Articles | Volume 13, issue 8
Earth Syst. Sci. Data, 13, 4241–4261, 2021
https://doi.org/10.5194/essd-13-4241-2021
Earth Syst. Sci. Data, 13, 4241–4261, 2021
https://doi.org/10.5194/essd-13-4241-2021

Data description paper 30 Aug 2021

Data description paper | 30 Aug 2021

An all-sky 1 km daily land surface air temperature product over mainland China for 2003–2019 from MODIS and ancillary data

Yan Chen et al.

Related authors

Impact of Initialized Land Surface Temperature and Snowpack on Subseasonal to Seasonal Prediction Project, Phase I (LS4P-I): organization and experimental design
Yongkang Xue, Tandong Yao, Aaron A. Boone, Ismaila Diallo, Ye Liu, Xubin Zeng, William K. M. Lau, Shiori Sugimoto, Qi Tang, Xiaoduo Pan, Peter J. van Oevelen, Daniel Klocke, Myung-Seo Koo, Tomonori Sato, Zhaohui Lin, Yuhei Takaya, Constantin Ardilouze, Stefano Materia, Subodh K. Saha, Retish Senan, Tetsu Nakamura, Hailan Wang, Jing Yang, Hongliang Zhang, Mei Zhao, Xin-Zhong Liang, J. David Neelin, Frederic Vitart, Xin Li, Ping Zhao, Chunxiang Shi, Weidong Guo, Jianping Tang, Miao Yu, Yun Qian, Samuel S. P. Shen, Yang Zhang, Kun Yang, Ruby Leung, Yuan Qiu, Daniele Peano, Xin Qi, Yanling Zhan, Michael A. Brunke, Sin Chan Chou, Michael Ek, Tianyi Fan, Hong Guan, Hai Lin, Shunlin Liang, Helin Wei, Shaocheng Xie, Haoran Xu, Weiping Li, Xueli Shi, Paulo Nobre, Yan Pan, Yi Qin, Jeff Dozier, Craig R. Ferguson, Gianpaolo Balsamo, Qing Bao, Jinming Feng, Jinkyu Hong, Songyou Hong, Huilin Huang, Duoying Ji, Zhenming Ji, Shichang Kang, Yanluan Lin, Weiguang Liu, Ryan Muncaster, Patricia de Rosnay, Hiroshi G. Takahashi, Guiling Wang, Shuyu Wang, Weicai Wang, Xu Zhou, and Yuejian Zhu
Geosci. Model Dev., 14, 4465–4494, https://doi.org/10.5194/gmd-14-4465-2021,https://doi.org/10.5194/gmd-14-4465-2021, 2021
Short summary
A 1-km global dataset of historical (1979–2017) and future (2020–2100) Köppen-Geiger climate classification and bioclimatic variables
Diyang Cui, Shunlin Liang, Dongdong Wang, and Zheng Liu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-186,https://doi.org/10.5194/essd-2021-186, 2021
Revised manuscript accepted for ESSD
Short summary
A 1-km global dataset of historical (1979–2017) and future (2020–2100) Köppen-Geiger climate classification and bioclimatic variables
Diyang Cui, Shunlin Liang, Dongdong Wang, and Zheng Liu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-53,https://doi.org/10.5194/essd-2021-53, 2021
Preprint withdrawn
Short summary
Estimating fractional snow cover from passive microwave brightness temperature data using MODIS snow cover product over North America
Xiongxin Xiao, Shunlin Liang, Tao He, Daiqiang Wu, Congyuan Pei, and Jianya Gong
The Cryosphere, 15, 835–861, https://doi.org/10.5194/tc-15-835-2021,https://doi.org/10.5194/tc-15-835-2021, 2021
Short summary
A global long-term (1981–2000) land surface temperature product for NOAA AVHRR
Jin Ma, Ji Zhou, Frank-Michael Göttsche, Shunlin Liang, Shaofei Wang, and Mingsong Li
Earth Syst. Sci. Data, 12, 3247–3268, https://doi.org/10.5194/essd-12-3247-2020,https://doi.org/10.5194/essd-12-3247-2020, 2020
Short summary

