Short summary
Short summary
A 8 d time series 250 m resolution surface water dataset of inland China (ISWDC) from 2000 to 2016 is introduced. It is a fully public-sharing data product with prominent features of long time series, moderate spatial resolution, and high temporal resolution. The ISWDC is a valuable basic data source for the analysis of dynamic changes of surface water in China over the past 20 years. It can be used as cross-validation reference data for other global surface water datasets.
Cited articles
Allali, K., Bricaud, A., and Claustre, H.: Spatial variations in the
chlorophyll-specific absorption coefficients of phytoplankton and
photosynthetically active pigments in the equatorial Pacific, J. Geophys. Res., 102, 12413–12423, https://doi.org/10.1029/97JC00380, 1997.
Astuti, I. S., Mishra, D. R., Mishra, S., and Schaeffer, B.: Spatio-temporal
dynamics of inherent optical properties in oligotrophic northern Gulf of
Mexico estuaries, Cont. Shelf Res., 166, 92–107,
https://doi.org/10.1016/j.csr.2018.06.016, 2018.
Bell, T. W., Cavanaugh, K. C., and Siegel, D. A.: Remote monitoring of giant
kelp biomass and physiological condition: An evaluation of the potential for
the Hyperspectral Infrared Imager (HyspIRI) mission, Remote Sens. Environ.,
167, 218–228, https://doi.org/10.1016/j.rse.2015.05.003, 2015.
Bricaud, A. and Stramski, D.: Spectral absorption coefficients of living
phytoplankton and nonalgal biogenous matter: A comparison between the Peru
upwelling area and the Sargasso Sea, Limnol. Oceanogr., 35, 562–582,
https://doi.org/10.4319/lo.1990.35.3.0562, 1990.
Bricaud, A., Babin, M., Claustre, H., Ras, J., and Tièche, F.: Light
absorption properties and absorption budget of Southeast Pacific waters, J. Geophys. Res., 115, C08009, https://doi.org/10.1029/2009JC005517, 2010.
Boss, E., Picheral, M., Leeuw, T., Chase, A., Karsenti, E., Gorsky, G.,
Taylor, L., Slade, W., Ras, J., and Claustre, H.: The characteristics of
particulate absorption, scattering and attenuation coefficients in the
surface ocean; Contribution of the Tara Oceans expedition, Methods Oceanogr.,
7, 52–62, https://doi.org/10.1016/j.mio.2013.11.002, 2013.
Carder, K. L. and Steward, R. G.: A remote-sensing reflectance model of a
red-tide dinoflagellate off west Florida, Limnol. Oceanogr., 30, 286–298,
1985.
Casey, K. A., Rousseaux, C. S., Gregg, W. W., Boss, E., Chase, A. P., Craig,
S. E., Mouw, C. B., Reynolds, R. A., Stramski, D., Ackleson, S. G., Bricaud, A., Schaeffer, B., Lewis, M. R., and Maritorena, S.: In situ high spectral
resolution inherent and apparent optical property data from diverse aquatic
environments, PANGAEA, https://doi.org/10.1594/PANGAEA.902230,
2019.
Chase, A. P., Boss, E., Cetinić, I., and Slade, W.: Estimation of
phytoplankton accessory pigments from hyperspectral reflectance spectra:
toward a global algorithm, J. Geophys. Res.-Oceans, 122, 9725–9743,
https://doi.org/10.1002/2017JC012859, 2017.
Claustre, H., Sciandra, A., and Vaulot, D.: Introduction to the special section bio-optical and biogeochemical conditions in the South East Pacific in late 2004: the BIOSOPE program, Biogeosciences, 5, 679–691, https://doi.org/10.5194/bg-5-679-2008, 2008.
