Articles | Volume 13, issue 8
https://doi.org/10.5194/essd-13-4241-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-4241-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An all-sky 1 km daily land surface air temperature product over mainland China for 2003–2019 from MODIS and ancillary data
School of Remote Sensing and Information Engineering, Wuhan
University, Wuhan 430079, China
Shunlin Liang
Department of Geographical Sciences, University of Maryland, College
Park, MD 20742, USA
School of Remote Sensing and Information Engineering, Wuhan
University, Wuhan 430079, China
Bing Li
School of Remote Sensing and Information Engineering, Wuhan
University, Wuhan 430079, China
School of Remote Sensing and Information Engineering, Wuhan
University, Wuhan 430079, China
Qian Wang
State Key Laboratory of Remote Sensing Science, Beijing Normal
University, Beijing 100875, China
Related authors
No articles found.
Xinyan Liu, Tao He, Qingxin Wang, Xiongxin Xiao, Yichuan Ma, Yanyan Wang, Shanjun Luo, Lei Du, and Zhaocong Wu
Earth Syst. Sci. Data, 17, 2405–2435, https://doi.org/10.5194/essd-17-2405-2025, https://doi.org/10.5194/essd-17-2405-2025, 2025
Short summary
Short summary
This study addresses the challenge of how clouds affect the Earth's energy balance, which is vital for understanding climate change. We developed a new method to create long-term cloud radiative kernels to improve the accuracy of measurements of sunlight reaching the surface, which significantly reduces errors. Findings suggest that prior estimates of cloud cooling effects may have been overstated, emphasizing the need for better strategies to manage climate change impacts in the Arctic.
Hui Liang, Shunlin Liang, Bo Jiang, Tao He, Feng Tian, Jianglei Xu, Wenyuan Li, Fengjiao Zhang, and Husheng Fang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-136, https://doi.org/10.5194/essd-2025-136, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
This paper describes 1 km daily mean land surface sensible heat flux (H) and land surface – air temperature difference (Tsa) datasets on the global scale during 2000–2020. The datasets were developed using a data-driven approach and rigorously validated against in situ observations and existing H and Tsa datasets, demonstrating both high accuracy and exceptional spatial resolution.
Yufang Zhang, Shunlin Liang, Han Ma, Tao He, Feng Tian, Guodong Zhang, and Jianglei Xu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-553, https://doi.org/10.5194/essd-2024-553, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
Soil moisture (SM) plays a vital role in climate, agriculture, and hydrology, yet reliable long-term seamless global datasets remain scarce. To fill this gap, we developed a four-decade seamless global daily 5 km SM product using multi-source datasets and deep learning techniques. This product has long-term coverage, spatial and temporal integrity, and high accuracy, making it a valuable tool for applications like SM trend analysis, drought monitoring, and assessing vegetation responses.
Bing Li, Shunlin Liang, Han Ma, Guanpeng Dong, Xiaobang Liu, Tao He, and Yufang Zhang
Earth Syst. Sci. Data, 16, 3795–3819, https://doi.org/10.5194/essd-16-3795-2024, https://doi.org/10.5194/essd-16-3795-2024, 2024
Short summary
Short summary
This study describes 1 km all-weather instantaneous and daily mean land surface temperature (LST) datasets on the global scale during 2000–2020. It is the first attempt to synergistically estimate all-weather instantaneous and daily mean LST data on a long global-scale time series. The generated datasets were evaluated by the observations from in situ stations and other LST datasets, and the evaluation indicated that the dataset is sufficiently reliable.
Xinyan Liu, Tao He, Shunlin Liang, Ruibo Li, Xiongxin Xiao, Rui Ma, and Yichuan Ma
Earth Syst. Sci. Data, 15, 3641–3671, https://doi.org/10.5194/essd-15-3641-2023, https://doi.org/10.5194/essd-15-3641-2023, 2023
Short summary
Short summary
We proposed a data fusion strategy that combines the complementary features of multiple-satellite cloud fraction (CF) datasets and generated a continuous monthly 1° daytime cloud fraction product covering the entire Arctic during the sunlit months in 2000–2020. This study has positive significance for reducing the uncertainties for the assessment of surface radiation fluxes and improving the accuracy of research related to climate change and energy budgets, both regionally and globally.
