Articles | Volume 14, issue 5
https://doi.org/10.5194/essd-14-2315-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-2315-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A global long-term (1981–2019) daily land surface radiation budget product from AVHRR satellite data using a residual convolutional neural network
Jianglei Xu
School of Remote Sensing and Information Engineering, Wuhan
University, Wuhan 430079, China
Department of Geographical Sciences, University of Maryland, College
Park, MD 20742, USA
Bo Jiang
CORRESPONDING AUTHOR
Faculty of Geographical Science, Beijing Normal University, Beijing
100875, China
Related authors
Yufang Zhang, Shunlin Liang, Han Ma, Tao He, Qian Wang, Bing Li, Jianglei Xu, Guodong Zhang, Xiaobang Liu, and Changhao Xiong
Earth Syst. Sci. Data, 15, 2055–2079, https://doi.org/10.5194/essd-15-2055-2023, https://doi.org/10.5194/essd-15-2055-2023, 2023
Short summary
Short summary
Soil moisture observations are important for a range of earth system applications. This study generated a long-term (2000–2020) global seamless soil moisture product with both high spatial and temporal resolutions (1 km, daily) using an XGBoost model and multisource datasets. Evaluation of this product against dense in situ soil moisture datasets and microwave soil moisture products showed that this product has reliable accuracy and more complete spatial coverage.
Jianghai Peng, Bo Jiang, Hui Liang, Shaopeng Li, Jiakun Han, Thomas C. Ingalls, Jie Cheng, Yunjun Yao, Kun Jia, and Xiaotong Zhang
Atmos. Meas. Tech., 18, 2877–2898, https://doi.org/10.5194/amt-18-2877-2025, https://doi.org/10.5194/amt-18-2877-2025, 2025
Short summary
Short summary
We developed a new method to estimate how much heat the ocean surface receives from the atmosphere, which is important for understanding weather and climate. Using over 30 years of data from buoys around the world, we created a model that outperforms existing ones, especially under cloudy skies. Our results show that including detailed cloud information improves accuracy, making this method useful for global climate and ocean research.
Hui Liang, Shunlin Liang, Bo Jiang, Tao He, Feng Tian, Jianglei Xu, Wenyuan Li, Fengjiao Zhang, and Husheng Fang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-136, https://doi.org/10.5194/essd-2025-136, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
This paper describes 1 km daily mean land surface sensible heat flux (H) and land surface – air temperature difference (Tsa) datasets on the global scale during 2000–2020. The datasets were developed using a data-driven approach and rigorously validated against in situ observations and existing H and Tsa datasets, demonstrating both high accuracy and exceptional spatial resolution.
Yufang Zhang, Shunlin Liang, Han Ma, Tao He, Feng Tian, Guodong Zhang, and Jianglei Xu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-553, https://doi.org/10.5194/essd-2024-553, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
Soil moisture (SM) plays a vital role in climate, agriculture, and hydrology, yet reliable long-term seamless global datasets remain scarce. To fill this gap, we developed a four-decade seamless global daily 5 km SM product using multi-source datasets and deep learning techniques. This product has long-term coverage, spatial and temporal integrity, and high accuracy, making it a valuable tool for applications like SM trend analysis, drought monitoring, and assessing vegetation responses.
Bing Li, Shunlin Liang, Han Ma, Guanpeng Dong, Xiaobang Liu, Tao He, and Yufang Zhang
Earth Syst. Sci. Data, 16, 3795–3819, https://doi.org/10.5194/essd-16-3795-2024, https://doi.org/10.5194/essd-16-3795-2024, 2024
Short summary
Short summary
This study describes 1 km all-weather instantaneous and daily mean land surface temperature (LST) datasets on the global scale during 2000–2020. It is the first attempt to synergistically estimate all-weather instantaneous and daily mean LST data on a long global-scale time series. The generated datasets were evaluated by the observations from in situ stations and other LST datasets, and the evaluation indicated that the dataset is sufficiently reliable.
Xinyan Liu, Tao He, Shunlin Liang, Ruibo Li, Xiongxin Xiao, Rui Ma, and Yichuan Ma
Earth Syst. Sci. Data, 15, 3641–3671, https://doi.org/10.5194/essd-15-3641-2023, https://doi.org/10.5194/essd-15-3641-2023, 2023
Short summary
Short summary
We proposed a data fusion strategy that combines the complementary features of multiple-satellite cloud fraction (CF) datasets and generated a continuous monthly 1° daytime cloud fraction product covering the entire Arctic during the sunlit months in 2000–2020. This study has positive significance for reducing the uncertainties for the assessment of surface radiation fluxes and improving the accuracy of research related to climate change and energy budgets, both regionally and globally.
Yufang Zhang, Shunlin Liang, Han Ma, Tao He, Qian Wang, Bing Li, Jianglei Xu, Guodong Zhang, Xiaobang Liu, and Changhao Xiong
Earth Syst. Sci. Data, 15, 2055–2079, https://doi.org/10.5194/essd-15-2055-2023, https://doi.org/10.5194/essd-15-2055-2023, 2023
Short summary
Short summary
Soil moisture observations are important for a range of earth system applications. This study generated a long-term (2000–2020) global seamless soil moisture product with both high spatial and temporal resolutions (1 km, daily) using an XGBoost model and multisource datasets. Evaluation of this product against dense in situ soil moisture datasets and microwave soil moisture products showed that this product has reliable accuracy and more complete spatial coverage.
Aolin Jia, Shunlin Liang, Dongdong Wang, Lei Ma, Zhihao Wang, and Shuo Xu
Earth Syst. Sci. Data, 15, 869–895, https://doi.org/10.5194/essd-15-869-2023, https://doi.org/10.5194/essd-15-869-2023, 2023
Short summary
Short summary
Satellites are now producing multiple global land surface temperature (LST) products; however, they suffer from data gaps caused by cloud cover, seriously restricting the applications, and few products provide gap-free global hourly LST. We produced global hourly, 5 km, all-sky LST data from 2011 to 2021 using geostationary and polar-orbiting satellite data. Based on the assessment, it has high accuracy and can be used to estimate evapotranspiration, drought, etc.
