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Abstract. Surface air temperature (Ta), as an important climate variable, has been used in a wide range of
fields such as ecology, hydrology, climatology, epidemiology, and environmental science. However, ground
measurements are limited by poor spatial representation and inconsistency, and reanalysis and meteorologi-
cal forcing datasets suffer from coarse spatial resolution and inaccuracy. Previous studies using satellite data
have mainly estimated Ta under clear-sky conditions or with limited temporal and spatial coverage. In this study,
an all-sky daily mean land Ta product at a 1 km spatial resolution over mainland China for 2003–2019 has
been generated mainly from the Moderate Resolution Imaging Spectroradiometer (MODIS) products and the
Global Land Data Assimilation System (GLDAS) dataset. Three Ta estimation models based on random for-
est were trained using ground measurements from 2384 stations for three different clear-sky and cloudy-sky
conditions. The random sample validation results showed that the R2 and root-mean-square error (RMSE) val-
ues of the three models ranged from 0.984 to 0.986 and from 1.342 to 1.440 K, respectively. We examined
the spatiotemporal patterns and land cover type dependences of model accuracy. Two cross-validation (CV)
strategies of leave-time-out (LTO) CV and leave-location-out (LLO) CV were also used to evaluate the mod-
els. Finally, we developed the all-sky Ta dataset from 2003 to 2009 and compared it with the China Land Data
Assimilation System (CLDAS) dataset at a 0.0625◦ spatial resolution, the China Meteorological Forcing Data
(CMFD) dataset at a 0.1◦ spatial resolution, and the GLDAS dataset at a 0.25◦ spatial resolution. Validation
accuracy of our product in 2010 was significantly better than other datasets, with R2 and RMSE values of 0.992
and 1.010 K, respectively. In summary, the developed all-sky daily mean land Ta dataset has achieved satisfac-
tory accuracy and high spatial resolution simultaneously, which fills the current dataset gap in this field and
plays an important role in the studies of climate change and the hydrological cycle. This dataset is currently
freely available at https://doi.org/10.5281/zenodo.4399453 (Chen et al., 2021b) and the University of Maryland
(http://glass.umd.edu/Ta_China/, last access: 24 August 2021). A sub-dataset that covers Beijing generated from
this dataset is also publicly available at https://doi.org/10.5281/zenodo.4405123 (Chen et al., 2021a).
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1 Introduction

Surface air temperature (Ta) is one of the most important
variables in a wide range of fields including ecology, hy-
drology, climatology, epidemiology, and environmental sci-
ence (Goetz et al., 2000; Stisen et al., 2007; Vancutsem et
al., 2010; Zhang et al., 2018). Ta refers to the atmospheric
temperature 1.5–2 m above the surface, which represents the
thermal state information of the surface and the lower at-
mosphere. It influences the carbon cycle through the bio-
physical effects of vegetation and regulates many surface
processes such as photosynthesis, respiration, and evapora-
tion (Khesali and Mobasheri, 2020). Reliable estimates of Ta
at fine spatiotemporal resolution are important to better un-
derstand and simulate complex surface processes and reveal
changes due to climate change or local disturbances (Guan
et al., 2013). Moreover, in the context of continuous global
warming, meteorological disasters caused by frequent ex-
treme weather events and consequential social and economic
losses are gradually increasing. A deep understanding of the
spatiotemporal patterns of Ta is also of great guiding signifi-
cance for disaster prevention and reduction.

However, because of its proximity to the interface between
the land/ocean and atmosphere, the near-surface air is influ-
enced by various exchange processes between these three
Earth system compartments (Schwingshackl et al., 2018).
The spatiotemporal patterns of Ta can vary and be com-
plicated due to the heterogeneity of various environmental
factors (such as solar radiation, latitude, underlying surface,
cloud cover, and season) that impact the energy balance of
the land–atmosphere system (Benali et al., 2012; Chen et al.,
2015; Prihodko and Goward, 1997).

Ta data are one of the most frequent forms of observa-
tion data recorded by meteorological stations. In situ Ta usu-
ally has reliable accuracy and high temporal resolution; how-
ever, it has some flaws, such as limited spatial representation,
measurement inconsistency, and uneven spatial distribution
of ground stations (Jang et al., 2014; Prihodko and Goward,
1997). Geographical interpolation methods such as inverse
distance weighting (IDW), kriging, and spline function have
been widely used to estimate the spatial distribution of Ta
(Benavides et al., 2007; Ishida and Kawashima, 1993; Kurtz-
man and Kadmon, 1999). However, these methods usually
consider only the autocorrelation of Ta, ignoring the com-
plex factors that lead to its heterogeneity. The accuracy of
interpolated Ta is greatly affected by station network den-
sity, which leads to relatively poor accuracy being obtained
in areas with sparse station density (Stisen et al., 2007; Vogt
et al., 1997). Therefore, the accuracy of interpolated Ta may
have significant errors associated with unrepresentative spa-
tial patterns, and there can be great uncertainty in describing
the spatial patterns of Ta over large areas in this way (Benali
et al., 2012; Rao et al., 2018).

Remotely sensed data have provided unprecedented spa-
tial coverage at regional and global spatial scales (Liang,

2004). Over the past few decades, many schemes have been
developed to estimate Ta from remotely sensed data. The
strong physical relationship between the land surface temper-
ature (LST) and Ta has become the research basis of many
Ta estimation methods. Generally speaking, the LST-based
Ta estimation methods can be divided into three distinct cat-
egories. The first type is the traditional statistical method,
including the univariate regression method to establish a lin-
ear relationship between Ta and LST, and multiple regression
methods considering various variables (such as solar zenith
angle, elevation, and Julian day) in addition to LST (Lin et
al., 2012; Zeng et al., 2015). The second is the temperature–
vegetation index (TVX) method, based on the negative cor-
relation between the normalized difference vegetation index
(NDVI) and LST in the study area (Stisen et al., 2007; Van-
cutsem et al., 2010; Zhu et al., 2013). The third is the land
surface energy-balance physical method, which uses the crop
water stress index (CWSI) and the aerodynamic resistance to
estimate Ta. This method has a good physical basis but usu-
ally relies on numerous input parameters (such as roughness
and soil physical properties), which are always difficult to ob-
tain (Sun et al., 2004). In principle, the atmospheric profile
products from satellite observations include the temperature
profile of the entire atmosphere but usually require additional
processes to obtain Ta. The Moderate Resolution Imaging
Spectroradiometer (MODIS) atmospheric profile product has
been used for this purpose (Bisht and Bras, 2010; Borbas and
Menzel, 2017; Famiglietti et al., 2018; Zhu et al., 2017). Gen-
erally, traditional statistical methods have been commonly
used but have reported low accuracy. In recent years, ma-
chine learning methods, particularly deep learning methods,
such as support vector machine (Zhang et al., 2016), artifi-
cial neural network (Jang et al., 2010; Zhang et al., 2016),
M5 model trees (Emamifar et al., 2013), random forest (RF)
models (Noi et al., 2017; Xu et al., 2014; Zhang et al., 2016),
cubist models (Meyer et al., 2016; Noi et al., 2017; Rao et
al., 2019), and advanced deep learning methods (Shen et al.,
2020), have been gradually applied to Ta estimation from
satellite data because of their stronger learning ability to cap-
ture the complex nonlinear relationship between various fac-
tors.

