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Abstract. The surface radiation budget, also known as all-wave net radiation (Rn), is a key parameter for various
land surface processes including hydrological, ecological, agricultural, and biogeochemical processes. Satellite
data can be effectively used to estimate Rn, but existing satellite products have coarse spatial resolutions and
limited temporal coverage. In this study, a point-surface matching estimation (PSME) method is proposed to
estimate surface Rn using a residual convolutional neural network (RCNN) integrating spatially adjacent infor-
mation to improve the accuracy of retrievals. A global high-resolution (0.05◦), long-term (1981–2019), and daily
mean Rn product was subsequently generated from Advanced Very High Resolution Radiometer (AVHRR) data.
Specifically, the RCNN was employed to establish a nonlinear relationship between globally distributed ground
measurements from 522 sites and AVHRR top-of-atmosphere (TOA) observations. Extended triplet collocation
(ETC) technology was applied to address the spatial-scale mismatch issue resulting from the low spatial sup-
port of ground measurements within the AVHRR footprint by selecting reliable sites for model training. The
overall independent validation results show that the generated AVHRR Rn product is highly accurate, with R2,
root-mean-square error (RMSE), and bias of 0.84, 26.77 W m−2 (31.54 %), and 1.16 W m−2 (1.37 %), respec-
tively. Inter-comparisons with three other Rn products, i.e., the 5 km Global Land Surface Satellite (GLASS); the
1◦ Clouds and the Earth’s Radiant Energy System (CERES); and the 0.5◦× 0.625◦ Modern-Era Retrospective
analysis for Research and Applications, Version 2 (MERRA-2), illustrate that our AVHRR Rn retrievals have
the best accuracy under most of the considered surface and atmospheric conditions, especially thick-cloud or
hazy conditions. However, the performance of the model needs to be further improved for the snow/ice cover
surface. The spatiotemporal analyses of these four Rn datasets indicate that the AVHRR Rn product reasonably
replicates the spatial pattern and temporal evolution trends of Rn observations. The long-term record (1981–
2019) of the AVHRR Rn product shows its value in climate change studies. This dataset is freely available at
https://doi.org/10.5281/zenodo.5546316 for 1981–2019 (Xu et al., 2021).
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1 Introduction

Net radiation (Rn), which characterizes the surface radia-
tion budget, is the difference between downward and upward
radiation across the shortwave (0.3–3.0 µm) and longwave
(3.0–100 µm) spectra. The surface radiation budget links the
atmospheric climate system to the land surface. Rn is thus a
critical variable for studying Earth–atmosphere interactions,
including meteorological, hydrological, and biological pro-
cesses, and is also responsible for the redistribution of sur-
face available energy (Sellers et al., 1997). Accurate charac-
terization and quantification of spatial–temporal variations in
surface Rn are essential for both scientific and industrial ap-
plications, such as hydrological modeling and water resource
management (Hao et al., 2019). However, because the spatial
and temporal dynamics of surface Rn are affected by multi-
ple surface features (e.g., albedo, emissivity, and land sur-
face temperature) and atmospheric parameters (e.g., clouds,
aerosols, ozone, and water vapor) (Wang et al., 2015b), ex-
isting surface Rn data suffer from large uncertainties (Jia et
al., 2016, 2018; Jiang et al., 2018; Yang and Cheng, 2020).
Therefore, there is an urgent need for a long-term, high-
resolution surface Rn dataset to more properly understand
the spatial pattern and temporal dynamics of Rn (i.e., sea-
sonal and inter-annual variability).

Traditionally, historical Rn and surface radiative compo-
nents have been measured at ground meteorological stations.
These ground-based measurements are widely used to study
spatiotemporal variations in regional surface radiation and to
evaluate gridded products (Jia et al., 2018; Zhang et al., 2020,
2015). Nevertheless, the high cost of maintaining radiome-
ters means that stations are sparsely distributed, severely hin-
dering our ability to study and understand the spatiotemporal
variability in surface Rn at the global scale.

Alternatively, reanalysis products provide long-term
global surface Rn information (Zhang et al., 2016). The
greatest advantage of reanalysis products is their global cov-
erage over a long-term period; however, the large uncertainty
and coarse spatial resolution of reanalysis products hinder
their applications at a regional spatial scale (Jia et al., 2018;
Zhang et al., 2016; Zhang et al., 2020).

Retrieving Rn from satellite data is another effective
method (Liang et al., 2010, 2019). Currently, satellite-based
Rn retrieval methods can be broadly divided into two cat-
egories, physical methods based on radiative transfer (RT)
and empirical statistical methods. RT-based physical meth-
ods are more applicable to a larger spatiotemporal extent be-
cause they consider the physical processes of solar radiation
from the top of the atmosphere to the Earth’s surface (Tang
et al., 2019). The look-up-table (LUT) and parameterization
methods are two typical physical schemes that are widely
used to estimate surface radiation from satellite data. To ad-
dress the low computational efficiency of the radiative trans-
fer model (RTM), the LUT method was proposed to estimate
the surface radiation from satellite top-of-atmosphere (TOA)

observations, which combines the advantages of RTM-based
simulations and statistical methods (Wang et al., 2015b, a;
D. Wang et al., 2020; Cheng and Liang, 2016; Cheng et al.,
2017; Huang et al., 2011). This approach relies on several
theoretical assumptions in the RTM simulation process, such
as water vapor amounts, aerosol types, plane-parallel ho-
mogeneous clouds, horizontal homogeneity, and directional
properties of the surface (Jiang et al., 2019b), which results
in errors in the final radiation estimates (Hao et al., 2018;
Cheng et al., 2017; Jiao et al., 2015). The parameterization
scheme is another typical physical method that uses various
surface and atmospheric parameter data to calculate surface
radiation based on simplified RT (Huang et al., 2020; Qin et
al., 2012). However, in the calculation of parameterized for-
mulas, errors from each input variable accumulate in the final
calculated surface radiation.

Conversely, differently from physical methods, empiri-
cal statistical methods typically account for spatial–temporal
variations in Rn by establishing statistical relationships be-
tween satellite measures or sensed variables, including sur-
face and atmospheric variables or TOA observations, and
surface radiation measurements (Tang et al., 2017; Huang et
al., 2020; Jiang et al., 2015; Bisht and Bras, 2010; Bisht et
al., 2005) using linear or nonlinear models. Machine learn-
ing (ML) has played an important role in the development
of empirical statistical methods owing to its strong nonlinear
fitting ability (Jiang et al., 2014, 2016; Chen et al., 2020; Xu
et al., 2020). Although statistical methods incorporate very
little physical knowledge and have limited ability to expand
their coverage, they are still widely employed owing to their
low computational cost and easy implementation.

Several well-known global Rn datasets have been gener-
ated from satellite data (Table 1), such as the Global En-
ergy and Water Cycle Experiment surface radiation bud-
get (GEWEX-SRB) (Pinker and Laszlo, 1992), the Clouds
and the Earth’s Radiant Energy System (CERES) (Loeb et
al., 2018), and the International Satellite Cloud Climatology
Project (ISCCP) (Zhang et al., 2004). Although these prod-
ucts have been widely used in various fields, their coarse spa-
tial resolution (≥ 100 km) cannot meet the requirements of
high-resolution Rn data. A high-resolution (5 km) global Rn
product was recently released (Jiang et al., 2018) from the
Global Land Surface Satellite (GLASS) product suite (Liang
et al., 2020). The GLASS Rn product, which has been avail-
able since 2000, was produced from the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) data and reanaly-
sis products. The FLUXCOM initiative recently published a
gridded product of surface Rn using multiple ML methods
to merge energy flux measurements with remote sensing and
meteorological data to estimate Rn retrievals, but the product
only provides available data on areas covered by vegetation
and the dataset only spans 15 years (Jung et al., 2019b). A
long-term, high-resolution, and accurate surface Rn dataset
is, therefore, still urgently needed to help more clearly un-
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derstand the long-term spatiotemporal variation in global sur-
face Rn.

In this study, deep learning ML methods were explored
to produce a long-term, high-resolution surface Rn dataset
from Advanced Very High Resolution Radiometer (AVHRR)
data. Reviewing recent studies on surface Rn estimation us-
ing ML methods, many significant advancements have been
made (Jiang et al., 2014; Letu et al., 2020; Wei et al., 2019;
Wang et al., 2019); however, clear deviations still exist be-
tween satellite-derived estimations and ground-based mea-
surements. Apart from the performance of the ML method
itself, many of these discrepancies are attributed to two
aspects: first, the spatial representation mismatch between
satellite data and ground-based measurements and, second,
the neglect of spatially adjacent effects on surface radiation
estimation.

The spatial-scale mismatch between surface radiation for
domain averages and ground point measurements with insuf-
ficient spatial representativeness (Jiang et al., 2019b; Barker
and Li, 1997) has attracted attention for a long time in the
development of ML (Yuan et al., 2020a) and in the evalu-
ation of gridded products (Huang et al., 2016; Yang, 2020;
Román et al., 2009). However, many current studies still use
matched point-surface sample datasets to train ML models
regardless of the difference in spatial representativeness of
matched point-surface data. The triple collocation (TC) tech-
nique (Stoffelen, 1998) was considered an appropriate up-
scaling approach for the impact of random measurement er-
ror on ground-based measurements in comparison to other
complicated upscaling methods (e.g., the time stability ap-
proach and the block kriging algorithm; Crow et al., 2012;
Yuan et al., 2020a). Furthermore, an extended triple colloca-
tion (ETC) method was proposed by McColl et al. (2014) and
then applied to the validation activities of the Soil Moisture
Active Passive (SMAP) level-2 surface soil moisture (SSM)
product (Chen et al., 2017) and satellite surface albedo prod-
ucts (Wu et al., 2019). Therefore, the ETC technology is em-
ployed to limit the effect of upscaling errors in ground mea-
surements on the final surface Rn estimates at the satellite
footprint scale.

