Articles | Volume 13, issue 6
https://doi.org/10.5194/essd-13-2963-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-2963-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A global dataset of atmospheric 7Be and 210Pb measurements: annual air concentration and depositional flux
Fule Zhang
State Key Laboratory of Estuarine and Coastal Research, East China
Normal University, Shanghai, 200241, China
Jinlong Wang
CORRESPONDING AUTHOR
State Key Laboratory of Estuarine and Coastal Research, East China
Normal University, Shanghai, 200241, China
Mark Baskaran
Department of Environmental Science and Geology, Wayne State
University, Detroit, Michigan 48202, USA
Qiangqiang Zhong
Laboratory of Marine Isotopic Technology and Environmental Risk
Assessment, Third Institute of Oceanography, Ministry of Natural Resource,
Xiamen, 361005, China
Yali Wang
State Key Laboratory of Estuarine and Coastal Research, East China
Normal University, Shanghai, 200241, China
Jussi Paatero
Observation Services, Finnish Meteorological Institute, Helsinki,
00560, Finland
Jinzhou Du
State Key Laboratory of Estuarine and Coastal Research, East China
Normal University, Shanghai, 200241, China
Related authors
No articles found.
Erika Brattich, Hongyu Liu, Bo Zhang, Miguel Ángel Hernández-Ceballos, Jussi Paatero, Darko Sarvan, Vladimir Djurdjevic, Laura Tositti, and Jelena Ajtić
Atmos. Chem. Phys., 21, 17927–17951, https://doi.org/10.5194/acp-21-17927-2021, https://doi.org/10.5194/acp-21-17927-2021, 2021
Short summary
Short summary
In this study we analyse the output of a chemistry and transport model together with observations of different meteorological and compositional variables to demonstrate the link between sudden stratospheric warming and transport of stratospheric air to the surface in the subpolar regions of Europe during the cold season. Our findings have particular implications for atmospheric composition since climate projections indicate more frequent sudden stratospheric warming under a warmer climate.
Susanna Salminen-Paatero, Julius Vira, and Jussi Paatero
Atmos. Chem. Phys., 20, 5759–5769, https://doi.org/10.5194/acp-20-5759-2020, https://doi.org/10.5194/acp-20-5759-2020, 2020
Short summary
Short summary
We measured concentrations and isotope ratios of plutonium in air filters collected in Finnish Lapland in 1965–2011. Radioactive-contamination sources were global nuclear-testing fallout and the Fukushima and SNAP-9A accidents. Both real and hypothetical nuclear accidents were studied with atmospheric-dispersion modeling. The radioactive-contamination effect on Finnish Lapland would be minor from an intended nuclear power plant and negligible from a floating nuclear reactor in the Barents Sea.
Jianan Liu, Jinzhou Du, Blaženka Gašparović, Milan Čanković, Enis Hrustić, Neven Cukrov, Zhuoyi Zhu, and Ruifeng Zhang
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-254, https://doi.org/10.5194/bg-2017-254, 2017
Preprint retracted
Short summary
Short summary
In this manuscript, we evaluated the submarine groundwater discharge (SGD) by three approaches and its derived nutrients in the highly stratified Krka River Estuary (KRE), Croatia based on radium isotopes. By establishing the water and nutrient budgets in the KRE surface layer, even if SGD accounted for a small portion of the total water input, nutrient fluxes through SGD were significant, especially the high N : P ratios in SGD have the notable potential to impact the ecosystem of the KRE.
Dominik Schmithüsen, Scott Chambers, Bernd Fischer, Stefan Gilge, Juha Hatakka, Victor Kazan, Rolf Neubert, Jussi Paatero, Michel Ramonet, Clemens Schlosser, Sabine Schmid, Alex Vermeulen, and Ingeborg Levin
Atmos. Meas. Tech., 10, 1299–1312, https://doi.org/10.5194/amt-10-1299-2017, https://doi.org/10.5194/amt-10-1299-2017, 2017
Short summary
Short summary
A European-wide 222radon/222radon progeny comparison study has been conducted at nine measurement stations in order to determine differences between existing 222radon instrumentation and atmospheric data sets, respectively. Mean differences up to 45 % were found between monitors. These differences need to be taken into account if the data shall serve for quantitative regional atmospheric transport model validation.
Related subject area
Atmospheric chemistry and physics
Retrieving ground-level PM2.5 concentrations in China (2013–2021) with a numerical-model-informed testbed to mitigate sample-imbalance-induced biases
Reconstructing long-term (1980–2022) daily ground particulate matter concentrations in India (LongPMInd)
Visibility-derived aerosol optical depth over global land from 1959 to 2021
Characterizing clouds with the CCClim dataset, a machine learning cloud class climatology
A Level 3 monthly gridded ice cloud dataset derived from 12 years of CALIOP measurements
IPB-MSA&SO4: a daily 0.25° resolution dataset of in situ-produced biogenic methanesulfonic acid and sulfate over the North Atlantic during 1998–2022 based on machine learning
Indicators of Global Climate Change 2023: annual update of key indicators of the state of the climate system and human influence
Version 1 NOAA-20/OMPS Nadir Mapper Total Column SO2 Product: Continuation of NASA Long-term Global Data Record
A 10 km daily-level ultraviolet radiation predicting dataset based on machine learning models in China from 2005 to 2020
Multiwavelength, aerosol lidars at Maïdo supersite, Reunion Island, France: instruments description, data processing chain and quality assessment
The Total Carbon Column Observing Network's GGG2020 data version
Global anthropogenic emissions (CAMS-GLOB-ANT) for the Copernicus Atmosphere Monitoring Service simulations of air quality forecasts and reanalyses
Deep Convective Microphysics Experiment (DCMEX) coordinated aircraft and ground observations: microphysics, aerosol, and dynamics during cumulonimbus development
High-resolution physicochemical dataset of atmospheric aerosols over the Tibetan Plateau and its surroundings
Introduction to the NJIAS Himawari-8/9 Cloud Feature Dataset for climate and typhoon research
PM2.5 concentrations based on near-surface visibility at 4011 sites in the Northern Hemisphere from 1959 to 2022
GHOST: A globally harmonised dataset of surface atmospheric composition measurements
The Tibetan Plateau space-based tropospheric aerosol climatology: 2007–2020
PalVol v1: a proxy-based semi-stochastic ensemble reconstruction of volcanic stratospheric sulfur injection for the last glacial cycle (140 000–50 BP)
MAP-IO, an atmospheric and marine observatory program onboard Marion Dufresne over the Southern Ocean
The GERB Obs4MIPs Radiative Flux Dataset: A new tool for climate model evaluation
Four decades of global surface albedo estimates in the third edition of the CM SAF cLoud, Albedo and surface Radiation (CLARA) climate data record
Large synthesis of in situ field measurements of the size distribution of mineral dust aerosols across their lifecycle
Ground- and ship-based microwave radiometer measurements during EUREC4A
Shortwave and longwave components of the surface radiation budget measured at the Thule High Arctic Atmospheric Observatory, Northern Greenland
Cloud condensation nuclei concentrations derived from the CAMS reanalysis
A merged continental planetary boundary layer height dataset based on high-resolution radiosonde measurements, ERA5 reanalysis, and GLDAS
Changes of air pollutant emissions in China during two clean air action periods derived from the newly developed Inversed Emission Inventory for Chinese Air Quality (CAQIEI)
12 years of continuous atmospheric O2, CO2 and APO data from Weybourne Atmospheric Observatory in the United Kingdom
CLAAS-3: the third edition of the CM SAF cloud data record based on SEVIRI observations
Using machine learning to construct TOMCAT model and occultation measurement-based stratospheric methane (TCOM-CH4) and nitrous oxide (TCOM-N2O) profile data sets
High-resolution aerosol data from the top 3.8 kyr of the East Greenland Ice coring Project (EGRIP) ice core
A database of aircraft measurements of carbon monoxide (CO) with high temporal and spatial resolution during 2011–2021
A first global height-resolved cloud condensation nuclei data set derived from spaceborne lidar measurements
A monthly 1° resolution dataset of daytime cloud fraction over the Arctic during 2000–2020 based on multiple satellite products
Seamless mapping of long-term (2010–2020) daily global XCO2 and XCH4 from the Greenhouse Gases Observing Satellite (GOSAT), Orbiting Carbon Observatory 2 (OCO-2), and CAMS global greenhouse gas reanalysis (CAMS-EGG4) with a spatiotemporally self-supervised fusion method
Spatially coordinated airborne data and complementary products for aerosol, gas, cloud, and meteorological studies: the NASA ACTIVATE dataset
Network for the Detection of Atmospheric Composition Change (NDACC) Fourier transform infrared (FTIR) trace gas measurements at the University of Toronto Atmospheric Observatory from 2002 to 2020
Deconstruction of tropospheric chemical reactivity using aircraft measurements: the Atmospheric Tomography Mission (ATom) data
Spatial variability of Saharan dust deposition revealed through a citizen science campaign
Radiative sensitivity quantified by a new set of radiation flux kernels based on the ECMWF Reanalysis v5 (ERA5)
Updated observations of clouds by MODIS for global model assessment
An investigation of the global uptake of CO2 by lime from 1930 to 2020
An extensive database of airborne trace gas and meteorological observations from the Alpha Jet Atmospheric eXperiment (AJAX)
Two years of volatile organic compound online in situ measurements at the Site Instrumental de Recherche par Télédétection Atmosphérique (Paris region, France) using proton-transfer-reaction mass spectrometry
Global Ozone Monitoring Experiment-2 (GOME-2) daily and monthly level-3 products of atmospheric trace gas columns
Crowdsourced Doppler measurements of time standard stations demonstrating ionospheric variability
Isotopic measurements in water vapor, precipitation, and seawater during EUREC4A
A machine learning approach to address air quality changes during the COVID-19 lockdown in Buenos Aires, Argentina
Version 2 of the global catalogue of large anthropogenic and volcanic SO2 sources and emissions derived from satellite measurements
Siwei Li, Yu Ding, Jia Xing, and Joshua S. Fu
Earth Syst. Sci. Data, 16, 3781–3793, https://doi.org/10.5194/essd-16-3781-2024, https://doi.org/10.5194/essd-16-3781-2024, 2024
Short summary
Short summary
Surface PM2.5 data have gained widespread application in health assessments and related fields, while the inherent uncertainties in PM2.5 data persist due to the lack of ground-truth data across the space. This study provides a novel testbed, enabling comprehensive evaluation across the entire spatial domain. The optimized deep-learning model with spatiotemporal features successfully retrieved surface PM2.5 concentrations in China (2013–2021), with reduced biases induced by sample imbalance.
Shuai Wang, Mengyuan Zhang, Hui Zhao, Peng Wang, Sri Harsha Kota, Qingyan Fu, Cong Liu, and Hongliang Zhang
Earth Syst. Sci. Data, 16, 3565–3577, https://doi.org/10.5194/essd-16-3565-2024, https://doi.org/10.5194/essd-16-3565-2024, 2024
Short summary
Short summary
Long-term, open-source, gap-free daily ground-level PM2.5 and PM10 datasets for India (LongPMInd) were reconstructed using a robust machine learning model to support health assessment and air quality management.
Hongfei Hao, Kaicun Wang, Chuanfeng Zhao, Guocan Wu, and Jing Li
Earth Syst. Sci. Data, 16, 3233–3260, https://doi.org/10.5194/essd-16-3233-2024, https://doi.org/10.5194/essd-16-3233-2024, 2024
Short summary
Short summary
In this study, we employed a machine learning technique to derive daily aerosol optical depth from hourly visibility observations collected at more than 5000 airports worldwide from 1959 to 2021 combined with reanalysis meteorological parameters.
Arndt Kaps, Axel Lauer, Rémi Kazeroni, Martin Stengel, and Veronika Eyring
Earth Syst. Sci. Data, 16, 3001–3016, https://doi.org/10.5194/essd-16-3001-2024, https://doi.org/10.5194/essd-16-3001-2024, 2024
Short summary
Short summary
CCClim displays observations of clouds in terms of cloud classes that have been in use for a long time. CCClim is a machine-learning-powered product based on multiple existing observational products from different satellites. We show that the cloud classes in CCClim are physically meaningful and can be used to study cloud characteristics in more detail. The goal of this is to make real-world clouds more easily understandable to eventually improve the simulation of clouds in climate models.
David Winker, Xia Cai, Mark Vaughan, Anne Garnier, Brian Magill, Melody Avery, and Brian Getzewich
Earth Syst. Sci. Data, 16, 2831–2855, https://doi.org/10.5194/essd-16-2831-2024, https://doi.org/10.5194/essd-16-2831-2024, 2024
Short summary
Short summary
Clouds play important roles in both weather and climate. In this paper we describe version 1.0 of a unique global ice cloud data product derived from over 12 years of global spaceborne lidar measurements. This monthly gridded product provides a unique vertically resolved characterization of the occurrence and properties, optical and physical, of thin ice clouds and the tops of deep convective clouds. It should provide significant value for cloud research and model evaluation.
Karam Mansour, Stefano Decesari, Darius Ceburnis, Jurgita Ovadnevaite, Lynn M. Russell, Marco Paglione, Laurent Poulain, Shan Huang, Colin O'Dowd, and Matteo Rinaldi
Earth Syst. Sci. Data, 16, 2717–2740, https://doi.org/10.5194/essd-16-2717-2024, https://doi.org/10.5194/essd-16-2717-2024, 2024
Short summary
Short summary
We propose and evaluate machine learning predictive algorithms to model freshly formed biogenic methanesulfonic acid and sulfate concentrations. The long-term constructed dataset covers the North Atlantic at an unprecedented resolution. The improved parameterization of biogenic sulfur aerosols at regional scales is essential for determining their radiative forcing, which could help further understand marine-aerosol–cloud interactions and reduce uncertainties in climate models
Piers M. Forster, Chris Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Bradley Hall, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan P. Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Blair Trewin, Myles Allen, Robbie Andrew, Richard A. Betts, Alex Borger, Tim Boyer, Jiddu A. Broersma, Carlo Buontempo, Samantha Burgess, Chiara Cagnazzo, Lijing Cheng, Pierre Friedlingstein, Andrew Gettelman, Johannes Gütschow, Masayoshi Ishii, Stuart Jenkins, Xin Lan, Colin Morice, Jens Mühle, Christopher Kadow, John Kennedy, Rachel E. Killick, Paul B. Krummel, Jan C. Minx, Gunnar Myhre, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, Sophie Szopa, Peter Thorne, Mahesh V. M. Kovilakam, Elisa Majamäki, Jukka-Pekka Jalkanen, Margreet van Marle, Rachel M. Hoesly, Robert Rohde, Dominik Schumacher, Guido van der Werf, Russell Vose, Kirsten Zickfeld, Xuebin Zhang, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 16, 2625–2658, https://doi.org/10.5194/essd-16-2625-2024, https://doi.org/10.5194/essd-16-2625-2024, 2024
Short summary
Short summary
This paper tracks some key indicators of global warming through time, from 1850 through to the end of 2023. It is designed to give an authoritative estimate of global warming to date and its causes. We find that in 2023, global warming reached 1.3 °C and is increasing at over 0.2 °C per decade. This is caused by all-time-high greenhouse gas emissions.
Can Li, Nickolay A. Krotkov, Joanna Joiner, Vitali Fioletov, Chris McLinden, Debora Griffin, Peter J. T. Leonard, Simon Carn, Colin Seftor, and Alexander Vasilkov
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-168, https://doi.org/10.5194/essd-2024-168, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Sulfur dioxide (SO2), a poisonous gas from human activities and volcanoes, causes air pollution, acid rain, and changes to climate and ozone layer. Satellites have been used to monitor SO2 globally, including remote areas. Here we describe a new satellite SO2 dataset from the OMPS instrument that flies on the NOAA-20 satellite. Results show that the new dataset agrees well with the existing ones from other satellites and can help to continue the global monitoring of SO2 from space.
Yichen Jiang, Su Shi, Xinyue Li, Chang Xu, Haidong Kan, Bo Hu, and Xia Meng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-111, https://doi.org/10.5194/essd-2024-111, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Limited UV measurements hindered further investigation of its health effects. This study used a machine learning algorithm to predict UV radiation at daily level and 10 km resolution with high accuracy in mainland China in 2005–2020. Then, uneven spatial distribution and population exposure risks as well as increased temporal trend of UV radiation were found in China. The long-term and high-quality UV dataset could further facilitate health-related research in the future.
Dominique Gantois, Guillaume Payen, Michaël Sicard, Valentin Duflot, Nicolas Marquestaut, Thierry Portafaix, Sophie Godin-Beekmann, Patrick Hernandez, and Eric Golubic
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-93, https://doi.org/10.5194/essd-2024-93, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
In this work, we describe three instruments measuring interactions between aerosols (particles of various origins) and light over Reunion Island since 2012. Aerosols influence directly or indirectly the temperature in the atmosphere and can interact with clouds. Details can be found about how we derived aerosol properties from our measurements, and how we assessed the quality of our data before sharing it with the scientific community. A good correlation was found between the three instruments.
Joshua L. Laughner, Geoffrey C. Toon, Joseph Mendonca, Christof Petri, Sébastien Roche, Debra Wunch, Jean-Francois Blavier, David W. T. Griffith, Pauli Heikkinen, Ralph F. Keeling, Matthäus Kiel, Rigel Kivi, Coleen M. Roehl, Britton B. Stephens, Bianca C. Baier, Huilin Chen, Yonghoon Choi, Nicholas M. Deutscher, Joshua P. DiGangi, Jochen Gross, Benedikt Herkommer, Pascal Jeseck, Thomas Laemmel, Xin Lan, Erin McGee, Kathryn McKain, John Miller, Isamu Morino, Justus Notholt, Hirofumi Ohyama, David F. Pollard, Markus Rettinger, Haris Riris, Constantina Rousogenous, Mahesh Kumar Sha, Kei Shiomi, Kimberly Strong, Ralf Sussmann, Yao Té, Voltaire A. Velazco, Steven C. Wofsy, Minqiang Zhou, and Paul O. Wennberg
Earth Syst. Sci. Data, 16, 2197–2260, https://doi.org/10.5194/essd-16-2197-2024, https://doi.org/10.5194/essd-16-2197-2024, 2024
Short summary
Short summary
This paper describes a new version, called GGG2020, of a data set containing column-integrated observations of greenhouse and related gases (including CO2, CH4, CO, and N2O) made by ground stations located around the world. Compared to the previous version (GGG2014), improvements have been made toward site-to-site consistency. This data set plays a key role in validating space-based greenhouse gas observations and in understanding the carbon cycle.
Antonin Soulie, Claire Granier, Sabine Darras, Nicolas Zilbermann, Thierno Doumbia, Marc Guevara, Jukka-Pekka Jalkanen, Sekou Keita, Cathy Liousse, Monica Crippa, Diego Guizzardi, Rachel Hoesly, and Steven J. Smith
Earth Syst. Sci. Data, 16, 2261–2279, https://doi.org/10.5194/essd-16-2261-2024, https://doi.org/10.5194/essd-16-2261-2024, 2024
Short summary
Short summary
Anthropogenic emissions are the result of transportation, power generation, industrial, residential and commercial activities as well as waste treatment and agriculture practices. This work describes the new CAMS-GLOB-ANT gridded inventory of 2000–2023 anthropogenic emissions of air pollutants and greenhouse gases. The methodology to generate the emissions is explained and the datasets are analysed and compared with publicly available global and regional inventories for selected world regions.