Most LST-based Ta estimation methods mentioned above
are suitable only for clear-sky conditions as the current LST
datasets are mainly derived from satellite thermal infrared
radiances (TIR) that are susceptible to cloud contamination
(Liang et al., 2019; Ma et al., 2020). Currently, there are two
main strategies for estimating all-sky Ta based on LST: one
is to first derive Ta from the available LST and then fill the
Ta gaps (Rosenfeld et al., 2017; Zhang, 2017); the other is to
first fill the LST gaps to develop a seamless product and then
estimate the all-sky Ta (Kilibarda et al., 2014; Li et al., 2018;
Rao et al., 2019). For example, Zhang (2017) estimated Ta
under clear-sky conditions based on MODIS LST, and the
Atmospheric Infrared Sounder (AIRS) standard Ta products
were used to fill the cloudy-sky pixels after a downscaling
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process, with a mean absolute error (MAE) of 1.2 K and a
root-mean-square error (RMSE) of 1.6 K overall. According
to the research conducted by Kilibarda et al. (2014), the 8 d
composite LST was interpolated into a daily dataset and then
combined with topographic layers and a geometric tempera-
ture trend to interpolate the all-sky daily Ta, and the results
reported that the RMSE values were between 2 and 4 ◦C for
daily mean, maximum, and minimum Ta. In addition, Zhu et
al. (2017) developed a parameterization scheme to estimate
all-sky instantaneous daytime Ta only relying on the MODIS
atmospheric profile product. They first established the re-
lationship between LST and Ta under clear-sky conditions
and then estimated Ta under cloudy-sky conditions based on
the established relationship, with RMSE values ranging from
2.50 to 2.56 ◦C.

Currently, several studies have been conducted to develop
all-sky Ta datasets based on remotely sensed data. For in-
stance, Li et al. (2018) used a three-step hybrid gap-filling
method to attain seamless LST; they then developed daily
geographically weighted regression (GWR) models to inter-
polate Ta using gap-filled LST and elevation, and finally de-
veloped a 1 km daily minimum/maximum Ta dataset in ur-
ban and surrounding areas in the conterminous US for 2003–
2016. The cross-validation results reported that the RMSE
values were 2.1 and 1.9 ◦C for daily minimum and maxi-
mum Ta, respectively. In the recent work conducted by Yao
et al. (2020), the MODIS 8 d composite LST was averaged
to obtain monthly mean LST and was then combined with
the enhanced vegetation index (EVI), solar radiation, topo-
graphic index, and other features to establish a cubist model
for generating 1 km monthly maximum/mean/minimum Ta
products in China: the RMSE of the estimated monthly mean
Ta was 0.629 ◦C. Rao et al. (2019) first filled the gaps of LSTs
and then used the gap-filled LSTs and some radiation prod-
ucts to build cubist models for estimating all-sky daily mean
Ta, with an RMSE of 1.87 ◦C. Finally, a 0.05◦× 0.05◦ daily
mean Ta product over the Tibetan Plateau for 2002–2016
was developed. In addition, multiple reanalysis and meteo-
rological forcing datasets covering large areas or global ar-
eas exist, which are usually generated by data assimilation
or data interpolation, such as the Global Land Data Assim-
ilation System (GLDAS; Rodell et al., 2004); Modern-Era
Retrospective Analysis and Research and Application, ver-
sion 2 (MERRA-2; Gelaro et al., 2017); China Meteorolog-
ical Forcing Data (CMFD; Yang and He, 2019); and China
Land Data Assimilation System (CLDAS; Shi et al., 2011).
However, these datasets have coarse spatial resolution (gen-
erally≥ 0.1◦ except for CLDAS, which has a spatial resolu-
tion of 0.0625◦) and regional inaccuracy, which may limit
their potential to accurately capture the spatial heterogeneity
of Ta in the urban and mountainous areas and lead to un-
certainties for applications at local to regional scales (Jang et
al., 2014; Li et al., 2018; Zhu et al., 2017). To our knowledge,
there is currently a lack of long-time-series all-sky Ta prod-

ucts covering vast areas with both high spatial and temporal
resolution.

The main objective of this study is to develop an all-sky
1 km daily mean land Ta over mainland China for 2003–
2019 by integrating satellite data products, model simula-
tions, and ground measurements. For the first time, assimi-
lated Ta was applied to supplement and substitute MODIS
LSTs and provide the initial values of model prediction. In
order to solve the issue of missing LST, a simple tempo-
ral gap-filling method was used to fill the gaps of MODIS
LSTs first. Considering the differences in the relationship
between Ta and other features under different weather con-
ditions, we divided all data pairs into three types of weather
conditions – (1) clear-sky conditions, (2) cloudy-sky condi-
tions case I, and (3) cloudy-sky conditions case II – and then
established three machine learning models to estimate daily
mean Ta under different weather conditions. The structure of
this paper is organized as follows: Sect. 2 describes the study
area and the data used; Sect. 3 summarizes the overall re-
search method; Sect. 4 reports the validation results and dis-
cusses the model performance; Sect. 5 compares the devel-
oped dataset with the existing datasets; and Sect. 6 presents
the overall conclusions.

2 Data

2.1 Meteorological station data

This study was conducted in mainland China. The station-
observed daily mean Ta from 2003 to 2019 was collected
from 2384 standard meteorological stations in mainland
China for model training and validation. During the pro-
duction process of this dataset, it experienced strict quality
control. Figure 1 shows the study area and the geographi-
cal location of the meteorological stations used in this study.
Each dot represents a station, and different colors correspond
to different land cover types. The land cover data used in
the study are Finer Resolution Observation and Monitoring
of Global Land Cover (FROM-GLC), version2 (2015_v1),
which are 30 m resolution global land cover maps (Gong et
al., 2013).

2.2 Remotely sensed data

The satellite datasets used in this study are listed in Table 1.
Terra and Aqua MODIS daily 1 km LST products

(MOD11A1/MYD11A1, C6) both provide daytime and
nighttime LSTs with a spatial resolution of 1 km (Wan et al.,
2015).

Three all-sky products from the Global LAnd Surface
Satellite (GLASS) products suite (Liang et al., 2013, 2021)
were used, including the GLASS 1 km 8 d surface broadband
albedo (ALB) product GLASS02A06 (Liu et al., 2013), the
GLASS 0.05◦ daily downward shortwave radiation (DSR)
product GLASS05B01 (Zhang et al., 2019), and the GLASS
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Figure 1. Study area and the location of meteorological stations used in this study. Each dot represents a station, and different colors
correspond to different land cover types as shown in this figure legend.

Table 1. The satellite datasets used in this study.