Spatially adjacent effects should also be considered in the
development of ML methods. With an increase in spatial res-
olution, horizontal inhomogeneities in the atmosphere have
become increasingly important and reduce accuracy of sur-
face radiation retrievals at higher spatial resolutions, espe-
cially in conjunction with high solar and viewing angles
(Wyser et al., 2002); the correlation between satellite TOA
observations and surface radiation measurements weakens,
and surface radiation cannot be accessed directly from satel-
lite TOA data for individual pixels. Convolutional neural
networks (CNNs) were initially designed to perform image
recognition tasks; they can be readily used to extract various
high-level, hierarchical, and abstract spatial pattern features
from original multispectral or hyperspectral satellite images
(Yuan et al., 2020b; Ball et al., 2017). Using this approach,

multiple environmental parameters and their spatially adja-
cent effects can be accounted for in the estimation of sur-
face Rn (Jiang et al., 2019b). Therefore, CNNs represent a
promising method for integrating potential spatially adjacent
effects in surface radiation estimation (Jiang et al., 2020b,
2019b).

Several studies have successfully employed CNNs and
other deep neural networks to retrieve surface parameters,
such as global solar radiation (Jiang et al., 2019a), precipi-
tation (Wu et al., 2020), and land surface temperature (Yin
et al., 2020), with varying success rates. However, no study
has yet attempted to retrieve global surface Rn using a CNN
model. In this study, a residual CNN (RCNN)-based point-
surface matching estimation method (PSME) is proposed for
estimating global land surface Rn. Specifically, the RCNN
model links ground-based Rn measurements with multiple
image blocks of AVHRR TOA observation data, including
reflectance in visible channels and brightness temperature in
thermal infrared channels, along with other additional auxil-
iary variables. These auxiliary variables include angular in-
formation, i.e., the solar zenith angle (SZA), viewing zenith
angle (VZA), and relative azimuth angle (RAA), and daily
Modern-Era Retrospective analysis for Research and Appli-
cations, Version 2 (MERRA-2), Rn data (Jia et al., 2018;
Zhang et al., 2016). Before training the RCNN, ETC tech-
nology is applied to select reliable sites at a global level
to generate representative training samples, making the es-
tablished statistical relationship more representative of sur-
face Rn variation at the AVHRR footprint scale. After val-
idation and comparison, the best-trained model was subse-
quently implemented through the proposed PSME scheme
to generate a global-scale 39-year daily surface Rn dataset
(1981–2019) with a 0.05◦ resolution from the AVHRR data
and MERRA-2 reanalysis.

The remainder of this paper is organized as follows. Sec-
tion 2 summarizes the characteristics of the data used for the
reconstruction of the ETC triplet and PSME method develop-
ment. Section 3 describes the ETC method for the selection
of reliable sites and the PSME process for surface Rn esti-
mation using the RCNN model. The results for selected sites
based on the ETC, the performance of the RCNN model, and
the long-term spatiotemporal variation in the Rn dataset are
presented in Sect. 4. The discussion is presented in Sect. 5.
The data availability is described in Sect. 6. Finally, the con-
clusions are presented in Sect. 7.

2 Datasets

2.1 Ground measurements

Ground measurements of daily surface Rn were used for the
RCNN model development. The in situ measurements used
in this study cover the period from 2001 to 2019 and were ob-
tained using various instruments (e.g., Kipp & Zonen CNR1
and Eppley) at 522 globally distributed stations from 15 ob-
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Table 1. Summary of available Rn products.

Product name Spatial resolution Temporal resolution Period References

Reanalysis

NCEP CFSR ∼ 38 km 6 h 1979–2010 Saha et al. (2010)
NASA MERRA-2 0.5◦× 0.625◦ 1 h 1979–present Gelaro et al. (2017a)
ERA5 0.25◦× 0.25◦ 3 h 1950–present Hersbach et al. (2020)
JRA-55 ∼ 55 km 3 h 1958–present Kobayashi et al. (2015)
NCEP DOE R2 ∼ 200 km 6 h 1979–present Kanamitsu et al. (2002)

Satellite products

CERES-SYN 1◦× 1◦ 1 h 2000–present Doelling et al. (2016)
GEWEX-SRB 1◦× 1◦ 3 h 1983–2007 Stackhouse et al. (2000)
ISCCP FD 280 km 8 d 1983–2012 Rossow and Zhang (1995)
FLUXCOM 0.0833◦× 0.0833◦ 8 d 2001–2015 Jung et al. (2019a)
MODIS Terra 0.05◦× 0.05◦ daily 2001–2009 Verma et al. (2016)
GLASS MODIS 0.05◦× 0.05◦ daily/daytime 2000–2019 Jiang et al. (2018)

servation networks/programs, as shown in Fig. 1. Detailed
information about these observation networks/programs is
listed in Table 2, and specific information about these sites
is shown in Table S1 in the Supplement. These stations
are maintained by multiple global and regional observation
network organizations, such as the global FLUXNET, the
Greenland Climate Network (GC-Net), and the Programme
for Monitoring of the Greenland Ice Sheet (PROMICE)
(Jiang et al., 2018). These stations vary in elevation from 4 to
5063 m above sea level and are located in areas with different
land cover types, including forest, grassland, shrubland, wet-
land, cropland, ice/snow, and urban areas. The collective in
situ measurements, therefore, represent an accurate and com-
prehensive dataset that is capable of accounting for surface
Rn spatial–temporal variation on a global scale.

The instruments applied to obtain surface radiation have
different uncertainties. To be specific, the operational ther-
moelectric pyranometers are known for their high-accuracy
performance, with a spectral response of 0.3–3.0 µm, a sen-
sitivity of 7–14 µV W−1 m2, a thermal effect of less than
5 %, and an annual stability of 5 % (Lu et al., 2011; Jiang
et al., 2019b). Eppley precision infrared radiometers (PIRs,
3.5–50 µm) and Kipp & Zonen CG 4 pyrgeometers (4.5–
42 µm) are applied to measure the surface radiation with
an uncertainty of ±6 % or 15 W m−2 at the 95 % confi-
dence level (Philipona et al., 1998). The largest uncertain-
ties for surface radiation measurements are ∼ 2 % for pyrhe-
liometers and ∼ 5 % for pyranometers (i.e., 15 W m−2), re-
spectively (Augustine et al., 2000). Additionally, the radia-
tion measurements obtained by Kipp & Zonen CNR1 and
CNR4 instruments are with an expected accuracy of ±10 %
for daily totals (Wang and Dickinson, 2013). The radiation
observations measured by Kipp & Zonen net radiometers
(CNR1, 5–50 µm, or CNR1-lite, 4.5–42 µm) are with uncer-
tainty of ∼ 10 % at the 95 % confidence level for daily to-

tals (Yamamoto et al., 2005). Besides, the uncertainties in
the shortwave radiation measured by a LI-COR photodiode
and Rn observed by REBS Q*7 are about 5 (5 %–15 %) and
10 W m−2 (5 %–50 %), respectively, at a monthly timescale
(Box and Rinke, 2003; Steffen and Box, 2001). To deal with
equipment and operational errors, daily mean surface Rn
measurements were calculated based on several strict pro-
cessing rules successfully applied in previous studies (Jia et
al., 2018; Jiang et al., 2014; Chen et al., 2020; Jiang et al.,
2018).

To well illustrate the performance of the model in esti-
mating global surface Rn, more sites from international ob-
servation networks should be determined as the validation
sites rather than regional observation networks with similar
climate regimes (e.g., Atmospheric Radiation Measurement,
ARM) to ensure the independence of the test dataset, which
avoids overfitting in model training. In this study, more than
89 % of validation sites come from the continental and in-
ternational networks, including the Baseline Surface Radi-
ation Network (BSRN), FLUXNET, the Coordinated En-
hanced Observation Network of China (CEOP), Earth Ob-
serving Laboratory (EOL), AsiaFlux, and PROMICE. Addi-
tionally, similar and comprehensive surface and atmospheric
conditions between the training and validation sites illustrate
the good representations of both the training and the inde-
pendent test datasets in global surface Rn variability (Fig. S1
in the Supplement), which detects the ability of the model in
estimating global surfaceRn. Note that some current regional
and international networks are interconnected; for example,
some ARM and all BSRN sites are included in the BSRN net-
works. When determining the training and validation sites,
more attention should be paid to these duplicate sites in mul-
tiple observation networks to ensure the independence of the
validation sites from the training sites. Finally, as shown in
Fig. 1, the surface Rn measurements from 448 stations were
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used to train the proposed RCNN model (red circles), while
the measurements from the remaining 75 stations (blue cir-
cles) were selected as the independent test dataset to evaluate
the model performance.

2.2 AVHRR data

AVHRR TOA observations at five spectral channels (a visible
band (0.55–0.68 µm), a near-infrared band (0.75–1.1 µm), a
middle-infrared band (3.55–3.93 µm), and two thermal bands
(10.5–11.3 and 11.5–12.5 µm)) were utilized for their com-
prehensive surface and atmospheric electromagnetic infor-
mation. The National Aeronautics and Space Administra-
tion (NASA) Land Long Term Data Record (LTDR) project
produced a consistent long-term dataset by reprocessing
Global Area Coverage (GAC) data, which were obtained
from AVHRR sensors on board the National Oceanic and At-
mospheric Administration (NOAA) satellites (Pedelty et al.,
2007). The primary reprocessing improvements included ra-
diometric in-flight vicarious calibrations for the visible and
near-infrared channels, along with inverse navigation to re-
late a specific Earth location to each sensor’s instantaneous
field of view (Vermote and Kaufman, 1995; Pedelty et al.,
2007). Multiple Climate Modeling Grid (CMG) data from
AVHRR and MODIS instruments have been created for land
climate studies (Xiao et al., 2017; Pedelty et al., 2007). In
this study, we utilized a daily AVHRR TOA data product
(AVH02C1) with a resolution of 0.05◦ from 1981 to 2019 to
retrieve surface Rn estimates. Additionally, solar and view-
ing geometry data (i.e., SZA, VZA, and RAA) were also in-
corporated into the model as the amount of solar radiation
incident on the Earth’s surface varies greatly under different
geometric observation conditions. A summary of these grid-
ded products and their attributes is presented in Table 3.