Han Ma, Shunlin Liang, Changhao Xiong, Qian Wang, Aolin Jia, and Bing Li
Earth Syst. Sci. Data, 14, 5333–5347, https://doi.org/10.5194/essd-14-5333-2022, https://doi.org/10.5194/essd-14-5333-2022, 2022
Short summary
Short summary
The fraction of absorbed photosynthetically active radiation (FAPAR) is one of the essential climate variables. This study generated a global land surface FAPAR product with a 250 m resolution based on a deep learning model that takes advantage of the existing FAPAR products and MODIS time series of observation information. Direct validation and intercomparison revealed that our product better meets user requirements and has a greater spatiotemporal continuity than other existing products.
Rui Ma, Jingfeng Xiao, Shunlin Liang, Han Ma, Tao He, Da Guo, Xiaobang Liu, and Haibo Lu
Geosci. Model Dev., 15, 6637–6657, https://doi.org/10.5194/gmd-15-6637-2022, https://doi.org/10.5194/gmd-15-6637-2022, 2022
Short summary
Short summary
Parameter optimization can improve the accuracy of modeled carbon fluxes. Few studies conducted pixel-level parameterization because it requires a high computational cost. Our paper used high-quality spatial products to optimize parameters at the pixel level, and also used the machine learning method to improve the speed of optimization. The results showed that there was significant spatial variability of parameters and we also improved the spatial pattern of carbon fluxes.
Xueyuan Gao, Shunlin Liang, Dongdong Wang, Yan Li, Bin He, and Aolin Jia
Earth Syst. Dynam., 13, 219–230, https://doi.org/10.5194/esd-13-219-2022, https://doi.org/10.5194/esd-13-219-2022, 2022
Short summary
Short summary
Numerical experiments with a coupled Earth system model show that large-scale nighttime artificial lighting in tropical forests will significantly increase carbon sink, local temperature, and precipitation, and it requires less energy than direct air carbon capture for capturing 1 t of carbon, suggesting that it could be a powerful climate mitigation option. Side effects include CO2 outgassing after the termination of the nighttime lighting and impacts on local wildlife.
Xiaona Chen, Shunlin Liang, Lian He, Yaping Yang, and Cong Yin
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-279, https://doi.org/10.5194/essd-2021-279, 2021
Preprint withdrawn
Short summary
Short summary
The present study developed a 39 year consistent 8-day 0.05 degree gap-free SCE dataset over the NH for the period 1981–2019 as part of the Global LAnd Surface Satellite dataset (GLASS) product suite based on the NOAA AVHRR-SR CDR and several contributory datasets. Compared with published SCE datasets, GLASS SCE has several advantages in snow cover studies, including long time series, finer spatial resolution (especially for years before 2000), and complete spatial coverage.
Diyang Cui, Shunlin Liang, Dongdong Wang, and Zheng Liu
Earth Syst. Sci. Data, 13, 5087–5114, https://doi.org/10.5194/essd-13-5087-2021, https://doi.org/10.5194/essd-13-5087-2021, 2021
Short summary
Short summary
Large portions of the Earth's surface are expected to experience changes in climatic conditions. The rearrangement of climate distributions can lead to serious impacts on ecological and social systems. Major climate zones are distributed in a predictable pattern and are largely defined following the Köppen climate classification. This creates an urgent need to compile a series of Köppen climate classification maps with finer spatial and temporal resolutions and improved accuracy.
Yan Chen, Shunlin Liang, Han Ma, Bing Li, Tao He, and Qian Wang
Earth Syst. Sci. Data, 13, 4241–4261, https://doi.org/10.5194/essd-13-4241-2021, https://doi.org/10.5194/essd-13-4241-2021, 2021
Short summary
Short summary
This study used remotely sensed and assimilated data to estimate all-sky land surface air temperature (Ta) using a machine learning method, and developed an all-sky 1 km daily mean land Ta product for 2003–2019 over mainland China. Validation results demonstrated that this dataset has achieved satisfactory accuracy and high spatial resolution simultaneously, which fills the current dataset gap in this field and plays an important role in studies of climate change and the hydrological cycle.
Yongkang Xue, Tandong Yao, Aaron A. Boone, Ismaila Diallo, Ye Liu, Xubin Zeng, William K. M. Lau, Shiori Sugimoto, Qi Tang, Xiaoduo Pan, Peter J. van Oevelen, Daniel Klocke, Myung-Seo Koo, Tomonori Sato, Zhaohui Lin, Yuhei Takaya, Constantin Ardilouze, Stefano Materia, Subodh K. Saha, Retish Senan, Tetsu Nakamura, Hailan Wang, Jing Yang, Hongliang Zhang, Mei Zhao, Xin-Zhong Liang, J. David Neelin, Frederic Vitart, Xin Li, Ping Zhao, Chunxiang Shi, Weidong Guo, Jianping Tang, Miao Yu, Yun Qian, Samuel S. P. Shen, Yang Zhang, Kun Yang, Ruby Leung, Yuan Qiu, Daniele Peano, Xin Qi, Yanling Zhan, Michael A. Brunke, Sin Chan Chou, Michael Ek, Tianyi Fan, Hong Guan, Hai Lin, Shunlin Liang, Helin Wei, Shaocheng Xie, Haoran Xu, Weiping Li, Xueli Shi, Paulo Nobre, Yan Pan, Yi Qin, Jeff Dozier, Craig R. Ferguson, Gianpaolo Balsamo, Qing Bao, Jinming Feng, Jinkyu Hong, Songyou Hong, Huilin Huang, Duoying Ji, Zhenming Ji, Shichang Kang, Yanluan Lin, Weiguang Liu, Ryan Muncaster, Patricia de Rosnay, Hiroshi G. Takahashi, Guiling Wang, Shuyu Wang, Weicai Wang, Xu Zhou, and Yuejian Zhu
Geosci. Model Dev., 14, 4465–4494, https://doi.org/10.5194/gmd-14-4465-2021, https://doi.org/10.5194/gmd-14-4465-2021, 2021
Short summary
Short summary
The subseasonal prediction of extreme hydroclimate events such as droughts/floods has remained stubbornly low for years. This paper presents a new international initiative which, for the first time, introduces spring land surface temperature anomalies over high mountains to improve precipitation prediction through remote effects of land–atmosphere interactions. More than 40 institutions worldwide are participating in this effort. The experimental protocol and preliminary results are presented.