Related subject area

Data, Algorithms, and Models
ERA5-Land: a state-of-the-art global reanalysis dataset for land applications
Joaquín Muñoz-Sabater, Emanuel Dutra, Anna Agustí-Panareda, Clément Albergel, Gabriele Arduini, Gianpaolo Balsamo, Souhail Boussetta, Margarita Choulga, Shaun Harrigan, Hans Hersbach, Brecht Martens, Diego G. Miralles, María Piles, Nemesio J. Rodríguez-Fernández, Ervin Zsoter, Carlo Buontempo, and Jean-Noël Thépaut
Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021,https://doi.org/10.5194/essd-13-4349-2021, 2021
Short summary
100 years of lake evolution over the Qinghai–Tibet Plateau
Guoqing Zhang, Youhua Ran, Wei Wan, Wei Luo, Wenfeng Chen, Fenglin Xu, and Xin Li
Earth Syst. Sci. Data, 13, 3951–3966, https://doi.org/10.5194/essd-13-3951-2021,https://doi.org/10.5194/essd-13-3951-2021, 2021
Short summary
The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019
Jie Yang and Xin Huang
Earth Syst. Sci. Data, 13, 3907–3925, https://doi.org/10.5194/essd-13-3907-2021,https://doi.org/10.5194/essd-13-3907-2021, 2021
Short summary
Coastal complexity of the Antarctic continent
Richard Porter-Smith, John McKinlay, Alexander D. Fraser, and Robert A. Massom
Earth Syst. Sci. Data, 13, 3103–3114, https://doi.org/10.5194/essd-13-3103-2021,https://doi.org/10.5194/essd-13-3103-2021, 2021
Short summary
UAV-based very high resolution point cloud, digital surface model and orthomosaic of the Chã das Caldeiras lava fields (Fogo, Cabo Verde)
Gonçalo Vieira, Carla Mora, Pedro Pina, Ricardo Ramalho, and Rui Fernandes
Earth Syst. Sci. Data, 13, 3179–3201, https://doi.org/10.5194/essd-13-3179-2021,https://doi.org/10.5194/essd-13-3179-2021, 2021
Short summary

Cited articles

Benali, A., Carvalho, A. C., Nunes, J. P., Carvalhais, N., and Santos, A.: Estimating air surface temperature in Portugal using MODIS LST data, Remote Sens. Environ., 124, 108–121, https://doi.org/10.1016/j.rse.2012.04.024, 2012. 
Benavides, R., Montes, F., Rubio, A., and Osoro, K.: Geostatistical modelling of air temperature in a mountainous region of Northern Spain, Agr. Forest Meteorol., 146, 173–188, https://doi.org/10.1016/j.agrformet.2007.05.014, 2007. 
Bisht, G. and Bras, R. L.: Estimation of net radiation from the MODIS data under all sky conditions: Southern Great Plains case study, Remote Sens. Environ., 114, 1522–1534, https://doi.org/10.1016/j.rse.2010.02.007, 2010. 
Borbas, E. and Menzel, P.: MODIS Atmosphere L2 Atmosphere Profile Product, NASA MODIS Adaptive Processing System, Goddard Space Flight Center [data set], USA, https://doi.org/10.5067/MODIS/MOD07_L2.006, 2017. 
Breiman, L.: Bagging predictors, Mach. Learn., 24, 123–140, 1996. 
Download
Short summary
This study used remotely sensed and assimilated data to estimate all-sky land surface air temperature (Ta) using a machine learning method, and developed an all-sky 1 km daily mean land Ta product for 2003–2019 over mainland China. Validation results demonstrated that this dataset has achieved satisfactory accuracy and high spatial resolution simultaneously, which fills the current dataset gap in this field and plays an important role in studies of climate change and the hydrological cycle.