Declan L. Finney, Alan M. Blyth, Martin Gallagher, Huihui Wu, Graeme J. Nott, Michael I. Biggerstaff, Richard G. Sonnenfeld, Martin Daily, Dan Walker, David Dufton, Keith Bower, Steven Böing, Thomas Choularton, Jonathan Crosier, James Groves, Paul R. Field, Hugh Coe, Benjamin J. Murray, Gary Lloyd, Nicholas A. Marsden, Michael Flynn, Kezhen Hu, Navaneeth M. Thamban, Paul I. Williams, Paul J. Connolly, James B. McQuaid, Joseph Robinson, Zhiqiang Cui, Ralph R. Burton, Gordon Carrie, Robert Moore, Steven J. Abel, Dave Tiddeman, and Graydon Aulich
Earth Syst. Sci. Data, 16, 2141–2163, https://doi.org/10.5194/essd-16-2141-2024, https://doi.org/10.5194/essd-16-2141-2024, 2024
Short summary
Short summary
The DCMEX (Deep Convective Microphysics Experiment) project undertook an aircraft- and ground-based measurement campaign of New Mexico deep convective clouds during July–August 2022. The campaign coordinated a broad range of instrumentation measuring aerosol, cloud physics, radar signals, thermodynamics, dynamics, electric fields, and weather. The project's objectives included the utilisation of these data with satellite observations to study the anvil cloud radiative effect.
Jianzhong Xu, Xinghua Zhang, Wenhui Zhao, Lixiang Zhai, Miao Zhong, Jinsen Shi, Junying Sun, Yanmei Liu, Conghui Xie, Yulong Tan, Kemei Li, Xinlei Ge, Qi Zhang, and Shichang Kang
Earth Syst. Sci. Data, 16, 1875–1900, https://doi.org/10.5194/essd-16-1875-2024, https://doi.org/10.5194/essd-16-1875-2024, 2024
Short summary
Short summary
A comprehensive aerosol observation project was carried out in the Tibetan Plateau (TP) and its surroundings in recent years to investigate the properties and sources of atmospheric aerosols as well as their regional differences by performing multiple intensive field observations. The release of this dataset can provide basic and systematic data for related research in the atmospheric, cryospheric, and environmental sciences in this unique region.
Xiaoyong Zhuge, Xiaolei Zou, Lu Yu, Xin Li, Mingjian Zeng, Yilun Chen, Bing Zhang, Bin Yao, Fei Tang, Fengjiao Chen, and Wanlin Kan
Earth Syst. Sci. Data, 16, 1747–1769, https://doi.org/10.5194/essd-16-1747-2024, https://doi.org/10.5194/essd-16-1747-2024, 2024
Short summary
Short summary
The Himawari-8/9 level-2 operational cloud product has a low spatial resolution and is available only during the daytime. To supplement this official dataset, a new dataset named the NJIAS Himawari-8/9 Cloud Feature Dataset (HCFD) was constructed. The NJIAS HCFD provides a comprehensive description of cloud features over the East Asia and west North Pacific regions for the years 2016–2022 by 30 retrieved cloud variables. The NJIAS HCFD has been demonstrated to outperform the official dataset.
Hongfei Hao, Kaicun Wang, Guocan Wu, Jianbao Liu, and Jing Li
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-96, https://doi.org/10.5194/essd-2024-96, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
In this study, daily PM2.5 concentrations are estimated from 1959 to 2022 using a machine learning method at 4011 terrestrial sites in the Northern Hemisphere based on hourly atmospheric visibility data, which are extracted from the Meteorological Terminal Aviation Routine Weather Report (METAR).
Dene Bowdalo, Sara Basart, Marc Guevara, Oriol Jorba, Carlos Pérez García-Pando, Monica Jaimes Palomera, Olivia Rivera Hernandez, Melissa Puchalski, David Gay, Jörg Klausen, Sergio Moreno, Stoyka Netcheva, and Oksana Tarasova
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-397, https://doi.org/10.5194/essd-2023-397, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
GHOST: Globally Harmonised Observations in Space and Time, represents one of the biggest collection of harmonised measurements of atmospheric composition at the surface. In total, 7,275,148,646 measurements from 1970–2023, of 227 different components, from 38 reporting networks, are compiled, parsed, and standardised. Components processed include gaseous species, total and speciated particulate matter, and aerosol optical properties.
Honglin Pan, Jianping Huang, Jiming Li, Zhongwei Huang, Minzhong Wang, Ali Mamtimin, Wen Huo, Fan Yang, Tian Zhou, and Kanike Raghavendra Kumar
Earth Syst. Sci. Data, 16, 1185–1207, https://doi.org/10.5194/essd-16-1185-2024, https://doi.org/10.5194/essd-16-1185-2024, 2024
Short summary
Short summary
We applied several correction procedures and rigorously checked for data quality constraints during the long observation period spanning almost 14 years (2007–2020). Nevertheless, some uncertainties remain, mainly due to technical constraints and limited documentation of the measurements. Even though not completely accurate, this strategy is expected to at least reduce the inaccuracy of the computed characteristic value of aerosol optical parameters.
Julie Christin Schindlbeck-Belo, Matthew Toohey, Marion Jegen, Steffen Kutterolf, and Kira Rehfeld
Earth Syst. Sci. Data, 16, 1063–1081, https://doi.org/10.5194/essd-16-1063-2024, https://doi.org/10.5194/essd-16-1063-2024, 2024
Short summary
Short summary
Volcanic forcing of climate resulting from major explosive eruptions is a dominant natural driver of past climate variability. To support model studies of the potential impacts of explosive volcanism on climate variability across timescales, we present an ensemble reconstruction of volcanic stratospheric sulfur injection over the last 140 000 years that is based primarily on tephra records.
Pierre Tulet, Joel Van Baelen, Pierre Bosser, Jérome Brioude, Aurelie Colomb, Philippe Goloub, Andrea Pazmino, Thierry Portafaix, Michel Ramonet, Karine Sellegri, Melilotus Thyssen, Lea Gest, Nicolas Marquestaut, Dominique Mékiès, Jean-Marc Metzger, Gilles Athier, Luc Blarel, Marc Delmotte, Guillaume Desprairies, Meredith Dournaux, Gaël Dubois, Valentin Duflot, Kevin Lamy, Lionel Gardes, Jean-François Guillemot, Valérie Gros, Joanna Kolasinski, Morgan Lopez, Olivier Magand, Erwan Noury, Manuel Nunes-Pinharanda, Guillaume Payen, Joris Pianezze, David Picard, Olivier Picard, Sandrine Prunier, François Rigaud-Louise, Michael Sicard, and Benjamin Torres
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-531, https://doi.org/10.5194/essd-2023-531, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
The MAP-IO program aims to compensate for the lack of atmospheric and oceanographic observations in the Southern Ocean by equipping the ship Marion Dufresne with a set of 17 scientific instruments. This program have collected 700 days of measurements under different latitudes and seasons, sea state and weather conditions. These new data will support the calibration-validation of numerical models and the understanding of the atmospheric composition of this region of earth.
Jacqueline Elizabeth Russell, Richard John Bantges, Helen Elizabeth Brindley, and Alejandro Bodas-Salcedo
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-4, https://doi.org/10.5194/essd-2024-4, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
We present a dataset of top of atmosphere diurnally resolved reflected solar and emitted thermal energy for Earth-system model evaluation. The multi-year, monthly hourly dataset, derived from observations made by the Geostationary Earth Radiation Budget instrument, covers the range 60° N–60° S, 60° E–60° W at one degree resolution. Comparison with two versions of the Hadley Centre Global Environmental model highlight how the data can be used to assess updates to key model parameterisations.
Aku Riihelä, Emmihenna Jääskeläinen, and Viivi Kallio-Myers
Earth Syst. Sci. Data, 16, 1007–1028, https://doi.org/10.5194/essd-16-1007-2024, https://doi.org/10.5194/essd-16-1007-2024, 2024
Short summary
Short summary
We describe a new climate data record describing the surface albedo, or reflectivitity, of Earth's surface (called CLARA-A3 SAL). The climate data record spans over 4 decades of satellite observations, beginning in 1979. We conduct a quality assessment of the generated data, comparing them against other satellite data and albedo observations made on the ground. We find that the new data record in general matches surface observations well and is stable through time.
Paola Formenti and Claudia Di Biagio
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-481, https://doi.org/10.5194/essd-2023-481, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Particles from deserts and semi-vegetated areas (mineral dust) are important for the Earth climate, and the human health, notably depending on their size. In this paper we collect and made de synthesis of a body of those observations since 1972 in order to provide researchers modelling the Earth climate as well as researchers developing satellite observations from space a simple way of confronting their results and understanding their validity.
Sabrina Schnitt, Andreas Foth, Heike Kalesse-Los, Mario Mech, Claudia Acquistapace, Friedhelm Jansen, Ulrich Löhnert, Bernhard Pospichal, Johannes Röttenbacher, Susanne Crewell, and Bjorn Stevens
Earth Syst. Sci. Data, 16, 681–700, https://doi.org/10.5194/essd-16-681-2024, https://doi.org/10.5194/essd-16-681-2024, 2024
Short summary
Short summary
This publication describes the microwave radiometric measurements performed during the EUREC4A campaign at Barbados Cloud Observatory (BCO) and aboard RV Meteor and RV Maria S Merian. We present retrieved integrated water vapor (IWV), liquid water path (LWP), and temperature and humidity profiles as a unified, quality-controlled, multi-site data set on a 3 s temporal resolution for a core period between 19 January 2020 and 14 February 2020.
Daniela Meloni, Filippo Calì Quaglia, Virginia Ciardini, Annalisa Di Bernardino, Tatiana Di Iorio, Antonio Iaccarino, Giovanni Muscari, Giandomenico Pace, Claudio Scarchilli, and Alcide di Sarra
Earth Syst. Sci. Data, 16, 543–566, https://doi.org/10.5194/essd-16-543-2024, https://doi.org/10.5194/essd-16-543-2024, 2024
Short summary
Short summary
Solar and infrared radiation are key factors in determining Arctic climate. Only a few sites in the Arctic perform long-term measurements of the surface radiation budget (SRB). At the Thule High Arctic Atmospheric Observatory (THAAO, 76.5° N, 68.8° W) in Northern Greenland, solar and infrared irradiance measurements were started in 2009. These data are of paramount importance in studying the impact of the atmospheric (mainly clouds and aerosols) and surface (albedo) parameters on the SRB.
Karoline Block, Mahnoosh Haghighatnasab, Daniel G. Partridge, Philip Stier, and Johannes Quaas
Earth Syst. Sci. Data, 16, 443–470, https://doi.org/10.5194/essd-16-443-2024, https://doi.org/10.5194/essd-16-443-2024, 2024
Short summary
Short summary
Aerosols being able to act as condensation nuclei for cloud droplets (CCNs) are a key element in cloud formation but very difficult to determine. In this study we present a new global vertically resolved CCN dataset for various humidity conditions and aerosols. It is obtained using an atmospheric model (CAMS reanalysis) that is fed by satellite observations of light extinction (AOD). We investigate and evaluate the abundance of CCNs in the atmosphere and their temporal and spatial occurrence.
Jianping Guo, Jian Zhang, Jia Shao, Tianmeng Chen, Kaixu Bai, Yuping Sun, Ning Li, Jingyan Wu, Rui Li, Jian Li, Qiyun Guo, Jason B. Cohen, Panmao Zhai, Xiaofeng Xu, and Fei Hu
Earth Syst. Sci. Data, 16, 1–14, https://doi.org/10.5194/essd-16-1-2024, https://doi.org/10.5194/essd-16-1-2024, 2024
Short summary
Short summary
A global continental merged high-resolution (PBLH) dataset with good accuracy compared to radiosonde is generated via machine learning algorithms, covering the period from 2011 to 2021 with 3-hour and 0.25º resolution in space and time. The machine learning model takes parameters derived from the ERA5 reanalysis and GLDAS product as input, with PBLH biases between radiosonde and ERA5 as the learning targets. The merged PBLH is the sum of the predicted PBLH bias and the PBLH from ERA5.
Lei Kong, Xiao Tang, Zifa Wang, Jiang Zhu, Jianjun Li, Huangjian Wu, Qizhong Wu, Huansheng Chen, Lili Zhu, Wei Wang, Bing Liu, Qian Wang, Duohong Chen, Yuepeng Pan, Jie Li, Lin Wu, and Gregory R. Carmichael
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-477, https://doi.org/10.5194/essd-2023-477, 2023
Revised manuscript accepted for ESSD
Short summary
Short summary
A new long-term inversed emission inventory for Chinese air quality (CAQIEI) is developed in this study which contains constrained monthly emissions of NOx, SO2, CO, PM2.5, PM10 and NMVOC in China from 2013 to 2020 with a horizontal resolution of 15km. Emissions of different air pollutants and their changes during 2013–2020 were investigated, and compared with previous emission inventories, which sheds new light on the complex variations of the air pollutant emissions in China.
Karina E. Adcock, Penelope A. Pickers, Andrew C. Manning, Grant L. Forster, Leigh S. Fleming, Thomas Barningham, Philip A. Wilson, Elena A. Kozlova, Marica Hewitt, Alex J. Etchells, and Andy J. Macdonald
Earth Syst. Sci. Data, 15, 5183–5206, https://doi.org/10.5194/essd-15-5183-2023, https://doi.org/10.5194/essd-15-5183-2023, 2023
Short summary
Short summary
We present a 12-year time series of continuous atmospheric measurements of O2 and CO2 at the Weybourne Atmospheric Observatory in the United Kingdom. These measurements are combined into the term atmospheric potential oxygen (APO), a tracer that is not influenced by land biosphere processes. The datasets show a long-term increasing trend in CO2 and decreasing trends in O2 and APO between 2010 and 2021.
Nikos Benas, Irina Solodovnik, Martin Stengel, Imke Hüser, Karl-Göran Karlsson, Nina Håkansson, Erik Johansson, Salomon Eliasson, Marc Schröder, Rainer Hollmann, and Jan Fokke Meirink
Earth Syst. Sci. Data, 15, 5153–5170, https://doi.org/10.5194/essd-15-5153-2023, https://doi.org/10.5194/essd-15-5153-2023, 2023
Short summary
Short summary
This paper describes CLAAS-3, the third edition of the Cloud property dAtAset using SEVIRI, which was created based on observations from geostationary Meteosat satellites. CLAAS-3 cloud properties are evaluated using a variety of reference datasets, with very good overall results. The demonstrated quality of CLAAS-3 ensures its usefulness in a wide range of applications, including studies of local- to continental-scale cloud processes and evaluation of climate models.
Sandip S. Dhomse and Martyn P. Chipperfield
Earth Syst. Sci. Data, 15, 5105–5120, https://doi.org/10.5194/essd-15-5105-2023, https://doi.org/10.5194/essd-15-5105-2023, 2023
Short summary
Short summary
There are no long-term stratospheric profile data sets for two very important greenhouse gases: methane (CH4) and nitrous oxide (N2O). Along with radiative feedback, these species play an important role in controlling ozone loss in the stratosphere. Here, we use machine learning to fuse satellite measurements with a chemical model to construct long-term gap-free profile data sets for CH4 and N2O. We aim to construct similar data sets for other important trace gases (e.g. O3, Cly, NOy species).
Tobias Erhardt, Camilla Marie Jensen, Florian Adolphi, Helle Astrid Kjær, Remi Dallmayr, Birthe Twarloh, Melanie Behrens, Motohiro Hirabayashi, Kaori Fukuda, Jun Ogata, François Burgay, Federico Scoto, Ilaria Crotti, Azzurra Spagnesi, Niccoló Maffezzoli, Delia Segato, Chiara Paleari, Florian Mekhaldi, Raimund Muscheler, Sophie Darfeuil, and Hubertus Fischer
Earth Syst. Sci. Data, 15, 5079–5091, https://doi.org/10.5194/essd-15-5079-2023, https://doi.org/10.5194/essd-15-5079-2023, 2023
Short summary
Short summary
The presented paper provides a 3.8 kyr long dataset of aerosol concentrations from the East Greenland Ice coring Project (EGRIP) ice core. The data consists of 1 mm depth-resolution profiles of calcium, sodium, ammonium, nitrate, and electrolytic conductivity as well as decadal averages of these profiles. Alongside the data a detailed description of the measurement setup as well as a discussion of the uncertainties are given.
Chaoyang Xue, Gisèle Krysztofiak, Vanessa Brocchi, Stéphane Chevrier, Michel Chartier, Patrick Jacquet, Claude Robert, and Valéry Catoire
Earth Syst. Sci. Data, 15, 4553–4569, https://doi.org/10.5194/essd-15-4553-2023, https://doi.org/10.5194/essd-15-4553-2023, 2023
Short summary
Short summary
To understand tropospheric air pollution at regional and global scales, an infrared laser spectrometer called SPIRIT was used on aircraft to rapidly and accurately measure carbon monoxide (CO), an important indicator of air pollution, during the last decade. Measurements were taken for more than 200 flight hours over three continents. Levels of CO are mapped with 3D trajectories for each flight. Additionally, this can be used to validate model performance and satellite measurements.
Goutam Choudhury and Matthias Tesche
Earth Syst. Sci. Data, 15, 3747–3760, https://doi.org/10.5194/essd-15-3747-2023, https://doi.org/10.5194/essd-15-3747-2023, 2023
Short summary
Short summary
Aerosols in the atmosphere that can form liquid cloud droplets are called cloud condensation nuclei (CCN). Accurate measurements of CCN, especially CCN of anthropogenic origin, are necessary to quantify the effect of anthropogenic aerosols on the present-day as well as future climate. In this paper, we describe a novel global 3D CCN data set calculated from satellite measurements. We also discuss the potential applications of the data in the context of aerosol–cloud interactions.
Xinyan Liu, Tao He, Shunlin Liang, Ruibo Li, Xiongxin Xiao, Rui Ma, and Yichuan Ma
Earth Syst. Sci. Data, 15, 3641–3671, https://doi.org/10.5194/essd-15-3641-2023, https://doi.org/10.5194/essd-15-3641-2023, 2023
Short summary
Short summary
We proposed a data fusion strategy that combines the complementary features of multiple-satellite cloud fraction (CF) datasets and generated a continuous monthly 1° daytime cloud fraction product covering the entire Arctic during the sunlit months in 2000–2020. This study has positive significance for reducing the uncertainties for the assessment of surface radiation fluxes and improving the accuracy of research related to climate change and energy budgets, both regionally and globally.
Yuan Wang, Qiangqiang Yuan, Tongwen Li, Yuanjian Yang, Siqin Zhou, and Liangpei Zhang
Earth Syst. Sci. Data, 15, 3597–3622, https://doi.org/10.5194/essd-15-3597-2023, https://doi.org/10.5194/essd-15-3597-2023, 2023
Short summary
Short summary
We propose a novel spatiotemporally self-supervised fusion method to establish long-term daily seamless global XCO2 and XCH4 products. Results show that the proposed method achieves a satisfactory accuracy that distinctly exceeds that of CAMS-EGG4 and is superior or close to those of GOSAT and OCO-2. In particular, our fusion method can effectively correct the large biases in CAMS-EGG4 due to the issues from assimilation data, such as the unadjusted anthropogenic emission for COVID-19.
Armin Sorooshian, Mikhail D. Alexandrov, Adam D. Bell, Ryan Bennett, Grace Betito, Sharon P. Burton, Megan E. Buzanowicz, Brian Cairns, Eduard V. Chemyakin, Gao Chen, Yonghoon Choi, Brian L. Collister, Anthony L. Cook, Andrea F. Corral, Ewan C. Crosbie, Bastiaan van Diedenhoven, Joshua P. DiGangi, Glenn S. Diskin, Sanja Dmitrovic, Eva-Lou Edwards, Marta A. Fenn, Richard A. Ferrare, David van Gilst, Johnathan W. Hair, David B. Harper, Miguel Ricardo A. Hilario, Chris A. Hostetler, Nathan Jester, Michael Jones, Simon Kirschler, Mary M. Kleb, John M. Kusterer, Sean Leavor, Joseph W. Lee, Hongyu Liu, Kayla McCauley, Richard H. Moore, Joseph Nied, Anthony Notari, John B. Nowak, David Painemal, Kasey E. Phillips, Claire E. Robinson, Amy Jo Scarino, Joseph S. Schlosser, Shane T. Seaman, Chellappan Seethala, Taylor J. Shingler, Michael A. Shook, Kenneth A. Sinclair, William L. Smith Jr., Douglas A. Spangenberg, Snorre A. Stamnes, Kenneth L. Thornhill, Christiane Voigt, Holger Vömel, Andrzej P. Wasilewski, Hailong Wang, Edward L. Winstead, Kira Zeider, Xubin Zeng, Bo Zhang, Luke D. Ziemba, and Paquita Zuidema
Earth Syst. Sci. Data, 15, 3419–3472, https://doi.org/10.5194/essd-15-3419-2023, https://doi.org/10.5194/essd-15-3419-2023, 2023
Short summary
Short summary
The NASA Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment (ACTIVATE) produced a unique dataset for research into aerosol–cloud–meteorology interactions. HU-25 Falcon and King Air aircraft conducted systematic and spatially coordinated flights over the northwest Atlantic Ocean. This paper describes the ACTIVATE flight strategy, instrument and complementary dataset products, data access and usage details, and data application notes.