2.3 GLASS product

The GLASS daily surface Rn product from MODIS data,
one part of the GLASS product suite (Liang et al., 2020),
was produced using two sets of algorithms. The main al-
gorithm primarily uses the well-documented conversion re-
lationships between downward shortwave radiation and all-
wave Rn combinations (Wang and Liang, 2009; Jiang et al.,
2015). It also incorporates a combination of other meteo-
rological variables under various environmental conditions,
such as different daytime lengths and land cover character-
istics, which are designated based on the albedo and nor-
malized difference vegetation index (NDVI). Multiple mul-
tivariate adaptive regression splines (MARS) learners were
employed to establish efficient statistical relationships using
GLASS downward shortwave radiation and MERRA-2 me-
teorological variables, allowing land surface Rn to be esti-
mated from these inputs across most spatial domains (Jiang
et al., 2016, 2015). Conversely, when surface solar radia-
tion data were not available, the backup algorithm created

a function that separately employed MODIS TOA observa-
tions to retrieve surface all-wave Rn using the length ratio
of daytime (LRD) classification method, which was accom-
plished by the genetic algorithm–artificial neural network
(GA-ANN) (Chen et al., 2020). By using these two algo-
rithms, the GLASS Rn product can provide seamless global
land surface Rn estimates with a 0.05◦ resolution. Several
studies have used in situ measurements to conduct evalua-
tion studies, illustrating high-accuracy performance as well
as good application potential (Jiang et al., 2018; Guo et al.,
2020). Thus, we used the GLASS daily Rn product covering
2000 to 2018 as a reference to help select reliable sites and
validate the results from this study.

2.4 CERES-SYN product

The CERES instruments on board the Terra, Aqua, and
Suomi National Polar-orbiting Partnership (Suomi NPP)
satellites observe the TOA global energy budget by mea-
suring shortwave reflected radiation, longwave Earth-emitted
radiation, and all wavelengths of radiation at a spatial
resolution of 20 km at nadir (Wielicki et al., 1996). The
CERES Synoptic (CERES-SYN) product combines CERES
and MODIS observations with geostationary (GEO) data
to provide hourly broadband TOA radiant flux and cloud
properties (Doelling et al., 2013). The CERES-SYN prod-
uct also contains computed TOA and in-atmosphere and sur-
face fluxes based on the Fu-Liou radiation transfer model.
Aerosol and atmospheric data were included as inputs to cal-
culate the radiation flux. CERES-SYN fluxes were provided
as a 1◦ gridded product with an hourly temporal resolution.
CERES-SYN surface Rn data have been evaluated in many
studies, which indicate that the product has high accuracy,
although systematic overestimation exists in the surface net
radiation flux data (Jia et al., 2018; Jiang et al., 2016; Jia et
al., 2016). Thus, the CERES-SYN surface Rn obtained from
four surface radiative components was used as a reference for
comparison.

2.5 MERRA-2 reanalysis

MERRA-2, produced by the NASA Global Modeling and
Assimilation Office (GMAO), is the latest global atmo-
spheric product and employs satellite observation data from
1980 to the present. The MERRA-2 reanalysis assimilates
space-based observations of aerosols and represents their in-
teractions with other physical processes in the climate sys-
tem. The goals of MERRA-2 are to provide a regularly
gridded, homogeneous record of the global atmosphere and
to incorporate additional climatic variables and conditions,
including trace gas constituents (stratospheric ozone), im-
proved land surface representation, and cryospheric pro-
cesses (Gelaro et al., 2017b). The MERRA-2 products have
a 0.5◦× 0.625◦ spatial resolution and hourly temporal res-
olution. Previous studies (Jiang et al., 2018; Jia et al.,
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Figure 1. Geographic locations of the 522 ground stations used in this study. The 448 stations marked with red circles are used to train
the RCNN model, while the other 74 stations marked with blue circles are used for the independent validation of the resulting trained
model. Background colors indicate different land cover according to the International Geosphere-Biosphere Programme (IGBP) classification
system.

Table 2. Information about the observation networks. ARM: Atmospheric Radiation Measurement; BSRN: Baseline Surface Radiation
Network; CEOP-Int: Coordinated Enhanced Observing Period; CEOP: Coordinated Enhanced Observation Network of China; EOL: Earth
Observing Laboratory; GAME.ANN: GEWEX Asian Monsoon Experiment; GC-Net: Greenland Climate Network; IMAU-Ktransect: In-
stitute for Marine and Atmospheric Research Ice and Climate; LBA-ECO: Large-Scale Biosphere-Atmosphere Experience; PROMICE:
Programme for Monitoring of the Greenland Ice Sheet; SURFRAD: Surface Radiation Budget Network.

Network/program Instrument Temporal Number of
interval sites

ARM Kipp & Zonen CNR1 10 min 33
AsiaFlux Kipp & Zonen CNR1, EKO MS201 30 min 29
BSRN Kipp & Zonen CG 4, Eppley PIR 1 min 15
CEOP Eppley PIR/EKO MS202 30 min 16
CEOP-Int Kipp & Zonen CG 4, Eppley PIR 30 min 8
ChinaFLUX Kipp & Zonen CNR1 30 or 60 min 2
EOL Kipp & Zonen pyrgeometers, Eppley PIR 30 or 60 min 17
GC-Net LI-COR photodiode & REBS Q*7 60 min 18
GAME.ANN EKO MS0202F 30 min 3
Global FLUXNET Kipp & Zonen CNR1 30 min 308
HiWATER Kipp & Zonen CNR1 and CNR4 10 min 19
IMAU-Ktransect Kipp & Zonen CNR1 60 min 4
LBA-ECO Kipp & Zonen CG 2 and CNR1 30 min 8
PROMICE Kipp & Zonen CNR1 and CNR4 10 min 24
SURFRAD Eppley pyrgeometer 1 or 3 min 7
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Table 3. List of the satellite and reanalysis products used in this study.

Product names Sensors Spatial resolution Temporal resolution References

AVH02C1 AVHRR 0.05◦× 0.05◦ daily Pedelty et al. (2007), Vermote and Kaufman (1995)
GLASS07B11 MODIS 0.05◦× 0.05◦ daily Jiang et al. (2018), Liang et al. (2020)
CERES-SYN CERES MODIS 1◦× 1◦ 1 h Doelling et al. (2016, 2013)
MERRA-2 – 0.5◦× 0.625◦ 3 h Gelaro et al. (2017a)

2018; Delgado-Bonal et al., 2020) have confirmed that the
MERRA-2-calculated surface Rn and its radiative compo-
nent provide outstanding accuracy and a reasonable spatial–
temporal distribution compared to other reanalysis data.
Therefore, MERRA-2 Rn data calculated from four surface
radiative components were also used in this study to help re-
trieve accurate high-resolution surface Rn estimates by pro-
viding average atmospheric information.

3 Methods

The entire workflow of the RCNN-based PSME method is
shown in Fig. 2. First, the ETC technology was applied to
the triplet system constructed from ground-, satellite-, and
model-based Rn data to identify reliable sites at which mea-
surements can well represent the dynamic variation in sur-
face Rn at a 5 km scale. Then, AVHRR TOA reflectance,
brightness temperature, angular information, and MERRA-
2 Rn were matched with the ground-based Rn measure-
ments, both spatially and temporally. Specifically, the site-
measured Rn data were collocated with the 5 km AVHRR
grid product covering the site. If one grid in the AVH02C1
product covered multiple sites, the mean values from these
sites’ measurements were used to match the grid data. Sub-
sequently, the matched input–output training samples were
fed into the RCNN to train the model. Reference Rn mea-
surements taken from reliable sites were used to evaluate the
model’s performance and, subsequently, identify the best op-
tion to produce surface Rn by tuning the hyper-parameters of
the RCNN. Finally, surface Rn retrievals were generated us-
ing the best-trained model for the global scale, and CERES-
SYN and GLASS Rn products were applied to perform inter-
comparisons to illustrate the accuracy and spatiotemporal
variation in the surface Rn retrievals.

3.1 Extended triple collocation (ETC)

To address the spatial-scale mismatch issue owing to the
small spatial support of sparse ground measurements in com-
parison to gridded satellite data, which introduces large un-
certainty into the collaborative inversion process, triplet col-
location (TC) technology was employed (Stoffelen, 1998;
Yuan et al., 2020a). Specifically, based on the availability of
three collocated, independent measurement systems describ-
ing the same geophysical variable, TC was designed to esti-

mate the unknown error standard deviations (or root-mean-
square errors, RMSEs) of three mutually independent mea-
surement systems, without treating any one system as per-
fectly observed “truth” (Stoffelen, 1998; Gruber et al., 2016).
To perform the TC, the following assumptions were made:
(1) each of the triplets is related to the unknown truth of
the geophysical variable in the linear form; (2) there is zero
cross-correlation across each of the triplets; (3) there is zero
error cross-correlation between the triplet and the true signal
state (T ); and (4) the signal and error statistics are stationary
(Chen et al., 2017). Following the first assumption, the inde-
pendent triplet systems (Xi , Xj , and Xk) are related to the
unknown true quantity in a linear error model:

Xi = βi +αiT + εi , (1)

where αi and βi are the additive and multiplicative bias
terms, respectively, and εi is the mean-zero random error.
Similar calibration constants (αj , βj , αk , and βk) and ran-
dom error terms (εj and εk) are also defined for Xj and Xk.

The objective of TC is to find a solution that individu-
ally estimates the variance of the random error term (εi) for
each of the triplets based on the listed assumptions (Stoffe-
len, 1998; Yuan et al., 2020a). However, to obtain the cali-
bration constants, one dataset is chosen from the three collo-
cated measurement systems as the reference dataset, and the
other two are rescaled into the same reference data space.
This results in a dependency of the error variance of the
other two datasets on the climatology of the scaling reference
(Draper et al., 2013; Yuan et al., 2020a). To deal with this is-
sue, ETC technology was proposed by McColl et al. (2014),
based on the same assumptions as TC, to estimate an addi-
tional evaluation metric independent of the reference dataset,
i.e., a correlation coefficient (ρ(T ,Xi )) of each measurement
system with respect to the unknown target variable as formu-
lated below:

ρ (T ,Xi)= sign(±)

√
Cov(Xi, Xj )Cov(Xi,Xk)
Cov(Xi, Xi)Cov(Xj ,Xk)

, (2)

where ρ(T ,Xi ) is correct up to the sign ambiguity, as the mea-
surement systems will almost always be positively correlated
to the unobserved truth.