Diyang Cui, Shunlin Liang, Dongdong Wang, and Zheng Liu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-53, https://doi.org/10.5194/essd-2021-53, 2021
Preprint withdrawn
Short summary
Short summary
The Köppen-Geiger climate classification has been widely applied in climate change and ecology studies to characterize climatic conditions. We present a new 1-km global dataset of Köppen-Geiger climate classification and bioclimatic variables for historical and future climates. The new climate maps offer higher classification accuracy, correspond well with distributions of vegetation and topographic features, and demonstrate the ability to identify recent and future changes in climate zones.
Xiongxin Xiao, Shunlin Liang, Tao He, Daiqiang Wu, Congyuan Pei, and Jianya Gong
The Cryosphere, 15, 835–861, https://doi.org/10.5194/tc-15-835-2021, https://doi.org/10.5194/tc-15-835-2021, 2021
Short summary
Short summary
Daily time series and full space-covered sub-pixel snow cover area data are urgently needed for climate and reanalysis studies. Due to the fact that observations from optical satellite sensors are affected by clouds, this study attempts to capture dynamic characteristics of snow cover at a fine spatiotemporal resolution (daily; 6.25 km) accurately by using passive microwave data. We demonstrate the potential to use the passive microwave and the MODIS data to map the fractional snow cover area.
Jin Ma, Ji Zhou, Frank-Michael Göttsche, Shunlin Liang, Shaofei Wang, and Mingsong Li
Earth Syst. Sci. Data, 12, 3247–3268, https://doi.org/10.5194/essd-12-3247-2020, https://doi.org/10.5194/essd-12-3247-2020, 2020
Short summary
Short summary
Land surface temperature is an important parameter in the research of climate change and many land surface processes. This article describes the development and testing of an algorithm for generating a consistent global long-term land surface temperature product from 20 years of NOAA AVHRR radiance data. The preliminary validation results indicate good accuracy of this new long-term product, which has been designed to simplify applications and support the scientific research community.
Yi Zheng, Ruoque Shen, Yawen Wang, Xiangqian Li, Shuguang Liu, Shunlin Liang, Jing M. Chen, Weimin Ju, Li Zhang, and Wenping Yuan
Earth Syst. Sci. Data, 12, 2725–2746, https://doi.org/10.5194/essd-12-2725-2020, https://doi.org/10.5194/essd-12-2725-2020, 2020
Short summary
Short summary
Accurately reproducing the interannual variations in vegetation gross primary production (GPP) is a major challenge. A global GPP dataset was generated by integrating the regulations of several major environmental variables with long-term changes. The dataset can effectively reproduce the spatial, seasonal, and particularly interannual variations in global GPP. Our study will contribute to accurate carbon flux estimates at long timescales.
Cited articles
Augustine, J. A., DeLuisi, J. J., and Long, C. N.: SURFRAD – A national
surface radiation budget network for atmospheric research, B.
Am. Meteorol. Soc., 81, 2341–2358, 2000.
Ball, J. E., Anderson, D. T., and Chan, C. S.: Comprehensive survey of deep
learning in remote sensing: theories, tools, and challenges for the
community, J. Appl. Remote Sens., 11, 042609, https://doi.org/10.1117/1.JRS.11.042609, 2017.
Barker, H. W. and Li, Z.: Interpreting shortwave albedo-transmittance plots:
True or apparent anomalous absorption?, Geophys. Res. Lett., 24,
2023–2026, 1997.
Betts, A. K., Zhao, M., Dirmeyer, P., and Beljaars, A.: Comparison of ERA40
and NCEP/DOE near-surface data sets with other ISLSCP-II data sets, J.
Geophys. Res.-Atmos., 111, D22S04, https://doi.org/10.1029/2006JD007174, 2006.
Bisht, G. and Bras, R. L.: Estimation of net radiation from the MODIS data
under all sky conditions: Southern Great Plains case study, Remote Sens.
Environ., 114, 1522–1534, 2010.
Bisht, G., Venturini, V., Islam, S., and Jiang, L.: Estimation of the net
radiation using MODIS (Moderate Resolution Imaging Spectroradiometer) data
for clear sky days, Remote Sens. Environ., 97, 52–67, 2005.
Box, J. E. and Rinke, A.: Evaluation of Greenland ice sheet surface climate
in the HIRHAM regional climate model using automatic weather station data,
J. Climate, 16, 1302–1319, 2003.
Chen, F., Crow, W. T., Colliander, A., Cosh, M. H., Jackson, T. J.,
Bindlish, R., Reichle, R. H., Chan, S. K., Bosch, D. D., Starks, P. J.,
Goodrich, D. C., and Seyfried, M. S.: Application of Triple Collocation in
Ground-Based Validation of Soil Moisture Active/Passive (SMAP) Level 2 Data
Products, IEEE J. Sel. Top. Appl., 10, 489–502, https://doi.org/10.1109/JSTARS.2016.2569998, 2017.
Chen, J., He, T., Jiang, B., and Liang, S.: Estimation of all-sky all-wave
daily net radiation at high latitudes from MODIS data, Remote Sens.
Environ., 245, 111842, https://doi.org/10.1016/j.rse.2020.111842, 2020.