Shoma Yamanouchi, Stephanie Conway, Kimberly Strong, Orfeo Colebatch, Erik Lutsch, Sébastien Roche, Jeffrey Taylor, Cynthia H. Whaley, and Aldona Wiacek
Earth Syst. Sci. Data, 15, 3387–3418, https://doi.org/10.5194/essd-15-3387-2023, https://doi.org/10.5194/essd-15-3387-2023, 2023
Short summary
Short summary
Nineteen years of atmospheric composition measurements made at the University of Toronto Atmospheric Observatory (TAO; 43.66° N, 79.40° W; 174 m.a.s.l.) are presented. These are retrieved from Fourier transform infrared (FTIR) solar absorption spectra recorded with a spectrometer from May 2002 to December 2020. The retrievals have been optimized for fourteen species: O3, HCl, HF, HNO3, CH4, C2H6, CO, HCN, N2O, C2H2, H2CO, CH3OH, HCOOH, and NH3.
Michael J. Prather, Hao Guo, and Xin Zhu
Earth Syst. Sci. Data, 15, 3299–3349, https://doi.org/10.5194/essd-15-3299-2023, https://doi.org/10.5194/essd-15-3299-2023, 2023
Short summary
Short summary
The Atmospheric Tomography Mission (ATom) measured the chemical composition in air parcels from 0–12 km altitude on 2 km horizontal by 80 m vertical scales for four seasons, resolving most scales of chemical heterogeneity. ATom is one of the first missions designed to calculate the chemical evolution of each parcel, providing semi-global diurnal budgets for ozone and methane. Observations covered the remote troposphere: Pacific and Atlantic Ocean basins, Southern Ocean, Arctic basin, Antarctica.
Marie Dumont, Simon Gascoin, Marion Réveillet, Didier Voisin, François Tuzet, Laurent Arnaud, Mylène Bonnefoy, Montse Bacardit Peñarroya, Carlo Carmagnola, Alexandre Deguine, Aurélie Diacre, Lukas Dürr, Olivier Evrard, Firmin Fontaine, Amaury Frankl, Mathieu Fructus, Laure Gandois, Isabelle Gouttevin, Abdelfateh Gherab, Pascal Hagenmuller, Sophia Hansson, Hervé Herbin, Béatrice Josse, Bruno Jourdain, Irene Lefevre, Gaël Le Roux, Quentin Libois, Lucie Liger, Samuel Morin, Denis Petitprez, Alvaro Robledano, Martin Schneebeli, Pascal Salze, Delphine Six, Emmanuel Thibert, Jürg Trachsel, Matthieu Vernay, Léo Viallon-Galinier, and Céline Voiron
Earth Syst. Sci. Data, 15, 3075–3094, https://doi.org/10.5194/essd-15-3075-2023, https://doi.org/10.5194/essd-15-3075-2023, 2023
Short summary
Short summary
Saharan dust outbreaks have profound effects on ecosystems, climate, health, and the cryosphere, but the spatial deposition pattern of Saharan dust is poorly known. Following the extreme dust deposition event of February 2021 across Europe, a citizen science campaign was launched to sample dust on snow over the Pyrenees and the European Alps. This campaign triggered wide interest and over 100 samples. The samples revealed the high variability of the dust properties within a single event.
Han Huang and Yi Huang
Earth Syst. Sci. Data, 15, 3001–3021, https://doi.org/10.5194/essd-15-3001-2023, https://doi.org/10.5194/essd-15-3001-2023, 2023
Short summary
Short summary
We present a newly generated set of ERA5-based radiative kernels and compare them with other published kernels for the top of the atmosphere and surface radiation budgets. For both, the discrepancies in sensitivity values are generally of small magnitude, except for temperature kernels for the surface, likely due to improper treatment in the perturbation experiments used for kernel computation. The kernel bias is not a major cause of the inter-GCM (general circulation model) feedback spread.
Robert Pincus, Paul A. Hubanks, Steven Platnick, Kerry Meyer, Robert E. Holz, Denis Botambekov, and Casey J. Wall
Earth Syst. Sci. Data, 15, 2483–2497, https://doi.org/10.5194/essd-15-2483-2023, https://doi.org/10.5194/essd-15-2483-2023, 2023
Short summary
Short summary
This paper describes a new global dataset of cloud properties observed by a specific satellite program created to facilitate comparison with a matching observational proxy used in climate models. Statistics are accumulated over daily and monthly timescales on an equal-angle grid. Statistics include cloud detection, cloud-top pressure, and cloud optical properties. Joint histograms of several variable pairs are also available.
Longfei Bing, Mingjing Ma, Lili Liu, Jiaoyue Wang, Le Niu, and Fengming Xi
Earth Syst. Sci. Data, 15, 2431–2444, https://doi.org/10.5194/essd-15-2431-2023, https://doi.org/10.5194/essd-15-2431-2023, 2023
Short summary
Short summary
We provided CO2 uptake inventory for global lime materials from 1930–2020, The majority of CO2 uptake was from the lime in China.
Our dataset and the accounting mathematical model may serve as a set of tools to improve the CO2 emission inventories and provide data support for policymakers to formulate scientific and reasonable policies under
carbon neutraltarget.
Emma L. Yates, Laura T. Iraci, Susan S. Kulawik, Ju-Mee Ryoo, Josette E. Marrero, Caroline L. Parworth, Jason M. St. Clair, Thomas F. Hanisco, Thao Paul V. Bui, Cecilia S. Chang, and Jonathan M. Dean-Day
Earth Syst. Sci. Data, 15, 2375–2389, https://doi.org/10.5194/essd-15-2375-2023, https://doi.org/10.5194/essd-15-2375-2023, 2023
Short summary
Short summary
The Alpha Jet Atmospheric eXperiment (AJAX) flew scientific flights between 2011 and 2018 providing measurements of carbon dioxide, methane, ozone, formaldehyde, water vapor and meteorological parameters over California and Nevada, USA. AJAX was a multi-year, multi-objective, multi-instrument program with a variety of sampling strategies resulting in an extensive dataset of interest to a wide variety of users. AJAX measurements have been published at https://asdc.larc.nasa.gov/project/AJAX.
Leïla Simon, Valérie Gros, Jean-Eudes Petit, François Truong, Roland Sarda-Estève, Carmen Kalalian, Alexia Baudic, Caroline Marchand, and Olivier Favez
Earth Syst. Sci. Data, 15, 1947–1968, https://doi.org/10.5194/essd-15-1947-2023, https://doi.org/10.5194/essd-15-1947-2023, 2023
Short summary
Short summary
Long-term measurements of volatile organic compounds (VOCs) have been set up to better characterize the atmospheric chemistry at the SIRTA national facility (Paris area, France). Results obtained from the first 2 years (2020–2021) confirm the importance of local sources for short-lived compounds and the role played by meteorology and air mass origins in the long-term analysis of VOCs. They also point to a substantial influence of anthropogenic on the monoterpene loadings.
Ka Lok Chan, Pieter Valks, Klaus-Peter Heue, Ronny Lutz, Pascal Hedelt, Diego Loyola, Gaia Pinardi, Michel Van Roozendael, François Hendrick, Thomas Wagner, Vinod Kumar, Alkis Bais, Ankie Piters, Hitoshi Irie, Hisahiro Takashima, Yugo Kanaya, Yongjoo Choi, Kihong Park, Jihyo Chong, Alexander Cede, Udo Frieß, Andreas Richter, Jianzhong Ma, Nuria Benavent, Robert Holla, Oleg Postylyakov, Claudia Rivera Cárdenas, and Mark Wenig
Earth Syst. Sci. Data, 15, 1831–1870, https://doi.org/10.5194/essd-15-1831-2023, https://doi.org/10.5194/essd-15-1831-2023, 2023
Short summary
Short summary
This paper presents the theoretical basis as well as verification and validation of the Global Ozone Monitoring Experiment-2 (GOME-2) daily and monthly level-3 products.
Kristina Collins, John Gibbons, Nathaniel Frissell, Aidan Montare, David Kazdan, Darren Kalmbach, David Swartz, Robert Benedict, Veronica Romanek, Rachel Boedicker, William Liles, William Engelke, David G. McGaw, James Farmer, Gary Mikitin, Joseph Hobart, George Kavanagh, and Shibaji Chakraborty
Earth Syst. Sci. Data, 15, 1403–1418, https://doi.org/10.5194/essd-15-1403-2023, https://doi.org/10.5194/essd-15-1403-2023, 2023
Short summary
Short summary
This paper summarizes radio data collected by citizen scientists, which can be used to analyze the charged part of Earth's upper atmosphere. The data are collected from several independent stations. We show ways to look at the data from one station or multiple stations over different periods of time and how it can be combined with data from other sources as well. The code provided to make these visualizations will still work if some data are missing or when more data are added in the future.
Adriana Bailey, Franziska Aemisegger, Leonie Villiger, Sebastian A. Los, Gilles Reverdin, Estefanía Quiñones Meléndez, Claudia Acquistapace, Dariusz B. Baranowski, Tobias Böck, Sandrine Bony, Tobias Bordsdorff, Derek Coffman, Simon P. de Szoeke, Christopher J. Diekmann, Marina Dütsch, Benjamin Ertl, Joseph Galewsky, Dean Henze, Przemyslaw Makuch, David Noone, Patricia K. Quinn, Michael Rösch, Andreas Schneider, Matthias Schneider, Sabrina Speich, Bjorn Stevens, and Elizabeth J. Thompson
Earth Syst. Sci. Data, 15, 465–495, https://doi.org/10.5194/essd-15-465-2023, https://doi.org/10.5194/essd-15-465-2023, 2023
Short summary
Short summary
One of the novel ways EUREC4A set out to investigate trade wind clouds and their coupling to the large-scale circulation was through an extensive network of isotopic measurements in water vapor, precipitation, and seawater. Samples were taken from the island of Barbados, from aboard two aircraft, and from aboard four ships. This paper describes the full collection of EUREC4A isotopic in situ data and guides readers to complementary remotely sensed water vapor isotope ratios.
Melisa Diaz Resquin, Pablo Lichtig, Diego Alessandrello, Marcelo De Oto, Darío Gómez, Cristina Rössler, Paula Castesana, and Laura Dawidowski
Earth Syst. Sci. Data, 15, 189–209, https://doi.org/10.5194/essd-15-189-2023, https://doi.org/10.5194/essd-15-189-2023, 2023
Short summary
Short summary
We explored the performance of the random forest algorithm to predict CO, NOx, PM10, SO2, and O3 air quality concentrations and comparatively assessed the monitored and modeled concentrations during the COVID-19 lockdown phases. We provide the first long-term O3 and SO2 observational dataset for an urban–residential area of Buenos Aires in more than a decade and study the responses of O3 to the reduction in the emissions of its precursors because of its relevance regarding emission control.
Vitali E. Fioletov, Chris A. McLinden, Debora Griffin, Ihab Abboud, Nickolay Krotkov, Peter J. T. Leonard, Can Li, Joanna Joiner, Nicolas Theys, and Simon Carn
Earth Syst. Sci. Data, 15, 75–93, https://doi.org/10.5194/essd-15-75-2023, https://doi.org/10.5194/essd-15-75-2023, 2023
Short summary
Short summary
Sulfur dioxide (SO2) measurements from three satellite instruments were used to update and extend the previously developed global catalogue of large SO2 emission sources. This version 2 of the global catalogue covers the period of 2005–2021 and includes a total of 759 continuously emitting point sources. The catalogue data show an approximate 50 % decline in global SO2 emissions between 2005 and 2021, although emissions were relatively stable during the last 3 years.
Cited articles
Aaboe, E., Dion, E. P., and Turekian, K. K.: 7Be in Sargasso Sea and
Long Island Sound waters, J. Geophys. Res., 86, 3255–3257, 1981.
Aba, A., Al-Dousari, A. M., and Ismaeel, A.: Depositional characteristics of
7Be and 210Pb in Kuwaiti dust, J. Radioanal. Nucl. Ch., 307,
15–23, 2016.
Ahmed, A. A., Mohamed, A., Ali, A. E., Barakat, A., Abd El-Hady, M., and
El-Hussein, A.: Seasonal variations of aerosol residence time in the lower
atmospheric boundary layer, J. Environ. Radioactiv., 77, 275–283, 2004.
Akata, N., Kawabata, H., Hasegawa, H., Sato, T., Chikuchi, Y., Kondo, K.,
Hisamatsu, S., and Inaba, J.: Total deposition velocities and scavenging
ratios of 7Be and 210Pb at Rokkasho, Japan, J. Radioanal. Nucl.
Ch., 277, 347–355, 2008.
Akata, N., Hasegawa, H., Kawabata, H., Kakiuchi, H., Chikuchi, Y., Shima,
N., Suzuki, T., and Hisamatsu, S.: Atmospheric deposition of radionuclides
(7Be, 210Pb, 134Cs, 137Cs and 40K) during
2000–2012 at Rokkasho, Japan, and impact of the Fukushima Dai-ichi Nuclear
Power Plant accident, J. Radioanal. Nucl. Ch., 303, 1217–1222, 2015.
Akata, N., Shiroma, Y., Furukawa, M., Kato, A., Kakiuchi, H., Hosoda, M.,
Kanai, Y., and Yanagisawa, F.: Concentrations of chemical components,
including 210Pb, present in aerosols collected at Naha, Okinawa
prefecture, a sub-tropical region of Japan, Jpn. J. Health. Phys., 53,
17–22, 2018a.
Akata, N., Shiroma, Y., Ikemoto, N., Kato, A., Hegedus, M., Tanaka, M.,
Kakiuchi, H., and Kovacs, A.: Atmospheric concentration and deposition flux
of cosmogenic beryllium-7 at Toki, central part of Japan, Radiat. Environ.
Med., 7, 47–52, 2018b.
Akram, M., Aslam, M., Shafique, M., Jabbar, A., and Orfi, S. D.: Monitoring
of radioactive air pollutants in the atmosphere of Karachi, Sindh, using
gamma spectrometry technique, Nucleus, 36, 143–145, 1999.
Al-Azmi, D., Sayed, A. M., and Yatim, H. A.: Variations in 7Be
concentrations in the atmosphere of Kuwait during the period 1994 to 1998,
Appl. Radiat. Isot., 55, 413–417, 2001.
Alegría, N., Herranz, M., Idoeta, R., and Legarda, F.: Study of
7Be activity concentration in the air of northern Spain, J. Radioanal.
Nucl. Ch., 286, 347–351, 2010.
Ali, N., Khan, E. U., Akhter, P., Khattak, N. U., Khan, F., and Rana, M. A.:
The effect of air mass origin on the ambient concentrations of 7Be and
210Pb in Islamabad, Pakistan, J. Environ. Radioactiv., 102, 35–42,
2011a.
Ali, N., Khan, E. U., Akhter, P., Rana, M. A., Rajput, M. U., Khattak, N.
U., Malik, F., and Hussain, S.: Wet depositional fluxes of 210Pb- and
7Be-bearing aerosols at two different altitude cities of North
Pakistan, Atmos. Environ., 45, 5699–5709, 2011b.
Alonso-Hernández, C. M., Aguila, H. C., Asencio, M. D., and Caravaca, A.
M.: Reconstruction of 137Cs signal in Cuba using 7Be as tracer of
vertical transport processes in the atmosphere, J. Environ. Radioactiv., 75,
133–142, 2004.
Alonso-Hernández, C. M., Morera-Gómez, Y., Cartas-Águila, H.,
and Guillén-Arruebarrena, A.: Atmospheric deposition patterns of
210Pb and 7Be in Cienfuegos, Cuba, J. Environ. Radioactiv., 138,
149–155, 2014.
Amano, H. and Kasai, A.: Concentration of 7Be in the lower atmosphere
and fallout rate in Tokai, Jpn. J. Health. Phys., 16, 99–103, 1981 (in
Japanese).
Anand, S. J. S. and Rangarajan, C.: Studies on the activity ratios of
polonium-210 to lead-210 and their dry-deposition velocities at Bombay in
India, J. Environ. Radioactiv., 11, 235–250, 1990.
Anderson, W., Bentley, R. E., Parker, R. P., Crookall, J. O., and Burton, L.
K.: Comparison of fission product and beryllium-7 concentrations in the
atmosphere, Nature, 187, 550–553, 1960.
Andres, P.: Determination of atmospheric concentration of beryllium-7 at
ground level, Radiat. Prot. Environ., 41, 148–151, 2018.
Andrews, J. E., Hartin, C., and Buesseler, K. O.: 7Be analyses in
seawater by low background gamma-spectroscopy, J. Radioanal. Nucl. Ch., 277,
253–259, 2008.
Appleby, P. G.: Three decades of dating recent sediments by fallout
radionuclides: a review, Holocene, 18, 83–93, 2008.
Appleby, P. G., Koulikov, A. O., Camarero, L., and Ventura, M.: The input
and transmission of fallout radionuclides through Redó, a high mountain
lake in the Spanish Pyrenees, Water Air Soil Poll., 2, 19–31, 2002.
Appleby, P. G., Haworth, E. Y., Michel, H., Short, D. B., Laptev, G., and
Piliposian, G. T.: The transport and mass balance of fallout radionuclides
in Blelham Tarn, Cumbria (UK), J. Paleolimnol., 29, 459–473, 2003.
Appleby, P. G., Semertzidou, P., Piliposian, G. T., Chiverrell, R. C.,
Schillereff, D. N., and Warburton, J.: The transport and mass balance of
fallout radionuclides in Brotherswater, Cumbria (UK), J. Paleolimnol., 62,
389–407, 2019.
Arimoto, R., Snow, J. A., Graustein, W. C., Moody, J. L., Ray, B. J., Duce,
R. A., Turekian, K. K., and Maring, H. B.: Influences of atmospheric
transport pathways on radionuclide activities in aerosol particles from over
the North Atlantic, J. Geophys. Res., 104, 21301–21316, 1999.
Arkian, F., Meshkatee, A. H., and Bidokhti, A. A.: The effects of
large-scale atmospheric flows on berylium-7 activity concentration in
surface air, Environ. Monit. Assess., 168, 429–439, 2010.
Arnold, J. R. and Al-Salih, H. A.: Beryllium-7 produced by cosmic rays,
Science, 121, 451–453, 1955.
Azahra, M., Camacho-García, A., González-Gómez,
C., López-Peñalver, J. J., and El Bardouni, T.: Seasonal 7Be
concentrations in near-surface air of Granada (Spain) in the period
1993–2001, Appl. Radiat. Isot., 59, 159–164, 2003.
Azahra, M., González-Gómez, C., López-Peñalver, J. J., El
Bardouni, T., Camacho Garcí a, A., Boukhal, H., El
Moussaoui, F., Chakir, E., Erradi, L., Kamili, A., and Sekaki, A.: The
seasonal variations of 7Be and 210Pb concentrations in air,
Radiat. Phys. Chem., 71, 789–790, 2004.
Azimov, A. N., Safarov, A. N., Kungurov, F. R., and Muminov, A. T.: 7Be
variation in monthly atmospheric precipitation in 2002–2005 in Samarkand,
Atom. Energy, 111, 151–154, 2011.
Azimov, A. N., Mukhamedov, A. K., Safarov, A. A., Bazarbaev, N. N.,
Inoyatov, A. K., Muminov, I. T., Omonov, K. S., Rashidova, D. S., Kholbaev,
I. K., and Eshkobilov, S. K.: Atmospheric Fallout of 7Be in 2009–2014
in Tashkent and Samarkand, Atom. Energy, 123, 63–67, 2017.