Following the ideals of Chen et al. (2017) and Yuan et
al. (2020a), ETC was applied to determine the reliable site
measurements over the AVHRR data footprint scale (i.e.,
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Figure 2. Workflow of RCNN-based point-surface matching estimation (PSME) method for surface Rn retrievals. TOA: top of atmosphere;
RCNN: residual convolution neural network; GLASS: Global Land Surface Satellite; CRES-SYN: Clouds and the Earth’s Radiant Energy
System Synoptic; MERRA2: Modern-Era Retrospective analysis for Research and Applications, Version 2; SZA: solar zenith angle; VZA:
viewing zenith angle; RAA: relative azimuth angle.

5 km grid). Specifically, the triplet dataset was first con-
structed using ground-based measurements (i.e., site mea-
surements), satellite-derived retrievals (GLASS Rn), and
downscaled model-based simulations (MERRA-2 Rn) de-
pending on the conversion ratio of GLASS Rn between orig-
inal (0.05◦) and aggregated (0.5◦) spatial resolutions, as they
belong to different measurement systems and are not depen-
dent on each other. Then, ρ(T ,Xi ) was calculated using Eq. (2)
for individual sites, illustrating the fraction of 5 km satellite
footprint-scale Rn dynamics captured by point-scale ground-
based measurements. An appropriate threshold of ρ(T ,Xi ) was
determined to select reliable sites with the greatest represen-
tativeness within a 5 km footprint to obtain sample datasets
for the model training. After testing a series of thresholds be-
tween 0.2 and 0.9 at intervals of 0.1, a threshold of 0.9 was
selected, above which the sites were assigned as “reliable”
(also see Sect. 5). Based on these reliable sites, errors in up-
scaling reliable site-based measurement to a 5 km scale can
be weakened to a certain degree due to the measurement’s
better representativeness within the AVHRR footprint.

3.2 RCNN-based PSME

3.2.1 RCNN

As the spatial resolution of satellite sensors increases, the
spatially adjacent effects induced by spatially inhomoge-

neous atmospheric constitute (or cloud) fields become more
significant; for example, clouds affect the distribution of sur-
face radiation in a region larger than the resolution of an indi-
vidual pixel. One spatially adjacent effect is the diffusion of
radiation that removes part of radiation from an atmospheric
column and transfers it to neighboring columns. Two other
effects are related to the solar and viewing geometry, such
as a shift of the apparent position of clouds and their shad-
ows. Surface Rn is no longer accurately estimated with re-
trieval algorithms based on the individual pixel approxima-
tion (IPA). Comprehensive information within a certain spa-
tial extent centered at reliable sites needs to be considered to
help retrieve surface Rn.

Loosely inspired by the human visual cortex, CNNs were
originally applied to analyze common visual imagery using
convolution instead of general matrix multiplication (Ball
et al., 2017). A CNN model can extract features hierarchi-
cally from multi-channel input images using multiple filters.
Therefore, the most important feature information regarding
reliable site-based Rn measurements can be effectively ex-
tracted by CNNs within a certain spatial extent rather than
on the basis of IPA, to help retrieve Rn, which weakens the
spatially adjacent effects to a certain extent. A general CNN
consists of multiple layers of operations, such as convolu-
tion, pooling, normalization, and nonlinear activation func-
tions. In the convolutional layers, a series of convolution
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(Conv) operations are performed using convolutional ker-
nel weights and biases on the input images within the re-
ceptive field. The result of the locally weighted sum (fea-
ture map) is then passed through a nonlinear layer, such as
a rectified linear unit (ReLU), which increases the nonlin-
ear properties of the decision function and the overall net-
work (Romanuke, 2017). The pooling layer, a form of non-
linear down-sampling, merges semantically similar features
into one, thereby reducing the amount of computation in the
network (Géron, 2019). Additionally, a batch normalization
layer is placed between the convolutional layers and nonlin-
earities to speed up the training of the CNN and reduce the
sensitivity to network initialization. By stacking two or three
stages of convolution, nonlinearity, and pooling, followed by
more fully connected layers, a typical CNN architecture is
built.

To improve network performance in complicated tasks, a
deeper CNN architecture is needed; however, a deeper neu-
ral network is difficult to train well because a degradation
problem occurs when deeper networks converge (He et al.,
2016). Specifically, as the network depth increases, the train-
ing accuracy becomes saturated and then degrades rapidly.
To address the degradation problem, He et al. (2016) pro-
posed a residual block to improve the gradient flow through
the network, which enables the training of deeper networks.
Residual blocks were employed in our CNN architecture to
construct the RCNN. The structure of the RCNN proposed in
this study is shown schematically in Fig. 3. Table 4 lists the
detailed configurations of the proposed RCNN.

The input signals of the RCNN included AVHRR TOA
reflectance and brightness temperature, angular information
(SZA, VZA, and RAA), and daily MERRA-2 Rn with a spa-
tial size of 15× 15 pixels (these specifications are further dis-
cussed in Sect. 5). To avoid introducing new errors, nearest-
neighbor interpolation was used to resample MERRA-2 Rn
to 0.05◦ to match the spatial resolution of the other predic-
tors. The output signal was ground-based Rn from the re-
liable sites. Essentially, the RCNN model uses a convolu-
tion operation taken at stages of the feature map and resid-
ual learning block to recognize spatial patterns centered on
a reliable site. Then, the multiple layer perceptron links ab-
stract spatial patterns with ground-based measurements to
construct a strong nonlinear relationship to reproduce the
spatial and temporal variation in surface Rn. This approach
had been carried out in previous studies (Jiang et al., 2019b,
a, 2020a).

3.2.2 RCNN model training and evaluation

Sample data from the reliable sites in the training site group
(red circles shown in Fig. 1) were used to train the RCNN
model; datasets from reliable sites in the independent valida-
tion site group (blue circles shown in Fig. 1) served as test
datasets to independently evaluate the model’s performance.
Specifically, in the training process, 10-fold cross-validation

(CV) was used to test the model’s predictive power. All
of the sample datasets from the reliable training sites were
randomly shuffled and divided into 10 groups. One group
of these data was then removed as a hold-out or validation
dataset, and the remaining nine groups of data were treated
as the training datasets. The training datasets were used to fit
the RCNN model, and the validation datasets were applied
to evaluate the trained model’s performance to fine-tune the
model’s parameters. The process was repeated 10 times to
ensure that each group of data validated the model, and the
remaining nine groups of data were trained. Finally, the eval-
uation results were presented by summarizing and averag-
ing the 10 evaluation scores. After determining the hyper-
parameter settings using the CV, the model was trained again
using datasets from all the reliable training sites, which was
then independently evaluated using the test datasets from the
reliable validation sites.

The following five evaluation metrics were used to eval-
uate the performance of the RCNN model and the Rn re-
trievals: bias, relative bias (rbias), RMSE, relative RMSE
(rRMSE), and the coefficient of determination (R2). Detailed
information regarding the application of these metrics can be
found in Yang et al. (2018).

4 Results

4.1 Identification of reliable sites

The number of reliable and unreliable sites for each obser-
vation network, identified by a threshold of 0.9 for the ETC-
derived correlation coefficient, is listed in Table 5. A total of
262 sites could be considered reliable, accounting for∼ 50 %
of the sites. Furthermore, no site was considered reliable for
some observation networks/programs, namely ChinaFLUX,
GC-Net, GAME.ANN, HiWATER, IMAU-Ktransect, and
LBA-ECO. It is not surprising that sites from the Chi-
naFLUX network were assigned as unreliable; several stud-
ies have revealed that the reliability of site measurements
from China is questionable and should be examined carefully
before use (Zhang et al., 2015; Tang et al., 2013, 2011). GC-
Net is located in inner Greenland, where systematic measure-
ments errors are common due to difficulties in instrument
maintenance and operation-related failures. Sites from the
GAME.ANN network are located in the Tibetan Plateau (TP)
region, where abnormal climate and complex terrain make
it difficult to accurately measure variations in Rn. Similar
issues also exist in in situ measurements from the IMAU-
Ktransect, HiWATER, and LBA-ECO networks. In contrast,
some of the international observational networks, such as
BSRN (Ohmura et al., 1998) and FLUXNET (Wilson et al.,
2002), provide many ground-based measurements with suf-
ficient spatial representativeness for Rn at a 5 km resolu-
tion. In addition, the ARM (Stokes and Schwartz, 1994) and
SURFRAD (Augustine et al., 2000) networks were classi-
fied as containing reliable sites. In situ measurements from
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Figure 3. Depiction of the RCNN. The model uses AVHRR TOA observations, angular information (SZA, VZA, and RAA), and MERRA-2
Rn as inputs, which are used to calculate daily surface Rn values as output. Conv represents the convolution operation; MP and GPA are the
max-pooling and global average-pooling operations, respectively; RB: residual block; FC: fully connected layer.

Table 4. Detailed configuration of the RCNN. eLU: exponential linear unit; DROP: dropout layer.