Conmy, R. N., Schaeffer, B. A., Schubauer-Berigan, J., Aukamp, J., Duffy, A.,
Lehrter, J. C., and Greene, R. M.: Characterizing light attenuation within
northwest Florida estuaries: Implications for RESTORE Act water quality
monitoring, Mar. Pollut. Bull., 114, 995–1006,
https://doi.org/10.1016/j.marpolbul.2016.11.030, 2017.
Corson, M. R. and Davis, C. O.: A new view of coastal oceans from the space
station, Eos, 92, 161–162, https://doi.org/10.1029/2011EO190001, 2011.
Craig, S. E.: Spectral measurements of absorption, scattering and in
vivofluorescence from phytoplankton cultures, Department of Physics and
Applied Physics, University of Strathclyde, Glasgow, 228 pp., 1999.
Craig, S. E., Jones, C. T., Li, W. K. W., Lazin, G., Horne, E., Caverhill, C., and Cullen, J. J.: Deriving optical metrics of coastal phytoplankton biomass
from ocean colour, Remote Sens. Environ., 119, 72–83,
https://doi.org/10.1016/j.rse.2011.12.007, 2012.
Dall'Olmo, G., Westberry, T. K., Behrenfeld, M. J., Boss, E., and Slade, W. H.: Significant contribution of large particles to optical backscattering in the open ocean, Biogeosciences, 6, 947–967, https://doi.org/10.5194/bg-6-947-2009, 2009.
Del Castillo, C. E., Signorini, S. R., Karaköylü, E. M., and Rivero-Calle, S.: Is the Southern Ocean Getting Greener?, Geophys. Res. Lett., 46, 6034–6040, https://doi.org/10.1029/2019GL083163, 2019.
Devred, E., Turpie, K. R., Moses, W., Klemas, V. V., Moisan, T., Babin, M.,
Toro-Farmer, G., Forget, M.-H., and Jo, Y.-H.: Future retrievals of water
column bio-optical properties using the Hyperspectral Infrared Imager
(HyspIRI), Remote Sens.-Basel, 5, 6812–6837, https://doi.org/10.3390/rs5126812, 2013.
Dierssen, H. M., Chlus, A., and Russell, B.: Hyperspectral discrimination of
floating mats of seagrass wrack and the macroalgae Sargassum in coastal
waters of Greater Florida Bay using airborne remote sensing, Remote Sens. Environ., 167, 247–258, https://doi.org/10.1016/j.rse.2015.01.027, 2015.
Dutkiewicz, S., Hickman, A. E., Jahn, O., Henson, S., Beaulieu, C., and
Monier, E.: Ocean colour signature of climate change, Nat. Commun., 10, 578,
https://doi.org/10.1038/s41467-019-08457-x, 2019.
Freeman, L. A., Ackleson, S. G., and Rhea, W. J.: Comparison of remote sensing
algorithms for retrieval of suspended particulate matter concentration from
reflectance in coastal waters, J. Appl. Remote Sens., 11, 4, 046028,
https://doi.org/10.1117/1.JRS.11.046028, 2017.
Gould Jr., R. W., Arnone, R. A., and Sydor, M.: Absorption, scattering, and
remote-sensing reflectance relationships in coastal waters: Testing a new
inversion algorithm, J. Coastal Res., 17, 328–341, 2001.
Gordon, H. R., Lewis, M. R., McLean, S. D., Twardowski, M. S., Freeman, S. A., Voss, K. J., and Boynton, G. C.: Spectra of particulate backscattering in
natural waters, Opt. Express, 17, 16192–16208, 2009.
Hu, C., Feng, L., Hardy, R. F., and Hochberg, E. J.: Spectral and spatial
requirements of remote sensing measurements of pelagic Sargassum macroalgae,
Remote Sens. Environ., 167, 229–246, https://doi.org/10.1016/j.rse.2015.05.022, 2015.
Hu, C., Lee, Z., and Franz, B.: Chlorophyll a algorithms for oligotrophic
oceans: A novel approach based on three-band reflectance difference, J. Geophys. Res., 117, C01011, https://doi.org/10.1029/2011JC007395, 2012.