Bachhuber, H. and Bunzl, K.: Background levels of atmospheric deposition to
ground and temporal variation of 129I, 127I, 137Cs and
7Be in a rural area of Germany, J. Environ. Radioactiv., 16, 77–89,
1992.
Baeza, A., Delrío, L. M., Jiménez, A., Miró, C., Paniagua, J.
M., and Rufo, M.: Analysis of the temporal evolution of atmospheric 7Be
as a vector of the behavior of other radionuclides in the atmosphere, J.
Radioanal. Nucl. Ch., 207, 331–344, 1996.
Baeza, A., Rodriguez-Perulero, A., and Guillen, J.: Anthropogenic and
naturally occurring radionuclide content in near surface air in Caceres
(Spain), J. Environ. Radioactiv., 165, 24–31, 2016.
Balkanski, Y. J., Jacob, D. J., Gardner, G. M., Graustein, W. C., and
Turekian, K. K.: Transport and residence times of tropospheric aerosols
inferred from a global three-dimension simulation of 210Pb, J. Geophys.
Res., 98, 20573–20586, 1993.
Bas, M. D., Ortiz, J., Ballesteros, L., and Martorell, S.: Evaluation of a
multiple linear regression model and SARIMA model in forecasting 7Be
air concentrations, Chemosphere, 177, 326–333, 2017.
Baskaran, M.: A search for the seasonal variability on the depositional
fluxes of 7Be and 210Pb. J. Geophys. Res., 100, 2833–2840, 1995.
Baskaran, M.: Po-210 and Pb-210 as atmospheric tracers and global
atmospheric Pb-210 fallout: a Review. J. Environ. Radioactiv., 102, 500–513,
2011.
Baskaran, M. and Santschi, P. H.: The role of particles and colloids in the
transport of radionuclides in coastal environments of Texas, Mar. Chem., 43,
95–114, 1993.
Baskaran, M. and Swarzenski, P. W.: Seasonal variations on the residence
times and partitioning of short-lived radionuclides (234Th, 7Be
and 210Pb) and depositional fluxes of 7Be and 210Pb in Tampa
Bay, Florida, Mar. Chem., 104, 27–42, 2007.
Baskaran, M., Coleman, C. H., and Santschi, P. H.: Atmospheric depositional
fluxes of 7Be and 210Pb at Galveston and College Station, Texas,
J. Geophys. Res., 98, 20555–20571, 1993.
Baskaran, M., Ravichandran, M., and Bianchi, T. S.: Cycling of 7Be and
210Pb in a high DOC, shallow, turbid estuary of south-east Texas,
Estuar. Coast. Shelf S., 45, 165–176, 1997.
Baskaran, M., Mudbidre, R., and Schweitzer, L.: Quantification of Po-210 and
Pb-210 as tracer of sediment resuspension rate in a shallow riverine system:
case study from Southeast Michigan, USA, J. Environ. Radioact., 222, 106339,
https://doi.org/10.1016/j.jenvrad.2020.106339, 2020.
Batraov, G. F., Kremenchutskii, D. A., Nazarov, A. B., and Kholoptsev, A. V.:
Factors influence on atmospheric concentrations of beryllium-7 (7Be) in
the Chernobyl zone, Probl. Mod. Sci. Educ., 45, 248–254, https://doi.org/10.20861/2304-2338-2016-45-002, 2016.
Bazarbaev, N. N., Inoyatov, A. K., Muminov, I. T., Rashidova, D. S.,
Mukhamedov, A. K., and Safarov, A. N.: Cosmogenic 7Be fallout near
Samarkand in 2002–2009, Atom. Energy, 111, 295–300, 2012.
Begy, R. C., Kovacs, T., Veres, D., and Simon, H.: Atmospheric flux,
transport and mass balance of 210Pb and 137Cs radiotracers in
different regions of Romania, Appl. Radiat. Isot., 111, 31–39, 2016.
Beks, J. P., Eisma, D., and van der Plicht, J.: A record of atmospheric
210Pb deposition in The Netherlands, Sci. Total. Environ., 222, 35–44,
1998.
Belmaker, R., Lazar, B., Stein, M., and Beer, J.: Short residence time and
fast transport of fine detritus in the Judean Desert: Clues from 7Be in
settled dust, Geophys. Res. Lett., 38, L16714, https://doi.org/10.1029/2011GL048672, 2011.
Benninger, L. K., Lewis, D. M., and Turekian, K. K.: The use of natural
Pb-210 as a heavy metal tracer in the river-estuarine system, in: Marine
Chemistry in the Coastal Environment/ACS Symposium Serious 18, Washington,
DC, USA, 202–210, 1975.
Belyaev, V. R., Wallbrink, P. J., Golosov, V. N., Murray, A. S., and
Sidorchuk, A. Y.: Reconstructing the development of a gully in the upper
Kalaus basin, Stavropol region (southern Russia), Earth Surf. Proc. Land.,
29, 323–341, 2004.
Benitez-Nelson, C. R. and Buesseler, K. O.: Phosphorus 32, phosphorus 37,
beryllium 7, and lead 210: Atmospheric fluxes and utility in tracing
stratosphere/troposphere exchange, J. Geophys. Res., 104, 11745–11754, 1999.
Benmansour, M., Mabit, L., Nouira, A., Moussadek, R., Bouksirate, H.,
Duchemin, M., and Benkdad, A.: Assessment of soil erosion and deposition
rates in a Moroccan agricultural field using fallout 137Cs and
210Pbex, J. Environ. Radioactiv., 115, 97–106, 2013.
Bettoli, M. G., Cantelli, L., Degetto, S., Tositti, L., Tubertini, O., and
Valcher, S.: Preliminary investigations on 7Be as a tracer in the study
of environmental processes, J. Radioanal. Nucl. Ch., 190, 137–147, 1995.
Bikkina, S., Sarin, M. M., and Chinni, V.: Atmospheric 210Pb and
anthropogenic trace metals in the continental outflow to the Bay of Bengal,
Atmos. Environ., 122, 737–747, 2015.
Blake, W., Walling, D. E., and He, Q.: Fallout beryllium-7 as a tracer in
soil erosion investigations, Appl. Radiat. Isotopes, 51, 599–605, 1999.
Blake, W. H., Wallbrink, P. J., Wilkinson, S. N., Humphreys, G. S., Doerr,
S. H., Shakesby, R. A., and Tomkins, K. M.: Deriving hillslope sediment
budgets in wildfire-affected forests using fallout radionuclide tracers,
Geomorphology, 104, 105–116, 2009.
Blazej, S. and Mietelski, J. W.: Cosmogenic 22Na, 7Be and
terrestrial 137Cs, 40K radionuclides in ground level air samples
collected weekly in Krakow (Poland) over years 2003–2006, J. Radioanal.
Nucl. Chem., 300, 747–756, 2014.
Bleichrodt, J. F.: Mean tropospheric residence time of cosmic-ray-produced
beryllium 7 at north temperate latitudes, J. Geophys. Res., 83,
3058–3062, 1978.
Bleichrodt, J. F. and van Abkoude, E. R.: On the deposition of
cosmic-ray-produced beryllium 7, J. Geophys. Res., 68, 5283–5288, 1963.
Bonniwell, E. C., Matisoff, G., and Whiting, P. J.: Determining the times
and distances of particle transit in a mountain stream using fallout
radionuclides, Geomorphology, 27, 75–92, 1999.
Bonnyman, J. and Molina-Ramos, J.: Concentrations of lead-210 in rainwater
in Australia during the years 1964–1970, Tech. Rep. CXRL/7, Commonw. X-Ray
Radium Lab., Melbourne, 1971.
Bourcier, L., Masson, O., Laj, P., Pichon, J. M., Paulat, P., Freney, E.,
and Sellegri, K.: Comparative trends and seasonal variation of 7Be,
210Pb and 137Cs at two altitude sites in the central part of
France, J. Environ. Radioactiv., 102, 294–301, 2011.
Brandt, C., Benmansour, M., Walz, L., Nguyen, L. T., Cadisch, G., and
Rasche, F.: Integrating compound-specific δ13C isotopes and
fallout radionuclides to retrace land use type-specific net erosion rates in
a small tropical catchment exposed to intense land use change, Geoderma,
310, 53–64, 2018.
Branford, D., Fowler, D., and Moghaddam, M. V.: Study of Aerosol Deposition
at a Wind Exposed Forest Edge Using 210Pb and 137Cs Soil
Inventories, Water Air Soil Poll., 157, 107–116, 2004.
Brost, R. A., Feichter, J., and Heimann, M.: Three-dimensional simulation of 7Be in a
global climate model, J. Geophys. Res., 96, 22423–22445, 1991.
Brown, L., Stensland, G. J., Klein, J., and Middleton, R.: Atmospheric
deposition of 7Be and 10Be, Geochim. Cosmochim. Ac., 53, 135–142,
1989.
Buck, C. S., Aguilar-Islas, A., Marsay, C., Kadko, D., and Landing, W. M.:
Trace element concentrations, elemental ratios, and enrichment factors
observed in aerosol samples collected during the US GEOTRACES eastern
Pacific Ocean transect (GP16), Chem. Geol., 511, 212–224, 2019.
Buraeva, E. A., Malyshevsky, V. S., Nephedov, V. C., Shramenko, B. I.,
Stasov, V. V., and Zorina, L. V.: Cosmogenic 7Be in ground level air in
Rostov-on-Don (Russia) (2001–2011), Physics, arXiv [preprint], arXiv:1310.5271v1, October 2013a.
Buraeva, E. A., Malyshevsky, V. S., Shramenko, B. I., Zorina, L. V., and
Shramenko, B. I.: A record of atmospheric 210Pb accumulation in the
industrial city, Physics, arXiv [preprint],
arXiv:1310.5305,
October 2013b.
Burton, W. M. and Stewart, N. G.: Use of long-lived natural radioactivity as
an atmospheric tracer, Nature, 186, 584–589, 1960.
Caillet, S., Arpagaus, P., Monna, F., and Dominik, J.: Factors controlling
7Be and 210Pb atmospheric deposition as revealed by sampling
individual rain events in the region of Geneva, Switzerland, J. Environ.
Radioactiv., 53, 241–256, 2001.
Cámara-Mor, P., Masque, P., García-Orellana, J., Kern, S., Cochran, J.
K., and Hanfland, C.: Interception of atmospheric fluxes by Arctic sea ice:
Evidence from cosmogenic 7Be, J. Geophys. Res., 116, C12041, https://doi.org/10.1029/2010JC006847, 2011.
Cannizzaro, F., Greco, G., Raneli, M., Spitale, M. C., and Tomarchio, E.:
Determination of 210Pb concentration in the air at ground-level by
gamma-ray spectrometry, Appl. Radiat. Isot., 51, 239–245, 1999.
Cannizzaro, F., Greco, G., Raneli, M., Spitale, M. C., and Tomarchio, E.:
Concentration measurements of 7Be at ground level air at Palermo,
Italy – comparison with solar activity over a period of 21 years, J.
Environ. Radioactiv., 72, 259–271, 2004.
Canuel, E. A., Martens, C. S., and Benninger, L. K.: Seasonal variations in
7Be activity in the sediments of Cape Lookout Bight, North Carolina,
Geochim. Cosmochim. Ac., 54, 237–245, 1990.
Cao, Z., Yang, Y., Wang, L., and Wang, K.: The activity concentration of
210Pb and 210Po in Hangzhou atmosphere and induced public dose
assessment, Radiat. Prot., 38, 8–14, 2018 (in Chinese).
Carpenter, R., Bennett, J. T., and Peterson, M. L.: 210Pb activities in
and fluxes to sediments of the Washington continental slope and shelf,
Geochim. Cosmochim. Ac., 45, 1155–1172, 1981.
Carvalho, F. P.: Origins and concentrations of 222Rn, 210Pb,
210Bi and 210Po in the surface air at Lisbon, Portugal, at the
Atlantic edge of the European continental landmass, Atmos. Environ., 29,
1809–1819, 1995.
Carvalho, A. C., Reis, M., Silva, L., and Madruga, M. J.: A decade of
7Be and 210Pb activity in surface aerosols measured over the
Western Iberian Peninsula, Atmos. Environ., 67, 193–202, 2013.
Chae, J. S. and Kim, G.: Large seasonal variations in fine aerosol
precipitation rates revealed using cosmogenic 7Be as a tracer, Sci.
Total. Environ., 673, 1–6, 2019.
Chae, J. S., Byun, J. I., Yim, S. A., Choi, H. Y., and Yun, J. Y.: 7Be
in ground level air in Daejeon, Korea, Radiat. Prot. Dosim., 146, 334–337,
2011.
Chang, Y., Wang, X., Wang, S., and Wang, J.: Radionuclides monitoring in
atmospheric aerosol samples in Xi'an, Nucl. Tech., 31, 796–800, 2008 (in
Chinese).
Chao, J. H., Chiu, Y. J., Lee, H. P., and Lee, M. C.: Deposition of
beryllium-7 in Hsinchu, Taiwan, Appl. Radiat. Isot., 70, 415–422, 2012.
Chao, J. H., Liu, C. C., Cho, I. C., and Niu, H.: Monitoring of 7Be in
surface air of varying PM10 concentrations, Appl. Radiat. Isot., 89,
95–101, 2014.
Chen, J., Luo, S., and Huang, Y.: Scavenging and fractionation of
particle-reactive radioisotopes 7Be, 210Pb and 210Po in the
atmosphere, Geochim. Cosmochim. Ac., 188, 208–223, 2016.
Chen, J., Zhang, X., Navas, A., Wen, A., Wang, X., and Zhang, R.: A study on
a 210Pbex accumulation-decay model for dating moraine soils to
trace glacier retreat time, J. Environ. Radioactiv., 212, 106124, https://doi.org/10.1016/j.jenvrad.2019.106124, 2020.
Chen, R.: Study on soil erosion tracer and nutrient element distribution in
Honghu watershed, Jiangxi [MS thesis], Nanjing Normal University, China,
2014 (in Chinese).
Chham, E., Pinero-García, F., Gonzalez-Rodelas, P., and Ferro-García, M. A.:
Impact of air masses on the distribution of 210Pb in the southeast of
Iberian Peninsula air, J. Environ. Radioactiv., 177, 169–183, 2017.
Chham, E., Pinero-García, F., Brattich, E., El Bardouni, T., and
Ferro-García, M. A.: 7Be spatial and temporal pattern in southwest of
Europe (Spain): Evaluation of a predictive model, Chemosphere, 205, 194–202,
2018.
Chham, E., Milena-Pérez, A., Piñero-García, F.,
Hernández-Ceballos, M. A., Orza, J. A. G., Brattich, E., El Bardouni,
T., and Ferro-García, M. A.: Sources of the seasonal-trend behaviour
and periodicity modulation of 7Be air concentration in the atmospheric
surface layer observed in southeastern Spain, Atmos. Environ., 213, 148–158,
2019.
Cho, H. M., Hong, Y. L., and Kim, G.: Atmospheric depositional fluxes of
cosmogenic 35S and 7Be: Implications for the turnover rate of
sulfur through the biosphere, Atmos. Environ., 45, 4230–4234, 2011.
Clifton, R. J., Watson, P. G., Davey, J. T., and Frickers, P. E.: A study of
processes affecting the uptake of contaminants by intertidal sediments,
using the radioactive tracers: 7Be, 137Cs and unsupported
210Pb, Estuar. Coast. Shelf S., 41, 459–474, 1995.
Conaway, C. H., Storlazzi, C. D., Draut, A. E., and Swarzenski, P. W.:
Short-term variability of 7Be atmospheric deposition and watershed
response in a Pacific coastal stream, Monterey Bay, California, USA, J.
Environ. Radioactiv., 120, 94–103, 2013.
Courtier, J., Sdraulig, S., and Hirth, G.: 7Be and 210Pb wet/dry
deposition in Melbourne, Australia and the development of deployable units
for radiological emergency monitoring, J. Environ. Radioactiv., 178–179,
419–425, 2017.
Covelo, E. F., Vega, F. A., and Andrade, M. L.: Sorption and desorption of
Cd, Cr, Cu, Ni, Pb and Zn by a Fibric Histosol and its organo-mineral
fraction, J. Hazard. Mater., 159, 342–347, 2008.
Crecelius, E. A.: Prediction of marine atmospheric deposition rates using
total 7Be deposition velocities, Atmos. Environ., 15,
579–582, 1981.
Crozaz, G. and Langway, C. C.: Dating Greenland firn-ice cores with Pb-210,
Earth Planet. Sc. Lett., 1, 194–196, 1966.
Crozaz, G., Picciotto, E., and De Breuck, W.: Antarctic snow chronology with
Pb210, J. Geophys. Res., 69, 2597–2604, 1964.
Cruikshank, A. J., Cowper, G., and Grummitt, W. E.: Production of Be7
in the atmosphere, Cann. J. Chem., 34, 214–219, 1956.
Cruz, P. T. F., Bonga, A. C., Dela Sada, C. L., Olivares, J. U., Dela
Cruz, F. M., Palad, L. J. H., Jesuitas, A. J., Cabatbat, E. C., Omandam, V.
J., García, T. Y., and Feliciano, C. P.: Assessment of temporal variations
of natural radionuclides Beryllium-7 and Lead-212 in surface air in Tanay,
Philippines, J. Environ. Radioactiv., 208–209, https://doi.org/10.1016/j.jenvrad.2019.105989, 2019.
Cui, W., Zhang, M., Yang, H., Yang, B., and Lu, J.: Estimating soil erosion
rates of cultivated fields using 137Cs and 210Pbex in Jiangxi
red soils region, J. Anhui Agri. Sci., 40, 8515–8517, 2012 (in Chinese).
Daish, S. R., Dale, A. A., Dale, C. J., May, R., and Rowe, J. E.: The
temporal variations of 7Be, 210Pb and 210Po in air in
England, J. Environ. Radioactiv., 84, 457–467, 2005.
Damatto, S. R., Máduar, M. F., Nisti, M. B., Nogueira, P. R., and
Pecequilo, B. R. S.: Preliminary results of 7Be concentrations in
ground level air at So Paulo, Brazil, in: The 2nd International Conference
on Radioactivity in the Environment, Nice, France, 2–6 October 2005,
140–146, 2005.
Damnati, B., Ibrahimi, S., and Radakovitch, O.: Quantifying erosion using
137Cs and 210Pb in cultivated soils in three Mediterranean
watershed: Synthesis study from El Hachef, Raouz and Nakhla (North West
Morocco), J. Afr. Earth Sci., 79, 50–57, 2013.
Danielsen, E. F.: Stratospheric-tropospheric exchange based on
radioactivity, ozone, and potential vorticity. J. Atmos. Sci., 25, 502–518,
1968.
D'Amours, R., Mintz, R., Mooney, C., and Wiens, B. J.: A modeling assessment
of the origin of Beryllium-7 and Ozone in the Canadian Rocky Mountains, J.
Geophys. Res.-Atmos., 118, 10125–10138, 2013.
de Tombeur, F., Cornu, S., Bourlès, D., Duvivier, A., Pupier, J., Aster,
T., Brossard, M., and Evrard, O.: Retention of 10Be, 137Cs and
210Pbxs in soils: Impact of physico-chemical characteristics,
Geoderma, 367, 114242, https://doi.org/10.1016/j.geoderma.2020.114242, 2020.
Deng, B., Zhong, Q., Wang, Q., Du, J., and Zhang, X.: Temporal variation of
210Pb concentration in the urban aerosols of Shanghai, China, J.
Radioanal. Nucl. Ch., 323, 1135–1143, 2020.
Dibb, J. E.: Atmospheric deposition of beryllium 7 in the Chesapeake Bay
region, J. Geophys. Res., 94, 2261–2265, 1989.
Dibb, J. E.: Recent deposition of 210Pb on the Greenland Ice Sheet:
variations in space and time, Ann. Glaciol., 14, 51–54, 1990a.