Product Dataset(s) Spatial resolution Temporal resolution

Land surface temperature (LST) MOD11A1, MYD11A1 1 km Daily
Downward shortwave radiation (DSR) GLASS05B01 0.05◦ Daily
Surface albedo (ALB) GLASS02A06 1 km 8 d
Leaf area index (LAI) GLASS01A01 1 km 8 d
Elevation GMTED2010 15 arcsec –

1 km 8 d leaf area index (LAI) product GLASS01A01 (Xiao
et al., 2014). For the ALB product, we used the black-sky
albedo of shortwave (BSA_sw), visible (BSA_vis), and near-
infrared (BSA_nir) bands. As radiation products, DSR and
ALB determine the shortwave solar radiation received at the
surface and the fraction of total radiation reflected and ab-
sorbed by the surface, respectively.

The Global Multi-resolution Terrain Elevation Data 2010
(GMTED2010) elevation dataset, downloaded from the
United States Geological Survey (USGS, https://topotools.
cr.usgs.gov/GMTED_viewer/viewer.htm, last access: 24 Au-
gust 2021), was also chosen to estimate Ta.

3 Methods

The overall framework of this study is shown in Fig. 2. First,
all datasets from 2003 to 2019 were preprocessed into iden-
tical spatial and temporal resolutions. Second, we filled the
gaps of MODIS LSTs and then divided all data pairs into

three weather conditions according to the gap-filling results.
Next, the values of all datasets were extracted using the
nearest-neighbor method according to the geographical lo-
cation of stations and then matched with the in situ Ta to
obtain data pairs. Data pairs under different weather condi-
tions from 2003 to 2016 were randomly divided into training,
validation, and test sets (ratio of 3 : 1 : 1). Three RF models
for different weather conditions were established and trained
using the training set. Three model validation strategies
of random sample validation, leave-time-out (LTO) cross-
validation (CV), and leave-location-out (LLO) CV were then
used to evaluate the models. Finally, we used the models to
develop the all-sky Ta dataset from 2003 to 2009 and com-
pared it with the existing datasets.

3.1 Data preprocessing

Because the spatial and temporal resolutions of all datasets
were not completely consistent, we preprocessed all re-
motely sensed datasets and reanalysis datasets from 2003
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Figure 2. The overall framework of this study.

to 2019 into identical 1 km and daily spatial and temporal
resolutions, respectively. DSR, elevation, and assimilated Ta
were resampled to a 1 km spatial resolution using the nearest-
neighbor method. As LAI and ALB datasets both have an 8 d
temporal resolution, we first combined them into a time se-
ries and then interpolated the time series using the linear in-
terpolation method to obtain the daily datasets. For GLDAS
assimilation data with a 3 h temporal resolution, we averaged
all assimilated instantaneous Ta in a day to acquire the assim-
ilated daily mean Ta for all days.

The values of all datasets were then extracted using the
nearest-neighbor method according to the geographical loca-
tions of stations and matched with the in situ Ta to obtain
data pairs. Next, we used a temporal gap-filling method to
fill the MODIS LST gaps and divided all data pairs into three
weather conditions according to the gap-filling results. The
detailed gap-filling method and strategy for the division into
weather condition categories is described in the Sect. 3.2.
The data pairs with different weather conditions from 2003
to 2016 were then randomly divided into training, validation,
and test sets (ratio of 3 : 1 : 1). Among them, the training set
was used for model training, the validation set was used to
determine the best model parameters, and the test set was
used to evaluate the final model performance.

3.2 Strategies for LST gap-filling and division into
weather condition categories

MODIS LSTs were produced under strict quality control,
with each pixel marked as either a clear-sky or cloudy-sky
observation. Pixels under cloudy-sky conditions had missing
LST values, meaning that the LST-based method could not
be applied to estimate Ta. In this study, a simple multitem-
poral method was used to fill the MODIS LST gaps. First,
we set a time threshold (±2 d), and the missing pixel value
was replaced by the clear-sky value of the nearest date within
the set time threshold. If no clear-sky pixel was found within
the time threshold, the missing pixel was not filled to avoid
introducing high uncertainty caused by a huge temperature
change between dates with large differences. This multitem-
poral method was used to fill the gaps of all four MODIS
LSTs each day.

Considering the differences in the relationship between Ta
and other features under different weather conditions, we
divided data pairs into clear-sky conditions and cloudy-sky
conditions according to the LSTs gap-filling results. When
all four LSTs in a day were under clear-sky conditions, the
data pair was identified as being under clear-sky conditions;
otherwise, it was identified as being under cloudy-sky con-
ditions. To control the uncertainty introduced by LST gap-
filling, cloudy-sky conditions were divided into two cases:
case I and case II. In particular, a data pair was identified as
being under cloudy-sky conditions case I when there were
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LST gaps in the data pair and the gaps could be filled using
the method mentioned above. If the LST gaps could not all be
filled, the data pair was identified as being under cloudy-sky
conditions case II. Therefore, we finally divided all data pairs
into three weather condition categories: (1) clear-sky condi-
tions, (2) cloudy-sky conditions case I, and (3) cloudy-sky
conditions case II. The detailed criteria for dividing weather
conditions are shown in Fig. 3.

Next, we established three machine learning models
(clear-sky model, cloudy-sky model I, and cloudy-sky model
II) and trained them separately for different weather con-
ditions. Daily LSTs were used in models for clear-sky
conditions (clear-sky model) and cloudy-sky conditions
case I (cloudy-sky model I), but not for cloudy-sky condi-
tions case II (cloudy-sky model II). GLDAS-assimilated Ta,
GLASS DSR, GLASS ALB, GLASS LAI, elevation, and
temporal and locational information were also used in all
three models as input features. For the clear-sky model, the
utilized features included four clear-sky LSTs in a day. The
qualification for a pixel of a given day to be judged as clear-
sky may be harsh, but this ensured the use of completely
clear-sky LSTs. The features of cloudy-sky model I included
gap-filled LST(s), which increased the availability of LST,
but the simple gap-filling strategy also introduced errors to
the models. To avoid instilling high uncertainty caused by
a large temperature change between dates with large differ-
ences, cloudy-sky model II did not use LST to estimate Ta.

3.3 Random forest

The RF method (Breiman, 2001) is an ensemble learning
method based on classification and regression tree (CART)
proposed by Breiman et al. (1984). Since it was proposed, it
has attracted the attention of quite a few fields of study and
has specifically had various applications in remote sensing in
recent years (Gislason et al., 2006; Ham et al., 2005; Li and
Zha, 2019; Xu et al., 2014).

A decision tree is a tree-like prediction model composed
of nodes and directed edges. In each internal node of the
decision tree, the sample set is segmented by selecting the
optimal splitting feature until the segmentation termination
condition is reached. Each path from the root node to the
leaf nodes of a decision tree forms a classification. There
are many algorithms for decision tree, such as ID3 (Quinlan,
1986), C4.5 (Quinlan, 1992), and CART. These algorithms
all adopt the top-down greedy algorithm, and each internal
node chooses the feature with the best classification effect to
split, in order to achieve the goal of dividing samples into
subsets that are as homogenous as possible, with the fastest
speed. In the generation algorithms of ID3 and C4.5 decision
tree, information gain or the information gain rate is used as
the criterion to judge the optimal segmentation. Another type
of optimal segmentation criterion is Gini impurity, which is
utilized in the CART decision tree. In the RF model, multi-
ple CART decision trees are included. The bagging method

(Breiman, 1996) is used to generate independent identically
distributed training sample sets for each tree and train on
them.

