Articles | Volume 9, issue 2
Earth Syst. Sci. Data, 9, 511–527, 2017
https://doi.org/10.5194/essd-9-511-2017
Earth Syst. Sci. Data, 9, 511–527, 2017
https://doi.org/10.5194/essd-9-511-2017
Review article
25 Jul 2017
Review article | 25 Jul 2017

Uncertainty information in climate data records from Earth observation

Christopher J. Merchant et al.

Related authors

Global sea-level budget and ocean-mass budget, with a focus on advanced data products and uncertainty characterisation
Martin Horwath, Benjamin D. Gutknecht, Anny Cazenave, Hindumathi Kulaiappan Palanisamy, Florence Marti, Ben Marzeion​​​​​​​, Frank Paul, Raymond Le Bris, Anna E. Hogg, Inès Otosaka, Andrew Shepherd, Petra Döll, Denise Cáceres, Hannes Müller Schmied, Johnny A. Johannessen, Jan Even Øie Nilsen, Roshin P. Raj, René Forsberg, Louise Sandberg Sørensen, Valentina R. Barletta, Sebastian B. Simonsen, Per Knudsen, Ole Baltazar Andersen, Heidi Ranndal, Stine K. Rose, Christopher J. Merchant, Claire R. Macintosh, Karina von Schuckmann, Kristin Novotny​​​​​​​, Andreas Groh, Marco Restano, and Jérôme Benveniste
Earth Syst. Sci. Data, 14, 411–447, https://doi.org/10.5194/essd-14-411-2022,https://doi.org/10.5194/essd-14-411-2022, 2022
Short summary
The Copernicus Surface Velocity Platform drifter with Barometer and Reference Sensor for Temperature (SVP-BRST): genesis, design, and initial results
Paul Poli, Marc Lucas, Anne O'Carroll, Marc Le Menn, Arnaud David, Gary K. Corlett, Pierre Blouch, David Meldrum, Christopher J. Merchant, Mathieu Belbeoch, and Kai Herklotz
Ocean Sci., 15, 199–214, https://doi.org/10.5194/os-15-199-2019,https://doi.org/10.5194/os-15-199-2019, 2019
Short summary
High-performance software framework for the calculation of satellite-to-satellite data matchups (MMS version 1.2)
Thomas Block, Sabine Embacher, Christopher J. Merchant, and Craig Donlon
Geosci. Model Dev., 11, 2419–2427, https://doi.org/10.5194/gmd-11-2419-2018,https://doi.org/10.5194/gmd-11-2419-2018, 2018
Short summary
Determining lake surface water temperatures worldwide using a tuned one-dimensional lake model (FLake, v1)
Aisling Layden, Stuart N. MacCallum, and Christopher J. Merchant
Geosci. Model Dev., 9, 2167–2189, https://doi.org/10.5194/gmd-9-2167-2016,https://doi.org/10.5194/gmd-9-2167-2016, 2016
Short summary
The surface temperatures of Earth: steps towards integrated understanding of variability and change
C. J. Merchant, S. Matthiesen, N. A. Rayner, J. J. Remedios, P. D. Jones, F. Olesen, B. Trewin, P. W. Thorne, R. Auchmann, G. K. Corlett, P. C. Guillevic, and G. C. Hulley
Geosci. Instrum. Method. Data Syst., 2, 305–321, https://doi.org/10.5194/gi-2-305-2013,https://doi.org/10.5194/gi-2-305-2013, 2013