Cheng, J. and Liang, S.: Global estimates for high-spatial-resolution
clear-sky land surface upwelling longwave radiation from MODIS data, IEEE
T. Geosci. Remote, 54, 4115–4129, 2016.
Cheng, J., Liang, S., Wang, W., and Guo, Y.: An efficient hybrid method for
estimating clear-sky surface downward longwave radiation from MODIS data,
J. Geophys. Res.-Atmos., 122, 2616–2630, https://doi.org/10.1002/2016JD026250, 2017.
Crow, W. T., Berg, A. A., Cosh, M. H., Loew, A., Mohanty, B. P., Panciera,
R., de Rosnay, P., Ryu, D., and Walker, J. P.: Upscaling sparse ground-based
soil moisture observations for the validation of coarse-resolution satellite
soil moisture products, Rev. Geophys., 50, RG2002, https://doi.org/10.1029/2011RG000372, 2012.
Delgado-Bonal, A., Marshak, A., Yang, Y., and Holdaway, D.: Analyzing
changes in the complexity of climate in the last four decades using MERRA-2
radiation data, Sci. Rep., 10, 922, https://doi.org/10.1038/s41598-020-57917-8,
2020.
Doelling, D. R., Loeb, N. G., Keyes, D. F., Nordeen, M. L., Morstad, D.,
Nguyen, C., Wielicki, B. A., Young, D. F., and Sun, M.: Geostationary
Enhanced Temporal Interpolation for CERES Flux Products, J.
Atmos. Ocean. Tech., 30, 1072–1090, https://doi.org/10.1175/jtech-d-12-00136.1, 2013.
Doelling, D. R., Sun, M., Nguyen, L. T., Nordeen, M. L., Haney, C. O.,
Keyes, D. F., and Mlynczak, P. E.: Advances in geostationary-derived
longwave fluxes for the CERES synoptic (SYN1deg) product, J.
Atmos. Ocean. Tech., 33, 503–521, 2016.
Draper, C., Reichle, R., de Jeu, R., Naeimi, V., Parinussa, R., and Wagner,
W.: Estimating root mean square errors in remotely sensed soil moisture over
continental scale domains, Remote Sens. Environ., 137, 288–298,
2013.
Fillmore, D., Rutan, D., Kato, S., Rose, F., and Caldwell, T.: Evaluation of aerosol optical depths and clear-sky radiative fluxes of the CERES Edition 4.1 SYN1deg data product, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2021-283, in review, 2021.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., and Reichle, R.: The
modern-era retrospective analysis for research and applications, version 2
(MERRA-2), J. Climate, 30, 5419–5454, 2017a.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan,
K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M.,
Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective
Analysis for Research and Applications, Version 2 (MERRA-2), J.
Climate, 30, 5419–5454, https://doi.org/10.1175/jcli-d-16-0758.1, 2017b.
Géron, A.: Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems, O'Reilly Media, Inc., Sebastopol, CA, USA, 2019.
Gruber, A., Su, C.-H., Zwieback, S., Crow, W., Dorigo, W., and Wagner, W.:
Recent advances in (soil moisture) triple collocation analysis,
Int. J. Appl. Earth Obs., 45,
200–211, 2016.
Guo, X., Yao, Y., Zhang, Y., Lin, Y., and Bei, X.: Discrepancies in the
Simulated Global Terrestrial Latent Heat Flux from GLASS and MERRA-2 Surface
Net Radiation Products, Remote Sensing, 12, 2763, https://doi.org/10.3390/rs12172763, 2020.
Hakuba, M. Z., Folini, D., Sanchez-Lorenzo, A., and Wild, M.: Spatial
representativeness of ground-based solar radiation measurements, J.
Geophys. Res.-Atmos., 118, 8585–8597, 2013.
Hao, D., Wen, J., Xiao, Q., Wu, S., Lin, X., Dou, B., You, D., and Tang, Y.:
Simulation and analysis of the topographic effects on snow-free albedo over
rugged terrain, Remote Sensing, 10, 278, https://doi.org/10.1016/j.rse.2019.111320, 2018.
Hao, D., Asrar, G., Zeng, Y., Zhu, Q., Wen, J., Xiao, Q., and Chen, M.:
Estimating hourly land surface downward shortwave and photosynthetically
active radiation from DSCOVR/EPIC observations, Remote Sens.
Environ., 232, 111320, https://doi.org/10.3390/rs10020278, 2019.
He, K., Zhang, X., Ren, S., and Sun, J.: Deep Residual Learning for Image
Recognition, 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 770–778, https://doi.org/10.1109/CVPR.2016.90, 2016.
He, T., Liang, S., Wang, D., Shi, Q., and Goulden, M. L.: Estimation of
high-resolution land surface net shortwave radiation from AVIRIS data:
Algorithm development and preliminary results, Remote Sens.
Environ., 167, 20–30, 2015.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., and Schepers, D.:
The ERA5 global reanalysis, Q. J. Roy. Meteor.
Soc., 146, 1999–2049, 2020.
Huang, G., Ma, M., Liang, S., Liu, S., and Li, X.: A LUT-based approach to
estimate surface solar irradiance by combining MODIS and MTSAT data, J.
Geophys. Res-Atmos., 116, 6255–6265, https://doi.org/10.1029/2011JD016120, 2011.
Huang, G., Li, X., Huang, C., Liu, S., Ma, Y., and Chen, H.:
Representativeness errors of point-scale ground-based solar radiation
measurements in the validation of remote sensing products, Remote Sens.
Environ., 181, 198–206, 2016.
Huang, G., Li, X., Lu, N., Wang, X., and He, T.: A General Parameterization
Scheme for the Estimation of Incident Photosynthetically Active Radiation
Under Cloudy Skies, IEEE T. Geosci. Remote, 116, D22201, https://doi.org/10.1029/2011JD016120,
2020.