Module Unit Input size Kernel no. Kernel size Stride Activation function Output size

Input 9× 15× 15 – – – – 9× 15× 15

Feature mapping Conv1 9× 15× 15 32 3× 3 [1, 1] ReLU 32× 15× 15
Conv2 32× 15× 15 32 3× 3 [1, 1] ReLU 32× 15× 15
MP1 32× 15× 15 – 2× 2 [2, 2] – 32× 7× 7

Residual learning block RB1_Conv1 32× 7× 7 64 3× 3 [1, 1] ReLU 64× 7× 7
RB1_Conv2 64× 7× 7 64 3× 3 [1, 1] ReLU 64× 7× 7
RB1_Conv3 64× 7× 7 64 3× 3 [1, 1] ReLU 64× 7× 7
MP2 64× 7× 7 – 2× 2 [2, 2] – 64× 3× 3
RB2_Conv1 64× 3× 3 128 3× 3 [1, 1] ReLU 128× 3× 3
RB2_Conv2 128× 3× 3 128 3× 3 [1, 1] ReLU 128× 3× 3
RB2_Conv3 128× 3× 3 128 3× 3 [1, 1] ReLU 128× 3× 3
GPA 128× 3× 3 – – [0, 0] – 128× 1× 1

Multiple layer perceptron FC_1 128 – – – eLU 128
DROP 128 – – – – 128
FC_2 128 – – – eLU 64
FC_3 64 – – – eLU 64
FC_4 64 – – – eLU 1

the SURFRAD (Augustine et al., 2000) network were well
known in surface radiation budget studies because of their
high data quality and have been widely utilized as a result
(Wang et al., 2015b; Hao et al., 2019; Wang et al., 2015a;
Qin et al., 2012). Overall, compared to other networks, the
sites from ARM, BSRN, SURFRAD, and FLUXNET net-
works were mostly identified as reliable sites, illustrating the
superiority of these observation networks.

The spatial and proportion distributions of the reliable
training and validation sites for different surface types are
presented in Fig. 4. The most reliable sites are distributed
in the United States, Europe, and East Asia. In turn, many

sites located in South America, Africa, Eurasia, and the po-
lar regions were identified as unreliable. The reasons for
these sites being classified as unreliable are closely re-
lated to the complex surface and atmospheric environment
and poor instrument maintenance in their corresponding re-
gions. Most grassland and cropland sites were classified
as reliable (∼ 66 % and ∼ 62 %, respectively), whereas the
fewest reliable sites were classified in ice-/snow-covered ar-
eas (∼ 14 %). In addition, sites neighboring the sea were
mostly identified as unreliability due to the presence of large
water bodies within the satellite footprint. Thus, the process-
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Table 5. Summary of the selected reliable and unreliable sites based
on ETC for each observation network.

Network/program Number of Number of
reliable sites unreliable sites

ARM 33 0
AsiaFlux 12 17
BSRN 8 7
CEOP 5 11
CEOP-Int 4 4
ChinaFLUX 0 2
EOL 2 15
GCNEET 0 18
GAME.ANN 0 3
Global FLUXNET 185 123
HiWATER 0 19
IMAU-Ktransect 0 4
LBA-ECO 0 8
PROMICE 6 18
SURFRAD 7 0

ing of identifying reliable sites highlights the need to pay
more attention to such areas for surface radiation estimations.

4.2 Assessment of the RCNN model

Ten-fold CV was used to evaluate the performance of the
RCNN model at reliable and all training sites, and the evalu-
ated performances are summarized in Table 6. Note that the
model fitting result represents the model with the best-fitting
accuracy over the 10 CV rounds, while the cross-validation
results are the averages of the 10-round combination. The
RCNN model showed a high fitting accuracy at the reli-
able training sites with R2, RMSE (rRMSE), and bias (rbias)
values of 0.90, 20.61 W m−2 (25.71 %), and 0.42 W m−2

(0.53 %), respectively. Compared to the model fitting accu-
racy across all sites, the result for the reliable sites was im-
proved, with R2 values increased by 0.04 and rRMSE values
reduced by 8.24 %. The implementation of ETC for the se-
lection of reliable sites ensures more consistent spatial rep-
resentativeness of ground-based measurements and AVHRR
data, which improves the accuracy of Rn retrievals. Indeed,
the CV-derived average accuracy is extremely similar to the
model fitting accuracy, illustrating that the trained RCNN
model is highly robust. Additionally, an unbiased estimation
was achieved by the RCNN model with CV-derived biases
close to zero.

Figure 5 shows the overall training accuracy and test ac-
curacy for the RCNN model at reliable training and in-
dependent validation sites. The over-training accuracy of
the RCNN model is close to that of the CV-derived re-
sult. Between the model training to the test phase, the R2

score dropped by 0.06 and RMSE increased by 5.93 W m−2

(5.96 %), which indicates slight overfitting by the proposed
model. However, with the highest cross-validated R2 of 0.90

and the lowest RMSE of 21.01 W m−2, the RCNN model
trained using ground-based Rn measurements obtained at the
reliable sites is considered the best-trained model, which was
selected for the subsequent analysis.

4.3 Evaluation of the RCNN-based AVHRR Rn retrievals

4.3.1 Inter-comparisons of Rn products

Figure 6 shows the validation results of the four datasets
at the reliable sites, including the AVHRR, CERES-SYN,
MERRA-2, and GLASS Rn estimates. Comparatively, the
RCNN-derived AVHRR Rn retrievals show the best per-
formance with R2, RMSE, and bias of 0.90, 21.08 W m−2

(26.22 %), and −0.38 W m−2 (−0.47 %), respectively, fol-
lowed by the GLASS Rn estimates with corresponding
values of 0.89, 22.47 W m−2 (27.95 %), and −2.96 W m−2

(−3.68 %), respectively. The CERES Rn estimates show a
notable overestimation at higher values against the in situ
measurements with a bias of 7.25 W m−2 (9.04 %). In ad-
dition, a greater uncertainty exists in the CERES Rn com-
pared to the AVHRR and GLASS Rn estimates, with an
RMSE of 25.11 W m−2. The CERES-SYN cloud product,
an input for the calculation of flux products, underestimated
low-level clouds (by 11.8 % and 20.9 % for day and night,
respectively) over the sun-glint ocean and polar regions dur-
ing both the daytime and the nighttime (Xi et al., 2018; Xu
et al., 2020). Additionally, when the aerosol optical depths
(AODs) used to calculate CERES-SYN surface solar radia-
tion are compared with the ground-based observations, the
calculated shortwave radiation is 1 %–2 % higher (Fillmore
et al., 2021). Therefore, large uncertainties in these atmo-
spheric input parameters may lead to serious overestimations
of the CERES-SYNRn. In addition, the MERRA-2Rn shows
the lowest accuracy, with an RMSE of 30.88 W m−2, reflect-
ing the reanalysis model’s inability to accurately describe the
evolution of cloud properties (Betts et al., 2006). Compar-
atively, the AVHRR retrievals show a better accuracy than
the other three products. In addition, our estimates have a
higher spatial resolution compared to the CERES-SYN and
MERRA-2 data.

Compared to the validation results at the reliable sites,
the accuracy evaluation at all sites shows the ability of the
RCNN to accurately capture Rn variation at a global scale,
even though some measurements from unreliable sites added
large uncertainties to the final evaluation. Figure S2 shows
a comparison of results for the four datasets at all of the
sites. Overall, the AVHRR and GLASS Rn retrievals were
still better than those of CERES-SYN and MERRA-2; how-
ever, the accuracy of AVHRR Rn decreases slightly, with R2,
RMSE, and bias values of 0.85, 26.74 W m−2 (35.70 %), and
1.20 W m−2 (1.60 %), which is comparable to the GLASS
Rn retrievals, with values of 0.85, 26.79 W m−2 (35.77 %),
and −0.82 W m−2 (−1.10 %), respectively. Therefore, even
if the RCNN model is trained using measurements from less
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Figure 4. (a) Spatial distribution of reliable sites and the absolute numbers of (b) all sites and (c) reliable sites under different surface types.

Table 6. Ten-fold cross-validation performance of the RCNN models.

Used sites Model fitting Cross-validation

R2 RMSE rRMSE Bias rbias R2 RMSE rRMSE Bias rbias

All sites 0.86 25.79 33.95 −0.05 −0.07 0.86 25.86 33.97 −0.31 −0.41
Reliable sites 0.90 20.61 25.71 0.42 0.53 0.90 21.01 26.18 0.42 0.52

reliable sites, it still accurately reproduces surface Rn dis-
tributions at the global scale. In the following analysis, the
GLASS Rn retrievals were used as the main comparison be-
cause of their high accuracy and reasonable spatiotemporal
variation (Jia et al., 2018; Jiang et al., 2018).

Inter-comparison results for the AVHRR and GLASS Rn
retrievals against the ground-based measurements over each
network are displayed in Fig. 7. The AVHRR Rn retrievals
performed slightly better than the GLASS Rn retrievals in
most of the observation networks. Specifically, the AVHRR
Rn retrievals show lower RMSE values over seven networks,
except for the EOL and PROMICE networks. However, the
RMSE differences over the EOL and PROMICE networks
are very small – only 1.41 and 0.22 W m−2, respectively. The
EOL is a small regional network, and its measurements thus
only reflect local-scale Rn variation. However, only 2 out of
17 sites were identified as reliable for the model training and,
therefore, the RCNN model cannot capture specific Rn dy-
namics within such a small spatial extent. Similar reasons
also account for the poor performance for the PROMICE net-
work because most of the sites in the GC-Net and PROMICE
networks are identified as unreliable sites. Thus, the RCNN
model has less knowledge of Rn dynamics for snow and ice
surfaces. The most significant difference for RMSE was ob-
served over the ARM network, for which the mean RMSE
value decreased by 2.0 W m−2 for the AVHRR Rn retrievals
relative to the GLASS Rn retrievals. Additionally, these two

datasets showed very similar performance based on their R2

values.
To further improve understanding of the temporal vari-

ations in the AVHRR Rn retrievals, coincident time series
from all the Rn datasets were inter-compared over seven sites
representing different surface types, as shown in Fig. 8. Over-
all, all four datasets broadly captured the true dynamics ofRn
under the different surface types. Comparatively, the AVHRR
and GLASS Rn retrievals are more consistent with in situ
measurements than the CERES-SYN and MERRA-2 prod-
ucts. Specifically, the MERRA-2 and CERES-SYN Rn re-
trievals show higher values compared to the in situ measure-
ments at the BSRN_DRA site, especially during the 140–
200 d period. In comparison, the AVHRR and GLASS Rn
values closely match the ground-based measurements and
thereby better reflect the true temporal variation in Rn. At
the Lath_UK-AMo site, four of the datasets slightly over-
estimated Rn compared to in situ measurements during the
summer; however, the AVHRR and GLASS Rn retrievals
still performed best. Moreover, large discrepancies occurred
at the PM-SCO_U site under the snow/ice surface for the
four datasets. Notably, MERRA-2 Rn values do not reflect
true variations for snow and ice surfaces, especially during
the 150–250 d period. Comparatively, the satellite-derived re-
trievals better capture Rn dynamics, although the CERES-
SYN product still exhibits overestimation. Because less reli-
able sites were screened at the global scale to train the RCNN
model under the snow/ice surfaces, the AVHRR Rn values
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Figure 5. Scatterplots of (a) model training (fitting) accuracy and (b) model test accuracy for the reliable training and independent validation
sites. The color bar illustrates the normalized density of samples.