Although the application of RF at present is mainly fo-
cused on classification, it can be also used in regression
analysis effectively, which can usually achieve higher accu-
racy than traditional regression analysis methods. The train-
ing and prediction process of the RF regression model is
shown in Fig. 4. First, the bootstrapping method is used to
acquire k datasets {Dk,k = 1,2. . .} and then k decision trees
{h(x,2k),k = 1,2. . .} are established, respectively, where x

is the input vector, and 2k (k = 1,2. . .) is the random vector
determining the sampling of bootstrap datasets and candidate
splitting features of each tree. The construction of a decision
tree is realized by iteratively dividing the datasets into two
subsets. Different from the RF classification model, the mean
square error (MSE) is used as the optimal segmentation cri-
terion in the RF regression model to split the nodes. Each
decision tree in the RF regression model takes values rather
than types as output targets, and the average of the predicted
values of all the trees {h(x,2k),k = 1,2. . .} is used as the
final prediction.

3.4 Model training and validation

During the model training process, the training set was used
for model training, and the validation set was used to deter-
mine the models with the optimal hyperparameters.

Compared with artificial neural network, the RF regres-
sion model does not need to carry out complicated param-
eter tuning work, and changing some insignificant parame-
ters of the RF model may not cause substantial fluctuations
in model performance. The two most critical hyperparame-
ters, ntree and mtry, need to be determined during training.
Among them, ntree refers to the number of decision trees
in the RF model. Increasing ntree is conducive to improv-
ing the model performance and stability but also affects the
computational efficiency of the program. Mtry refers to the
maximum number of features used in a single decision tree.
When mtry is less than the total number of features, the seg-
mentation of a node is determined based on partial features
that are randomly selected rather than all features. Increasing
mtry allows nodes to consider more features when splitting
but also reduces the diversity of individual trees, thereby in-
creasing the risk of overfitting. Therefore, both parameters
need to be properly balanced and selected, and we used the
validation set to evaluate the model performance with differ-
ent combinations of parameters to obtain the optimal hyper-
parameters.

Assuming the total number of features of a sample is m,
the values of mtry include log2m, sqrt(m), and m, and ntree is
set to 5–200. To analyze the RF model performance sensitiv-
ity to hyperparameters, the RMSE values of the three models
for different weather conditions were calculated when setting
different parameters, and the result is shown in Fig. 5. It can
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Figure 3. The criteria for the weather-condition-based division of a data pair.

Figure 4. The training and prediction process of the RF regression model.

be seen from the results that with the change in model pa-
rameters, the three models showed similar variation patterns.
With the increase of ntree, the RMSE value decreased gradu-
ally until it became almost constant (when ntree≥ 100). The
continued increase of ntree made very little contribution to
improving the model performance but affected the comput-
ing efficiency. For mtry, we can see that using partial fea-
tures (mtry of log2m or sqrt(m)) resulted in significantly bet-
ter performance than using all features (mtry of m). Overall,
setting mtry to log2m and sqrt(m) presented similar perfor-
mance, and the setting of sqrt(m) performed slightly better

than log2m when ntree was larger than 175. Therefore, we
set ntree to 200 and mtry to sqrt(m) in all models.

To quantitatively evaluate the effect of each feature on the
models, we calculated the feature importance (FI) of every
feature using the permutation method for each model. The
permutation method breaks the statistical relationship be-
tween feature i and the target variable and then measures the
degree of deterioration in the model performance to evalu-
ate the importance of feature i to the model (Mcgovern et al.,
2019). Specifically, the model is first trained with the training
set, and the RMSE of the validation set (RMSEtrue) is then
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Figure 5. RF model performance sensitivity to hyperparameters.

calculated using Eq. (1). For the calculation of the FI of fea-
ture i, RMSEi is calculated again after all the features i of the
validation set are shuffled. The difference between RMSEtrue
and RMSEi is calculated and then divided by RMSEtrue, and
the result is used as FI, as shown in the Eq. (2). A large FI
value means that the model performance decreases signifi-
cantly after shuffling this feature, which indicates that this
feature has a great impact on the accuracy of prediction re-
sults. On the contrary, if the model performance does not de-
teriorate significantly, it is obvious that this feature has less
influence on the prediction process, or that other linearly de-
pendent features are included in the model to make this fea-
ture redundant.

RMSE=

√√√√√ n∑
i=1

(
ypre− yobs

)2
n

, (1)

FIi =
RMSEi −RMSEtrue

RMSEtrue
, (2)

where ypre refers to model prediction result, and yobs refers
to the corresponding station observation. RMSEtrue is the
RMSE of the validation set, and RMSEi refers to the RMSE
of the validation set after feature i has been shuffled.

The Ta predicted by the models was compared to the cor-
responding station observations. The RMSE, MAE, and R2

were selected as criteria for model evaluation. In order to
comprehensively evaluate the performance of the models,
we adopted three model validation strategies: random sam-
ple validation, LTO CV, and LLO CV. For random sample
validation, the test set (one-fifth of the total data from 2003
to 2016 selected randomly) was used to evaluate the perfor-
mance of the final Ta estimation models. The results were
grouped by elevation range, land cover type, and month to
evaluate the model performance under different situations.
For LTO CV and LLO CV, we divided all data pairs into 14
groups according to calendar year and 7 groups according
to geographical location. In each iteration, one group of data
was used for validation, and the other groups of data were
used as the training set for model training. The modeling and
validation process were repeated 14 and 7 times until each
year’s data and each cluster of data were validated, respec-
tively. These two CV strategies have been used in some stud-
ies to evaluate the performance of spatiotemporal models in
unknown time or unknown space (Liu et al., 2020; Ploton et
al., 2020; Xiao et al., 2018).
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4 Analysis of the results

4.1 Overall accuracy and model comparison

Approximately three-fifths and one-fifth of the data pairs
from 2003 to 2016 were randomly selected for training and
tuning the models, respectively, and the remaining one-fifth
of the total data pairs were used to evaluate the performance
of the final Ta estimation models. Validation statistics of
models for different weather conditions and the overall ac-
curacy of all estimated daily mean Ta are shown in Table 2.
The three models presented similar validation statistics, with
R2, MAE, RMSE, and bias values ranging from 0.984 to
0.986, 1.033 K to 1.100 K, 1.342 K to 1.440 K, and 0.012 K
to 0.051 K, respectively. The overall R2, MAE, RMSE, and
bias values of the estimated all-sky Ta were 0.985, 1.068 K,
1.409 K, and 0.03 K, respectively. Compared with the in situ
Ta, the estimated Ta of all models showed a high correlation
with little difference, confirming the great potential of the
RF method to estimate the all-sky daily mean Ta over a wide
spatial and temporal range.