Related subject area

Data, Algorithms, and Models
HOTRUNZ: an open-access 1 km resolution monthly 1910–2019 time series of interpolated temperature and rainfall grids with associated uncertainty for New Zealand
Thomas R. Etherington, George L. W. Perry, and Janet M. Wilmshurst
Earth Syst. Sci. Data, 14, 2817–2832, https://doi.org/10.5194/essd-14-2817-2022,https://doi.org/10.5194/essd-14-2817-2022, 2022
Short summary
A dataset of microphysical cloud parameters, retrieved from Fourier-transform infrared (FTIR) emission spectra measured in Arctic summer 2017
Philipp Richter, Mathias Palm, Christine Weinzierl, Hannes Griesche, Penny M. Rowe, and Justus Notholt
Earth Syst. Sci. Data, 14, 2767–2784, https://doi.org/10.5194/essd-14-2767-2022,https://doi.org/10.5194/essd-14-2767-2022, 2022
Short summary
A global long-term (1981–2019) daily land surface radiation budget product from AVHRR satellite data using a residual convolutional neural network
Jianglei Xu, Shunlin Liang, and Bo Jiang
Earth Syst. Sci. Data, 14, 2315–2341, https://doi.org/10.5194/essd-14-2315-2022,https://doi.org/10.5194/essd-14-2315-2022, 2022
Short summary
First SMOS Sea Surface Salinity dedicated products over the Baltic Sea
Verónica González-Gambau, Estrella Olmedo, Antonio Turiel, Cristina González-Haro, Aina García-Espriu, Justino Martínez, Pekka Alenius, Laura Tuomi, Rafael Catany, Manuel Arias, Carolina Gabarró, Nina Hoareau, Marta Umbert, Roberto Sabia, and Diego Fernández
Earth Syst. Sci. Data, 14, 2343–2368, https://doi.org/10.5194/essd-14-2343-2022,https://doi.org/10.5194/essd-14-2343-2022, 2022
Short summary
HomogWS-se: a century-long homogenized dataset of near-surface wind speed observations since 1925 rescued in Sweden
Chunlüe Zhou, Cesar Azorin-Molina, Erik Engström, Lorenzo Minola, Lennart Wern, Sverker Hellström, Jessika Lönn, and Deliang Chen
Earth Syst. Sci. Data, 14, 2167–2177, https://doi.org/10.5194/essd-14-2167-2022,https://doi.org/10.5194/essd-14-2167-2022, 2022
Short summary

Cited articles

Barnett, T., Zwiers, F., Hegerl, G., Allen, M., Crowley, T., Gillett, N., Hasselmann, K., Jones, P., Santer, B., Schnur, R., Scott, P., Taylor, K., and Tett, S.: Detecting and Attributing External Influences on the Climate System: A Review of Recent Advances, J. Climate, 18, 1291–1314, https://doi.org/10.1175/JCLI3329.1, 2005.
Bates, J., Privette, J., Kearns, E., Glance, W., and Zhao, X.: Sustained Production of Multidecadal Climate Records: Lessons from the NOAA Climate Data Record Program, B. Am. Meteorol. Soc., 97, 1573–1581, https://doi.org/10.1175/BAMS-D-15-00015.1, 2016.
Bates, J. J. and Privette, J. L.: A maturity model for assessing the completeness of climate data records, Eos T. Am. Geophys. Un., 93, 441, https://doi.org/10.1029/2012EO440006, 2012.
Benedetti, A., Morcrette, J.-J., Boucher, O., Dethof, A., Engelen, R. J., Fisher, M., Flentjes, H., Huneeus, N., Jones, L., Kaiser, J. W., Kinne, S., Mangold A., Razinger, M., Simmons A. J., Suttie, M., and the GEMS-AER team: Aerosol analysis and forecast in the ECMWF Integrated Forecast System: Data assimilation, Technical Memoranda ECMWF 571., European Centre for Medium-range Weather Forecasting, Reading, UK, 2008.
Download
Short summary
Climate data records (CDRs) contain data describing Earth's climate and should address uncertainty in the data to communicate what is known about climate variability or change and what range of doubt exists. This paper discusses good practice for including uncertainty information in CDRs for the essential climate variables (ECVs) derived from satellite data. Recommendations emerge from the shared experience of diverse ECV projects within the European Space Agency Climate Change Initiative.