Jia, A., Jiang, B., Liang, S., Zhang, X., and Ma, H.: Validation and
spatiotemporal analysis of CERES surface net radiation product, Remote
Sensing, 8, 90, https://doi.org/10.3390/rs8020090, 2016.
Jia, A., Liang, S., Jiang, B., Zhang, X., and Wang, G.: Comprehensive
assessment of global surface net radiation products and uncertainty
analysis, J. Geophys. Res.-Atmos., 123, 1970–1989,
2018.
Jiang, B., Zhang, Y., Liang, S., Zhang, X., and Xiao, Z.: Surface Daytime
Net Radiation Estimation Using Artificial Neural Networks, Remote Sensing,
6, 11031–11050, 2014.
Jiang, B., Zhang, Y., Liang, S., Wohlfahrt, G., Arain, A., Cescatti, A.,
Georgiadis, T., Jia, K., Kiely, G., Lund, M., Montagnani, L., Magliulo, V.,
Ortiz, P. S., Oechel, W., Vaccari, F. P., Yao, Y., and Zhang, X.: Empirical
estimation of daytime net radiation from shortwave radiation and ancillary
information, Agr. Forest Meteorol., 211–212, 23–36, 2015.
Jiang, B., Liang, S., Ma, H., Zhang, X., Xiao, Z., Zhao, X., Jia, K., Yao,
Y., and Jia, A.: GLASS daytime all-wave net radiation product: Algorithm
development and preliminary validation, Remote Sensing, 8, 222, https://doi.org/10.3390/rs8030222, 2016.
Jiang, B., Liang, S., Jia, A., Xu, J., Zhang, X., Xiao, Z., Zhao, X., Jia,
K., and Yao, Y.: Validation of the Surface Daytime Net Radiation Product
From Version 4.0 GLASS Product Suite, IEEE Geosci. Remote Sens.
Lett., 16, 509–513, 2018.
Jiang, H., Lu, N., Qin, J., and Yao, L.: Surface global and diffuse solar radiation over China acquired from geostationary Multi-functional Transport Satellite data, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2019-209, 2019a.
Jiang, H., Lu, N., Qin, J., Tang, W., and Yao, L.: A deep learning algorithm
to estimate hourly global solar radiation from geostationary satellite data,
Renew. Sust.e Energ. Rev., 114, 109327, https://doi.org/10.1016/j.rser.2019.109327, 2019b.
Jiang, H., Lu, N., Qin, J., and Yao, L.: Hourly 5-km surface total and
diffuse solar radiation in China, 2007–2018, Sci. Data, 7, 311, https://doi.org/10.1038/s41597-020-00654-4, 2020a.
Jiang, H., Lu, N., Huang, G., Yao, L., Qin, J., and Liu, H.: Spatial scale
effects on retrieval accuracy of surface solar radiation using satellite
data, Appl. Energ., 270, 115178, https://doi.org/10.1016/j.apenergy.2020.115178, 2020b.
Jiao, Z., Yan, G., Zhao, J., Wang, T., and Chen, L.: Estimation of surface
upward longwave radiation from MODIS and VIIRS clear-sky data in the Tibetan
Plateau, Remote Sens. Environ., 162, 221–237, 2015.
Jung, M., Koirala, S., Weber, U., Ichii, K., Gans, F., Camps-Valls, G.,
Papale, D., Schwalm, C., Tramontana, G., and Reichstein, M.: The FLUXCOM
ensemble of global land-atmosphere energy fluxes, Sci. Data, 6, 1–14,
2019a.
Jung, M., Koirala, S., Weber, U., Ichii, K., Gans, F., Camps-Valls, G.,
Papale, D., Schwalm, C., Tramontana, G., and Reichstein, M.: The FLUXCOM
ensemble of global land-atmosphere energy fluxes, Sci. Data, 6, 74, https://doi.org/10.1038/s41597-019-0076-8, 2019b.
Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.-K., Hnilo, J., Fiorino,
M., and Potter, G.: Ncep–doe amip-ii reanalysis (r-2), B.
Am. Meteorol. Soc., 83, 1631–1644, 2002.
King, M. D., Platnick, S., Menzel, W. P., Ackerman, S. A., and Hubanks, P.
A.: Spatial and temporal distribution of clouds observed by MODIS onboard
the Terra and Aqua satellites, IEEE T. Geosci. Remote, 51, 3826–3852, 2013.
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi,
K., Kamahori, H., Kobayashi, C., and Endo, H.: The JRA-55 reanalysis:
General specifications and basic characteristics, J.
Meteorol. Soc. Jpn. Ser. II, 93, 5–48, 2015.
Letu, H., Shi, J., Li, M., Wang, T., Shang, H., Lei, Y., Ji, D., Wen, J., Yang, K., and Chen, L.: A review of the estimation of downward surface shortwave radiation based on satellite data: Methods, progress and problems, Science China Earth Sciences, 63, 774–789, https://doi.org/10.1007/s11430-019-9589-0, 2020.
Li, T. and Cheng, X.: Estimating daily full-coverage surface ozone
concentration using satellite observations and a spatiotemporally embedded
deep learning approach, Int. J. Appl. Earth Obs., 101, 102356, https://doi.org/10.1016/j.jag.2021.102356, 2021.
Li, T., Wang, Y., and Yuan, Q.: Remote Sensing Estimation of Regional NO2
via Space-Time Neural Networks, Remote Sensing, 12, 2514, https://doi.org/10.3390/rs12162514, 2020a.
Li, T., Shen, H., Yuan, Q., and Zhang, L.: Geographically and temporally
weighted neural networks for satellite-based mapping of ground-level PM2.5,
ISPRS J. Photogramm, 167, 178–188, 2020b.
Liang, S., Wang, K., Zhang, X., and Wild, M.: Review on estimation of land
surface radiation and energy budgets from ground measurement, remote sensing
and model simulations, IEEE J. Sel. Top. Appl., 3, 225–240, 2010.