In addition, to further investigate the distribution of the
prediction results and the differences between the three mod-
els, density scatterplots of the estimated Ta against the in
situ Ta for the three models are shown in Fig. 6. In the three
density scatterplots, most points were very concentrated near
the 1 : 1 line, which also confirmed that these three models
have achieved satisfactory accuracy in estimating daily mean
Ta under different weather conditions. Among all the mod-
els, the clear-sky model had the highest stability and over-
all accuracy statistically, with the highest R2 and the lowest
MAE and RMSE. It could predict Ta under clear-sky con-
ditions from less than 250 K to more than 300 K accurately
and steadily. Compared with the clear-sky model, cloudy-
sky model I had a relatively large error, which demonstrated
that the LST gap-filling strategy adopted in this study intro-
duced errors into the model to some extent, thereby increas-
ing the uncertainty in estimating Ta under cloudy-sky con-
ditions case I. The accuracy of the cloudy-sky model II was
statistically similar to that of the clear-sky model, and it could
predict a moderate temperature range close to 275 K with sat-
isfactory performance. However, it can be seen from the den-
sity scatterplot for cloudy-sky model II that some discrete
points deviated from the 1 : 1 line in the low-temperature
range, which indicated that there may be much uncertainty
in predicting the low-temperature range, especially at tem-
peratures less than 260 K.

Many studies have proved that land cover type and eleva-
tion have a significant impact on the heterogeneity of Ta (Be-
nali et al., 2012; Good et al., 2017; Lin et al., 2012; Marzban
et al., 2017). Therefore, to comprehensively analyze the
performance of the Ta estimation models, we grouped the
results by land cover type and elevation range, and then
compared the model performance for different groups. The
model performance for different land cover types is listed

in Table 3. All models showed relatively good performance
(RMSE < 1.5 K) for cropland, shrubland, water, and imper-
vious surface, whereas RMSE values were higher for grass-
land and bare land, which was consistent with the findings
of Shen et al. (2020). The model performance for different
elevation ranges is also listed in Table 4. With the increase
in elevation, RMSE values of all models had a certain up-
ward trend. However, as shown in the Fig. 7, the elevations
of the stations used in this study are mainly distributed in the
range from 0 to 2000 m, so the quantity of training samples in
this elevation range have an absolute superiority, whereas the
samples from higher elevations (elevation > 2000 m) only
occupy a small part. The problem of class imbalance may
contribute to the relatively large errors when predicting Ta at
high elevation. In addition, factors such as complex and var-
ied topography, vertical variation in Ta, and scale differences
between remotely sensed image pixels and station observa-
tion data points will lead to high difficulty and uncertainty in
Ta estimation at higher elevations (Rao et al., 2019).

We further evaluated the error distribution of the three
models at the stations. Due to the absence of in situ Ta at
some ground stations on some days, only the stations that
recorded more than 20 d for all three weather conditions were
taken into account. Thus, the results of 2320 valid stations
were finally obtained, as shown in Table 5. In general, the
models showed good performance at most stations, with a
mean RMSE value of 1.383 K. Moreover, 97 % of stations
had RMSE values less than 2 K and only 1 of the 2320 sta-
tistical stations had an RMSE value greater than 3 K. The
clear-sky model also had the best performance at the station
scale, with the lowest mean RMSE of 1.231 K. A total of
508 stations had RMSE values less than 1 K, 2286 stations
had RMSE values less than 2 K, while only 2 stations had
RMSE values greater than 3 K. For cloudy-sky model I, the
mean RMSE reached 1.432 K. The RMSE values of 2256
stations were less than 2 K, and only 1 station had an RMSE
greater than 3 K. For cloudy-sky model II, the mean RMSE
was 1.440 K, which was close to cloudy-sky model I, and
121 stations had RMSE values less than 1 K. However, 13
stations had RMSE values greater than 3 K for cloudy-sky
model II, and most of these stations had RMSE values less
than 3 K for the other two models.

For model comparison, as expected, the clear-sky model
that used absolutely clear-sky LSTs performed better than
cloudy-sky model I and cloudy-sky model II in almost every
aspect and presented the highest stability. Cloudy-sky model
I, which contained gap-filled LSTs, did not perform as well
as the clear-sky model because, although the time threshold
(±2 d) of the LST gap-filling method was relatively small,
the LST value of a missing pixel of a date may be replaced
by a clear-sky value with a difference of up to 2 d. How-
ever, the LST can vary considerably in just a few days, so
the LST gap-filling process can introduce large errors into
the model, thereby affecting the accuracy of Ta estimation.
Surprisingly, cloudy-sky model II, which did not use LST

https://doi.org/10.5194/essd-13-4241-2021 Earth Syst. Sci. Data, 13, 4241–4261, 2021



4250 Y. Chen et al.: An all-sky 1 km daily land surface air temperature product

Table 2. Model validation statistics.

Model R2 MAE (K) RMSE (K) Bias (K)

Clear-sky model 0.986 1.033 1.342 0.021
Cloudy-sky model I 0.984 1.100 1.440 0.012
Cloudy-sky model II 0.984 1.046 1.396 0.051
All 0.985 1.068 1.409 0.030

Figure 6. Density scatterplots of the estimated Ta against the in situ Ta for three models.

features, achieved a comparative accuracy with the clear-sky
model (respective RMSE values of 1.396 K vs. 1.342 K) sta-
tistically. However, when we further analyzed the model per-
formance in specific situations, we detected differences in
the performance of the three models. There may be consider-
able uncertainty associated with the cloudy-sky model II with
respect to predicting the low-temperature range, especially
at less than 260 K. Notably, cloudy-sky model II performed
poorly for wetlands, with an RMSE of 2.063 K, whereas both
the clear-sky model and cloudy-sky model I performed well
on this type of land cover. This may be because wetlands are
a mixture of water and land, with diverse complex ecologi-
cal environments. Using LST can significantly improve the
Ta estimation accuracy of this land cover type.

In summary, because of the strong correlation between Ta
and LST, adding daily LSTs as features to models can im-
prove the model stability and robustness. In the absence of
LST, assimilated Ta can be used as a substitute for LST to
provide an initial value or first guess for the model to esti-
mate Ta with acceptable accuracy when combined with other
features. However, the resolution of the reanalysis product is
relatively coarse, and some local details were ignored when
sampling from a larger scale (0.25◦× 0.25◦) to a smaller
scale (1 km× 1 km), thereby causing explicit uncertainties
for cloudy-sky model II with respect to predicting the low-
temperature range or some regions, especially some specific
land cover types or regions with complex terrain. Overall,
none of the three models showed significant differences in
the model performance, and the model performance discrep-
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Table 3. Model performance for different land cover types.

Land cover type Clear-sky model Cloudy-sky model I Cloudy-sky model II

% RMSE (K) % RMSE (K) % RMSE (K)

Cropland 20.1 1.295 22.8 1.379 24.4 1.327
Forest 10.4 1.375 11.1 1.502 15.3 1.421
Grassland 26.0 1.420 22.4 1.550 17.3 1.540
Shrubland 1.2 1.392 1.2 1.473 1.3 1.338
Wetland 0.1 1.286 0.1 1.445 0.1 2.063
Water 3.3 1.366 3.2 1.451 3.8 1.383
Impervious surface 29.2 1.241 32.8 1.341 35.5 1.327
Bare land 9.6 1.462 6.4 1.613 2.3 1.793

Table 4. Model performance for different elevation ranges.