Keith, D. J., Schaeffer, B. A., Lunetta, R. S., Gould, R. W., Rocha, K., and
Cobb, D. J.: Remote sensing of selected water-quality indicators with the
hyperspectral imager for the coastal ocean (HICO) sensor, Int. J. Remote Sens., 35, 2927–2962, https://doi.org/10.1080/01431161.2014.894663, 2014.
Keith, D. J., Lunetta, R. S., and Schaeffer, B. A.: Optical models for remote
sensing of colored dissolved organic matter absorption and salinity in New
England, Middle Atlantic and Gulf Coast Estuaries USA, Remote Sens.-Basel, 8,
283, https://doi.org/10.3390/rs8040283, 2016.
Kim, G. E., Gnanadesikan, A., Del Castillo, C. E., and Pradal, M.-A.: Upper ocean
cooling in a coupled climate model due to light attenuation by yellowing
materials, Geophys. Res. Lett., 45, 6134–6140, https://doi.org/10.1029/2018GL077297, 2018.
Kishino, M., Takahashi, M., Okami, N., and Ichimura, S.: Estimation of the
spectral absorption coefficients of phytoplankton in the sea, B. Mar. Sci., 37, 634–642, 1985.
Krutz, D., Müller, R., Knodt, U., Günther, B., Walter, I., Sebastian, I., Säuberlich, T., Reulke, R., Carmona, E., Eckardt, A., Venus, H., Fischer, C., Zender, B., Arloth, S., Lieder, M., Neidhardt, M., Grote, U., Schrandt, F., Gelmi, S., and Wojtkowiak, A.: The Instrument Design of the DLR Earth Sensing Imaging Spectrometer (DESIS), Sensors, 19, 1622, https://doi.org/10.3390/s19071622, 2019.
Le, C., Lehrter, J. C., Hu, C., Schaeffer, B. A., MacIntyre, H., Hagy, J. D., and
Beddick, D. L.: Relation between inherent optical properties and land use and
land cover across Gulf Coast estuaries, Limnol. Oceanogr., 60, 920–933,
https://doi.org/10.1002/lno.10065, 2015.
Le, C., Lehrter, J. C., Schaeffer, B. A., Hu, C., Murrell, M. C., Hagy, J. D., Greene, R. M., and Beck, M.: Bio-optical water quality dynamics observed from
MERIS in Pensacola Bay, Florida, Estuar. Coast. Shelf S., 173, 26–38,
https://doi.org/10.1016/j.ecss.2016.02.003, 2016.
Lee, Z., Shang, S., Hu, C., Lewis, M., Arnone, R., Li, Y., and Lubac, B.:
Time series of bio-optical properties in a subtropical gyre: Implications
for the evaluation of interannual trends of biogeochemical properties, J. Geophys. Res.-Oceans, 115, C09012, https://doi.org/10.1029/2009JC005865, 2010.
Lin, J., Lee, Z., Ondrusek, M., and Liu, X.: Hyperspectral absorption and
backscattering coefficients of bulk water retrieved from a combination of
remote-sensing reflectance and attenuation coefficient, Opt. Express, 26, A157–A177, https://doi.org/10.1364/OE.26.00A157, 2018.
Lohrenz, S. E.: A novel theoretical approach to correct for pathlength
amplification and variable sampling loading in measurements of particulate
spectral absorption by the quantitative filter technique, J. Plankton Res.,
22, 639–657, https://doi.org/10.1093/plankt/22.4.639, 2000.
Lohrenz, S. E., Weidemann, A. D., and Tuel, M.: Phytoplankton spectral
absorption as influenced by community size structure and pigment
composition, J. Plankton Res., 25, 35–61, https://doi.org/10.1093/plankt/25.1.35, 2003.