Liang, S., Wang, D., He, T., and Yu, Y.: Remote sensing of earth's energy
budget: synthesis and review, Int. J. Digit. Earth, 12,
737–780, 2019.
Liang, S., Cheng, J., Jia, K., Jiang, B., Liu, Q., Xiao, Z., Yao, Y., Yuan,
W., Zhang, X., and Zhao, X.: The Global LAnd Surface Satellite (GLASS)
product suite, B. Am. Meteorol. Soc., 102, E323–E337, https://doi.org/10.1175/bams-d-18-0341.1, 2020.
Liang, S., Cheng, J., Jia, K., Jiang, B., Liu, Q., Xiao, Z., Yao, Y., Yuan, W., Zhang, X., Zhao, X., and Zhou, J.: The Global Land Surface Satellite (GLASS) Product Suite, B. Am. Meteorol. Soc., 102, E323–E337, https://doi.org/10.1175/bams-d-18-0341.1, 2021.
Liu, X., Tang, B.-H., Yan, G., Li, Z.-L., and Liang, S.: Retrieval of global
orbit drift corrected land surface temperature from long-term AVHRR data,
Remote Sensing, 11, 2843, https://doi.org/10.3390/rs11232843, 2019.
Loeb, N. G., Doelling, D. R., Wang, H., Su, W., Nguyen, C., Corbett, J. G.,
Liang, L., Mitrescu, C., Rose, F. G., and Kato, S.: Clouds and the earth's
radiant energy system (CERES) energy balanced and filled (EBAF)
top-of-atmosphere (TOA) edition-4.0 data product, J. Climate, 31,
895–918, 2018.
Lu, N., Qin, J., Yang, K., and Sun, J.: A simple and efficient algorithm to
estimate daily global solar radiation from geostationary satellite data,
Energy, 36, 3179–3188, 2011.
Ma, J., Zhou, J., Göttsche, F.-M., Liang, S., Wang, S., and Li, M.: A global long-term (1981–2000) land surface temperature product for NOAA AVHRR, Earth Syst. Sci. Data, 12, 3247–3268, https://doi.org/10.5194/essd-12-3247-2020, 2020.
McColl, K. A., Vogelzang, J., Konings, A. G., Entekhabi, D., Piles, M., and
Stoffelen, A.: Extended triple collocation: Estimating errors and
correlation coefficients with respect to an unknown target, Geophys.
Res. Lett., 41, 6229–6236, 2014.
Ohmura, A., Dutton, E. G., Forgan, B., Fröhlich, C., Gilgen, H., Hegner,
H., Heimo, A., König-Langlo, G., McArthur, B., and Müller, G.:
Baseline Surface Radiation Network (BSRN/WCRP): New precision radiometry for
climate research, B. Am. Meteorol. Soc., 79,
2115–2136, 1998.
Pedelty, J., Devadiga, S., Masuoka, E., Brown, M., Pinzon, J., Tucker, C.,
Vermote, E., Prince, S., Nagol, J., Justice, C., Roy, D., Junchang, J.,
Schaaf, C., Jicheng, L., Privette, J., and Pinheiro, A.: Generating a
Long-term Land Data Record from the AVHRR and MODIS Instruments, 2007 IEEE
International Geoscience and Remote Sensing Symposium, 23–28 July 2007,
1021–1025, https://doi.org/10.1109/IGARSS.2007.4422974, 2007.
Philipona, R., Fröhlich, C., Dehne, K., DeLuisi, J., Augustine, J.,
Dutton, E., Nelson, D., Forgan, B., Novotny, P., and Hickey, J.: The
Baseline Surface Radiation Network pyrgeometer round-robin calibration
experiment, J. Atmos. Ocean. Tech., 15, 687–696,
1998.
Pinker, R. and Laszlo, I.: Modeling surface solar irradiance for satellite
applications on a global scale, J. Appl. Meteorol.
Clim., 31, 194–211, 1992.
Qin, J., Yang, K., Liang, S., and Tang, W.: Estimation of Daily Mean
Photosynthetically Active Radiation under All-Sky Conditions Based on
Relative Sunshine Data, J. Appl. Meteorol. Clim.gy, 51,
150–160, 2012.
Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., and
Carvalhais, N.: Deep learning and process understanding for data-driven
Earth system science, Nature, 566, 195–204, 2019.
Román, M. O., Schaaf, C. B., Woodcock, C. E., Strahler, A. H., Yang, X.,
Braswell, R. H., Curtis, P. S., Davis, K. J., Dragoni, D., and Goulden, M.
L.: The MODIS (Collection V005) BRDF/albedo product: Assessment of spatial
representativeness over forested landscapes, Remote Sens. Environ.,
113, 2476–2498, 2009.
Romanuke, V.: Appropriate Number and Allocation of RELUS in Convolutional Neural Networks. Research Bulletin of the National Technical University of Ukraine Kyiv Politechnic Institute, 69–78, https://doi.org/10.20535/1810-0546.2017.1.88156, 2017.
Rossow, W. and Zhang, Y. C.: Calculation of surface and top of atmosphere
radiative fluxes from physical quantities based on ISCCP data sets: 2.
Validation and first results, J. Geophys. Res.-Atmos.,
100, 1167–1197, 1995.
Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., Tripp, P.,
Kistler, R., Woollen, J., and Behringer, D.: The NCEP climate forecast
system reanalysis, B. Am. Meteor. Soc., 91,
1015–1058, 2010.
Sellers, P., Dickinson, R., Randall, D., Betts, A., Hall, F., Berry, J.,
Collatz, G., Denning, A., Mooney, H., and Nobre, C.: Modeling the exchanges
of energy, water, and carbon between continents and the atmosphere, Science,
275, 502–509, 1997.
Shupe, M. D., Walden, V. P., Eloranta, E., Uttal, T., Campbell, J. R.,
Starkweather, S. M., and Shiobara, M.: Clouds at Arctic atmospheric
observatories. Part I: Occurrence and macrophysical properties, J.