Elevation (m) Clear-sky model Cloudy-sky model I Cloudy-sky model II

% RMSE (K) % RMSE (K) % RMSE (K)

< 1000 61.8 1.281 71.1 1.381 82.4 1.363
1000–2000 24.6 1.372 20.0 1.538 14.2 1.511
2000–3000 6.1 1.472 4.2 1.68 1.7 1.637
3000–4000 4.7 1.547 3.0 1.619 1.1 1.614
> 4000 2.8 1.678 1.7 1.673 0.6 1.768

Figure 7. Elevation histogram of stations used in this study.

ancies for different land cover types and elevation ranges
were acceptable. The proposed models can perform well in
different situations and are suitable for Ta estimation under
different weather conditions.

4.2 Cross-validation

In addition to random sample validation, two CV methods
were used to further evaluate model performance. For the
LTO CV, we divided the data pairs from 2003 to 2016 into
14 groups by calendar year. In each iteration, 13 groups of

data were used as a training set for model training, and the
remaining 1 group of data was used for validation. The mod-
eling and validation process were repeated 14 times until the
data for each year were validated. The results are shown in
Fig. 8. The RMSE values of validation results for different
groups of data ranged from 1.359 to 1.665 K. The minor dif-
ference between the LTO CV results proved that these mod-
els have good extensibility in time.

For the LLO CV, we then divided seven clusters in the
Chinese region using the similar separation strategy of Xiao
et al. (2018). Stations used in this study were divided into
different clusters according to their spatial locations, and all
data pairs were divided into seven groups according to the
cluster of station. In each iteration, six groups of data were
used as training sets and the remaining one group of data
was used for validation. The modeling and validation pro-
cess were repeated seven times until the data of each group
were validated. The total validation results of the models un-
der the three weather conditions are shown in Fig. 9, with
RMSE values ranging from 1.615 to 1.957 K. As expected,
the error of the LLO CV increased relative to random sample
validation. This is because the relationship between Ta and
other features varies with geographical location. The predic-
tion error of the northwest and southwest clusters was larger
than that of other clusters. The RMSE values of these two
clusters exceeded 2.5 K under cloudy-sky conditions case II,
whereas the RMSE values of the other clusters were about
1.5 K. This is consistent with the analysis of the spatial dis-
tribution of model accuracy in Sect. 4.4 of the paper. The me-
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Table 5. Error distributions of three models at the stations.

RMSE

Model Mean (K) < 1 K < 2 K < 3 K ≥ 3 K

Clear-sky model 1.231 508 2286 2318 2
Cloudy-sky model I 1.432 70 2256 2319 1
Cloudy-sky model II 1.440 121 2099 2307 13
All 1.383 80 2249 2319 1

Figure 8. Density scatterplots of the LTO CV results for three models.

teorological stations in northwestern and southwestern China
are distributed discretely and at a distance from other stations
in China, leading to a large difference between the training
set and the test set and, ultimately, resulting in the relatively
poor performance in the LLO CV strategy in these two re-
gions. Furthermore, the LLO CV results of cloudy-sky model
II were worse than those of the clear-sky model and cloudy-
sky model I, indicating that LSTs help to reduce the spatial
overfitting of the models.

4.3 Feature importance analysis

To quantitatively evaluate the contribution of each feature
included in the RF models, the FI of every feature for the

three models was calculated using the permutation method
described in Sect. 3.4 and was then ranked. To reduce the
impact of contingency on the experimental results, we re-
peated the experiment 30 times and took the average value
of all experimental results as the final FI of each feature for
each model. The FI results are shown in Fig. 10, with the
importance decreasing from top to bottom. The gray line in-
dicates the FI range of each feature for multiple repeated ex-
periments. All features are divided into four types and rep-
resented by different colors, among which the blue rectan-
gles represent MODIS LSTs, the orange rectangles represent
GLDAS-assimilated Ta, the red rectangles represent radia-
tion products including DSR and ALB, and the green rectan-
gles represent other features.
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Figure 9. Density scatterplots of the LLO CV results for three models.

For clear-sky model, Terra nighttime LST was of the high-
est importance (FI of 2.92), followed by assimilated Ta (FI
of 2.48), indicating that the prediction accuracy of the clear-
sky model was significantly reduced after permuting these
two features. They were followed by Aqua nighttime LST
(FI of 1.3) and two daytime LSTs (FI of 0.49 and 0.21, re-
spectively). For cloudy-sky model I, assimilated Ta ranked
first (FI of 4.59), followed by Terra nighttime LST (FI of
1.03). For cloudy-sky model II, which did not include LST
as features, assimilated Ta played a more importance role (FI
of 6.65) than it did for cloudy-sky model I. The FI of radi-
ation products and other features were all less than one for
all the models, showing that they only slightly improved the
model performance.

The energy exchange between the land surface and the
near-surface atmosphere takes the form of longwave radi-
ation, evapotranspiration, and turbulent exchange, or other
phenomena. LST and land surface emissivity (LSE) deter-
mine the longwave radiation in land surface radiation and en-
ergy budgets (Liang and Wang, 2019). Thus, there is a strong
and complicated physical correlation between LST and Ta.
It can be seen from Fig. 8 that all four daily LSTs, espe-
cially nighttime LSTs, had relatively high FI values for both
the clear-sky model and cloudy-sky model I. Among all the

daily LSTs, nighttime LSTs outweighed daytime LSTs, and
the Terra nighttime LST was of higher importance than the
Aqua nighttime LST, which was consistent with the findings
of many studies (Benali et al., 2012; Li and Zha, 2019; Zhang
et al., 2011). In the study by Lin et al. (2012), the MAE be-
tween LST and Ta during the day and during the night were
calculated separately, and they found that there was better
agreement between LST and Ta during the night. In addition,
due to the lack of solar radiation and its influence on the ther-
mal infrared signal, remotely sensed nighttime LST products
usually have higher stability (Benali et al., 2012; Vancutsem
et al., 2010).

Assimilated Ta also mattered considerably for Ta estima-
tion models. Its FI was second only to Terra nighttime LST
for the clear-sky model and highest for cloudy-sky model
I and cloudy-sky model II. For cloudy-sky model I, origi-
nally missed LSTs were replaced by clear-sky values from a
nearby date, and the error introduced by this simple LST gap-
filling strategy resulted in a decrease in the overall LST accu-
racy, thereby causing the FI of assimilated Ta to exceed that
of LSTs. Compared with cloudy-sky model I, assimilated Ta
was of higher importance, with a FI of 6.65 for cloudy-sky
model II, indicating that it became the absolute dominant fac-
tor in Ta estimation when LST was not included in the Ta es-
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Figure 10. FI of each feature for three models.

timation model. Cloudy-sky model II also achieved satisfac-
tory accuracy in the validation results. This demonstrates that
although the spatial resolution of the assimilated Ta is rela-
tively coarse, it can be a supplement or substitute for MODIS
LSTs and provide an initial value or first guess for models to
predict Ta with a higher resolution.