Dibb, J. E.: Beryllium-7 and lead-210 in the atmosphere and surface snow
over the Greenland Ice Sheet in the summer of 1989, J. Geophys. Res., 95,
22407–22415, 1990b.
Dibb, J. E.: The accumulation of 210Pb at Summit, Greenland since 1855,
Tellus B, 44, 72–79, 1992.
Dibb, J. E.: Vertical mixing above Summit, Greenland: Insights into seasonal
and high frequency variability from the radionuclide tracers 7Be and
210Pb, Atmos. Environ., 41, 5020–5030, 2007.
Dibb, J. E. and Jaffrezo, J. L.: Beryllium-7 and lead-210 in aerosol and
snow in the dye 3 gas, aerosol and snow sampling program, Atmos. Environ.,
27, 2751–2760, 1993.
Dibb, J. E., Meeker, L. D., Finkel, R. C., Southon, J. R., Caffee, M. W.,
and Barrie, L. A.: Estimation of stratospheric input to the Arctic
troposphere: 7Be and 10Be in aerosols at Alert, Canada, J.
Geophys. Res., 99, 12855–12864, 1994.
Ding, M., Su, L., Liu, G., Zhu, J., Feng, J., and Zhang, H.: Atmospheric
depositional fluxes of 7Be and depositional velocities of aerosols in
Shenzhen, Geochimica, 46, 81–86, 2017 (in Chinese).
Dlugosz-Lisiecka, M.: Chemometric methods for source apportionment of
210Pb, 210Bi and 210Po for 10 years of urban air
radioactivity monitoring in Lodz city, Poland, Chemosphere, 220, 163–168,
2019.
Doering, C. and Akber, R.: Beryllium-7 in near-surface air and deposition at
Brisbane, Australia, J. Environ. Radioactiv., 99, 461–467, 2008a.
Doering, C. and Akber, R.: Describing the annual cyclic behaviour of
7Be concentrations in surface air in Oceania, J. Environ. Radioactiv.,
99, 1703–1707, 2008b.
Doering, C. and Saey, P.: Hadley cell influence on 7Be activity
concentrations at Australian mainland IMS radionuclide particulate stations,
J. Environ. Radioactiv., 127, 88–94, 2014.
Doering, C., Akber, R., and Heijnis, H.: Vertical distributions of
210Pb excess, 7Be and 137Cs in selected grass covered soils
in Southeast Queensland, Australia, J. Environ. Radioactiv., 87, 135–147,
2006.
Doi, T., Sato, S., and Sato, J.: Atmospheric concentration of 210Pb in
East Asia and its contribution to Japanese islands by long-range transport,
Radioisotopes, 56, 115–130, 2007.
Dominik, J., Burrus, D., and Vernet, J. P.: Transport of the environmental
radionuclides in an alpine watershed, Earth Planet. Sc. Lett., 84, 165–180,
1987.
Dominik, J., Schuler, C., and Santschi, P. H.: Residence times of 234Th
and 7Be in Lake Geneva, Earth Planet. Sc. Lett., 93, 345–358, 1989.
Dörr, H. and Münnich, K. O.: Lead and cesium transport in European
forest soils, Water Air Soil Poll., 57, 809–818, 1991.
Dovhyi, I. I., Kremenchutskii, D. A., Proskurnin, V. Y., and Kozlovskaya, O.
N.: Atmospheric depositional fluxes of cosmogenic 32P, 33P and
7Be in the Sevastopol region, J. Radioanal. Nucl. Ch., 314, 1643–1652,
2017.
Du, J., Zhang, J., Zhang, J., and Wu, Y.: Deposition patterns of atmospheric
7Be and 210Pb in coast of East China Sea, Shanghai, China,
Atmos. Environ., 42, 5101–5109, 2008.
Du, J., Zhang, J., and Baskaran, M.: Applications of short-lived
radionuclides (7Be, 210Pb, 210Po, 137Cs and 234Th)
to trace the sources, transport pathways and deposition of
particles/sediments in rivers, estuaries and coasts, in: Handbook of
environmental isotope geochemistry, edited by: Baskaran, M., Springer,
Berlin, Heidelberg, Germany, 305–329, https://doi.org/10.1007/978-3-642-10637-8_16, 2012.
Du, J., Du, J., Baskaran, M., Bi, Q., Huang, D., and Jiang, Y.: Temporal
variations of atmospheric depositional fluxes of 7Be and 210Pb
over 8 years (2006–2013) at Shanghai, China, and synthesis of global fallout
data, J. Geophys. Res.-Atmos., 120, 4323–4339, 2015.
Du, J., Baskaran, M., and Du, J.: Atmospheric deposition of 7Be,
210Pb and 210Po during typhoons and thunderstorm in Shanghai,
China and global data synthesis, Sci. China-Earth Sci., 63, 602–614, 2020.
Du, P. and Walling, D. E.: Using 210Pb measurements to estimate
sedimentation rates on river floodplains, J. Environ. Radioactiv., 103,
59–75, 2012.
Dueñas, C., Fernández, M. C., Liger, E., and Carretero, J.: Gross
alpha, gross beta activities and 7Be concentrations in surface air:
analysis of their variations and prediction model, Atmos. Environ., 33,
3705–3715, 1999.
Dueñas, C., Fernández, M. C., Carretero, J., Liger, E., and
Cañete, S.: Long-term variation of the concentrations of long-lived Rn
descendants and cosmogenic 7Be and determination of the MRT of
aerosols, Atmos. Environ., 38, 1291–1301, 2004.
Dueñas, C., Fernández, M. C., Carretero, J., Liger, E., and
Cañete, S.: Deposition velocities and washout ratios on a coastal site
(southeastern Spain) calculated from 7Be and 210Pb measurements,
Atmos. Environ., 39, 6897–6908, 2005.
Dueñas, C., Fernández, M. C., Cañete, S., and Pérez, M.:
7Be to 210Pb concentration ratio in ground level air in Málaga
(36.7∘ N, 4.5∘ W), Atmos. Res., 92, 49–57, 2009.
Dueñas, C., Orza, J. A. G., Cabello, M., Fernández, M. C.,
Cañete, S., Pérez, M., and Gordo, E.: Air mass origin and its
influence on radionuclide activities (7Be and 210Pb) in aerosol
particles at a coastal site in the western Mediterranean, Atmos. Res., 101,
205–214, 2011.
Dueñas, C., Gordo, E., Liger, E., Cabello, M., Canete, S., Perez, M.,
and Torre-Luque, P.: 7Be, 210Pb and 40K depositions over 11
years in Malaga, J. Environ. Radioactiv., 178–179, 325–334, 2017.
Ďurana, L., Chudý, M., and Masarik, J.: Investigation of 7Be in
the Bratislava atmosphere, J. Radioanal. Nucl. Ch., 207, 345–356, 1996.
Dutkiewicz, V. A. and Husain, L.: Stratospheric and tropospheric components
of 7Be in surface air, J. Geophys. Res., 90, 5783–5788, 1985.
El-Hussein, A., Mohamemed, A., Abd El-Hady, M., Ahmed, A. A., Ali, A. E.,
and Barakat, A.: Diurnal and seasonal variation of short-lived radon progeny
concentration and atmospheric temporal variations of 210Pb and 7Be
in Egypt, Atmos. Environ., 35, 4305–4313, 2001.
Elsässer, C., Wagenbach, D., Weller, R., Auer, M., Wallner, A., and
Christl, M.: Continuous 25-yr aerosol records at coastal Antarctica, Tellus
B, 63, 920–934, 2011.
Eriksson, M., Holm, E., Roos, P., and Dahlgaard, H.: Distribution and flux
of 238Pu, 239,240Pu, 241Am, 137Cs and 210Pb to high
arctic lakes in the Thule district (Greenland), J. Environ. Radioactiv., 75,
285–299, 2004.
Fan, Y., Wang, S., Li, H., Zhang, X., Li, Q., Jia, H., Zhao, Y., Chen, Z.,
Chang, Y., and Liu, S.: Preliminary study of 7Be, 137Cs and
131I activity concentration distribution rule in Beijing aerosol, At.
Energy Sci. Technol., 47, 189–192, 2013 (in Chinese).
Fang, H. Y., Sheng, M. L., Tang, Z. H., and Cai, Q. G.: Assessment of soil
redistribution and spatial pattern for a small catchment in the black soil
region, Northeastern China: Using fallout 210Pbex, Soil. Till.
Res., 133, 85–92, 2013.
Feely, H. W., Larsen, R. J., and Sanderson, C. G.: Factors that cause
seasonal variations in beryllium-7 concentrations in surface air, J.
Environ. Radioactiv., 9, 223–249, 1989.
Feng, H., Cochran, J. K., and Hirschberg, D. J.: 234Th and 7Be as
tracers for the transport and dynamics of suspended particles in a partially
mixed estuary, Geochim. Cosmochim. Ac., 63, 2487–2505, 1999.
Feichter, J., Brost, R. A., and Heimann, M.: Three-dimensional modeling of
the concentration and deposition of 210Pb aerosols, J. Geophys. Res.,
96, 22447–22460, 1991.
Filizok, I. and Ugur Gorgun, A.: Atmospheric depositional characteristics of
210Po, 210Pb and some trace elements in Izmir, Turkey,
Chemosphere, 220, 468–475, 2019.
Filizok, I., Uğur, A., and Özden, B.: Local Enhancement of
210Po Atmospheric Flux at a Site in İzmir, Turkey, Water Air Soil
Poll., 225, 1823, https://doi.org/10.1007/s11270-013-1823-7, 2013.
Fisenne, I. M.: Distribution of lead-210 and radium-226 in soil, U.S. Dep.
of Energy, Rep. UCRL-18140, Washington, DC, 1968.
Fogh, C. L., Roed, J., and Andersson, K. G.: Radionuclide resuspension and
mixed deposition at different heights, J. Environ. Radioactiv., 46, 67–75,
1999.
Fukuyama, T., Onda, Y., Takenaka, C., and Walling, D. E.: Investigating
erosion rates within a Japanese cypress plantation using Cs-137 and Pb-210
exmeasurements, J. Geophys. Res., 113, F02007, https://doi.org/10.1029/2006JF000657, 2008.
Fuller, C. and Hammond, D. E.: The fallout rate of Pb-210 on the western
coast of the United States, Geophys. Res. Lett., 10, 1164–1167, 1983.
Gäggeler, H., von Gunten, H. R., Rössler, E., Oeschger, H., and
Schotterer, U.: 210Pb-dating of cold alpine firn/ice cores from Colle
Gnifetti, Switzerland, J. Glaciol., 29, 165–177, 1983.
Gäggeler, H. W., Jost, D. T., Baltensperger, U., Schwikowski, M., and
Seibert, P.: Radon and thoron decay product and 210Pb measurements at
Jungfraujoch, Switzerland, Atmos. Environ., 29, 607–616, 1995.
Gai, N., Pan, J., Yin, X. C., Zhu, X. H., Yu, H. Q., Li, Y., Tan, K. Y.,
Jiao, X. C., and Yang, Y. L.: Latitudinal distributions of activities in
atmospheric aerosols, deposition fluxes, and soil inventories of 7Be in
the East Asian monsoon zone, J. Environ. Radioactiv., 148, 59–66, 2015.
García-Orellana, J., Sánchez-Cabeza, J. A., Masqué, P.,
Ávila, A., Costa, E., Loÿe-Pilot, M. D., and Bruach-Menchén J.
M.: Atmospheric fluxes of 210Pb to the western Mediterranean Sea and
the Saharan dust influence, J. Geophys. Res., 111, D15305, https://doi.org/10.1029/2005JD006660, 2006.
Garimella, S., Koshy, K., and Singh, S.: Concentration of 7Be in
surface air at Suva, Fiji, S. Pac. J. Nat. Appl. Sci., 21, 15–19, 2003.
Gaspar, L., Navas, A., Machín, J., and Walling, D. E.: Using
210Pbex measurements to quantify soil redistribution along two
complex toposequences in Mediterranean agroecosystems, northern Spain, Soil.
Till. Res., 130, 81–90, 2013.
Gavini, M. B., Beck, J. N., and Kuroda, P. K.: Mean residence times of the
long-lived radon daughters in the atmosphere, J. Geophys. Res., 79,
4447–4452, 1974.
Gerasopoulos, E., Zanis, P., Stohl, A., Zerefos, C. S., Papastefanou, C.,
Ringer, W., Tobler, L., Hübener, S., Gäggeler, H. W., Kanter, H. J.,
Tositti, L., and Sandrini, S.: A climatology of 7Be at four
high-altitude stations at the Alps and the Northern Apennines, Atmos.
Environ., 35, 6347–6360, 2001.
Goldberg, E. D.: Geochronology with lead-210, in: Radioactive Dating, Int.
At. Energy Agency, Vienna, 1963.
Gonzalez-Gomez, C., Azahra, M., Lopez-Penalver, J. J., Camacho-García, A.,
El Bardouni, T., and Boukhal, H.: Seasonal variability in 7Be
depositional fluxes at Granada, Spain, Appl. Radiat. Isot., 64, 228–234,
2006.
Gordo, E., Liger, E., Dueñas, C., Fernandez, M. C., Canete, S., and
Perez, M.: Study of 7Be and 210Pb as radiotracers of African
intrusions in Malaga (Spain), J. Environ. Radioactiv., 148, 141–153, 2015.
Grabowska, S., Mietelski, J. W., Kozak, K., and Gaca, P.: Gamma emitters on
micro-becquerel activity level in air at Kraków (Poland), J. Atmos.
Chem., 46, 103–116, 2003.
Graham, I., Ditchburn, R., and Barry, B.: Atmospheric deposition of 7Be
and 10Be in New Zealand rain (1996–98), Geochim. Cosmochim. Ac., 67,
361–373, 2003.
Graustein, W. C. and Turekian, K. K.: 210Pb and 137Cs in air and
soils measure the rate and vertical profile of aerosol scavenging, J.
Geophys. Res., 91, 14355–14366, 1986.
Graustein, W. C. and Turekian, K. K.: The effects of forests and topography
on the deposition of sub-micrometer aerosols measured by lead-210 and
cesium-137 in soils, Agr. Forest Meteorol., 47, 199–220, 1989.
Graustein, W. C. and Turekian, K. K.: 7Be and 210Pb indicate an
upper troposphere source for elevated ozone in the summertime subtropical
free troposphere of the eastern North Atlantic, Geophys. Res. Lett., 23,
539–542, 1996.
Grossi, C., Ballester, J., Serrano, I., Galmarini, S., Camacho, A., Curcoll,
R., Morgui, J. A., Rodo, X., and Duch, M. A.: Influence of long-range
atmospheric transport pathways and climate teleconnection patterns on the
variability of surface 210Pb and 7Be concentrations in
southwestern Europe, J. Environ. Radioactiv., 165, 103–114, 2016.
Gustafson, P. F., Kerrigan, M. A., and Brar, S. S.: Comparison of
beryllium-7 and cæsium-137 radioactivity in ground-level air, Nature,
191, 454–456, 1961.
Halstead, M. J. R., Cunninghame, R. G., and Hunter, K. A.: Wet deposition of
trace metals to a remote site in Fiordland, New Zealand, Atmos. Environ.,
34, 665–676, 2000.
Harvey, M. J. and Matthews, K. M.: 7Be deposition in a high-rainfall
area of New Zealand, J. Atmos. Chem., 8, 299–306, 1989.
Hasebe, N., Doke, T., Kikuchi, J., Takeuchi, Y., and Sugiyama, T.:
Observation of fallout rates of atmospheric 7Be and 22Na produced
by cosmic rays – concerning estimation of the fallout rate of atmospheric
26Al, J. Geophys. Res., 86, 520–524, 1981.
Hasegawa, H., Akata, N., Kawabata, H., Chikuchi, Y., Sato, T., Kondo, K.,
and Inaba, J.: Mechanism of 7Be scavenging from the atmosphere through
precipitation in relation to seasonal variations in Rokkasho Village, Aomori
Prefecture, Japan, J. Radioanal. Nucl. Ch., 273, 171–175, 2007.
Haskell, W. Z., Kadko, D., Hammond, D. E., Knapp, A. N., Prokopenko, M. G.,
Berelson, W. M., and Capone, D. G.: Upwelling velocity and eddy diffusivity
from 7Be measurements used to compare vertical nutrient flux to export
POC flux in the Eastern Tropical South Pacific, Mar. Chem., 168, 140–150,
2015.
He, Q. and Walling, D. E.: The distribution of fallout 137Cs and
210Pb in undisturbed and cultivated soils, Appl. Radiat. Isot., 48,
677–690, 1997.
He, X., Liao, Y., Lu, D., Peng, C., Chen, B., Zhou, H., Lin, M., Wang, L.,
and Yang, Y.: A preliminary analysis of the distribution of 7Be in the
ground-level air in Nanning, Sci-Tech. Dev. Enterp., 3, 98–99, 2018 (in
Chinese).
Heikkilä, U., Beer, J., and Alfimov, V.: Beryllium-10 and beryllium-7 in
precipitation in Dübendorf (440 m) and at Jungfraujoch (3580 m),
Switzerland (1998–2005), J. Geophys. Res., 113, D11104, https://doi.org/10.1029/2007JD009160, 2008.
Heinrich, P. and Pilon, R.: Simulation of 210Pb and 7Be scavenging
in the tropics by the LMDz general circulation model, Atmos. Res., 132–133,
490–505, 2013.
Heinrich, P., Coindreau, O., Grillon, Y., Blanchard, X., and Gross, P.:
Simulation of the atmospheric concentrations of 210Pb and 7Be and
comparison with daily observations at three surface sites, Atmos. Environ.,
41, 6610–6621, 2007.
Hernández, F., Hernández-Armas, J., Catalán, A.,
Fernández-Aldecoa, J. C., and Karlsson, L.: Gross alpha, gross beta
activities and gamma emitting radionuclides composition of airborne
particulate samples in an oceanic island, Atmos. Environ., 39, 4057–4066,
2005.
Hernández, F., Karlsson, L., and Hernandez-Armas, J.: Impact of the
tropical storm Delta on the gross alpha, gross beta, 90Sr, 210Pb,
7Be, 40K and 137Cs activities measured in atmospheric aerosol
and water samples collected in Tenerife (Canary Islands), Atmos. Environ.,
41, 4940–4948, 2007.
Hernández F., Rodríguez, S., Karlsson, L., Alonso-Pérez, S.,
López-Pérez, M., Hernandez-Armas, J., and Cuevas, E.: Origin of
observed high 7Be and mineral dust concentrations in ambient air on the
Island of Tenerife, Atmos. Environ., 42, 4247–4256, 2008.
Hernandez-Ceballos, M. A., Cinelli, G., Ferrer, M. M., Tollefsen, T., De
Felice, L., Nweke, E., Tognoli, P. V., Vanzo, S., and De Cort, M.: A
climatology of 7Be in surface air in European Union, J. Environ.
Radioactiv., 141, 62–70, 2015.
Hicks, B. B. and Goodman, H. S.: Seasonal and latitudinal variations of
atmospheric radioactivity along Australia's east coast (150∘ E
longitude), Tellus, 29, 182–188, 1977.
Hirose, K., Honda, T., Yagishita, S., Igarashi, Y., and Aoyama, M.:
Deposition behaviors of 210Pb, 7Be and thorium isotopes observed
in Tsukuba and Nagasaki, Japan, Atmos. Environ., 38, 6601–6608, 2004.
Hötzl, H. and Winkler, R.: Activity concentrations of 226Ra,
228Ra, 210Pb, 40K and 7Be and their temporal variations
in surface air, J. Environ. Radioactiv., 5, 445–458, 1987.
Houali, A., Azahra, M., El Bardouni, T., Ferro García, M. A.,
Piňero García, F., and Chham, E.: Impact of the meteorological
parameters on the behaviour of 7Be at ground level in Tetouan city,
Morocco from June 2015 to February 2017, J. Radioanal. Nucl. Ch., 322,
271–280, 2019.
Hu, J.: Distribution characteristics and tracing techniques using
210Pbex applied to soil erosion in alpine grassland
region-illustrated by a case of Ziketan of Xinghai basin [MS thesis],
University of Chinese Academy of Sciences, 2016 (in Chinese).