Figure 6. Scatterplots of product validation for (a) AVHRR, (b) CERES-SYN, (c) MERRA-2, and (d) GLASS at the reliable sites.

https://doi.org/10.5194/essd-14-2315-2022 Earth Syst. Sci. Data, 14, 2315–2341, 2022



2328 J. Xu et al.: A global long-term (1981–2019) daily Rn product

Figure 7. The average performance of the AVHRR and GLASS Rn retrievals against ground-based measurements at the reliable sites over
each network.

only capture the general Rn trend in the snow/ice areas. The
GLASS Rn retrievals are also most consistent with the in situ
measurements among the four datasets, although small bi-
ases still exist.

The overall evaluation results of the AVHRR and GLASS
Rn retrievals for different surface types are displayed in Ta-
ble 7. Generally, both datasets achieved high accuracy, with
RMSEs ranging from 20 to 25 W m−2. The AVHRR Rn re-
trievals show the better performance for most of the surface
types, except for snow/ice, as previously discussed; how-
ever, the difference in the RMSEs between the AVHRR and
GLASS Rn retrievals for the snow/ice cover type is small
(0.49 W m−2). Together, these results further indicate that the
RCNN model can generate accurate Rn estimates for differ-
ent land cover types.

4.3.2 Analysis of influencing factors

Variation in surface Rn is mainly affected by atmospheric
conditions but also, to a lesser degree, by surface charac-
teristics (He et al., 2015). Under clear-sky conditions, AOD
and column water vapor (CWV) are the main atmospheric
constituents that modulate surface shortwave and longwave
radiation and further affect spatiotemporal variations in sur-
face Rn. In contrast, clouds and CWV control surface Rn dy-
namics under cloudy-sky conditions, especially clouds that
have significant impacts on shortwave and longwave radi-
ation. Therefore, AOD, CWV, and cloud optical thickness
(COT, as a surrogate for cloud optical properties) derived
from MERRA-2 were employed to analyze the sensitivity of
the accuracy of the AVHRR and GLASSRn retrievals to vari-
ations in these influencing factors. In addition, Rn retrieval
performance at different elevations was also evaluated.

All the evaluation results are displayed in Fig. 9. The
AVHRR Rn retrievals were always better than the GLASS
Rn retrievals under all conditions of the four influencing
factors, except for elevations ranging from 800–1000 and
1200–1500 m, which demonstrates the superiority of our al-
gorithm. Specifically, as the COT increases (i.e., increasing
cloud thickness), the AVHRR and GLASS Rn RMSE values
increase accordingly but still remain relatively low for both
datasets (< 27 W m−2). Note that the differences in RMSE
between the two datasets also increased with increasing COT
(Fig. 9a). A small COT indicates relatively clear-sky condi-
tions, which results in surface total solar radiation dominated
by direct solar radiation. Therefore, the performance of the
RCNN model and the MARS models used for the GLASS
Rn product (Jiang et al., 2016) is comparable with regard to
the accuracy of their Rn retrievals. However, when the ab-
sorption and scattering effects are enhanced for direct so-
lar radiation from TOA, depending on the IPA, it is difficult
to retrieve the total surface Rn accurately using the MARS
model because the spatially adjacent effects (i.e., 3-D effects
from clouds) are not considered. Although the RMSEs of the
AVHRR retrievals also increase, the rate of increase is lower
than that of the GLASS Rn retrievals. This is because the
RCNN model recognizes spatial textural and contextual in-
formation and comprehensively considers atmospheric con-
ditions within a certain area rather than based on IPA, which
to some extent addresses the spatially adjacent effect on the
accuracy of AVHRR Rn retrievals.

Aerosols also have absorption and scattering influences
on solar radiation, and therefore, a similar conclusion can
be drawn. For example, when AOD increases from 0.3 (a
non-clean atmosphere), the difference in the performance
of the two retrieved model becomes more pronounced. The
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Figure 8. Coincident time series of the AVHRR, GLASS, MERRA-2, and CERES-SYN Rn retrievals and ground-based measurements over
seven sites representing different surface cover types for (a) ARM_E06 (38.061◦, −99.134◦), (b) BSRN_DRA (36.626◦, −116.018◦),
(c) Lath_CA-NS7 (56.635◦, −99.948◦), (d) Lath_DE-Har (47.934◦, 7.601◦), (e) Lath_UK-AMo (55.791◦, −3.238◦), (f) PM-SCO_U
(72.393◦, −27.233◦), and (g) SF_BND (40.050◦, −88.37◦).

Table 7. Evaluation of the AVHRR and GLASS Rn retrievals for different surface cover types.

Surface types AVHRR Rn GLASS Rn

R2 RMSE rRMSE Bias rbias R2 RMSE rRMSE Bias rbias

Forest 0.90 22.39 27.11 −4.20 −5.09 0.89 23.76 28.75 −5.22 −6.32
Crop 0.90 20.96 26.56 3.03 3.84 0.89 22.12 28.02 −1.37 −1.73
Grass 0.91 18.76 22.80 4.06 4.93 0.90 20.48 24.88 −0.34 −0.41
Shrub 0.90 18.52 21.93 −0.88 −1.04 0.89 20.09 23.78 −2.03 −2.40
Ice/snow 0.85 24.46 76.37 1.84 5.75 0.86 23.97 74.84 −0.59 −1.84
Barren 0.91 14.46 19.84 2.70 3.70 0.84 19.27 26.43 3.37 4.62
Wetland 0.92 22.86 27.42 −6.91 −8.28 0.91 23.86 28.62 −7.84 −9.41
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AVHRR Rn retrievals maintain a stable level of uncertainty
(RMSEs are 22–24 W m−2), while the GLASS Rn retrieval
errors increase dramatically (up to 29 W m−2). This illus-
trates the importance of integrating the spatially adjacent ef-
fect into the inversion model under hazy atmospheric condi-
tions.

In the case of CWV, which has a strong influence on long-
wave radiation, when the condition is < 50 kg m−2, the ac-
curacy differences between the AVHRR and GLASS Rn val-
ues are small (< 1 W m−2). However, as CWV increases, the
RMSEs of the GLASS Rn retrievals increase dramatically,
while the AVHRR Rn estimates maintain a high level of ac-
curacy (RMSEs are ∼ 23 W m−2).

With respect to elevation, there was no notable difference
between the two datasets; our estimates were better than
GLASS Rn under different elevation ranges, except for the
800–1000 and 1200–1500 m bins, although these differences
were less than 1 W m−2. The lower accuracy of AVHRR Rn
values for these two elevation ranges is attributable to the
less reliable sites used for the RCNN training. In addition,
the AVHRR Rn retrievals show steady and very low (close
to zero) biases under different conditions, while the biases
in the GLASS Rn retrievals show a high degree of variation.
This illustrates that the RCNN model has a greater capability
for unbiased surface Rn estimation.

Overall, the RCNN-derived Rn retrievals show a high ac-
curacy under different atmospheric and surface conditions
relative to the GLASS Rn retrievals and especially for thick-
cloud and hazy atmospheric conditions. In such cases, spa-
tially adjacent information is important for accurately esti-
mating the surface Rn retrievals. Although previous studies
have proposed several methods for integrating spatial infor-
mation to retrieve surface and atmospheric variables, such
as PM2.5 (Li et al., 2020b; B. Wang et al., 2020), ozone (Li
and Cheng, 2021), and nitrogen dioxide (Li et al., 2020a),
these methods only considered discrete surrounding points
within a certain area to train the model using IPA. This ar-
tificially destroys the natural correlation between the target
and the surroundings. Our RCNN model can automatically
recognize complete spatial information centered at an inter-
esting location and, thus, is a more reasonable and effective
method.

4.3.3 Spatiotemporal analysis

The global-scale spatial distributions of mean AVHRR and
GLASS surface Rn for January and July 2008 are displayed
in Fig. 10. The missing values in the polar regions reflect the
unavailability of valid data at the five bands in the case of the
AVH02C1 product. The overall distribution of surface Rn for
the two datasets is very similar, although slight differences
exist in some regions, such as the TP region, the Sahara, and
Greenland. AVHRR Rn retrievals are notably larger than the
GLASS Rn retrievals in the TP region. Based on the results
shown in Fig. 9d, greater confidence can be placed in the

AVHRR Rn retrievals for high-elevation regions relative to
GLASS Rn retrievals; however, the AVHRR Rn retrievals are
lower in Greenland. Because few sites from the GC-Net and
PROMICE networks were classified as reliable for the model
training, the RCNN model has less knowledge about the spa-
tiotemporal variations in Rn in Greenland compared to other
regions. The validation results in Fig. 8 and Table 7 for the
ice/snow surface cover type further confirm that the GLASS
Rn product may offer a better performance in the Greenland
region. Therefore, new algorithms and data are required for
the polar regions to address this problem.

The spatiotemporal consistency of the AVHRR and
GLASS daily Rn retrievals against COT was examined at a
global scale in January and July 2008, respectively, as shown
in Fig. 11. Overall, the spatial consistency is high for the two
datasets. Specifically, in January, as the COT increases, the
daily mean Rn values and the absolute differences between
the two datasets also increase. As shown in Fig. 9a, when
COT increases, the AVHRR Rn retrievals are more accurate.
Thus we believe that the large discrepancies under high-COT
conditions are mainly attributed to the uncertainty in GLASS
Rn retrievals. In July, surface daily mean Rn remained rela-
tively stable under different COT conditions, and the absolute
differences between the two datasets also remain steady, with
a mean absolute difference of about 20 W m−2.