Radiation products and other features helped to improve
the accuracy of Ta estimation models to a small extent.
Among them, latitude, longitude, elevation, and day of year
had relatively high importance in all three models. Latitude
and longitude determine the relative position of the sun,
which influences day length and, thus, the distribution of to-
tal solar radiation that the surface receives throughout the
year; this, in turn, affects the patterns of Ta (Benali et al.,
2012). Elevation affects how the ground is heated and how
much radiation energy is absorbed by the atmosphere, result-
ing in vertical variations in Ta. In addition, the relationship
between Ta and LST has great heterogeneity in different re-
gions and at different times and is greatly affected by surface
characteristics and atmospheric conditions. The day of year
helps to explain the seasonal changes in atmospheric physical
conditions, chemical composition, and surface characteris-
tics to distinguish the different relationships between Ta and
LST in different seasons and subsequently improve the accu-
racy of Ta estimation (Yao et al., 2020; Zhang et al., 2011).
For LAI, DSR, and ALB, it is likely that other collinear fea-

tures in the models made the information provided by them
redundant, so their FI was relatively low in the Ta estima-
tion models. However, in the analysis of the results of some
stations, it was found that adding radiation features to the
models helped improve the Ta estimation accuracy on some
days. The radiation features can play a supplementary role
in the case of some other features that do not perform well.
Therefore, we finally decided to retain the radiation features
in the Ta estimation models.

4.4 Spatial distribution of accuracy

The RMSE value was calculated for each meteorological sta-
tion that recorded more than 20 d for all three weather con-
ditions. To obtain a deeper understanding of the spatial dis-
tribution of model performance, the RMSE spatial distribu-
tion of stations for the three models was mapped, as shown
in Fig. 11. It is evident that the model performance varied
at different geographical locations for all three models. The
clear-sky model presented the most stable results in differ-
ent regions compared with cloudy-sky model I and cloudy-
sky model II, with RMSE values of all stations ranging from
0.566 to 3.453 K. The RMSE range of cloudy-sky model
I was 0.823–4.370 K and that of cloudy-sky model II was
0.809–4.198 K. The spatial patterns of cloudy-sky model I
and cloudy-sky model II were generally similar, but there
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were more stations with good performance (RMSE < 1 K)
and poor performance (RMSE > 3 K) for cloudy-sky model
II, showing relatively poor stability.

Overall, the stations in central, eastern, and southern China
presented high levels of accuracy for all three models, with
RMSE values of most stations in these places of less than
1.5 K. Most stations with large RMSE values were located in
southwest, northwest, and northern China, which was con-
sistent with the results of Shen et al. (2020), and the RMSE
values of cloudy-sky model II in these positions were larger
than those of the clear-sky model and cloudy-sky model I. On
the one hand, the spatial heterogeneity of model performance
is largely due to the uneven distribution density of meteoro-
logical stations. As can be seen from the geographical loca-
tions of the meteorological stations used in this study (Fig. 1),
it is obvious that stations in central, eastern, and southern
China are densely distributed, whereas stations in northern
and western China are relatively rare, which may contribute
to the uneven distribution of model performance. Addition-
ally, the terrain environment in central, eastern, and southern
China is not complex, whereas high elevation and some cli-
mate types will increase the uncertainty of Ta estimation in
northern and western China. The climate types of stations
with poor performance were mostly temperate continental
and plateau mountain climates, and the land cover types were
mainly bare land and grassland. It can be seen from Table 4
that cloudy-sky model II showed relatively poor performance
for these two land cover types. Therefore, there was an ex-
plicit uncertainty when only assimilated Ta and other features
except LSTs were included to predict Ta in places with these
climate and land cover types. Overall, although the spatial
distribution of the model performance was relatively uneven,
the Ta estimation models for different weather conditions all
showed satisfactory performance.

4.5 Seasonal distribution of accuracy

The model performance at the monthly scale was also evalu-
ated, and the RMSE monthly distribution for the three mod-
els is shown in Fig. 12. The RMSE range of the clear-
sky model was 1.109–1.508 K, the cloudy-sky model I was
1.178–1.692 K, and the cloudy-sky model II was 1.056–
1.777 K. It is obvious that there was temporal heterogeneity
in the model performance, and the estimation accuracy pre-
sented similar seasonal variation patterns for all three mod-
els. The RMSE values were lower in summer and autumn,
and higher in spring and winter, reaching a peak in February
and reaching a bottom in July or August. We can conclude
that models performed better on warm days, with RMSE val-
ues for all three models of below 1.22 K in July and August.
This finding was consistent with the validation results at the
monthly scale of Yao et al. (2020) and Li and Zha (2019).
This phenomenon may be partly due to the fact that China
is vast in territory with a latitudinal difference between the
northernmost station and the southernmost stations of about

Table 6. Evaluation results of four datasets in 2010.

Ta R2 MAE (K) RMSE (K) Bias (K)

RF 0.992 0.680 1.010 0.063
CLDAS 0.972 1.427 1.938 −0.078
CMFD 0.962 1.642 2.242 0.092
GLDAS 0.938 2.160 2.874 0.900

30◦; therefore, the range of Ta is wider on cold days than on
hot days.

Monthly differences in model performance also indicated
that the relationship between Ta and other factors varied
seasonally and may have been more consistent in the same
month. It was confirmed in the research of Yao et al. (2020)
that modeling data of the same month together could achieve
more accurate results. Therefore, although day of year was
used in the modeling in this study, this temporal difference
was not completely eliminated. Modeling the datasets of all
seasons together in this study may increase the temporal het-
erogeneity of accuracy. It is worthwhile considering group-
ing the data of the same month to establish monthly models
in the future, which may be conducive to further improving
the accuracy of Ta estimation.

5 Comparison with existing datasets

For a more comprehensive evaluation of the estimated daily
mean Ta, we compared it with three reanalysis and mete-
orological forcing datasets, including CLDAS, CMFD, and
GLDAS, in terms of validation statistics and spatiotemporal
patterns. The station observations in 2010 were used to vali-
date the accuracy of these four Ta datasets. It should be noted
that we estimated daily mean Ta for the period ending at local
midnight rather than 24:00 UTC. To ensure the time consis-
tency, we calculated the average value of all simulations on a
local day as the daily mean Ta for the reanalysis and meteoro-
logical forcing datasets. The statistical results and the density
scatterplots are shown in Table 6 and Fig. 13, respectively. It
can be seen that, compared with the reanalysis datasets, the
RF Ta presented the highest consistency with the station ob-
servations, with the best performance in all accuracy assess-
ment criteria (R2, MAE, RMSE, and bias values were 0.992,
0.680 K, 1.010 K, and 0.063 K, respectively). The points in
the density scatterplot of the RF Ta were more concentrated
near the 1 : 1 line. CLDAS Ta and CMFD Ta both showed al-
most zero bias with the station observations, but their RMSE
values were both close to 2 K. GLDAS Ta reported slight un-
derestimation (bias of 0.900 K). In general, this comparison
confirmed the applicability of the RF method in Ta estima-
tion and the higher accuracy of our estimated Ta compared
with the reanalysis products.