Loisel, H., Stramski, D., Dessaily, D., Jamet, C., Li, L., and Reynolds, R. A.:
An inverse model for estimating the optical absorption and backscattering
coefficients of seawater from remote-sensing reflectance over a broad range
of oceanic and coastal marine environments, J. Geophys. Res.-Oceans, 123,
2141–2171, https://doi.org/10.1002/2017JC013632, 2018.
Matsuoka, A., Boss, E., Babin, M., Karp-Boss, L., Hafez, M., Chekalyuk, A.,
Proctor, C. W., Werdell, P. J., and Bricaud, A.: Pan-Arctic optical
characteristics of colored dissolved organic matter: Tracing dissolved
organic carbon in changing Arctic waters using satellite ocean color data,
Remote Sens. Environ., 200, 89–101, 2017.
McClain, C. R.: A decade of satellite ocean color observations, Annu. Rev. Mar. Sci., 1, 19–42, https://doi.org/10.1146/annurev.marine.010908.163650, 2009.
Mishra, D., Schaeffer, B. A., and Keith, D.: Performance evaluation of
normalized difference chlorophyll index in northern Gulf of Mexico estuaries
using the Hyperspectral Imager for the Coastal Ocean, GISci Remote Sens., 51,
175–198, https://doi.org/10.1080/15481603.2014.895581, 2014.
Mobley, C. D.: Estimation of the remote-sensing reflectance from
above-surface measurements, Appl. Optics, 38, 7442–7455,
https://doi.org/10.1364/AO.38.007442, 1999.
Mobley, C. D. and Stramski, D.: Origins of variability in remote-sensing
reflectance. Final Report, Sequoia Scientific, Redmond, WA, 1997.
Mouw, C. B., Greb, S., Aurin, D., DiGiacomo, P. M., Lee, Z., Twardowski, M.,
Binding, C., Hu, C., Ma, R., Moore, T., Moses, W., and Craig, S. E.: Aquatic
color radiometry remote sensing of coastal and inland waters: Challenges and
recommendations for future satellite missions, Remote Sens. Environ., 160,
15–30, https://doi.org/10.1016/j.rse.2015.02.001, 2015.
Mouw, C. B., Ciochetto, A. B., Grunert, B., and Yu, A.: Expanding understanding of optical variability in Lake Superior with a 4-year dataset, Earth Syst. Sci. Data, 9, 497–509, https://doi.org/10.5194/essd-9-497-2017, 2017.
Mueller, J. L., Morel, A., Frouin, R., Davis, C., Arnone, R., Carder, K.,
Lee, Z. P., Steward, R. G., Hooker, S. B., Mobley, C. D., McLean, S., Holben,
B., Miller, M., Pietras, C., Knobelspiesse, K. D., Fargion, G. S., Porter, J., and Voss, K. J.: Radiometric measurements and data analysis protocols, in: Ocean optics protocols
for satellite ocean colour sensor validation, edited by: Mueller, J. L., Fargion, G. S., and McClain, C. R., Revision 4, Volume IV,
Greenbelt, MD: NASA, Goddard Space Flight Center, NASA/TM-2003-211621, 84 pp., 2003.
National Academies of Sciences, Engineering, and Medicine, Thriving on Our
Changing Planet: A Decadal Strategy for Earth Observation from Space,
Washington, DC, The National Academies Press, https://doi.org/10.17226/24938, 2018.
Neukermans, G., Reynolds, R. A., and Stramski, D.: Optical classification and
characterization of marine particle assemblages within the western Arctic
Ocean, Limnol. Oceanogr., 61, 1472–1494, https://doi.org/10.1002/lno.10316, 2016.
O'Reilly, J. E. and Werdell, P. J.: Chlorophyll algorithms for ocean color
sensors – OC4, OC5 & OC6, Remote Sens. Environ., 229, 32–47,
https://doi.org/10.1016/j.rse.2019.04.021, 2019.