Yufang Zhang, Shunlin Liang, Han Ma, Tao He, Qian Wang, Bing Li, Jianglei Xu, Guodong Zhang, Xiaobang Liu, and Changhao Xiong
Earth Syst. Sci. Data, 15, 2055–2079, https://doi.org/10.5194/essd-15-2055-2023, https://doi.org/10.5194/essd-15-2055-2023, 2023
Short summary
Short summary
Soil moisture observations are important for a range of earth system applications. This study generated a long-term (2000–2020) global seamless soil moisture product with both high spatial and temporal resolutions (1 km, daily) using an XGBoost model and multisource datasets. Evaluation of this product against dense in situ soil moisture datasets and microwave soil moisture products showed that this product has reliable accuracy and more complete spatial coverage.
Aolin Jia, Shunlin Liang, Dongdong Wang, Lei Ma, Zhihao Wang, and Shuo Xu
Earth Syst. Sci. Data, 15, 869–895, https://doi.org/10.5194/essd-15-869-2023, https://doi.org/10.5194/essd-15-869-2023, 2023
Short summary
Short summary
Satellites are now producing multiple global land surface temperature (LST) products; however, they suffer from data gaps caused by cloud cover, seriously restricting the applications, and few products provide gap-free global hourly LST. We produced global hourly, 5 km, all-sky LST data from 2011 to 2021 using geostationary and polar-orbiting satellite data. Based on the assessment, it has high accuracy and can be used to estimate evapotranspiration, drought, etc.
Han Ma, Shunlin Liang, Changhao Xiong, Qian Wang, Aolin Jia, and Bing Li
Earth Syst. Sci. Data, 14, 5333–5347, https://doi.org/10.5194/essd-14-5333-2022, https://doi.org/10.5194/essd-14-5333-2022, 2022
Short summary
Short summary
The fraction of absorbed photosynthetically active radiation (FAPAR) is one of the essential climate variables. This study generated a global land surface FAPAR product with a 250 m resolution based on a deep learning model that takes advantage of the existing FAPAR products and MODIS time series of observation information. Direct validation and intercomparison revealed that our product better meets user requirements and has a greater spatiotemporal continuity than other existing products.
Rui Ma, Jingfeng Xiao, Shunlin Liang, Han Ma, Tao He, Da Guo, Xiaobang Liu, and Haibo Lu
Geosci. Model Dev., 15, 6637–6657, https://doi.org/10.5194/gmd-15-6637-2022, https://doi.org/10.5194/gmd-15-6637-2022, 2022
Short summary
Short summary
Parameter optimization can improve the accuracy of modeled carbon fluxes. Few studies conducted pixel-level parameterization because it requires a high computational cost. Our paper used high-quality spatial products to optimize parameters at the pixel level, and also used the machine learning method to improve the speed of optimization. The results showed that there was significant spatial variability of parameters and we also improved the spatial pattern of carbon fluxes.
Jianglei Xu, Shunlin Liang, and Bo Jiang
Earth Syst. Sci. Data, 14, 2315–2341, https://doi.org/10.5194/essd-14-2315-2022, https://doi.org/10.5194/essd-14-2315-2022, 2022
Short summary
Short summary
Land surface all-wave net radiation (Rn) is a key parameter in many land processes. Current products have drawbacks of coarse resolutions, large uncertainty, and short time spans. A deep learning method was used to obtain global surface Rn. A long-term Rn product was generated from 1981 to 2019 using AVHRR data. The product has the highest accuracy and a reasonable spatiotemporal variation compared to three other products. Our product will play an important role in long-term climate change.
Xueyuan Gao, Shunlin Liang, Dongdong Wang, Yan Li, Bin He, and Aolin Jia
Earth Syst. Dynam., 13, 219–230, https://doi.org/10.5194/esd-13-219-2022, https://doi.org/10.5194/esd-13-219-2022, 2022
Short summary
Short summary
Numerical experiments with a coupled Earth system model show that large-scale nighttime artificial lighting in tropical forests will significantly increase carbon sink, local temperature, and precipitation, and it requires less energy than direct air carbon capture for capturing 1 t of carbon, suggesting that it could be a powerful climate mitigation option. Side effects include CO2 outgassing after the termination of the nighttime lighting and impacts on local wildlife.