In addition, the spatiotemporal patterns of these four Ta
datasets were compared. We calculated the monthly mean
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Figure 11. RMSE spatial distribution of stations for three models.

Figure 12. RMSE monthly distribution for three models.

Ta in 2010 for all datasets. The RF monthly mean land
Ta mappings over mainland China in February, May, Au-
gust, and November 2010 are shown in Fig. 14a–d. The

CLDAS (Fig. 14e–h), CMFD (Fig. 14i–l), and GLDAS
(Fig. 14m–p) monthly mean Ta mappings in the same months
are also shown in Fig. 12. The spatial resolutions of RF,
CLDAS, CMFD, and GLDAS monthly mean Ta are approx-
imately 0.01◦× 0.01◦, 0.0625◦× 0.0625◦, 0.1◦× 0.1◦, and
0.25◦× 0.25◦, respectively. We used GLDAS-assimilated Ta
and GLASS LAI in Ta estimation, which have no value in
most water bodies; thus, the Ta of these areas was also not
estimated.

As can be seen from Fig. 14, it is clear that these four
datasets basically showed a high degree of consistency in
the spatiotemporal patterns over mainland China. China has
a vast territory, and its topography is high in the west and
low in the east. The spatial patterns of Ta over mainland
China present great seasonal heterogeneity. In winter, the sun
shines directly in the Southern Hemisphere, and the North-
ern Hemisphere consequentially receives less solar energy.
The Ta in northern China and the Tibetan Plateau are gen-
erally low, and the Ta difference between the north and the
south exceeds 50 K. On the contrary, in summer, as the sun
shines directly in the Northern Hemisphere, Ta in most parts
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Figure 13. Density scatterplots of the estimated Ta and reanalysis Ta against the in situ Ta in 2010.

of China are generally high except for the Tibetan Plateau,
with little Ta difference between the north and the south. As
an expectable consequence of higher spatial resolution, the
RF Ta mappings were capable of providing more detail on
the Ta spatial patterns than the reanalysis and meteorologi-
cal forcing Ta, especially in mountainous areas with compli-
cated terrain. GLDAS Ta presented an obvious pixel effect
because of the relatively coarse spatial resolution. In sum-
mary, the all-sky daily mean land Ta product developed in
this study has achieved satisfactory accuracy and high spa-
tial resolution simultaneously, which can reveal the seasonal
variation trend and the spatial patterns of Ta over China well.
This product can provide a long time series of daily mean
Ta with the spatial resolution of 1 km over mainland China,
which fills the current dataset gap in this field. Moreover, this
product is also conducive to observing and analyzing the cli-
mate characteristic of China and plays an important role in
the studies of climate change and the hydrological cycle.

6 Data availability

The daily mean land Ta product over main-
land China is currently freely available at

https://doi.org/10.5281/zenodo.4399453 for the period
from 2003 to 2008 (Chen et al., 2021b) and at the University
of Maryland (http://glass.umd.edu/Ta_China/, last access:
24 August 2021) for the period from 2003 to 2019. In order
to make this big dataset easier to understand and use, we
created a provincial sub-dataset with a smaller geographic
coverage. An all-sky 0.01◦ daily Ta product over Beijing
(2003–2019) was generated from the developed dataset over
mainland China after resampling and clipping, and it is pub-
licly available at https://doi.org/10.5281/zenodo.4405123
(Chen et al., 2021a).

The MODIS product and the GLDAS dataset were down-
loaded from https://earthdata.nasa.gov/ (last access: 24 Au-
gust 2021). The GLASS products were downloaded from
http://www.glass.umd.edu (last access: 24 August 2021). The
CLDAS and CMFD datasets were downloaded from http:
//tipex.data.cma.cn (last access: 24 August 2021) and http:
//data.tpdc.ac.cn/ (last access: 24 August 2021), respectively.

7 Conclusions

Ta is a key variable in climate and global change research. In
this study, we developed an all-sky 1 km daily mean land Ta
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Figure 14. Maps of monthly mean Ta over mainland China. Panels (a)–(d) show the the RF Ta, panels (e)–(h) show the CLDAS Ta,
panels (i)–(l) show the CMFD Ta, and panels (m)–(p) show the GLDAS Ta in February, May, August, and November 2010, respectively.
The white pixels in mainland China indicate no data value and are always water bodies.

product for 2003–2019 over mainland China mainly based on
MODIS and GLDAS data using the RF method. An efficient
temporal gap-filling method was first used to fill MODIS
LST gaps under cloudy-sky conditions. We predicted Ta un-
der three different weather conditions separately: clear-sky
conditions (when the daily LSTs are all clear-sky), cloudy-
sky conditions case I (when the daily LST gap(s) can be
filled), and cloudy-sky conditions case II (when the daily
LST gap(s) cannot all be filled). The validation results using
station measurements (one-fifth of the total data from 2003
to 2016 selected randomly), which were not used for model
training, showed that the R2 values were 0.986, 0.984, and
0.984 and the RMSE values were 1.342, 1.440, and 1.396 K
for the clear-sky model, cloudy-sky model I, and cloudy-sky
model II, respectively. In general, the models showed excel-
lent performance at most stations, with a mean RMSE of
1.383 K, and there were 97 % stations with RMSE values less
than 2 K and only 1 of 2320 stations with an RMSE value
greater than 3 K. In addition, we examined the spatiotempo-

ral patterns and land cover type dependences of model accu-
racy and concluded that model performance under all condi-
tions was acceptable overall, despite some heterogeneity un-
der different conditions. The relative contributions of differ-
ent features to models were also quantitatively analyzed, and
it was found that LST and assimilated Ta were of great signif-
icance in Ta estimation. Finally, we compared the Ta dataset
in 2010 with the CLDAS, CMFD, and GLDAS datasets, find-
ing great consistency in the spatiotemporal patterns. The es-
timated Ta in 2010 reported significantly higher accuracy
against the station observations, with R2, RMSE, and bias
values of 0.992, 1.010 K, and 0.063 K, respectively.

Overall, this study developed a robust scheme that used
a machine learning method to estimate all-sky daily mean
Ta over a large spatial and temporal range. This approach
can be applied globally. The generated all-sky Ta product has
achieved a high degree of accuracy compared with the exist-
ing datasets, which fills the current dataset gap in this field
and plays an important role in many scientific fields such as
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climate change, the hydrological cycle, and the energy bal-
ance. Future work should focus on developing better LST
gap-filling methods and experimenting with more advanced
deep learning methods that take the spatial and temporal de-
pendence of Ta into account.
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Zhu, W., Lű, A., and Jia, S.: Estimation of daily maximum
and minimum air temperature using MODIS land surface
temperature products, Remote Sens. Environ., 130, 62–73,
https://doi.org/10.1016/j.rse.2012.10.034, 2013.
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