O'Reilly, J. E., Maritorena, S., Mitchell, B. G., Siegel, D. A., Carder, K. L., Garver, S. A., Kahru, M., and McClain, C.: Ocean color chlorophyll algorithms
for SeaWiFS, J. Geophys. Res., 103, C11, 24937–24953, https://doi.org/10.1029/98JC02160,
1998.
Pegau, S., Zaneveld, J. R. V., Mitchell, B. G., Mueller, J. L., Kahru, M.,
Wieland, J., and Stramska, M.: Inherent Optical Properties: Instruments,
Characterizations, Field Measurements and Data Analysis Protocols, in: Ocean optics protocols for satellite ocean colour sensor validation, edited by:
Mueller, J. L., Fargion, G. S., and McClain, C. R., Revision 4, Volume IV, Greenbelt, MD: NASA,
Goddard Space Flight Center, NASA/TM-2003-211621, 84 pp., 2003.
Röttgers, R. and Doerffer, R.: Measurements of optical absorption by
chromophoric dissolved organic matter using a point-source integrating
cavity absorption meter, Limnol. Oceanogr.-Meth., 5, 126–135, 2007.
Shibata, K.: Spectrophotometry of translucent biological materials – opal
glass transmission method, in: Methods of Biochemical Analysis, edited by: Glick, D., Interscience Publishers Inc., New York, 1959.
Slade, W. H., Boss, E., Dall'olmo, G., Langner, M. R., Loftin, J., Behrenfeld, M. J., Roesler, C., and Westberry, T. K.: Underway and moored methods for
improving accuracy in measurement of spectral particulate absorption and
attenuation, J. Atmos. Ocean. Tech., 27, 1733–1746, https://doi.org/10.1175/2010JTECHO755.1,
2010.
Stockley, N. D., Röttgers, R., McKee, D., Lefering, I., Sullivan, J. M.,
and Twardowski, M. S.: Assessing uncertainties in scattering correction
algorithms for reflective tube absorption measurements made with a WET Labs
ac-9, Opt. Express, 25, A1139–A1153, https://doi.org/10.1364/OE.25.0A1139, 2017.
Stramski, D., Reynolds, R. A., Babin, M., Kaczmarek, S., Lewis, M. R., Röttgers, R., Sciandra, A., Stramska, M., Twardowski, M. S., Franz, B. A., and Claustre, H.: Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans, Biogeosciences, 5, 171–201, https://doi.org/10.5194/bg-5-171-2008, 2008.
Stramski, D., Reynolds, R. A., Kaczmarek, S., Uitz, J., and Zheng, G.: Correction
of pathlength amplification in the filter-pad technique for measurements of
particulate absorption coefficient in the visible spectral region, Appl. Optics, 54, 6763–6782, https://doi.org/10.1364/AO.54.006763, 2015.
Tassan, S. and Ferrari, G. M.: An alternative approach to absorption
measurements of aquatic particles retained on filters, Limnol. Oceanogr., 40,
8, 1358–1368, 1995.
Torrecilla, E., Stramski, D., Reynolds, R. A., Millan-Núñez, E., and
Pierra, J.: Cluster analysis of hyperspectral optical data for
discriminating phytoplankton pigment assemblages in the open ocean, Remote Sens. Environ., 115, 2578–2593, https://doi.org/10.1016/j.rse.2011.05.014, 2011.
Uitz, J., Stramski, D., Reynolds, R. A., and Dubranna, J.: Assessing
phytoplankton community composition from hyperspectral measurements of
phytoplankton absorption coefficient and remote-sensing reflectance in
open-ocean environments, Remote Sens. Environ., 171, 58–74,
https://doi.org/10.1016/j.rse.2015.09.027, 2015.