Xiaona Chen, Shunlin Liang, Lian He, Yaping Yang, and Cong Yin
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-279, https://doi.org/10.5194/essd-2021-279, 2021
Preprint withdrawn
Short summary
Short summary
The present study developed a 39 year consistent 8-day 0.05 degree gap-free SCE dataset over the NH for the period 1981–2019 as part of the Global LAnd Surface Satellite dataset (GLASS) product suite based on the NOAA AVHRR-SR CDR and several contributory datasets. Compared with published SCE datasets, GLASS SCE has several advantages in snow cover studies, including long time series, finer spatial resolution (especially for years before 2000), and complete spatial coverage.
Diyang Cui, Shunlin Liang, Dongdong Wang, and Zheng Liu
Earth Syst. Sci. Data, 13, 5087–5114, https://doi.org/10.5194/essd-13-5087-2021, https://doi.org/10.5194/essd-13-5087-2021, 2021
Short summary
Short summary
Large portions of the Earth's surface are expected to experience changes in climatic conditions. The rearrangement of climate distributions can lead to serious impacts on ecological and social systems. Major climate zones are distributed in a predictable pattern and are largely defined following the Köppen climate classification. This creates an urgent need to compile a series of Köppen climate classification maps with finer spatial and temporal resolutions and improved accuracy.
Yongkang Xue, Tandong Yao, Aaron A. Boone, Ismaila Diallo, Ye Liu, Xubin Zeng, William K. M. Lau, Shiori Sugimoto, Qi Tang, Xiaoduo Pan, Peter J. van Oevelen, Daniel Klocke, Myung-Seo Koo, Tomonori Sato, Zhaohui Lin, Yuhei Takaya, Constantin Ardilouze, Stefano Materia, Subodh K. Saha, Retish Senan, Tetsu Nakamura, Hailan Wang, Jing Yang, Hongliang Zhang, Mei Zhao, Xin-Zhong Liang, J. David Neelin, Frederic Vitart, Xin Li, Ping Zhao, Chunxiang Shi, Weidong Guo, Jianping Tang, Miao Yu, Yun Qian, Samuel S. P. Shen, Yang Zhang, Kun Yang, Ruby Leung, Yuan Qiu, Daniele Peano, Xin Qi, Yanling Zhan, Michael A. Brunke, Sin Chan Chou, Michael Ek, Tianyi Fan, Hong Guan, Hai Lin, Shunlin Liang, Helin Wei, Shaocheng Xie, Haoran Xu, Weiping Li, Xueli Shi, Paulo Nobre, Yan Pan, Yi Qin, Jeff Dozier, Craig R. Ferguson, Gianpaolo Balsamo, Qing Bao, Jinming Feng, Jinkyu Hong, Songyou Hong, Huilin Huang, Duoying Ji, Zhenming Ji, Shichang Kang, Yanluan Lin, Weiguang Liu, Ryan Muncaster, Patricia de Rosnay, Hiroshi G. Takahashi, Guiling Wang, Shuyu Wang, Weicai Wang, Xu Zhou, and Yuejian Zhu
Geosci. Model Dev., 14, 4465–4494, https://doi.org/10.5194/gmd-14-4465-2021, https://doi.org/10.5194/gmd-14-4465-2021, 2021
Short summary
Short summary
The subseasonal prediction of extreme hydroclimate events such as droughts/floods has remained stubbornly low for years. This paper presents a new international initiative which, for the first time, introduces spring land surface temperature anomalies over high mountains to improve precipitation prediction through remote effects of land–atmosphere interactions. More than 40 institutions worldwide are participating in this effort. The experimental protocol and preliminary results are presented.
Diyang Cui, Shunlin Liang, Dongdong Wang, and Zheng Liu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-53, https://doi.org/10.5194/essd-2021-53, 2021
Preprint withdrawn
Short summary
Short summary
The Köppen-Geiger climate classification has been widely applied in climate change and ecology studies to characterize climatic conditions. We present a new 1-km global dataset of Köppen-Geiger climate classification and bioclimatic variables for historical and future climates. The new climate maps offer higher classification accuracy, correspond well with distributions of vegetation and topographic features, and demonstrate the ability to identify recent and future changes in climate zones.