Hu, J., Sha, Z., Wang, J., Du, J., and Ma, Y.: Atmospheric deposition of
7Be, 210Pb in Xining, a typical city on the Qinghai-Tibet Plateau,
China, J. Radioanal. Nucl. Ch., 324, 1141–1150, 2020.
Hu, Y. and Zhang, Y.: Using 137Cs and 210Pbex to investigate
the soil erosion and accumulation moduli on the southern margin of the
Hunshandake Sandy Land in Inner Mongolia, Acta Geol. Sin., 74, 1890–1903,
2019 (in Chinese).
Huang, D., Du, J., Moore, W. S., and Zhang, J.: Particle dynamics of the
Changjiang Estuary and adjacent coastal region determined by natural
particle-reactive radionuclides (7Be, 210Pb, and 234Th), J.
Geophys. Res.-Oceans, 118, 1736–1748, 2013.
Huang, D., Bao, H., and Yu, T.: Temporal Variations in Radionuclide Activity
(7Be and 210Pb) in Surface Aerosols at a Coastal Site in
Southeastern China, Aerosol Air Qual. Res., 19, 1969–1979, 2019.
Huh, C. A. and Su, C. C.: Distribution of fallout radionuclides (7Be,
137Cs, 210Pb and 239,240Pu) in soils of Taiwan, J. Environ.
Radioactiv., 77, 87–100, 2004.
Huh, C. A., Su, C. C., and Shiau, L. J.: Factors controlling temporal and
spatial variations of atmospheric deposition of 7Be and 210Pb in
northern Taiwan, J. Geophys. Res., 111, D16304, https://doi.org/10.1029/2006JD007180, 2006.
Igarashi, Y., Hirose, K., and Otsuji-Hatori, M.: Beryllium-7 deposition and
its relation to sulfate deposition, J. Atmos. Chem., 29, 217–231, 1998.
Ioannidou, A. and Paatero, J.: Activity size distribution and residence time
of 7Be aerosols in the Arctic atmosphere, Atmos. Environ., 88, 99–106,
2014.
Ioannidou, A. and Papastefanou, C.: Precipitation scavenging of 7Be and
137Cs radionuclides in air, J. Environ. Radioactiv., 85, 121–136, 2006.
Ioannidou, A., Manolopoulou, M., and Papastefanou, C.: Temporal changes of
7Be and 210Pb concentrations in surface air at temperate latitudes
(40∘ N), Appl. Radiat. Isot., 63, 277–284, 2005.
Ioannidou, A., Eleftheriadis, K., Gini, M., Gini, L., Manenti, S., and
Groppi, F.: Activity size distribution of radioactive nuclide 7Be at
different locations and under different meteorological conditions, Atmos.
Environ., 212, 272–280, 2019.
Irlweck, K., Hinterdorfer, K., and Karg, V.: Beryllium-7 and ozone
correlations in surface atmosphere, Naturwissenschaften, 84, 353–356, 1997.
Isakar, K., Kiisk, M., Realo, E., and Suursoo, S.: Lead-210 in the
atmospheric air of North and South Estonia: long-term monitoring and
back-trajectory calculations, P. Est. Acad. Sci., 65, 442–451, 2016.
Ishikawa, Y., Murakami, H., Sekine, T., and Yoshihara, K.: Precipitation
scavenging studies of radionuclides in air using cosmogenic 7Be, J.
Environ. Radioactiv., 26, 19–36, 1995.
Itoh, H. and Narazaki, Y.: Meteorological Notes for Understanding the
Transport of Beryllium-7 in the Troposphere, Jpn. J. Health. Phys., 52,
122–133, 2017.
Itthipoonthanakorn, T., Dann, S. E., Crout, N. M. J., and Shaw, G.: Nuclear
weapons fallout 137Cs in temperate and tropical pine forest soils, 50
years post-deposition, Sci. Total. Environ., 660, 807–816, 2019.
Iurian, A. R., Mabit, L., Begy, R., and Cosma, C.: Comparative assessment of
erosion and deposition rates on cultivated land in the Transylvanian Plain
of Romania using 137Cs and 210Pbex, J. Environ. Radioactiv., 125, 40–49, 2013.
Jankovic, M., Todorovic, D., Nikolic, J., Rajacic, M., Pantelic, G., and
Sarap, N.: Temporal changes of beryllium-7 and lead-210 in ground level air
in Serbia, Hem. Ind., 68, 83–88, 2014.
Jasiulionis, R. and Wershofen, H.: A study of the vertical diffusion of the
cosmogenic radionuclides, 7Be and 22Na in the atmosphere, J.
Environ. Radioactiv., 79, 157–169, 2005.
Jia, C., Liu, G., Yang, W., Zhang, L., and Huang, Y.: Atmospheric
depositional fluxes of 7Be and 210Pb at Xiamen, J. Xiamen Univ.,
42, 352–357, 2003 (in Chinese).
Jia, G. and Jia, J.: Atmospheric Residence Times of the fine-aerosol in the
region of south Italy estimated from the activity concentration ratios of
210Po 210Pb in air particulates, J. Anal. Bioanal. Tech., 5, 216,
https://doi.org/10.4172/2155-9872.1000216, 2014.
Jiang, R.: 7Be content and its seasonal variation in the ground air
around Hangzhou area, Nucl. Sci. Tech., 10, 230–234, 1999.
Joshi, S. R.: Recent sedimentation rates and 210Pb fluxes in Georgian
Bay and Lake Huron, Sci. Total. Environ., 41, 219–233, 1985.
Joshi, L. U., Rangarajan, C., and Gopalakrishnan, S.: Measurement of
lead-210 in surface air and precipitation, Tellus, 21, 107–112, 1969.
Juri Ayub, J., Di Gregorio, D. E., Velasco, H., Huck, H., Rizzotto, M., and
Lohaiza, F.: Short-term seasonal variability in 7Be wet deposition in a
semiarid ecosystem of central Argentina, J. Environ. Radioactiv., 100,
977–981, 2009.
Jweda, J., Baskaran, M., van Hees, E., and Schweitzer, L.: Short-lived
radionuclides (7Be and 210Pb) as tracers of particle dynamics in a
river system in southeast Michigan, Limnol. Oceanogr., 53, 1934–1944, 2008.
Kadko, D.: Modeling the evolution of the Arctic mixed layer during the fall
1997 Surface Heat Budget of the Arctic Ocean (SHEBA) Project using
measurements of 7Be, J. Geophys. Res., 105, 3369–3378, 2000.
Kadko, D.: Rapid oxygen utilization in the ocean twilight zone assessed with
the cosmogenic isotope 7Be, Global Biogeochem. Cy., 23, GB4010, https://doi.org/10.1029/2009GB003510, 2009.
Kadko, D.: Upwelling and primary production during the U.S. GEOTRACES East
Pacific Zonal Transect, Global Biogeochem. Cy., 31, 218–232, 2017.
Kadko, D. and Johns, W.: Inferring upwelling rates in the equatorial
Atlantic using 7Be measurements in the upper ocean, Deep-Sea Res. Pt.
I, 58, 647–657, 2011.
Kadko, D. and Olson, D.: Beryllium-7 as a tracer of surface water subduction
and mixed-layer history, Deep-Sea Res. Pt. I, 43, 89–116, 1996.
Kadko, D. and Prospero, J.: Deposition of 7Be to Bermuda and the regional
ocean: Environmental factors affecting estimates of atmospheric flux to the
ocean, J. Geophys. Res., 116, C02013, https://doi.org/10.1029/2010JC006629, 2011.
Kadko, D. and Swart, P.: The source of the high heat and freshwater content
of the upper ocean at the SHEBA site in the Beaufort Sea in 1997, J.
Geophys. Res., 109, C01022, https://doi.org/10.1029/2004GL021262, 2004.
Kadko, D., Landing, W. M., and Shelley, R. U.: A novel tracer technique to
quantify the atmospheric flux of trace elements to remote ocean regions, J.
Geophys. Res.-Oceans, 120, 848–858, 2015.
Kadko, D., Galfond, B., Landing, W. M., and Shelley, R. U.: Determining the
pathways, fate, and flux of atmospherically derived trace elements in the
Arctic ocean/ice system, Mar. Chem., 182, 38–50, 2016.
Kapala, J., Karpinska, M., Mnich, S., Gromotowicz-Poplawska, A., and
Kulesza, G.: 7Be concentration in the near-surface layer of the air in
Bialystok (north-eastern Poland) in the years 1992–2010, J. Environ.
Radioactiv., 187, 40–44, 2018.
Karwan, D. L., Siegert, C. M., Levia, D. F., Pizzuto, J., Marquard, J.,
Aalto, R., and Aufdenkampe, A. K.: Beryllium-7 wet deposition variation with
storm height, synoptic classification, and tree canopy state in the
mid-Atlantic USA, Hydrol. Process., 30, 75–89, 2016.
Kaste, J. M., Elmore, A. J., Vest, K. R., and Okin, G. S.: Beryllium-7 in
soils and vegetation along an arid precipitation gradient in Owens Valley,
California, Geophys. Res. Lett., 38, L09401, https://doi.org/10.1029/2011GL047242, 2011.
Kato, H., Onda, Y., and Tanaka, Y.: Using 137Cs and 210Pbex
measurements to estimate soil redistribution rates on semi-arid grassland in
Mongolia, Geomorphology, 114, 508–519, 2010.
Khan, K., Jabbar, A., and Akhter, P.: Climatic variations of beryllium-7
activity in the atmosphere of Peshawar basin, Pakistan, during 2001-2006,
Nucl. Technol. Radiat. Prot., 2, 104–108, 2009.
Khan, S., Alaamer, A. S., and Tahir, S. N.: Assessment of 7Be
concentration in outdoor ambient air, Health Phys., 95, 433–435, 2008.
Khodadadi, M., Mabit, L., Zaman, M., Porto, P., and Gorji, M.: Using
137Cs and 210Pbex measurements to explore the effectiveness
of soil conservation measures in semi-arid lands: a case study in the Kouhin
region of Iran, J. Soil. Sediment., 19, 2103–2113, 2018.
Kikuchi, S., Sakurai, H., Gunji, S., and Tokanai, F.: Temporal variation of
7Be concentrations in atmosphere for 8y from 2000 at Yamagata, Japan:
solar influence on the 7Be time series, J. Environ. Radioactiv., 100,
515–521, 2009.
Kim, G., Alleman, L. Y., and Church, T. M.: Atmospheric depositional fluxes
of trace elements, 210Pb, and 7Be to the Sargasso Sea, Global
Biogeochem. Cy., 13, 1183–1192, 1999.
Kim, G., Hussain, N., Scudlark, J. R., and Church, T. M.: Factors
influencing the atmospheric depositional fluxes of stable Pb, 210Pb,
and 7Be into Chesapeake Bay, J. Atmos. Chem., 36, 65–79, 2000.
Kim, G., Hong, Y. L., Jang, J., Lee, I., Hwang, D. W., and Yang, H. S.:
Evidence for anthropogenic 210Po in the urban atmosphere of Seoul,
Korea, Environ. Sci. Technol., 39, 1519–1522, 2005.
Kim, S. H., Hong, G. H., Baskaran, M., Park, K. M., Chung, C. S., and Kim,
K. H.: Wet removal of atmospheric 7Be and 210Pb at the Korean
Yellow Sea coast, Yellow Sea, 4, 58–68, 1998.
Kitto, M. E., Hartt, G. M., and Gillen, E. A.: Airborne activities of gross beta,
7Be, and 131I in New York, J. Radioanal. Nucl. Ch., 264, 387–392,
2005.
Kitto, M. E., Fielman, E. M., Hartt, G. M., Gillen, E. A., Semkow, T. M.,
Parekh, P. P., and Bari, A.: Long-term monitoring of radioactivity in
surface air and deposition in New York State, Health Phys., 90, 31–37, 2006.
Klaminder, J., Bindler, R., Emteryd, O., Appleby, P., and Grip, H.:
Estimating the mean residence time of lead in the organic horizon of boreal
forest soils using 210-lead, stable lead and a soil chronosequence,
Biogeochemistry, 78, 31–49, 2006.
Koch, D. M. and Mann, M. E.: Spatial and temporal variability of 7Be
surface concentration, Tellus B, 48, 387–396, 1996.
Koch, D. M., Jacob, D. J., and Graustein, W. C.: Vertical transport of
tropospheric aerosols as indicated by and in a chemical tracer model, J.
Geophys. Res., 101, 18651–18618, 1996.
Koide, M., Goldberg, E. D., Herron, M. M., and Langway, C. C.: Transuranic
depositional history in South Greenland firn layers, Nature, 269, 137–139,
1977.
Koide, M., Michel, R., Goldberg, E. D., Herron, M. M., and Langway, C. C.:
Depositional history of artificial radionuclides in the Ross Ice Shelf,
Antarctica, Earth Planet. Sc. Lett., 44, 205–223, 1979.
Kolb, W.: Jahreszeitliche Schwankungen der 7Be-, 54Mn- und
Spaltprodukt-Konzentrationen der bodennahen Luft, Tellus, 22, 443–450, 1970
(in German).
Kownacka, L., Jaworowski, Z., and Suplinska, M.: Vertical distribution and
flows of lead and natural radionuclides in the atmosphere, Sci. Total.
Environ., 91, 199–221, 1990.
Kritz, M. A., Rosner, S. W., Kelly, K. K., Loewenstein, M., and Chan, K. R.:
Radon measurements in the lower tropical stratosphere: evidence for rapid
vertical transport and dehydration of tropospheric air, J. Geophys. Res.,
98, 8725–8736, 1993.
Krmar, M., Velojić, M., Hansman, J., Ponjarac, R., Mihailović, A.,
Todorović, N., Vučinić-Vasić, M., and Savić, R.: Wind
erosion on Deliblato (the largest European continental sandy terrain)
studied using 210Pbex and 137Cs measurements, J. Radioanal.
Nucl. Ch., 303, 2511–2515, 2015.
Kulan, A., Aldahan, A., Possnert, G., and Vintersved, I.: Distribution of
7Be in surface air of Europe, Atmos. Environ., 40, 3855–3868, 2006.
Kurata, T. and Tsunogai, S.: Exhalation rates of 222Rn and deposition
surface estimated from 226Ra and rates of 210Pb at the earth's
210Pb profiles in soils, Geochem. J., 20, 81–90, 1986.
Laguionie, P., Roupsard, P., Maro, D., Solier, L., Rozet, M., Hébert,
D., and Connan, O.: Simultaneous quantification of the contributions of dry,
washout and rainout deposition to the total deposition of particle-bound
7Be and 210Pb on an urban catchment area on a monthly scale, J.
Aerosol Sci., 77, 67–84, 2014.
Lal, D. and Baskaran, M.: Applications of cosmogenic isotopes as atmospheric
tracers, in: Handbook of environmental isotope geochemistry, edited by:
Baskaran, M., Springer, Berlin, Heidelberg, Germany, 575–589, https://doi.org/10.1007/978-3-642-10637-8_28, 2012.
Lal, D. and Peters, B.: Cosmic ray produced radioactivity on the Earth, in:
Handbuch der Physik/Encyclopedia of Physics, edited by: Sittle, K.,
Springer, Berlin, Heidelberg, Germany, 551–612, https://doi.org/10.1007/978-3-642-46079-1_7, 1967.
Lal, D., Malhotra, P. K., and Peters, B.: On the production of radioisotopes
in the atmosphere by cosmic radiation and their application to meteorology,
J. Atmos. Sol-Terr. Phys., 12, 306–328, 1958.
Lal, D., Nijampurkar, V. N., Rajagopalan, G., and Somayajulu, B. L. K.:
Annual fallout of 32Si, 210Pb, 22Na, 35S and 7Be in
rains in India, P. Indian Acad. Sci., 88, 29–40, 1979.
Lambert, G., Ardouin, B., and Sanak, J.: Atmospheric transport of trace
elements toward Antarctica, Tellus B, 42, 76–82, 1990.
Lamborg, C. H., Fitzgerald, W. F., Graustein, W. C., and Turekian, K. K.: An
examination of the atmospheric chemistry of mercury using 210Pb and
7Be, J. Atmos. Chem., 36, 325–338, 2000.
Lamborg, C. H., Engstrom, D. R., Fitzgerald, W. F., and Balcom, P. H.:
Apportioning global and non-global components of mercury deposition through
210Pb indexing, Sci. Total. Environ., 448, 132–140, 2013.
Landis, J. D., Renshaw, C. E., and Kaste, J. M.: Quantitative retention of
atmospherically deposited elements by native vegetation is traced by the
fallout radionuclides 7Be and 210Pb, Environ. Sci. Technol., 48,
12022–12030, 2014.
Larsen, R. J., Sanderson, C. G., and Kada, J.: EML Surface Air Sampling
Program, 1990–1993 Data, U.S. Dep. of Energy, New York, Environ. Rep.
EML-572, 1995.
Le Roux, G., Pourcelot, L., Masson, O., Duffa, C., Vray, F., and Renaud, P.:
Aerosol deposition and origin in French mountains estimated with soil
inventories of 210Pb and artificial radionuclides, Atmos. Environ., 42,
1517–1524, 2008.
Lee, H. I., Huh, C. A., Lee, T., and Huang, N. E.: Time series study of a
17-year record of 7Be and 210Pb fluxes in northern Taiwan using
ensemble empirical mode decomposition, J. Environ. Radioactiv., 147, 14–21,
2015.
Lee, H. N., Tositti, L., Zheng, X., and Bonasoni, P.: Analyses and
comparisons of variations of 7Be, 210Pb and 7Be 210Pb
with ozone observations at two Global Atmosphere Watch stations from high
mountains, J. Geophys. Res., 112, D05303, https://doi.org/10.1029/2006JD007421, 2007.
Lee, S. C., Saleh, A. I., Banavali, A. D., Jonooby, L., and Kuroda, P. K.:
Beryllium-7 deposition at Fayetteville, Arkansas, and excess polonium-210
from the 1980 eruption of Mount St. Helens, Geochem. J., 19, 317–322, 1985.
Lee, S. H., Pham, M. K., and Povinec, P. P.: Radionuclide variations in the
air over Monaco, J. Radioanal. Nucl. Ch., 254, 445–453, 2002.
Leppanen, A. P.: Deposition of naturally occurring 7Be and 210Pb
in Northern Finland, J. Environ. Radioactiv., 208–209, 105995, https://doi.org/10.1016/j.jenvrad.2019.105995, 2019.
Li, C., Le Roux, G., Sonke, J., van Beek, P., Souhaut, M., Van der Putten,
N., and De Vleeschouwer, F.: Recent 210Pb, 137Cs and 241Am
accumulation in an ombrotrophic peatland from Amsterdam Island (Southern
Indian Ocean), J. Environ. Radioactiv., 175–176, 164–169, 2017a.
Li, J., Li, Y., Wang, Y., and Wu, J.: Study of soil erosion on the east-west
transects in the Three-Rivers headwaters region using 137Cs and
210Pbex tracing, Res. Environ. Sci., 22, 1452–1459, 2009 (in
Chinese).
Li, J., Wang, Y., Li, D., Zhuo, M., and Wu, J.: Characterization and
evaluation of agricultural soil erosion in Shenzhen City using environmental
radionuclides, Res. Environ. Sci., 26, 780–786, 2013 (in Chinese).
Li, X., Zhao, Q., Wang, Q., and Luo, M.: Application of 210Pb analysis
method in aerosol determination of Chengdu, Sichuan Environ., 36, 142–146,
2017b (in Chinese).
Likuku, A. S.: Factors influencing ambient concentrations of 210Pb and
7Be over the city of Edinburgh (55.9∘ N, 03.2∘ W), J. Environ. Radioactiv., 87, 289–304, 2006a.
Likuku, A. S., Branford, D., Fowler, D., and Weston, K. J.: Inventories of
fallout 210Pb and 137Cs radionuclides in moorland and woodland
soils around Edinburgh urban area (UK), J. Environ. Radioactiv., 90, 37–47,
2006b.
