Articles | Volume 13, issue 8
https://doi.org/10.5194/essd-13-4241-2021
https://doi.org/10.5194/essd-13-4241-2021
Data description paper
 | 
30 Aug 2021
Data description paper |  | 30 Aug 2021

An all-sky 1 km daily land surface air temperature product over mainland China for 2003–2019 from MODIS and ancillary data

Yan Chen, Shunlin Liang, Han Ma, Bing Li, Tao He, and Qian Wang

Related authors

A seamless global daily 5 km soil moisture product from 1982 to 2021 using AVHRR satellite data and an attention-based deep learning model
Yufang Zhang, Shunlin Liang, Han Ma, Tao He, Feng Tian, Guodong Zhang, and Jianglei Xu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-553,https://doi.org/10.5194/essd-2024-553, 2025
Preprint under review for ESSD
Short summary
Estimation of Long-term Gridded Cloud Radiative Kernel and Radiative Effects Based on Cloud Fraction
Xinyan Liu, Tao He, Qingxin Wang, Xiongxin Xiao, Yichuan Ma, Yanyan Wang, Shanjun Luo, Lei Du, and Zhaocong Wu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-458,https://doi.org/10.5194/essd-2024-458, 2024
Preprint under review for ESSD
Short summary
Generation of global 1 km all-weather instantaneous and daily mean land surface temperatures from MODIS data
Bing Li, Shunlin Liang, Han Ma, Guanpeng Dong, Xiaobang Liu, Tao He, and Yufang Zhang
Earth Syst. Sci. Data, 16, 3795–3819, https://doi.org/10.5194/essd-16-3795-2024,https://doi.org/10.5194/essd-16-3795-2024, 2024
Short summary
A monthly 1° resolution dataset of daytime cloud fraction over the Arctic during 2000–2020 based on multiple satellite products
Xinyan Liu, Tao He, Shunlin Liang, Ruibo Li, Xiongxin Xiao, Rui Ma, and Yichuan Ma
Earth Syst. Sci. Data, 15, 3641–3671, https://doi.org/10.5194/essd-15-3641-2023,https://doi.org/10.5194/essd-15-3641-2023, 2023
Short summary
Generation of global 1 km daily soil moisture product from 2000 to 2020 using ensemble learning
Yufang Zhang, Shunlin Liang, Han Ma, Tao He, Qian Wang, Bing Li, Jianglei Xu, Guodong Zhang, Xiaobang Liu, and Changhao Xiong
Earth Syst. Sci. Data, 15, 2055–2079, https://doi.org/10.5194/essd-15-2055-2023,https://doi.org/10.5194/essd-15-2055-2023, 2023
Short summary

Related subject area

Data, Algorithms, and Models
Improved maps of surface water bodies, large dams, reservoirs, and lakes in China
Xinxin Wang, Xiangming Xiao, Yuanwei Qin, Jinwei Dong, Jihua Wu, and Bo Li
Earth Syst. Sci. Data, 14, 3757–3771, https://doi.org/10.5194/essd-14-3757-2022,https://doi.org/10.5194/essd-14-3757-2022, 2022
Short summary
The Fengyun-3D (FY-3D) global active fire product: principle, methodology and validation
Jie Chen, Qi Yao, Ziyue Chen, Manchun Li, Zhaozhan Hao, Cheng Liu, Wei Zheng, Miaoqing Xu, Xiao Chen, Jing Yang, Qiancheng Lv, and Bingbo Gao
Earth Syst. Sci. Data, 14, 3489–3508, https://doi.org/10.5194/essd-14-3489-2022,https://doi.org/10.5194/essd-14-3489-2022, 2022
Short summary
A high-resolution inland surface water body dataset for the tundra and boreal forests of North America
Yijie Sui, Min Feng, Chunling Wang, and Xin Li
Earth Syst. Sci. Data, 14, 3349–3363, https://doi.org/10.5194/essd-14-3349-2022,https://doi.org/10.5194/essd-14-3349-2022, 2022
Short summary
A Central Asia hydrologic monitoring dataset for food and water security applications in Afghanistan
Amy McNally, Jossy Jacob, Kristi Arsenault, Kimberly Slinski, Daniel P. Sarmiento, Andrew Hoell, Shahriar Pervez, James Rowland, Mike Budde, Sujay Kumar, Christa Peters-Lidard, and James P. Verdin
Earth Syst. Sci. Data, 14, 3115–3135, https://doi.org/10.5194/essd-14-3115-2022,https://doi.org/10.5194/essd-14-3115-2022, 2022
Short summary
HOTRUNZ: an open-access 1 km resolution monthly 1910–2019 time series of interpolated temperature and rainfall grids with associated uncertainty for New Zealand
Thomas R. Etherington, George L. W. Perry, and Janet M. Wilmshurst
Earth Syst. Sci. Data, 14, 2817–2832, https://doi.org/10.5194/essd-14-2817-2022,https://doi.org/10.5194/essd-14-2817-2022, 2022
Short summary

Cited articles

Benali, A., Carvalho, A. C., Nunes, J. P., Carvalhais, N., and Santos, A.: Estimating air surface temperature in Portugal using MODIS LST data, Remote Sens. Environ., 124, 108–121, https://doi.org/10.1016/j.rse.2012.04.024, 2012. 
Benavides, R., Montes, F., Rubio, A., and Osoro, K.: Geostatistical modelling of air temperature in a mountainous region of Northern Spain, Agr. Forest Meteorol., 146, 173–188, https://doi.org/10.1016/j.agrformet.2007.05.014, 2007. 
Bisht, G. and Bras, R. L.: Estimation of net radiation from the MODIS data under all sky conditions: Southern Great Plains case study, Remote Sens. Environ., 114, 1522–1534, https://doi.org/10.1016/j.rse.2010.02.007, 2010. 
Borbas, E. and Menzel, P.: MODIS Atmosphere L2 Atmosphere Profile Product, NASA MODIS Adaptive Processing System, Goddard Space Flight Center [data set], USA, https://doi.org/10.5067/MODIS/MOD07_L2.006, 2017. 
Breiman, L.: Bagging predictors, Mach. Learn., 24, 123–140, 1996. 
Download
Short summary
This study used remotely sensed and assimilated data to estimate all-sky land surface air temperature (Ta) using a machine learning method, and developed an all-sky 1 km daily mean land Ta product for 2003–2019 over mainland China. Validation results demonstrated that this dataset has achieved satisfactory accuracy and high spatial resolution simultaneously, which fills the current dataset gap in this field and plays an important role in studies of climate change and the hydrological cycle.
Altmetrics
Final-revised paper
Preprint