Xiongxin Xiao, Shunlin Liang, Tao He, Daiqiang Wu, Congyuan Pei, and Jianya Gong
The Cryosphere, 15, 835–861, https://doi.org/10.5194/tc-15-835-2021, https://doi.org/10.5194/tc-15-835-2021, 2021
Short summary
Short summary
Daily time series and full space-covered sub-pixel snow cover area data are urgently needed for climate and reanalysis studies. Due to the fact that observations from optical satellite sensors are affected by clouds, this study attempts to capture dynamic characteristics of snow cover at a fine spatiotemporal resolution (daily; 6.25 km) accurately by using passive microwave data. We demonstrate the potential to use the passive microwave and the MODIS data to map the fractional snow cover area.
Jin Ma, Ji Zhou, Frank-Michael Göttsche, Shunlin Liang, Shaofei Wang, and Mingsong Li
Earth Syst. Sci. Data, 12, 3247–3268, https://doi.org/10.5194/essd-12-3247-2020, https://doi.org/10.5194/essd-12-3247-2020, 2020
Short summary
Short summary
Land surface temperature is an important parameter in the research of climate change and many land surface processes. This article describes the development and testing of an algorithm for generating a consistent global long-term land surface temperature product from 20 years of NOAA AVHRR radiance data. The preliminary validation results indicate good accuracy of this new long-term product, which has been designed to simplify applications and support the scientific research community.
Yi Zheng, Ruoque Shen, Yawen Wang, Xiangqian Li, Shuguang Liu, Shunlin Liang, Jing M. Chen, Weimin Ju, Li Zhang, and Wenping Yuan
Earth Syst. Sci. Data, 12, 2725–2746, https://doi.org/10.5194/essd-12-2725-2020, https://doi.org/10.5194/essd-12-2725-2020, 2020
Short summary
Short summary
Accurately reproducing the interannual variations in vegetation gross primary production (GPP) is a major challenge. A global GPP dataset was generated by integrating the regulations of several major environmental variables with long-term changes. The dataset can effectively reproduce the spatial, seasonal, and particularly interannual variations in global GPP. Our study will contribute to accurate carbon flux estimates at long timescales.
Cited articles
Benali, A., Carvalho, A. C., Nunes, J. P., Carvalhais, N., and Santos, A.:
Estimating air surface temperature in Portugal using MODIS LST data, Remote
Sens. Environ., 124, 108–121, https://doi.org/10.1016/j.rse.2012.04.024,
2012.
Benavides, R., Montes, F., Rubio, A., and Osoro, K.: Geostatistical
modelling of air temperature in a mountainous region of Northern Spain, Agr.
Forest Meteorol., 146, 173–188,
https://doi.org/10.1016/j.agrformet.2007.05.014, 2007.
Bisht, G. and Bras, R. L.: Estimation of net radiation from the MODIS data
under all sky conditions: Southern Great Plains case study, Remote Sens.
Environ., 114, 1522–1534, https://doi.org/10.1016/j.rse.2010.02.007, 2010.
Borbas, E. and Menzel, P.: MODIS Atmosphere L2 Atmosphere Profile Product,
NASA MODIS Adaptive Processing System, Goddard Space Flight Center [data set], USA,
https://doi.org/10.5067/MODIS/MOD07_L2.006, 2017.
Breiman, L.: Bagging predictors, Mach. Learn., 24, 123–140, 1996.
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, 2001.
Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J.:
Classification and Regression Trees, Wadsworth International Group, Belmont, California, USA, 1984.
Chen, F., Liu, Y., Liu, Q., and Qin, F.: A statistical method based on
remote sensing for the estimation of air temperature in China, Int. J.
Climatol., 35, 2131-2143, https://doi.org/10.1002/joc.4113, 2015.
Chen, Y., Liang, S., Ma, H., Li, B., He, T., and Wang, Q.: An All-sky
0.01∘ Daily Surface Air Temperature Product over Beijing
(2003–2019), Zenodo [data set], https://doi.org/10.5281/zenodo.4405123, 2021a.
Chen, Y., Liang, S., Ma, H., Li, B., He, T., and Wang, Q.: An All-sky 1 km
Daily Surface Air Temperature Product over Mainland China, Zenodo [data set],
https://doi.org/10.5281/zenodo.4399453, 2021b.
Emamifar, S., Rahimikhoob, A., and Noroozi, A. A.: Daily mean air
temperature estimation from MODIS land surface temperature products based on
M5 model tree, Int. J. Climatol., 33, 3174–3181,
https://doi.org/10.1002/joc.3655, 2013.
Famiglietti, C. A., Fisher, J. B., Halverson, G., and Borbas, E. E.: Global
validation of MODIS near-surface air and dew point temperatures, Geophys.