Lin, Y. C., Huh, C. A., Hsu, S. C., Lin, C. Y., Liang, M. C., and Lin, P.
H.: Stratospheric influence on the concentration and seasonal cycle of lower
tropospheric ozone: Observation at Mount Hehuan, Taiwan, J. Geophys.
Res.-Atmos., 119, 3527–3536, 2014.
Lindblom, G.: Fallout gamma-emitting radionuclides in air, precipitation,
and the human body up to spring 1967, Tellus, 22, 443–450, 1969.
Liu, G., Luo, Q., Pan, Y., Liu, D., Li, Z., Zhang, H., and Sun, H.:
Variations of airborne 7Be in Shenzhen and its implication for
atmospheric transport, Geochimica, 43, 32–38, 2014 (in Chinese).
Liu, H., Jacob, D. J., Hey, I., and Yantosca, R. M.: Constraints from
210Pb and 7Be on wet deposition and transport in a global
three-dimensional chemical tracer model driven by assimilated meteorological
fields, J. Geophys. Res., 106, 12109–12128, 2001.
Liu, H., Considine, D. B., Horowitz, L. W., Crawford, J. H., Rodriguez, J. M., Strahan, S. E., Damon, M. R., Steenrod, S. D., Xu, X., Kouatchou, J., Carouge, C., and Yantosca, R. M.: Using beryllium-7 to assess cross-tropopause transport in global models, Atmos. Chem. Phys., 16, 4641–4659, https://doi.org/10.5194/acp-16-4641-2016, 2016.
Liu, S. C., McAfee, J. R., and Cicerone, R. J.: Radon 222 and tropospheric
vertical transport, J. Geophys. Res., 89, 7291–7297, 1984.
Lockhart Jr., L. B., Patterson Jr., R. L., and Saunders Jr., A. W.: Airborne
radioactivity in Antarctica, J. Geophys. Res., 71, 1985–1991, 1966.
Lozano, R. L., San Miguel, E. G., Bolívar, J. P., and Baskaran, M.:
Depositional fluxes and concentrations of 7Be and 210Pb in bulk
precipitation and aerosols at the interface of Atlantic and Mediterranean
coasts in Spain, J. Geophys. Res., 116, D18213, https://doi.org/10.1029/2011JD015675, 2011.
Lozano, R. L., Hernández-Ceballos, M. A., San Miguel, E. G., Adame, J.
A., and Bolívar, J. P.: Meteorological factors influencing the 7Be
and 210Pb concentrations in surface air from the southwestern Iberian
Peninsula, Atmos. Environ., 63, 168–178, 2012.
Lozano, R. L., Hernández-Ceballos, M. A., Rodrigo, J. F., San Miguel, E.
G., Casas-Ruiz, M., García-Tenorio, R., and Bolívar, J. P.:
Mesoscale behavior of 7Be and 210Pb in superficial air along the
Gulf of Cadiz (south of Iberian Peninsula), Atmos. Environ., 80, 75–84,
2013.
Lujanienë, G.: Study of removal processes of 7Be and 137Cs
from the atmosphere, Czech. J. Phys., 53, A57–A65, 2003.
Luyanas, V. Y., Yasyulyonis, R. Y., Shopauskiene, D. A., and Styra, B. I.:
Cosmogenic 22Na, 7Be, 32P, and 33P in atmospheric
dynamics research, J. Geophys. Res., 75, 3665–3667, 1970.
Mabit, L., Benmansour, M., and Walling, D. E.: Comparative advantages and
limitations of the fallout radionuclides 137Cs, 210Pbex and
7Be for assessing soil erosion and sedimentation, J. Environ.
Radioactiv., 99, 1799–1807, 2008.
Mabit, L., Klik, A., Benmansour, M., Toloza, A., Geisler, A., and Gerstmann,
U. C.: Assessment of erosion and deposition rates within an Austrian
agricultural watershed by combining 137Cs, 210Pbex and
conventional measurements, Geoderma, 150, 231–239, 2009.
Mabit, L., Benmansour, M., Abril, J. M., Walling, D. E., Meusburger, K.,
Iurian, A. R., Bernard, C., Tarjan, S., Owens, P. N., Blake, W. H., and
Alewell, C.: Fallout 210Pb as a soil and sediment tracer in catchment
sediment budget investigations: a review. Earth-Sci. Rev., 138, 335–351,
2014.
Maenhaut, W., Zoller, W. H., and Coles, D. G.: Radionuclides in the south
pole atmosphere, J. Geophys. Res., 84, 3131–3138, 1979.
Magno, P. J., Groulx, P. R., and Apidianakis, J. C.: Lead-210 in air and
total diets in the United States during 1966, Health Phys., 18, 383–388,
1970.
Marx, S. K., Kamber, B. S., and McGowan, H. A.: Estimates of Australian dust
flux into New Zealand: Quantifying the eastern Australian dust plume pathway
using trace element calibrated 210Pb as a monitor, Earth Planet. Sc.
Lett., 239, 336–351, 2005.
Matisoff, G.: 210Pb as a tracer of soil erosion, sediment source area
identification and particle transport in the terrestrial environment, J.
Environ. Radioactiv., 138, 343–354, 2014.
Matisoff, G. and Whiting, P. J.: Measuring soil erosion rates using natural
(7Be, 210Pb) and anthropogenic (137Cs, 239,240Pu)
radionuclides, in: Handbook of environmental isotope geochemistry, edited
by: Baskaran, M., Springer, Berlin, Heidelberg, Germany, 487–519, https://doi.org/10.1007/978-3-642-10637-8_25, 2012.
Matisoff, G., Bonniwell, E. C., and Whiting, P. J.: Radionuclides as
indicators of sediment transport in agricultural watersheds that drain to
Lake Erie, J. Environ. Qual., 31, 62–72, 2002.
Matisoff, G., Wilson, C. G., and Whiting, P. J.: The
7Be 210Pbxs ratio as an indicator of suspended sediment age
or fraction new sediment in suspension, Earth Surf. Proc. Land., 30,
1191–1201, 2005.
Mattsson, R.: Seasonal variation of short-lived radon progeny, Pb210
and Po210, in ground level air in Finland, J. Geophys. Res., 75,
1741–1744, 1970.
Mattsson, R.: 210Pb and 222Rn as guides in adjudicating
SO and SO2 air concentrations sulphate in the air in
Finland 1962–1985, Sci. Total Environ., 69, 211–224, 1988.
Mattsson, R., Paatero, J., and Hatakka, J.: Automatic alpha/beta analyser
for air filter samples-absolute determination of radon progeny by
pseudo-coincidence techniques, Radiat. Prot. Dosim., 63, 133–139, 1996.
McNeary, D. and Baskaran, M.: Depositional characteristics of 7Be and 210Pb in southeastern Michigan, J. Geophys. Res.-Atmos., 108, 4210, https://doi.org/10.1029/2002JD003021, 2003.
Megumi, K., Matsunami, T., Ito, N., Kiyoda, S., Mizohata, A., and Asano, T.:
Factors, especially sunspot number, causing variations in surface air
concentrations and depositions of 7Be in Osaka, Japan, Geophys. Res.
Lett., 27, 361–364, 2000.
Mélières, M. A., Pourchet, M., and Richard, S.: Surface air
concentration and deposition of lead-210 in French Guiana: two years of
continuous monitoring, J. Environ. Radioactiv., 66, 261–269, 2003.
Men, W., Lin, J., Wang, F., and Yin, M.: Atmospheric processes studies and
radiation dose assessment based on 7Be, 210Pb and 210Po
around Xiamen Island, J. Appl. Oceanogr., 35, 266–274, 2016 (in Chinese).
Meusburger, K., Mabit, L., Ketterer, M., Park, J. H., Sandor, T., Porto, P.,
and Alewell, C.: A multi-radionuclide approach to evaluate the suitability
of 239+240Pu as soil erosion tracer, Sci. Total. Environ., 566–567,
1489–1499, 2016.
Meusburger, K., Porto, P., Mabit, L., La Spada, C., Arata, L., and Alewell,
C.: Excess Lead-210 and Plutonium-239+240: Two suitable radiogenic soil
erosion tracers for mountain grassland sites, Environ. Res., 160, 195–202,
2018.
Mietelski, J. W., Nalichowska, E., Tomankiewicz, E., Brudecki, K., Janowski,
P., and Kierepko, R.: Gamma emitters in atmospheric precipitation in Krakow
(Southern Poland) during the years 2005–2015, J. Environ. Radioactiv., 166,
10–16, 2017.
Milton, G. M., Kramer, S. J., Watson, W. L., and Kotzer, T. G.: Qualitative
estimates of soil disturbance in the vicinity of CANDUS stations, utilizing
measurements of 137Cs and 210Pb in soil cores, J. Environ.
Radioactiv., 55, 195–205, 2001.
Miralles, J., Radakovitch, O., Cochran, J. K., Véron, A., and
Masqué, P.: Multitracer study of anthropogenic contamination records in
the Camargue, Southern France, Sci. Total. Environ., 320, 63–72, 2004.
Mohan, M. P., D'Souza, R. S., Rashmi Nayak, S., Kamath, S. S., Shetty, T.,
Sudeep Kumara, K., Yashodhara, I., Mayya, Y. S., and Karunakara, N.: A study
of temporal variations of 7Be and 210Pb concentrations and their
correlations with rainfall and other parameters in the South West Coast of
India, J. Environ. Radioactiv., 192, 194–207, 2018.
Mohan, M. P., D'Souza, R. S., Nayak, S. R., Kamath, S. S., Shetty, T.,
Kumara, K. S., Mayya, Y. S., and Karunakara, N.: Influence of rainfall on
atmospheric deposition fluxes of 7Be and 210Pb in Mangaluru
(Mangalore) at the Southwest Coast of India, Atmos. Environ., 202, 281–295,
2019.
Mohery, M., Abdallah, A. M., Al-Amoudi, Z. M., and Baz, S. S.: Activity size
distribution of some natural radionuclides, Radiat. Prot. Dosim., 158,
435–441, 2014.
Mohery, M., Abdallah, A. M., Ali, A., and Baz, S. S.: Daily variation of
radon gas and its short-lived progeny concentration near ground level and
estimation of aerosol residence time, Chinese Phys. B, 25, 050701, https://doi.org/10.1088/1674-1056/25/5/050701, 2016.
Momoshima, N., Nishio, S., Kusano, Y., Fukuda, A., and Ishimoto, A.:
Seasonal variations of atmospheric 210Pb and 7Be concentrations at
Kumamoto, Japan and their removal from the atmosphere as wet and dry
depositions, J. Radioanal. Nucl. Ch., 268, 297–304, 2006.
Monaghan, M. C.: Lead 210 in surface air and soils from California:
Implications for the behavior of trace constituents in the planetary
boundary layer, J. Geophys. Res., 94, 6449–6456, 1989.
Monaghan, M. C. and Holdsworth, G.: The origin of non-sea-salt sulphate in
the Mount Logan ice core, Nature, 343, 245–248, 1990.
Monaghan, M. C., Krishnaswami, S., and Turekian, K. K.: The global-average
production rate of 10Be, Earth Planet. Sc. Lett., 76, 279–287, 1986.
Moore, H. E. and Poet, S. E.: 210Pb fluxes determined from 210Pb
and 226Ra soil profiles, J. Geophys. Res., 81, 1056–1058, 1976.
Moore, H. E., Poet, S. E., and Martell, E. A.: Vertical profiles of 222Rn
and its long-lived daughters over the eastern Pacific, Environ. Sci.
Technol., 11, 1207–1210, 1977.
Mudbidre, R., Baskaran, M., and Schweitzer, L.: Investigations of the
partitioning and residence times of Po-210 and Pb-210 in a riverine system
in Southeast Michigan USA, J. Environ. Radioact., 138, 375–383, 2014.
Muramatsu, H., Yoshizawa, S., Abe, T., Ishii, T., Wada, M., Horiuchi, Y.,
and Kanekatsu, R.: Variation of 7Be concentration in surface air at
Nagano, Japan, J. Radioanal. Nucl. Ch., 275, 299–307, 2008.
Narazaki, Y. and Fujitaka, K.: Cosmogenic 7Be: atmospheric
concentration and deposition in Japan, Jpn. J. Health Phys., 44, 95–105,
2009.
Narazaki, Y., Fujitaka, K., Igarashi, S., Ishikawa, Y., and Fujinami, N.:
Seasonal variation of 7Be deposition in Japan, J. Radioanal. Nucl. Ch.,
256, 489–496, 2003.
Nazaroff, W. W.: Radon transport from soil to air, Rev. Geophys., 30,
137–160, 1992.
Neroda, A. S., Goncharova, A. A., Goryachev, V. A., Mishukov, V. F., and
Shlyk, N. V.: Long-range atmospheric transport Beryllium-7 to region the Sea
of Japan, J. Environ. Radioactiv., 160, 102–111, 2016.
Nijampurkar, V. N. and Clausen, H. B.: A century old record of lead-210
fallout on the Greenland ice sheet, Tellus B, 42, 29–38, 1990.
Nijampurkar, V. N. and Rao, D. K.: Polar fallout of radionuclides 32Si,
7Be and 210Pb and past accumulation rate of ice at Indian station,
Dakshin Gangotri, East Antarctica, J. Environ. Radioactiv., 21, 107–117,
1993.
Nijampurkar, V. N., Rao, D. K., Clausen, H. B., Kaul, M. K., and Chaturvedi,
A.: Records of climatic changes and volcanic events in an ice core from
Central Dronning Maud Land (East Antarctica) during the past century, Proc.
Indian Acad. Sci. (Earth Planet. Sci.), 111, 39–49, 2002.
Noithong, P., Rittirong, A., and Hazama, R.: Study of the factors influence
on variation of Be-7 concentration in surface air at Osaka, Japan, J. Phys.
Conf. Ser., 1285, 012016, https://doi.org/10.1088/1742-6596/1285/1/012016, 2019.
Nozaki, Y., DeMaster, D. J., Lewis, D. M., and Turekian, K. K.: Atmospheric
210Pb fluxes determined from soil profiles, J. Geophys. Res., 83,
4047–4051, 1978.
O'Farrell, C. R., Heimsath, A. M., and Kaste, J. M.: Quantifying hillslope
erosion rates and processes for a coastal California landscape over varying
timescales, Earth Surf. Proc. Land., 32, 544–560, 2007.
Olsen, C. R., Larsen, I. L., Lowry, P. D., Cutshall, N. H., Todd, J. F.,
Wong, G. T. F., and Casey, W. H.: Atmospheric fluxes and marsh-soil
inventories of 7Be and 210Pb, J. Geophys. Res., 90, 10487–10495,
1985.
Olsen, C. R., Larsen, I. L., Lowry, P. D., Cutshall, N. H., and Nichols, M.
M.: Geochemistry and deposition of 7Be in river, estuarine and coastal
waters, J. Geophys. Res., 91, 896–908, 1986.
Othman, I., Al-Masri, M. S., and Hassan, M.: Fallout of 7Be in Damascus
City, J. Radioanal. Nucl. Ch., 238, 187–192, 1998.
Paatero, J. and Hatakka, J.: Source areas of airborne 7Be and
210Pb measured in Northern Finland, Health Phys., 79, 691–696, 2000.
Paatero, J., Hatakka, J., Holmén, K., Eneroth, K., and Viisanen, Y.:
Lead-210 concentration in the air at Mt. Zeppelin, Ny-Ålesund, Svalbard,
Phys. Chem. Earth., 28, 1175–1180, 2003.
Paatero, J., Buyukay, M., Holmén, K., Hatakka, J., and Viisanen, Y.:
Seasonal variation and source areas of airborne lead-210 at Ny-Ålesund
in the High Arctic, Polar Res., 29, 345–352, 2010.
Paatero, J., Vaaramaa, K., Buyukay, M., Hatakka, J., and Lehto, J.:
Deposition of atmospheric 210Pb and total beta activity in Finland, J.
Radioanal. Nucl. Ch., 303, 2413–2420, 2015.
Paatero, J., Ioannidou, A., Ikonen, J., and Lehto, J.: Aerosol particle size
distribution of atmospheric lead-210 in northern Finland, J. Environ.
Radioactiv., 172, 10–14, 2017.
Pacini, A. A., Usoskin, I. G., Evangelista, H., Echer, E., and de Paula, R.:
Cosmogenic isotope 7Be: A case study of depositional processes in Rio
de Janeiro in 2008–2009, Adv. Space Res., 48, 811–818, 2011.
Pacini, A. A., Usoskin, I. G., Mursula, K., Echer, E., and Evangelista, H.:
Signature of a sudden stratospheric warming in the near-ground 7Be
flux, Atmos. Environ., 113, 27–31, 2015.
Padilla, S., Lopez-Gutierrez, J. M., Manjon, G., García-Tenorio, R., Galvan,
J. A., and García-Leon, M.: Meteoric 10Be in aerosol filters in the
city of Seville, J. Environ. Radioactiv., 196, 15–21, 2019.
Pan, J., Yang, Y. L., Zhang, G., Shi, J. L., Zhu, X. H., Li, Y., and Yu, H.
Q.: Simultaneous observation of seasonal variations of beryllium-7 and
typical POPs in near-surface atmospheric aerosols in Guangzhou, China,
Atmos. Environ., 45, 3371–3380, 2011.
Pan, J., Wen, F., Chen, L., Ren, X., Zhang, J., Zhao, S., Cao, Z., and Pan,
Z.: Preliminary analysis of activity concentration distributions of airborne
210Po and 210Pb in major cities in China, Radiat. Prot., 37,
433–437, 2017 (in Chinese).
Papastefanou, C.: Residence time of tropospheric aerosols in association
with radioactive nuclides, Appl. Radiat. Isotopes, 64, 93–100, 2006.
Papastefanou, C. and Bondietti, E. A.: Mean residence times of atmospheric
aerosols in the boundary layer as determined from 210Bi 210Pb
activity ratios, J. Aerosol Sci., 22, 927–931, 1991.
Papastefanou, C. and Ioannidou, A.: Depositional fluxes and other physical
characteristics of atmospheric beryllium-7 in the temperate zones
(40∘ N) with a dry (precipitation-free) climate, Atmos. Environ.,
25, 2335–2343, 1991.
Papastefanou, C., Ioannidou, A., Stoulos, S., and Manolopoulou, M.:
Atmospheric deposition of cosmogenic 7Be and 137Cs from fallout of
the Chernobyl accident, Sci. Total. Environ., 170, 151–156, 1995.
Parker, R. P.: Beryllium-7 and fission products in surface air, Nature, 193,
967–968, 1962.
Peirson, D. H.: Beryllium 7 in air and rain, J. Geophys. Res., 68,
3831–3832, 1963.
Peirson, D. H., Cambray, R. S., and Spicer, G. S.: Lead-210 and polonium-210
in the atmosphere, Tellus, 18, 427–433, 1966.
Peng, A., Liu, G., Jiang, Z., Liu, G., and Liu, M.: Wet depositional fluxes
of 7Be and 210Pb and their influencing factors at two
characteristic cities of China, Appl. Radiat. Isot., 147, 21–30, 2019.
Perreault, L. M., Yager, E. M., and Aalto, R.: Effects of gradient,
distance, curvature and aspect on steep burned and unburned hillslope soil
erosion and deposition, Earth Surf. Proc. Land., 42, 1033–1048, 2017.
Persson, B. R. R.: Global distribution of 7Be, 210Pb and,
210Po in the surface air, Acta Sci. Lundensia, 8, 1–24, https://doi.org/10.13140/RG.2.1.4196.2960, 2015.
Peters, A. J., Gregor, D. J., Wilkinson, P., and Spencer, C.: Deposition of
210Pb to the Agassiz Ice Cap, Canada, J. Geophys. Res., 102, 5971–5978,
1997.
Pfahler, V., Glaser, B., McKey, D., and Klemt, E.: Soil redistribution in
abandoned raised fields in French Guiana assessed by radionuclides, J.
Plant. Nutr. Soil Sci., 178, 468–476, 2015.