Valente, A., Sathyendranath, S., Brotas, V., Groom, S., Grant, M., Taberner, M., Antoine, D., Arnone, R., Balch, W. M., Barker, K., Barlow, R., Bélanger, S., Berthon, J.-F., Beşiktepe, Ş., Borsheim, Y., Bracher, A., Brando, V., Canuti, E., Chavez, F., Cianca, A., Claustre, H., Clementson, L., Crout, R., Frouin, R., García-Soto, C., Gibb, S. W., Gould, R., Hooker, S. B., Kahru, M., Kampel, M., Klein, H., Kratzer, S., Kudela, R., Ledesma, J., Loisel, H., Matrai, P., McKee, D., Mitchell, B. G., Moisan, T., Muller-Karger, F., O'Dowd, L., Ondrusek, M., Platt, T., Poulton, A. J., Repecaud, M., Schroeder, T., Smyth, T., Smythe-Wright, D., Sosik, H. M., Twardowski, M., Vellucci, V., Voss, K., Werdell, J., Wernand, M., Wright, S., and Zibordi, G.: A compilation of global bio-optical in situ data for ocean-colour satellite applications – version two, Earth Syst. Sci. Data, 11, 1037–1068, https://doi.org/10.5194/essd-11-1037-2019, 2019.
Wang, G., Lee, Z., Mishra, D. R., and Ma, R.: Retrieving absorption
coefficients of multiple phytoplankton pigments from hyperspectral remote
sensing reflectance measured over cyanobacteria bloom waters, Limnol. Oceanogr.-Meth., 14, 432–447, https://doi.org/10.1002/lom3.10102, 2016.
Werdell, P. J. and Bailey, S. W.: The SeaWiFS Bio-optical Archive and Storage System (SeaBASS): Current architecture and implementation, NASA Tech. Memo.
2002-211617, edited by: Fargion, G. S. and McClain, C. R., NASA Goddard Space Flight Center, Greenbelt, Maryland, 45 pp., 2002.
Werdell, P. J. and Bailey, S. W.: An improved in-situ bio-optical data set
for ocean color algorithm development and satellite data product validation,
Remote Sens. Environ., 98, 122–140, https://doi.org/10.1016/j.rse.2005.07.001, 2005.
Werdell, P. J., McKinna, L. I. W., Boss, E., Ackleson, S. G., Craig, S. E.,
Gregg, W. W., Lee, Z., Maritorena, S., Roesler, C. S., Rousseaux, C. S.,
Stramski, D., Sullivan, J. M., Twardowski, M. S., Tzortziou, M., and Zhang,
X.: An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing, Prog. Oceanogr., 160, 186–212, https://doi.org/10.1016/j.pocean.2018.01.001, 2018.
Werdell, P. J., Behrenfeld, M. J., Bontempi, P. S., Boss, E., Cairns, B.,
Davis, G. T., Franz, B. A., Gliese, U. B., Gorman, E. T., Hasekamp, O.,
Knobelspiesse, K. D., Mannino, A., Martins, J. V., McClain, C. R., Meister, G., and Remer, L. A.: The Plankton, Aerosol, Cloud, Ocean Ecosystem Mission:
Status, Science, Advances, B. Am. Meteorol. Soc., 100, 1775–1794,
https://doi.org/10.1175/BAMS-D-18-0056.1, 2019.
Zheng, G., Stramski, D., and Reynolds, R. A.: Evaluation of the
Quasi-Analytical Algorithm for estimating the inherent optical properties of
seawater from ocean color: Comparison of Arctic and lower-latitude waters,
Remote Sens. Environ., 155, 194–209, https://doi.org/10.1016/j.rse.2014.08.020, 2014.
Short summary
An increase in spectral resolution in forthcoming remote-sensing missions will improve our ability to understand and characterize aquatic ecosystems. We organize and provide a global compilation of high spectral resolution inherent and apparent optical property data from polar, midlatitude, and equatorial open-ocean, estuary, coastal, and inland waters. The data are intended to aid in development of remote-sensing data product algorithms and to perform calibration and validation activities.
An increase in spectral resolution in forthcoming remote-sensing missions will improve our...