Res. Lett., 45, 7772–7780, https://doi.org/10.1029/2018GL077813, 2018.
Gelaro, R., McCarty, W., Suarez, M. J., Todling, R., Molod, A., Takacs, L.,
Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K.,
Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da
Silva, A. M., Gu, W., Kim, G. K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M.,
Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective
Analysis for Research and Applications, Version 2 (MERRA-2), J. Climate, 30,
5419–5454, https://doi.org/10.1175/jcli-d-16-0758.1, 2017.
Gislason, P. O., Benediktsson, J. A., and Sveinsson, J. R.: Random Forests
for land cover classification, Pattern Recogn. Lett., 27, 294–300,
https://doi.org/10.1016/j.patrec.2005.08.011, 2006.
Goetz, S. J., Prince, S. D., and Small, J.: Advances in satellite remote
sensing of environmental variables for epidemiological applications, Adv.
Parasit., 47, 289–307, https://doi.org/10.1016/S0065-308X(00)47012-0, 2000.
Gong, P., Wang, J., Yu, L., Zhao, Y., Zhao, Y., Liang, L., Niu, Z., Huang,
X., Fu, H., and Liu, S.: Finer resolution observation and monitoring of
global land cover: First mapping results with Landsat TM and ETM+ data,
Int. J. Remote Sens., 34, 2607–2654,
https://doi.org/10.1080/01431161.2012.748992, 2013.
Good, E. J., Ghent, D. J., Bulgin, C. E., and Remedios, J. J.: A
spatiotemporal analysis of the relationship between near-surface air
temperature and satellite land surface temperatures using 17 years of data
from the ATSR series, J. Geophys. Res.-Atmos., 122, 9185–9210,
https://doi.org/10.1002/2017jd026880, 2017.
Guan, H., Zhang, X., Makhnin, O., and Sun, Z.: Mapping Mean Monthly
Temperatures over a Coastal Hilly Area Incorporating Terrain Aspect Effects,
J. Hydrometeorol., 14, 233–250, https://doi.org/10.1175/jhm-d-12-014.1,
2013.
Ham, J., Yangchi, C., Crawford, M. M., and Ghosh, J.: Investigation of the
random forest framework for classification of hyperspectral data, IEEE T.
Geosci. Remote, 43, 492–501, https://doi.org/10.1109/tgrs.2004.842481, 2005.
Ishida, T. and Kawashima, S.: Use of cokriging to estimate surface
air-temperature from elevation, Theor. Appl. Climatol., 47, 147–157,
https://doi.org/10.1007/bf00867447, 1993.
Jang, J. D., Viau, A. A., and Anctil, F.: Neural network estimation of air
temperatures from AVHRR data, Int. J. Remote Sens., 25, 4541–4554,
https://doi.org/10.1080/01431160310001657533, 2010.
Jang, K., Kang, S., Kimball, J., and Hong, S.: Retrievals of All-Weather
Daily Air Temperature Using MODIS and AMSR-E Data, Remote Sens., 6,
8387–8404, https://doi.org/10.3390/rs6098387, 2014.
Khesali, E. and Mobasheri, M.: A method in near-surface estimation of air
temperature (NEAT) in times following the satellite passing time using MODIS
images, Adv. Space Res., 65, 2339–2347,
https://doi.org/10.1016/j.asr.2020.02.006, 2020.
Kilibarda, M., Hengl, T., Heuvelink, G. B. M., Gräler, B., Pebesma, E.,
Perčec Tadić, M., and Bajat, B.: Spatio-temporal interpolation of
daily temperatures for global land areas at 1 km resolution, J. Geophys.
Res.-Atmos., 119, 2294–2313, https://doi.org/10.1002/2013jd020803, 2014.
Kurtzman, D. and Kadmon, R.: Mapping of temperature variables in Israel: a
comparison of different interpolation methods, Clim. Res., 13, 33–43,
https://doi.org/10.3354/cr013033, 1999.
Li, L. and Zha, Y.: Estimating monthly average temperature by remote
sensing in China, Adv. Space Res., 63, 2345–2357,
https://doi.org/10.1016/j.asr.2018.12.039, 2019.
Li, X., Zhou, Y., Asrar, G. R., and Zhu, Z.: Developing a 1 km resolution
daily air temperature dataset for urban and surrounding areas in the
conterminous United States, Remote Sens. Environ., 215, 74–84,
https://doi.org/10.1016/j.rse.2018.05.034, 2018.