Appl. Meteorol. Clim., 50, 626–644, 2011.
Song, Z., Liang, S., Wang, D., Zhou, Y., and Jia, A.: Long-term record of
top-of-atmosphere albedo over land generated from AVHRR data, Remote Sens.
Environ., 211, 71–88, 2018.
Stackhouse Jr., P., Gupta, S., Cox, S., Chiacchio, M., and Mikovitz, J.: The WCRP/GEWEX surface radiation budget project release 2: An assessment of surface fluxes at 1 degree resolution, in: IRS 2000: Current problems in atmospheric radiation, edited by: Smith, W. L. and Timofeyev, Y. M., International Radiation Symposium, St. Petersburg, Russia (2000), 24–29, 2000.
Steffen, K. and Box, J.: Surface climatology of the Greenland ice sheet:
Greenland Climate Network 1995–1999, J. Geophys. Res.-Atmos., 106, 33951–33964, 2001.
Stoffelen, A.: Toward the true near-surface wind speed: Error modeling and
calibration using triple collocation, J. Geophys. Res.-Oceans, 103, 7755–7766, 1998.
Stokes, G. M. and Schwartz, S. E.: The Atmospheric Radiation Measurement
(ARM) Program: Programmatic background and design of the cloud and radiation
test bed, B. Am. Meteor. Soc., 75, 1201–1222,
1994.
Tang, W., Yang, K., Qin, J., and Min, M.: Development of a 50-year daily
surface solar radiation dataset over China, Science China Earth Sciences,
56, 1555–1565, 2013.
Tang, W., Qin, J., Yang, K., Niu, X., Min, M., and Liang, S.: An efficient
algorithm for calculating photosynthetically active radiation with MODIS
products, Remote Sens. Enviro., 194, 146–154, 2017.
Tang, W., Yang, K., Qin, J., Li, X., and Niu, X.: A 16-year dataset (2000–2015) of high-resolution (3 h, 10 km) global surface solar radiation, Earth Syst. Sci. Data, 11, 1905–1915, https://doi.org/10.5194/essd-11-1905-2019, 2019.
Tang, W.-J., Yang, K., Qin, J., Cheng, C. C. K., and He, J.: Solar radiation trend across China in recent decades: a revisit with quality-controlled data, Atmos. Chem. Phys., 11, 393–406, https://doi.org/10.5194/acp-11-393-2011, 2011.
Verma, M., Fisher, J. B., Mallick, K., Ryu, Y., Kobayashi, H., Guillaume,
A., Moore, G., Ramakrishnan, L., Hendrix, V., and Wolf, S.: Global surface
net-radiation at 5 km from MODIS Terra, Remote Sensing, 8, 739, https://doi.org/10.3390/rs8090739, 2016.
Vermote, E. and Kaufman, Y.: Absolute calibration of AVHRR visible and
near-infrared channels using ocean and cloud views, Int. J.
Remote Sens., 16, 2317–2340, 1995.
Wang, B., Yuan, Q., Yang, Q., Zhu, L., Li, T., and Zhang, L.: Estimate
hourly PM2.5 concentrations from Himawari-8 TOA reflectance directly using
Geo-intelligent long short-term memory network, Environ. Pollut.,
271, 116327, https://doi.org/10.1016/j.envpol.2020.116327, 2020.
Wang, D. and Liang, S.: Estimating top-of-atmosphere daily reflected
shortwave radiation flux over land from MODIS data, IEEE T.
Geosci. Remote, 55, 4022–4031, 2017.
Wang, D., Liang, S., He, T., and Shi, Q.: Estimation of daily surface
shortwave net radiation from the combined MODIS data, IEEE T.
Geosci. Remote, 53, 5519–5529, 2015a.
Wang, D., Liang, S., He, T., and Shi, Q.: Estimating clear-sky all-wave net
radiation from combined visible and shortwave infrared (VSWIR) and thermal
infrared (TIR) remote sensing data, Remote Sens. Environ., 167,
31–39, 2015b.
Wang, D., Liang, S., Zhang, Y., Gao, X., and Jia, A.: A New Set of MODIS
Land Products (MCD18): Downward Shortwave Radiation and Photosynthetically
Active Radiation, Remote Sensing, 12, 168, https://doi.org/10.3390/rs12010168, 2020.
Wang, K. and Dickinson, R. E.: Global atmospheric downward longwave
radiation at the surface from ground-based observations, satellite
retrievals, and reanalyses, Rev. Geophys., 51, 150–185, 2013.
Wang, K. and Liang, S.: Estimation of daytime net radiation from shortwave
radiation measurements and meteorological observations, J. Appl.
Meteorol. Clim., 48, 634–643, 2009.
Wang, Y., Jiang, B., Liang, S., Wang, D., He, T., Wang, Q., Zhao, X., and
Xu, J.: Surface Shortwave net radiation estimation from Landsat TM/ETM+
data using four machine learning algorithms, Remote Sensing, 11, 2847, https://doi.org/10.3390/rs11232847, 2019.
Wei, Y., Zhang, X., Hou, N., Zhang, W., Jia, K., and Yao, Y.: Estimation of
surface downward shortwave radiation over China from AVHRR data based on
four machine learning methods, Sol. Energy, 177, 32–46, 2019.
Wielicki, B. A., Barkstrom, B. R., Harrison, E. F., Lee, R. B., III, Smith,
G. L., and Cooper, J. E.: Clouds and the Earth's Radiant Energy System
(CERES): An Earth Observing System Experiment, B. Am.
Meteorol. Soc., 77, 853-868, https://doi.org/10.1175/1520-0477(1996)077<0853:catere>2.0.co;2, 1996.
Wilson, K., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D., Berbigier,
P., Bernhofer, C., Ceulemans, R., Dolman, H., and Field, C.: Energy balance
closure at FLUXNET sites, Agr. Forest Meteorol., 113, 223–243,
2002.