Based on the previous analysis, spatially adjacent informa-
tion is important for surface Rn estimation when COT values
are large; however, if the cover of the entire cloud layer is
small compared to the scale of the AVHRR footprint, the spa-
tially adjacent effects will be significantly weakened in the
inversion process, even if the corresponding COT is large.
IPA-provided information includes the properties of the en-
tire cloud layer. Figure S3 shows the spatial distribution of
the monthly mean cloud cover fraction (CF) at the global
scale in January and July and the corresponding differences
in CFs (January− July). In January, the CFs are higher than
in July over most land regions except in Central Africa, South
Asia, Southern Australia, and Antarctica. However, most re-
gions had smaller CFs in July. The differences in CFs for the
two months are also marked; the positive differences demon-
strate that more than 72 % of the land pixels had a higher CF
in January than in July. The spatially adjacent effects induced
by clouds are more significant on surface Rn in January than
in July. Therefore, when large and thick cloud layers exist,
such as in the polar regions, CNN is a better choice for sur-
faceRn estimation, especially for downward longwave radia-
tion (DLR) because the temperature of the cloud base, which
is an essential variable in the parameterized calculation of
DLR, is difficult to retrieve from multispectral remote sens-
ing (Yang and Cheng, 2020).

4.3.4 Temporal analysis

To examine the temporal reliability of the generated AVHRR
Rn dataset, a long-term analysis of surface Rn for the four

Earth Syst. Sci. Data, 14, 2315–2341, 2022 https://doi.org/10.5194/essd-14-2315-2022



J. Xu et al.: A global long-term (1981–2019) daily Rn product 2331

Figure 9. Accuracy changes in AVHRR and GLASS Rn retrievals under different conditions for (a) cloud optical thickness (COT),
(b) aerosol optical depth (AOD), (c) column water vapor (CWV), and (d) elevation. The values in parentheses on the left axis correspond to
the RMSE differences denoted by bar charts. The shaded area shows the variance ranges of the biases.

datasets was carried out, the results of which are shown in
Fig. 12. In view of missing values for the polar regions,
we focused on surface Rn within the ±60◦ latitude region.
Overall, the AVHRR Rn retrievals are highly consistent with
MERRA-2 Rn values during the period of 1981 to 2019
as well as CERES and GLASS Rn retrievals after 2000.
However, the MERRA-2 and CERES Rn values are gener-
ally higher than AVHRR Rn retrievals. Inter-comparison re-
sults illustrated that the CERES and MERRA-2 Rn values
are overestimated against ground-based measurements. The
GLASS Rn temporal profile is more consistently correlated
with the AVHRR Rn retrievals.

Note that the LTDR project only uses afternoon satel-
lite to generate the AVHRR product, which is to do with
the high uncertainty in the atmospheric correction algorithm
when applied to low-sun-elevation pixels present in morn-
ing satellites. Afternoon satellites include NOAA-7, NOAA-
9, NOAA-11, NOAA-14, NOAA-16, NOAA-18, NOAA-19,
and NOAA-20. The use of these satellites alone inevitably
leads to small gaps in the data in exchange for a higher ac-
curacy in the atmospheric correction. The time series is not
fully complete and presents some observational gaps. Specif-
ically, some large discrepancies occur, during some periods

including 1994–1995, 1999–2000, 2007–2008, and 2018–
2019. These periods correspond to the alternative update
times of the NOAA-series satellites. For example, NOAA-
11 was successfully succeeded by NOAA-14 from 1994 to
1995. Important gaps and noise were found in the images
from March to September and empty data from September
to December, due to NOAA-11 orbital degradation. NOAA-
16 replaced NOAA-14 in 2000 for monitoring of the Earth’s
surface and atmosphere. During these periods of satellite
replacement, the corresponding AVHRR data also contain
large gaps. Similarly, NOAA-20 was launched on 18 Novem-
ber 2017, yet the quality of the AVHRR TOA observations
from this platform was poor due to important gaps in the im-
ages and the presence of artifacts. This explains the abnor-
mal temporal variations in the AVHRR Rn profile in these
years shown in Fig. 12a. Therefore, effective multi-source
data fusion algorithms and spatial gap-filling technology are
urgently needed to improve the quality and coverage of the
AVHRR Rn dataset.

The temporal variations in monthly Rn anomalies for the
four datasets are shown in Fig. 12b. High temporal consis-
tency exists between AVHRR Rn anomalies and the other
three datasets. Specifically, the correlation coefficient for
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Figure 10. Spatial distribution of monthly mean AVHRR and GLASS Rn retrievals in January (a, b) and July (c, d) 2008.

Figure 11. Variations in the spatial and temporal consistency of AVHRR and GLASS daily Rn retrievals against cloud optical thickness
(COT) in (a) January and (b) July 2008. The absolute difference is defined as

∣∣Rnavhrr−Rnglass
∣∣. The shading represents the variation range

(standard deviation) of global daily AVHRR and GLASS Rn retrievals and their absolute differences.
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the AVHRR and MERRA-2 Rn anomalies for 1981–2019 is
0.952 and, for the period after 2000, is 0.957 and 0.956 for
the AVHRR and CERES and for the AVHRR and GLASSRn
anomalies, respectively. Thus, the RCNN-derived AVHRR
Rn dataset is temporally stable and reliable when the other
three Rn datasets are used as a comparative baseline. In fact,
the LTDR project has adapted a calibration method that can
be consistently applied across the AVHRR instruments on
board various NOAA satellites to account for sensor degra-
dation (Vermote and Kaufman, 1995), which enables a tem-
porally reliable Rn dataset to be produced. Following the ap-
proach, overall, our AVHRR Rn dataset is more accurate and
shows reasonable spatiotemporal variations compared to the
other three datasets. This dataset will play an important role
in climate change study.

5 Discussion

5.1 Determination of an appropriate spatial scale

To provide appropriate AVHRR sub-image blocks contain-
ing sufficient information for the RCNN model to generate
high-accuracy retrievals, the spatially adjacent effects on sur-
face Rn under different valid spatial extents should be exam-
ined. For this, we used a simple multivariate linear regression
(MLR) model (see Supplement for further details). The spa-
tial sizes of the sub-images denoted as B3, . . . , B19 vary from
3× 3 to 19× 19, respectively, with an interval of 2 pixels.
The true areas correspond to approximately 15 km× 15 km
(B3) to 135 km× 135 km (B19) on the ground. The results
are shown in Fig. 13. Overall, the average R increases from
0.61 to 0.708 and RMSE decreases from 50.12 to 46.17,
respectively, for the MLR model. As the valid spatial ex-
tent increases, essential and complete spatial features are ex-
posed and incorporated into the MLR model, which helps
to continuously improve the model’s retrieval accuracy. The
spatial extent of B13 (approximately 65 km× 65 km) is the
smallest size that exhibits convergent R and RMSE values,
and the spatial extent at B15 reaches a more stable state
for surface Rn estimations. This finding is in line with the
results of Jiang et al. (2020b), showing that scale effects
have a considerable impact on solar radiation retrieval ac-
curacy and that distances of approximately 20 to 40 km from
the central point (corresponding to areas of 40 km× 40 km
to 80 km× 80 km) are the optimal spatial scale. In addi-
tion, previous studies (Hakuba et al., 2013; Huang et al.,
2016) recommended a threshold distance of approximately
30 km, equal to a 13× 13 grid region with a spatial resolu-
tion of 0.05◦, for shortwave radiation estimation. Therefore,
a 15× 15 grid area was selected for the input sub-images to
generate AVHRR Rn retrievals.

5.2 Role of daily mean MERRA-2 Rn

The RCNN model uses instantaneous satellite-sensed signals
to directly estimate daily mean Rn retrievals. Though some
previous studies (Chen et al., 2020; Wang et al., 2015a; Wang
and Liang, 2017; Xu et al., 2020) directly estimated daily av-
eraged surface radiation from instantaneous satellite observa-
tions, like MODIS, the idea is theoretically flawed because
the AVHRR sensor only offers instantaneous “snapshots”,
which cannot capture daily mean information about the di-
urnal cycles of the atmosphere and clouds. King et al. (2013)
acknowledged that the frequency of cloud variations is high
at different times and locations based on twin MODIS cloud
products. In view of the wide satellite overpass times over
a particular location, e.g., the equatorial crossing time gen-
erally ranges from 13:00 to 17:30 local time, representing
different instantaneous atmospheric conditions for different
AVHRR sensors, daily mean MERRA-2 Rn is incorporated
into the input collection to provide daily mean information
about the surface, atmosphere, and clouds for the RCNN
model.

Figure 14 shows the effect of the daily mean MERRA-2
Rn on the final AVHRR Rn retrievals at different AVHRR
overpass times in local time. The improved effect is slightly
more significant during the afternoon than in the morning
when more over-land clouds are present (King et al., 2013).
This improvement is also more pronounced during the night.
The AVHRR Rn retrievals can only be obtained when solar
radiation is available (Fig. 10) because of the missing values
in the AVH02C1 product; therefore, the results during the
night are based on the validation results for high latitudes,
which demonstrate that daily mean information about the di-
urnal cycles of the atmosphere and clouds is more important
for daily surface radiation estimation at high latitudes than
that at middle and low latitudes. Shupe et al. (2011) found
annual cloud occurrence fractions are 58 %–83 % at the Arc-
tic observatories, with a clear annual cycle wherein clouds
are least frequent in the winter and most frequent in the late
summer and autumn.