Liang, S.: Quantitative remote sensing of land surfaces, John Wiley &
Sons, Inc., Hoboken, NJ, USA, 2004.
Liang, S., Zhao, X., Liu, S., Yuan, W., Cheng, X., Xiao, Z., Zhang, X., Liu,
Q., Cheng, J., Tang, H., Qu, Y., Bo, Y., Qu, Y., Ren, H., Yu, K., and
Townshend, J.: A long-term Global LAnd Surface Satellite (GLASS) data-set
for environmental studies, Int. J. Digit. Earth, 6, 5–33,
https://doi.org/10.1080/17538947.2013.805262, 2013.
Liang, S., Wang, D., He, T., and Yu, Y.: Remote sensing of earth's energy
budget: synthesis and review, Int. J. Digit. Earth, 12, 737–780,
https://doi.org/10.1080/17538947.2019.1597189, 2019.
Liang, S. and Wang, J.: Advanced remote sensing: terrestrial information
extraction and applications, 2nd Edn., Academic Press, 2019.
Liang, S., Cheng, J., Jia, K., Jiang, B., Liu, Q., Xiao, Z., Yao, Y., Yuan,
W., Zhang, X., and Zhao, X.: The Global LAnd Surface Satellite (GLASS)
product suite, B. Am. Meteorol. Soc., 102, E323–E337,
https://doi.org/10.1175/BAMS-D-18-0341.1, 2021.
Lin, S., Moore, N. J., Messina, J. P., DeVisser, M. H., and Wu, J.:
Evaluation of estimating daily maximum and minimum air temperature with
MODIS data in east Africa, Int. J. Appl. Earth Obs., 18, 128–140,
https://doi.org/10.1016/j.jag.2012.01.004, 2012.
Liu, Q., Wang, L., Qu, Y., Liu, N., Liu, S., Tang, H., and Liang, S.:
Preliminary evaluation of the long-term GLASS albedo product, Int. J. Digit.
Earth, 6, 69–95, https://doi.org/10.1175/BAMS-D-18-0341.1, 2013.
Liu, R., Ma, Z., Liu, Y., Shao, Y., Zhao, W., and Bi, J.: Spatiotemporal
distributions of surface ozone levels in China from 2005 to 2017: A machine
learning approach, Environ. Int., 142, 105823,
https://doi.org/10.1016/j.envint.2020.105823, 2020.
Ma, J., Zhou, J., Göttsche, F.-M., Liang, S., Wang, S., and Li, M.: A global long-term (1981–2000) land surface temperature product for NOAA AVHRR, Earth Syst. Sci. Data, 12, 3247–3268, https://doi.org/10.5194/essd-12-3247-2020, 2020.
Marzban, F., Sodoudi, S., and Preusker, R.: The influence of land-cover type
on the relationship between NDVI–LST and LST-Tair, Int. J. Remote Sens.,
39, 1377–1398, https://doi.org/10.1080/01431161.2017.1402386, 2017.
McGovern, A., Lagerquist, R., Gagne, D. J., Jergensen, G. E., Elmore, K. L., Homeyer, C. R., and Smith, T.: Making the black box more transparent: Understanding the physical implications of machine learning, B. Am. Meteorol. Soc., 100, 2175–2199, 2019.
Meyer, H., Katurji, M., Appelhans, T., Müller, M., Nauss, T., Roudier,
P., and Zawar-Reza, P.: Mapping Daily Air Temperature for Antarctica Based
on MODIS LST, Remote Sens., 8, 732, https://doi.org/10.3390/rs8090732, 2016.
Noi, P., Degener, J., and Kappas, M.: Comparison of Multiple Linear
Regression, Cubist Regression, and Random Forest Algorithms to Estimate
Daily Air Surface Temperature from Dynamic Combinations of MODIS LST Data,
Remote Sens., 9, 398, https://doi.org/10.3390/rs9050398, 2017.
Ploton, P., Mortier, F., Rejou-Mechain, M., Barbier, N., Picard, N., Rossi,
V., Dormann, C., Cornu, G., Viennois, G., Bayol, N., Lyapustin, A.,
Gourlet-Fleury, S., and Pelissier, R.: Spatial validation reveals poor
predictive performance of large-scale ecological mapping models, Nat.