Wu, H., Yang, Q., Liu, J., and Wang, G.: A spatiotemporal deep fusion model
for merging satellite and gauge precipitation in China, J.
Hydrol., 584, 124664, https://doi.org/10.1016/j.jhydrol.2020.124664, 2020.
Wu, X., Xiao, Q., Wen, J., and You, D.: Direct comparison and triple
collocation: Which is more reliable in the validation of coarse-scale
satellite surface albedo products, J. Geophys. Res.-Atmos., 124, 5198–5213, 2019.
Wyser, K., O'Hirok, W., Gautier, C., and Jones, C.: Remote sensing of
surface solar irradiance with corrections for 3-D cloud effects, Remote
Sens. Environ., 80, 272–284, https://doi.org/10.1016/S0034-4257(01)00309-1, 2002.
Xi, B., Qiu, S., Dong, X., Smith Jr, W. L., Minnis, P., and Sun-Mack, S.:
Evaluation of CERES-MODIS Ed4 Cloud Macrophysical Properties using 11-yr ARM
Ground-based Observations over the Arctic, AGUFM, 2018, A11I–2348, 2018.
Xiao, Z., Liang, S., Tian, X., Jia, K., Yao, Y., and Jiang, B.:
Reconstruction of long-term temporally continuous NDVI and surface
reflectance from AVHRR data, IEEE J. Sel. Top. Appl., 10, 5551–5568, 2017.
Xu, J., Liang, S., and Jiang, B.: Daily surface all-wave net radiation over
global land (1981–2019) from AVHRR data, Zenodo [data set],
https://doi.org/10.5281/zenodo.5546316, 2021.
Xu, J., Jiang, B., Liang, S., Li, X., Wang, Y., Peng, J., Chen, H., Liang,
H., and Li, S.: Generating a High-Resolution Time-Series Ocean Surface Net
Radiation Product by Downscaling J-OFURO3, IEEE T. Geosci.
Remote, 59, 2794–2809, https://doi.org/10.1109/TGRS.2020.3021585, 2020.
Yamamoto, S., Saigusa, N., Gamo, M., Fujinuma, Y., Inoue, G., and Hirano,
T.: Findings through the AsiaFlux network and a view toward the future,
J. Geograph. Sci., 15, 142–148, 2005.
Yang, D.: Quantifying the spatial scale mismatch between satellite-derived
solar irradiance and in situ measurements: A case study using CERES synoptic
surface shortwave flux and the Oklahoma Mesonet, J. Renew.
Sustain. Energ., 12, 056104, https://doi.org/10.1063/5.0025771, 2020.
Yang, F. and Cheng, J.: A framework for estimating cloudy sky surface
downward longwave radiation from the derived active and passive cloud
property parameters, Remote Sens. Environ., 248, 111972, https://doi.org/10.1016/j.rse.2020.11197, 2020.
Yang, L., Zhang, X., Liang, S., Yao, Y., Jia, K., and Jia, A.: Estimating
surface downward shortwave radiation over China based on the gradient
boosting decision tree method, Remote Sens., 10, 185, https://doi.org/10.3390/rs10020185, 2018.
Yin, Z., Wu, P., Foody, G. M., Wu, Y., Liu, Z., Du, Y., and Ling, F.:
Spatiotemporal Fusion of Land Surface Temperature Based on a Convolutional
Neural Network, IEEE T. Geosci. Remote, 59, 1808–1822, https://doi.org/10.1109/TGRS.2020.2999943, 2020.
Yuan, Q., Xu, H., Li, T., Shen, H., and Zhang, L.: Estimating surface soil
moisture from satellite observations using a generalized regression neural
network trained on sparse ground-based measurements in the continental US,
J. Hydrol., 580, 124351, https://doi.org/10.1016/j.jhydrol.2019.124351, 2020a.
Yuan, Q., Shen, H., Li, T., Li, Z., Li, S., Jiang, Y., Xu, H., Tan, W.,
Yang, Q., and Wang, J.: Deep learning in environmental remote sensing:
Achievements and challenges, Remote Sens. Environ., 241, 111716, https://doi.org/10.1016/j.rse.2020.111716,
2020b.
Zhang, X., Liang, S., Wild, M., and Jiang, B.: Analysis of surface incident
shortwave radiation from four satellite products, Remote Sensing of
Environment, 165, 186–202, 2015.
Zhang, X., Lu, N., Jiang, H., and Yao, L.: Evaluation of Reanalysis Surface
Incident Solar Radiation Data in China, Sci. Rep., 10, 3494, https://doi.org/10.1038/s41598-020-60460-1, 2020.
Zhang, X., Liang, S., Wang, G., Yao, Y., Jiang, B., and Cheng, J.:
Evaluation of the reanalysis surface incident shortwave radiation products
from NCEP, ECMWF, GSFC, and JMA using satellite and surface observations,
Remote Sens., 8, 225, https://doi.org/10.3390/rs8030225, 2016.
Zhang, Y., Rossow, W. B., Lacis, A. A., Oinas, V., and Mishchenko, M. I.:
Calculation of radiative fluxes from the surface to top of atmosphere based
on ISCCP and other global data sets: Refinements of the radiative transfer
model and the input data, J. Geophys. Res.-Atmos., 109, D19105, https://doi.org/10.1029/2003JD004457,
2004.
Short summary
Land surface all-wave net radiation (Rn) is a key parameter in many land processes. Current products have drawbacks of coarse resolutions, large uncertainty, and short time spans. A deep learning method was used to obtain global surface Rn. A long-term Rn product was generated from 1981 to 2019 using AVHRR data. The product has the highest accuracy and a reasonable spatiotemporal variation compared to three other products. Our product will play an important role in long-term climate change.
Land surface all-wave net radiation (Rn) is a key parameter in many land processes. Current...
Altmetrics
Final-revised paper
Preprint