Additionally, MERRA-2 downward shortwave radiation
(DSR) was used as a replacement for MERRA-2 Rn to test
its contribution to daily mean surface Rn estimations when
using instantaneous satellite data. The results presented in
Fig. S4 show that the improved effect of daily MERRA-
2 DSR is not comparable with that achieved using daily
MERRA-2 Rn, and the former is closer to the results ob-
tained when only instantaneous AVHRR observations are
used. Therefore, MERRA-2 Rn is a meaningful input for the
RCNN model. Moreover, the AVHRR Rn retrievals could
also be further improved by using more accurate daily mean
Rn data, such as GLASS Rn, or other parameters that accu-
rately represent daily mean atmospheric and cloud variations.
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Figure 12. Long-term temporal variation in (a) monthly average Rn and (b) monthly Rn anomalies for the AVHRR, CERES, GLASS, and
MERRA-2 datasets. The shading represents the variation range (standard deviation) of the global monthly mean Rn.

Figure 13. Variations in (a) R and (b) RMSE indices for each spa-
tial scale in the MLR model. The red lines in the subplots are the
average curves of indices at the different spatial scales.

5.3 Determination of a threshold for the ETC-derived
correlation coefficient

The threshold for the ETC-derived correlation coefficient be-
tween in situ measurements and the unknown truth within the
5 km AVHRR grid in Eq. (2) affects the selection of reliable
sites and the subsequent PSME process. A series of thresh-
olds for the ETC-derived coefficients were considered, rang-
ing from 0.2 to 0.9 with an interval of 0.1. In each case, the
corresponding measurements from the selected reliable sites
were fed into the RCNN model to train and subsequently

Figure 14. Effect of daily mean MERRA-2 Rn on AVHRR Rn re-
trievals at different satellite crossing times in local time over sites.
The bars indicate RMSE, and lines indicate absolute biases. The
shading shows the variation range of absolute bias.

generate AVHRR Rn retrievals. Then, the training and test
accuracies of the RCNN were calculated over all of the reli-
able sites for comparison. Another important consideration is
the representativeness of the RCNN for global Rn estimation
given that the number of reliable training sites decreases with
higher thresholds. Thus, the trained RCNN model was again
evaluated at all sites, including reliable and unreliable sites,
to examine the global representativeness. The number of re-
liable sites (training and test accuracies) and the associated
global accuracy are presented in Fig. 15. As the threshold
increased, the number of reliable sites decreased. The train-
ing and test relative RMSEs of the RCNN model showed a
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Figure 15. Effect of extended triplet collocation (ETC)-derived cor-
relation coefficients on the number of reliable sites and the corre-
sponding RCNN’s training, test, and global accuracies.

general decreasing trend, especially above a threshold of 0.5,
which illustrates that the selection of reliable sites and the
measurements from these sites have better representativeness
for the AVHRR footprint scale using ETC. This helps address
the spatial-scale mismatch issue and improve the accuracy of
AVHRR retrievals at a 5 km resolution. In addition, a trade-
off between the RCNN’s fitting accuracy at the reliable sites
and the global accuracy at all sites needs to be considered.
Even when a threshold of 0.9 was used, the global accuracy
of the RCNN was only slightly lower, which explains why
this threshold was applied in Sect. 3.1.

5.4 Orbital drift of the NOAA-series satellites

The orbital drift problem of the NOAA-series satellites has
attracted the attention of users applying AVHRR-derived
high-level remote sensing products, such as land surface tem-
perature (LST) (Ma et al., 2020; Liu et al., 2019) and TOA
albedo (Song et al., 2018). As shown in Fig. 16, the or-
bital drift makes the true equatorial crossing time (ECT) of
the NOAA-series afternoon satellites range from 13:00 to
17:30 in the solar time system. Previous geophysical vari-
able retrievals based on AVHRR data are instantaneous val-
ues at satellite overpass times, which need to be corrected
to a specific time, such as LST at 14:30 and albedo at noon
local time. However, the RCNN model uses instantaneous
AVHRR TOA observations at different satellite overpass
times to directly retrieve daily surface Rn estimates, which
differs from previous studies.

Additionally, daily MERRA-2 Rn and instantaneous SZA
values closely related to satellite transit times are taken as in-

puts; therefore, the RCNN model can automatically learn the
relationships between instantaneous satellite data at differ-
ent overpass times and corresponding daily surface Rn mea-
surements. Moreover, the results of the long-term temporal
analysis of the AVHRR Rn dataset provide more evidence
to ensure that the quality of the long-term AVHRR daily Rn
datasets is not affected by orbital drift. As such, orbital drift
does not affect our long-term AVHRR Rn dataset.

6 Data availability

Global surface Rn retrieved from NOAA AVHRR
data from 1981 to 2019 are freely available at
https://doi.org/10.5281/zenodo.5546316 (Xu et al., 2021).

The AVH02C1 product data were downloaded from the
Level-1 and Atmosphere Archive & Distribution System
Distributed Active Archive Center (https://ladsweb.modaps.
eosdis.nasa.gov/, last access: 2 July 2021; Pedelty et al.,
2007). The CERES-SYN product was downloaded from the
CERES team (https://ceres.larc.nasa.gov/, last access: 2 July
2021; Doelling et al., 2016). The GLASS Rn product was
provided by the GLASS team at http://www.glass.umd.edu/
(last access: 2 July 2021; Liang et al., 2021). MERRA-2
reanalysis was downloaded from the Global Modeling and
Assimilation Office (https://gmao.gsfc.nasa.gov/, last access:
2 July 2021; Gelaro et al., 2017b). The download links
of ground-based measurements from different observational
networks are referenced in Jiang et al. (2018).

7 Conclusions and outlook

A long-term (1981–2019) global daily surface Rn product
with a spatial resolution of 0.05◦ was generated from histori-
cal NOAA-series AVHRR data using an RCNN-based PSME
method. The specific steps employed were as follows: (1) se-
lecting reliable sites from all sites based on ETC to generate
the sample dataset, (2) training and independent testing of
the proposed RCNN model, (3) evaluating the AVHRR Rn
retrievals against in situ measurements and performing inter-
comparisons with three other Rn products (GLASS, CERES-
SYN, and MERRA-2), and (4) generating and evaluating the
long-term AVHRR Rn product.

ETC was first applied to select reliable sites to prepare
a sample dataset with better spatial representativeness at
the AVHRR footprint scale (i.e., 5 km). In total, 262 sites
were classified as reliable sites from a total of 522 sites and
used as a sample dataset for the RCNN model. The propor-
tions of the selected reliable sites representing cropland and
grassland surfaces were highest (∼ 66 % and∼ 62 %, respec-
tively), while those representing ice/snow surface were low-
est (∼ 14 %). The sample dataset from the 262 sites ensured
that the trained RCNN model had both a good fitting accu-
racy for the reliable sites and global accuracy across all sites.
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Figure 16. Equatorial crossing time (ECT) for the National Oceanic and Atmospheric Administration (NOAA)-series afternoon satellites.
Figure obtained from Liu et al. (2019).

A simple MLR model was used to examine the spa-
tially adjacent effects on surface Rn estimation, and a spa-
tial extent of 15× 15 pixels (75 km× 75 km) was then de-
termined as the input size of the RCNN to provide suffi-
cient spatial information. Based on 10-fold CV, the trained
RCNN model achieved an R2 of 0.90, with an RMSE
of 20.84 W m−2 (25.97 %) and a bias of −0.45 W m−2

(−0.57 %); the corresponding independent validation val-
ues were 0.84, 26.77 W m−2 (31.54 %), and 1.16 W m−2

(1.37 %), respectively, at the reliable sites. These results
demonstrate the overall ability of the RCNN model to ac-
curately predict surface Rn.

The results of an inter-comparison between the AVHRR
Rn retrievals and three other products illustrated that our re-
trievals show a better accuracy against in situ measurements,
with an R2 of 0.90, RMSE of 21.08 W m−2 (26.22 %), and
bias of −0.38 W m−2 (−0.47 %) at the reliable sites, and an
R2 of 0.85, RMSE of 26.74 W m−2 (35.70 %), and bias of
1.20 W m−2 (1.60 %) across all sites. At the same time, the
AVHRR Rn retrievals show better performance for different
observational networks and surface cover types, except for
the snow/ice surface cover. Under different elevations and
atmospheric conditions, the AVHRR Rn retrievals performed
better than the GLASS Rn equivalent, especially in the pres-
ence of thick clouds and hazy atmospheric conditions be-
cause of the integration of spatially adjacent information into
the inversion process in the RCNN model. In addition, the
spatiotemporal variation in the AVHRR Rn retrievals is simi-
lar to that of the GLASS Rn values, demonstrating the ability
of the RCNN model to generate a long-term global Rn prod-
uct.

The long-term global Rn dataset generated by the RCNN
model displays high accuracy and reasonable spatiotemporal
variation at the global scale, which is suited to many applica-
tions including, for example, studies to understand the radia-
tion budget and global climate change. Besides, compared to
current satellite-derived Rn products, e.g., CERES-SYN and
GLASS (2000–present), a longer record (1981–2019) of the

AVHRRRn dataset shows its value in climate change studies.
However, further research is needed to solve some problems
to further improve the data quality of the AVHRR Rn dataset.
First, new algorithms and satellite data are needed to estimate
surface Rn in the polar regions, such as MODIS data (Chen
et al., 2020). Second, an effective data gap-filling method or
multi-source data fusion algorithm is required to fill the data
gaps over land, especially during periods of satellite replace-
ment work. Third, coupled with spatially adjacent informa-
tion, real-time temporal information or historical information
should be incorporated to further improve the accuracy of the
Rn retrievals.

As a type of machine learning, deep learning involves us-
ing data-driven models to find potential relationships and
patterns and offers high adaptability to training data sample
inputs. The predictive ability of a data-driven model com-
pletely depends on the limitations of the training dataset and,
in the case of Rn, the ability of the model to accurately por-
tray spatiotemporal dynamics in areas where the availability
of training data is relatively poor, such as for AVHRR Rn re-
trievals for ice-/snow-covered surfaces. To address this prob-
lem, more physical knowledge is needed to fully utilize data-
driven modeling to estimate surface Rn under different atmo-
spheric and surface conditions. In particular, more attention
should be paid to understanding inherent physical processes
in addition to obtaining optimal estimation by coupling phys-
ical process models with the versatility of data-driven ma-
chine learning (Reichstein et al., 2019).
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