Commun., 11, 4540, https://doi.org/10.1038/s41467-020-18321-y, 2020.
Prihodko, L. and Goward, S. N.: Estimation of air temperature from remotely
sensed surface observations, Remote Sens. Environ., 60, 335–346,
https://doi.org/10.1016/S0034-4257(96)00216-7, 1997.
Quinlan, J. R.:
Induction of decision trees, Mach. Learn., 1, 81–106, 1986.
Quinlan, J. R.: C4.5 : programs for machine learning, Morgan Kaufmann
Publishers Inc., 1992.
Rao, Y., Liang, S., and Yu, Y.: Land Surface Air Temperature Data Are
Considerably Different Among BEST-LAND, CRU-TEM4v, NASA-GISS, and NOAA-NCEI,
J. Geophys. Res.-Atmos., 123, 5881–5900,
https://doi.org/10.1029/2018jd028355, 2018.
Rao, Y., Liang, S., Wang, D., Yu, Y., Song, Z., Zhou, Y., Shen, M., and Xu,
B.: Estimating daily average surface air temperature using satellite land
surface temperature and top-of-atmosphere radiation products over the
Tibetan Plateau, Remote Sens. Environ., 234, 111462,
https://doi.org/10.1016/j.rse.2019.111462, 2019.
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng,
C. J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin,
J. K., Walker, J. P., Lohmann, D., and Toll, D.: The Global Land Data
Assimilation System, B. Am. Meteorol. Soc., 85, 381–394,
https://doi.org/10.1175/bams-85-3-381, 2004.
Rosenfeld, A., Dorman, M., Schwartz, J., Novack, V., Just, A. C., and Kloog,
I.: Estimating daily minimum, maximum, and mean near surface air temperature
using hybrid satellite models across Israel, Environ. Res., 159, 297–312,
https://doi.org/10.1016/j.envres.2017.08.017, 2017.
Schwingshackl, C., Hirschi, M., and Seneviratne, S. I.: Global Contributions
of Incoming Radiation and Land Surface Conditions to Maximum Near-Surface
Air Temperature Variability and Trend, Geophys. Res. Lett., 45, 5034–5044,
https://doi.org/10.1029/2018GL077794, 2018.
Shen, H., Jiang, Y., Li, T., Cheng, Q., Zeng, C., and Zhang, L.: Deep
learning-based air temperature mapping by fusing remote sensing, station,
simulation and socioeconomic data, Remote Sens. Environ., 240, 111692,
https://doi.org/10.1016/j.rse.2020.111692, 2020.
Shi, C., Xie, Z., Qian, H., Liang, M., and Yang, X.: China land soil
moisture EnKF data assimilation based on satellite remote sensing data, Sci.
China Earth Sci., 54, 1430–1440, https://doi.org/10.1007/s11430-010-4160-3,
2011.
Stisen, S., Sandholt, I., Nørgaard, A., Fensholt, R., and Eklundh, L.:
Estimation of diurnal air temperature using MSG SEVIRI data in West Africa,
Remote Sens. Environ., 110, 262–274,
https://doi.org/10.1016/j.rse.2007.02.025, 2007.
Sun, Y. J., Wang, J. F., Zhang, R. H., Gillies, R. R., Xue, Y., and Bo, Y.
C.: Air temperature retrieval from remote sensing data based on
thermodynamics, Theor. Appl. Climatol., 80, 37–48,
https://doi.org/10.1007/s00704-004-0079-y, 2004.
Vancutsem, C., Ceccato, P., Dinku, T., and Connor, S. J.: Evaluation of
MODIS land surface temperature data to estimate air temperature in different
ecosystems over Africa, Remote Sens. Environ., 114, 449–465,
https://doi.org/10.1016/j.rse.2009.10.002, 2010.
Vogt, J. V., Viau, A. A., and Paquet, F.: Mapping regional air temperature
fields using satellite-derived surface skin temperatures, Int. J. Climatol.,
17, 1559–1579, 1997.
Wan, Z., Hook, S., and Hulley, G.: MOD11A1 MODIS/Terra Land Surface
Temperature/Emissivity Daily L3 Global 1km SIN Grid, NASA LP DAAC [data set],
https://doi.org/10.5067/MODIS/MOD11A1.006, 2015.
Xiao, Q., Chang, H. H., Geng, G., and Liu, Y.: An Ensemble Machine-Learning
Model To Predict Historical PM2.5 Concentrations in China from Satellite
Data, Environ. Sci. Technol., 52, 13260–13269,
https://doi.org/10.1021/acs.est.8b02917, 2018.
Xiao, Z., Liang, S., Wang, J., Chen, P., Yin, X., Zhang, L., and Song, J.:
Use of General Regression Neural Networks for Generating the GLASS Leaf Area
Index Product From Time-Series MODIS Surface Reflectance, IEEE T. Geosci.
Remote, 52, 209–223, https://doi.org/10.1109/tgrs.2013.2237780, 2014.
Xu, Y., Knudby, A., and Ho, H. C.: Estimating daily maximum air temperature
from MODIS in British Columbia, Canada, Int. J. Remote Sens., 35, 8108–8121,
https://doi.org/10.1080/01431161.2014.978957, 2014.
Yang, K. and He, J.: China meteorological forcing dataset (1979–2018),
National Tibetan Plateau Data Center [data set],
https://doi.org/10.11888/AtmosphericPhysics.tpe.249369.file, 2019.
Yao, R., Wang, L., Huang, X., Li, L., Sun, J., Wu, X., and Jiang, W.:
Developing a temporally accurate air temperature dataset for Mainland China,
Sci. Total Environ., 706, 136037,
https://doi.org/10.1016/j.scitotenv.2019.136037, 2020.
Zeng, L., Wardlow, B., Tadesse, T., Shan, J., Hayes, M., Li, D., and Xiang,
D.: Estimation of Daily Air Temperature Based on MODIS Land Surface
Temperature Products over the Corn Belt in the US, Remote Sens., 7, 951–970,
https://doi.org/10.3390/rs70100951, 2015.
Zhang, H., Zhang, F., Ye, M., Che, T., and Zhang, G.: Estimating daily air
temperatures over the Tibetan Plateau by dynamically integrating MODIS LST
data, J. Geophys. Res.-Atmos., 121, 11425–11441,
https://doi.org/10.1002/2016jd025154, 2016.
Zhang, H.: Estimation of daily average near-surface air temperature using
MODIS and AIRS data, 2017 2nd International Conference on Frontiers of
Sensors Technologies (ICFST), 377-381, 2017.
Zhang, H., Zhang, F. A. N., Zhang, G., Ma, Y., Yang, K. U. N., and Ye, M.:
Daily air temperature estimation on glacier surfaces in the Tibetan Plateau
using MODIS LST data, J. Glaciol., 64, 132–147,
https://doi.org/10.1017/jog.2018.6, 2018.
Zhang, W., Huang, Y., Yu, Y., and Sun, W.: Empirical models for estimating
daily maximum, minimum and mean air temperatures with MODIS land surface
temperatures, Int. J. Remote Sens., 32, 9415–9440,
https://doi.org/10.1080/01431161.2011.560622, 2011.
Zhang, X., Wang, D., Liu, Q., Yao, Y., Jia, K., He, T., Jiang, B., Wei, Y.,
Ma, H., and Zhao, X.: An operational approach for generating the global land
surface downward shortwave radiation product from MODIS data, IEEE T.
Geosci. Remote, 57, 4636–4650, https://doi.org/10.1109/TGRS.2019.2891945,
2019.
Zhu, W., Lű, A., and Jia, S.: Estimation of daily maximum and minimum
air temperature using MODIS land surface temperature products, Remote Sens.
Environ., 130, 62–73, https://doi.org/10.1016/j.rse.2012.10.034, 2013.
Zhu, W., Lű, A., Jia, S., Yan, J., and Mahmood, R.: Retrievals of
all-weather daytime air temperature from MODIS products, Remote Sens.
Environ., 189, 152–163, https://doi.org/10.1016/j.rse.2016.11.011, 2017.
Short summary
This study used remotely sensed and assimilated data to estimate all-sky land surface air temperature (Ta) using a machine learning method, and developed an all-sky 1 km daily mean land Ta product for 2003–2019 over mainland China. Validation results demonstrated that this dataset has achieved satisfactory accuracy and high spatial resolution simultaneously, which fills the current dataset gap in this field and plays an important role in studies of climate change and the hydrological cycle.
This study used remotely sensed and assimilated data to estimate all-sky land surface air...
Altmetrics
Final-revised paper
Preprint