Pfitzner, J., Brunskill, G., and Zagorskis, I.: 137Cs and excess
210Pb deposition patterns in estuarine and marine sediment in the
central region of the Great Barrier Reef Lagoon, north-eastern Australia, J.
Environ. Radioactiv., 76, 81–102, 2004.
Pham, M. K., Betti, M., Nies, H., and Povinec, P. P.: Temporal changes of
7Be, 137Cs and 210Pb activity concentrations in surface air
at Monaco and their correlation with meteorological parameters, J. Environ.
Radioactiv., 102, 1045–1054, 2011.
Pham, M. K., Povinec, P. P., Nies, H., and Betti, M.: Dry and wet deposition
of 7Be, 210Pb and 137Cs in Monaco air during 1998–2010:
seasonal variations of deposition fluxes, J. Environ. Radioactiv., 120,
45–57, 2013.
Picciotto, E., Crozaz, G., and De Breuck, W.: Rate of accumulation of snow
at the south pole as determined by radioactive measurements, Nature, 203,
393–394, 1964.
Picciotto, E., Cameron, R., Crozaz, G., Deutsch, S., and Wiloain, S.:
Determination of the rate of snow accumulation at the pole of relative
inaccessibility, Eastern Antarctica: a comparison of glaciological and
isotopic methods, J. Glaciol., 7, 273–287, 1968.
Piñero-García, F. and Ferro-García, M. A.: Evolution and solar
modulation of 7Be during the solar cycle 23, J. Radioanal. Nucl. Ch.,
296, 1193–1204, 2013.
Piñero-García, F., Ferro-García, M. A., and Azahra, M.:
7Be behaviour in the atmosphere of the city of Granada January 2005 to
December 2009, Atmos. Environ., 47, 84–91, 2012.
Piñero-García, F., Ferro-García, M. A., Chham, E.,
Cobos-Díaz, M., and González-Rodelas, P.: A cluster analysis of
back trajectories to study the behaviour of radioactive aerosols in the
south-east of Spain, J. Environ. Radioactiv., 147, 142–152, 2015.
Poet, S. E., Moore, H. E., and Martell, E. A.: Lead 210, bismuth 210, and
polonium 210 in the atmosphere: Accurate ratio measurement and application
to aerosol residence time determination, J. Geophys. Res., 77, 6515–6527,
1972.
Poreba, G., Snieszko, Z., Moska, P., Mroczek, P., and Malik, I.:
Interpretation of soil erosion in a Polish loess area using OSL, 137Cs,
210Pbex, dendrochronology and micromorphology-case study:
Biedrzykowice site (S Poland), Geochronometria, 46, 57–78, 2019.
Porto, P. and Walling, D. E.: Validating the use of 137Cs and
210Pbex measurements to estimate rates of soil loss from
cultivated land in southern Italy, J. Environ. Radioactiv., 106, 47–57,
2012.
Porto, P., Walling, D. E., Callegari, G., and Catona, F.: Using fallout
lead-210 measurements to estimate soil erosion in three small catchments in
southern Italy, Water Air Soil Poll., 6, 657–667, 2006.
Porto, P., Walling, D. E., Callegari, G., and Capra, A.: Using caesium-137
and unsupported lead-210 measurements to explore the relationship between
sediment mobilisation, sediment delivery and sediment yield for a Calabrian
catchment, Mar. Freshwater Res., 60, 680–689, 2009.
Porto, P., Walling, D. E., and Callegari, G.: Using 137Cs and
210Pbex measurements to investigate the sediment budget of a small
forested catchment in southern Italy, Hydrol. Process., 27, 795–806, 2013.
Porto, P., Walling, D. E., and Capra, A.: Using 137Cs and
210Pbex measurements and conventional surveys to investigate the
relative contributions of interrill/rill and gully erosion to soil loss from
a small cultivated catchment in Sicily, Soil. Till. Res., 135, 18–27, 2014.
Porto, P., Walling, D. E., Cogliandro, V., and Callegari, G.: Exploring the
potential for using 210Pbex measurements within a re-sampling
approach to document recent changes in soil redistribution rates within a
small catchment in southern Italy, J. Environ. Radioactiv., 164, 158–168,
2016.
Pourchet, M., Bartarya, S. K., Maignan, M., Jouzel, J., Pinglot, J. F.,
Aristarain, A. J., Furdada, G., Kotlyakov, V. M., Mosley-Thompson, E.,
Preiss, N., and Young, N. W.: Distribution and fall-out of 137Cs and
other radionuclides over Antarctica, J. Glaciol., 43, 435–445, 1997.
Preiss, N. and Genthon, C.: Use of a new database of lead 210 for global
aerosol model validation, J. Geophys. Res.-Atmos., 102, 25347–25357, 1997.
Preiss, N., Mélières, M. A., and Pourchet, M.: A compilation of data
on lead 210 concentration in surface air and fluxes at the air-surface and
water-sediment interfaces, J. Geophys. Res., 101, 28847–28862, 1996.
Prospero, J. M., Schmitt, R., Cuevas, E., Savoie, D. L., Graustein, W. C.,
Turekian, K. K., Volz-Thomas, A., Díaz, A., Oltmans, S. J., and Levy
II, H.: Temporal variability of summer-time ozone and aerosols in the free
troposphere over the eastern North Atlantic, Geophys. Res. Lett., 22,
2925–2928, 1995.
Qian, J., Wang, X., and Xu, Z.: The Pb-210 atmospheric precipitation flux
near the East China Sea, Donghai Mar. Sci., 4, 27–33, 1985 (in Chinese).
Rabesiranana, N., Rasolonirina, M., Solonjara, A. F., Ravoson, H. N.,
Raoelina, A., and Mabit, L.: Assessment of soil redistribution rates by
137Cs and 210Pbex in a typical Malagasy agricultural field,
J. Environ. Radioactiv., 152, 112–118, 2016.
Rajačić, M. M., Todorović, D. J., Janković, M. M.,
Nikolić, J. D., Sarap, N. B., and Pantelić, G. K.: 7Be in
atmospheric deposition: determination of seasonal indices, J. Radioanal.
Nucl. Ch., 303, 2535–2538, 2015.
Rajačić, M. M., Todorovic, D. J., Krneta Nikolic, J. D., Jankovic,
M. M., and Djurdjevic, V. S.: The Fourier analysis applied to the
relationship between 7Be activity in the Serbian atmosphere and
meteorological parameters, Environ. Pollut., 216, 919–923, 2016.
Raksawong, S., Krmar, M., and Bhongsuwan, T.: The 7Be profiles in the
undisturbed soil used for reference site to estimate the soil erosion, J.
Phys. Conf. Ser., 860, 012009, https://doi.org/10.1088/1742-6596/860/1/012009, 2017.
Ram, K. and Sarin, M. M.: Atmospheric 210Pb, 210Po and
210Po 210Pb activity ratio in urban aerosols: temporal variability
and impact of biomass burning emission, Tellus B, 64, 17513, https://doi.org/10.3402/tellusb.v64i0.17513, 2012.
Rama Thor, and Zutshi, P. K.: Annual deposition of cosmic ray produced Be7
at equatorial latitudes, Tellus, 10, 99–103, 1958.
Rangarajan, C., Gopalakrishnan, S. S., Sadasivan, S., and Chitale, P. V.:
Atmospheric and precipitation radioactivity in India, Tellus, 20, 269–283,
1966.
Rangarajan, C., Gopalakrishnan, S., Chandrasekaran, V. R., and Eapen, C. D.:
The relative concentrations of radon daughter products in surface air and
the significance of their ratios, J. Geophys. Res., 80, 845–848, 1975.
Rangarajan, C., Madhavan, R., and Gopalakrishnan, S. S.: Spatial and
temporal distribution of lead-210 in the surface layers of the atmosphere,
J. Environ. Radioactiv., 3, 23–33, 1986.
Rastogi, N. and Sarin, M. M.: Atmospheric 210Pb and 7Be in ambient
aerosols over low- and high-altitude sites in semiarid region: Temporal
variability and transport processes, J. Geophys. Res., 113, D11103,
https://doi.org/10.1029/2007JD009298, 2008.
Realo, E., Realo, K., Lust, M., Koch, R., and Uljas, A.: Lead-210 in air and
in surface soil in NE Estonia, in: 11th International Congress of
International Radiation Protection Association, Madrid, Spanish, 23–28 May
2004, 1–8, 2004.
Realo, K., Isakar, K., Lust, M., and Realo, E.: Weekly variation of the
210Pb air concentration in North Estonia, Boreal Environ. Res., 12,
37–41, 2007.
Rehfeld, S. and Helmann, M.: Three dimensional atmospheric transport
simulation of the radioactive tracers 210Pb, 7Be, 10Be and
90Sr, J. Geophys. Res., 100, 26141–26161, 1995.
Reiter, R., Munzert, K., Kanter, H. J., and Pötzl, K.: Cosmogenic
radionuclides and ozone at a mountain station at 3.0 km a.s.l, Arch. Met.
Geoph. Biocl. Ser. B, 32, 131–160, 1983.
Renfro, A. A., Cochran, J. K., and Colle, B. A.: Atmospheric fluxes of
7Be and 210Pb on monthly time-scales and during rainfall events at
Stony Brook, New York (USA), J. Environ. Radioactiv., 116, 114–123, 2013.
Rodas Ceballos, M., Borras, A., Gomila, E., Estela, J. M., Cerda, V., and
Ferrer, L.: Monitoring of 7Be and gross beta in particulate matter of
surface air from Mallorca Island, Spain, Chemosphere, 152, 481–489, 2016.
Ródenas, C., Gómez, J., Quindós, L. S., Fernández, P. L.,
and Soto, J.: 7Be concentrations in air, rain water and soil in
Cantabria (Spain), Appl. Radiat. Isot., 48, 545–548, 1997.
Rodriguez-Perulero, A., Baeza, A., and Guillen, J.: Seasonal evolution of
7,10Be and 22Na in the near surface atmosphere of Caceres
(Spain), J. Environ. Radioactiv., 197, 55–61, 2019.
Saari, H. K., Schmidt, S., Castaing, P., Blanc, G., Sautour, B., Masson, O.,
and Cochran, J. K.: The particulate 7Be 210Pbxs and
234Th 210Pbxs activity ratios as tracers for
tidal-to-seasonal particle dynamics in the Gironde estuary (France):
implications for the budget of particle-associated contaminants, Sci. Total.
Environ., 408, 4784–4794, 2010.
Sabuti, A. A. and Mohamed, C. A.: Impact of northern and southern air mass
transport on the temporal distribution of atmospheric 210Po and
210Pb in the east coast of Johor, Malaysia, Environ. Sci. Pollut. Res.,
23, 18451–18465, 2016.
Sakurai, H., Shouji, Y., Osaki, M., Aoki, T., Gandou, T., Kato, W.,
Takahashi, Y., Gunji, S., and Tokanai, F.: Relationship between daily
variation of cosmogenic nuclide Be-7 concentration in atmosphere and solar
activities, Adv. Space Res., 36, 2492–2496, 2005.
Sakurai, H., Sato, T., Oe, T., Takahashi, Y., Matsubara, Y., Miyahara, H.,
Ohashi, H., Tavera, W., and Salinas, J.: Daily variation of cosmogenic
nuclide Be-7 concentrations in high altitude atmosphere at Mt. Chacaltaya at
the solar minimum from 2009, in: 32nd International Cosmic Ray Conference,
Beijing, China, 11–18 August 2011, 420–423, 2011.
Saleh, I. H. and Abdel-Halim, A. A.: 7Be in soil, deposited dust and
atmospheric air and its using to infer soil erosion along Alexandria region,
Egypt, J. Environ. Radioactiv., 172, 24–29, 2017.
Sambayev, Y. K., Zhumalina, A. G., Zhumadilov, K. S., Sakaguchi, A.,
Kajimoto, T., Tanaka, K., Endo, S., Kawano, N., Hoshi, M., and Yamamoto, M.:
Temporal variation of atmospheric 7Be and 210Pb concentrations and
their activity size distributions at Astana, Kazakhstan in Central Asia, J.
Radioanal. Nucl. Ch., 323, 663–674, 2019.
Samolov, A., Dragovic, S., Dakovic, M., and Bacic, G.: Analysis of 7Be
behaviour in the air by using a multilayer perceptron neural network, J.
Environ. Radioactiv., 137, 198–203, 2014.
San Miguel, E. G., Hernández-Ceballos, M. A., García-Mozo, H., and
Bolívar, J. P.: Evidences of different meteorological patterns
governing 7Be and 210Pb surface levels in the southern Iberian
Peninsula, J. Environ. Radioactiv., 198, 1–10, 2019.
Sanchez-Cabeza, J. A., García-Talavera, M., Costa, E., Peña, V.,
García-Orellana, J., Masqué, P., and Nalda, C.: Regional calibration of
erosion radiotracers (210Pb and 137Cs): atmospheric fluxes to
soils (northern Spain), Environ. Sci. Technol., 41, 1324–1330, 2007.
Sanders, C. J., Smoak, J. M., Cable, P. H., Patchineelam, S. R., and
Sanders, L. M.: Lead-210 and Beryllium-7 fallout rates on the southeastern
coast of Brazil, J. Environ. Radioactiv., 102, 1122–1125, 2011.
Sangiorgi, M., Hernández Ceballos, M. A., Iurlaro, G., Cinelli, G., and de Cort, M.: 30 years of European Commission Radioactivity Environmental Monitoring data bank (REMdb) – an open door to boost environmental radioactivity research, Earth Syst. Sci. Data, 11, 589–601, https://doi.org/10.5194/essd-11-589-2019, 2019.
Sato, J., Doi, T., Segawa, T., and Sugawara, S.: Seasonal variation at
Tsukuba, Japan, from the 1991 of atmospheric concentrations of 210Pb
and 7Be with a possible observation of 210Pb originating from the
1991 eruption of Pinatubo volcano, Philippines, Geochem. J., 28, 123–129,
1994.
Sato, S., Koike, Y., Saito, T., and Sato, J.: Atmospheric concentration of
210Pb and 7Be at Sarufutsu, Hokkaido, Japan, J. Radioanal. Nucl.
Ch., 255, 351–353, 2003.
Savva, M. I., Karangelos, D. J., and Anagnostakis, M. J.: Determination of
7Be and 22Na activity in air and rainwater samples by gamma-ray
spectrometry, Appl. Radiat. Isot., 134, 466–469, 2018.
Schuler, C., Wieland, E., Santschi, P. H., Sturm, M., Lueck, A., Bollhalder,
S., Beer, J., Bonani, G., Hofmann, H. J., Suter, M., and Wolfli, W.: A
multitracer study of radionuclides in Lake Zurich, Switzerland: 1.
Comparison of atmospheric and sedimentary fluxes of 7Be, 10Be,
210Pb, 210Po, and 137Cs, J. Geophys. Res., 96, 17051–17065,
1991.
Schumann, G. and Stoeppler, M.: Beryllium 7 in the atmosphere, J. Geophys.
Res., 68, 3827–3830, 1963.
Shapiro, M. H. and Forbes-Resha, J. L.: Mean residence time of
7Be-bearing aerosols in the troposphere, J. Geophys. Res., 81,
2647–2649, 1976.
Sheets, R. W. and Lawrence, A. E.: Temporal dynamics of airborne lead-210 in
Missouri (USA): implications for geochronological methods, Environ. Geol.,
38, 343–348, 1999.
Shelley, R. U., Roca-Martí, M., Castrillejo, M., Sanial, V.,
Masqué, P., Landing, W. M., van Beek, P., Planquette, H., and Sarthou,
G.: Quantification of trace element atmospheric deposition fluxes to the
Atlantic Ocean (> 40∘ N; GEOVIDE, GEOTRACES GA01)
during spring 2014, Deep-Sea Res. Pt. I, 119, 34–49, 2017.
Shi, H., Zhang, Y., Deng, A., and Dong, Z.: Variation in activity
concentration of 210Pb in atmospheric aerosol and its radiation dose
assessment in Qingdao, Chin. J. Radiol. Med. Prot., 37, 372–375, 2017 (in
Chinese).
Shi, Z., Wen, A., Yan, D., Zhang, X., and Ju, L.: Temporal variation of
7Be fallout and its inventory in purple soil in the Three Gorges
Reservoir region, China, J. Radioanal. Nucl. Ch., 288, 671–676, 2011.
Shleien, B. and Friend, A. G.: Local ground-level air concentrations of
lead-210 at Winchester, Massachusetts, Nature, 210, 579–580, 1966.
Short, D. B., Appleby, P. G., and Hilton, J.: Measurement of atmospheric
fluxes of radionuclides at a UK site using both direct (rain) and indirect
(soils) methods, Int. J. Environ. Pollut., 29, 392–404, 2007.
Silker, W. B.: Beryllium-7 and fission products in the Geosecs II water
column and applications of their oceanic distributions, Earth Planet. Sc.
Lett., 16, 131–137, 1972.
Simon, J., Meresova, J., Sykora, I., Jeskovsky, M., and Holy, K.: Modeling
of temporal variations of vertical concentration profile of 7Be in the
atmosphere, Atmos. Environ., 43, 2000–2004, 2009.
Smith, J. T., Appleby, P. G., Hilton, J., and Richardson, N.: Inventories
and fluxes of 210Pb, 137Cs and 241Am determined from the
soils of three small catchments in Cumbria, UK, J. Environ. Radioactiv., 37,
127–142, 1997.
Song, H., Li, L., Li, Q., Mo, G., and Huang, N.: Levels of 210Pb in
aerosols of Daya Bay, Guangdong, in: National Seminar on Radioactive
Effluent and Environmental Monitoring and Evaluation, Hangzhou, China, 25–27
November 2003, 484–486, 2003 (in Chinese).
Song, H., Mo, G., Li, L., Chen, W., Wang, J, Li, Q., and Huang, N.:
Variations of 7Be concentrations in the atmosphere of Guangdong Daya
Bay district, China during the period 1994 to 2003, Prog. Rep. China Nucl.
Sci. Technol., 4, 46–50, 2015 (in Chinese).
Stamoulis, K. C., Tsiligou, Z., Aslanoglou, X., and Ioannides, K. G.:
Variation of both tritium (3H) and beryllium (7Be) concentrations
in air, rain and humidity samples collected at Ioannina, North-western
Greece, HNPS Proc., 26, 220-223, 2018.
Steinmann, P., Billen, T., Loizeau, J. L., and Dominik, J.: Beryllium-7 as a
tracer to study mechanisms and rates of metal scavenging from lake surface
waters, Geochim. Cosmochim. Ac., 63, 1621–1633, 1999.
Steinmann, P., Zeller, M., Beuret, P., Ferreri, G., and Estier, S.:
Cosmogenic 7Be and 22Na in ground level air in Switzerland
(1994–2011), J. Environ. Radioactiv., 124, 68–73, 2013.
Stromsoe, N., Marx, S. K., Callow, N., McGowan, H. A., and Heijnis, H.:
Estimates of late Holocene soil production and erosion in the Snowy
Mountains, Australia, Catena, 145, 68–82, 2016.
Su, C. C., Huh, C. A., and Lin, F. J.: Factors controlling atmospheric
fluxes of 7Be and 210Pb in northern Taiwan, Geophys. Res. Lett.,
30, 2018, https://doi.org/10.1029/2003GL018221, 2003.
Sugihara, S., Momoshima, N., Maeda, Y., and Osaki, S.: Variation of atmospheric
7Be and 210Pb depositions at Fukuoka, Japan, in: 10th
International Congress of the International Radiation Protection
Association, Hiroshima, Japan, 10–16 May 2000.
Suzuki, T. and Shiono, H.: Comparison of 210Po 210Pb activity
ratio between aerosol and deposition in the atmospheric boundary layer over
the west coast of Japan, Geochem. J., 29, 287–291, 1995.
Suzuki, T., Maruyama, Y., Nakayama, N., Yamada, K., and Ohta, K.:
Measurement of the 210Po/210Pb activity ratio in size fractionated
aerosols from the coast of the Japan sea, Atmos. Environ., 33, 2285–2288,
1999.
Suzuki, T., Kamiyama, K., Furukawa, T., and Fujii, Y.: Lead-210 profile in
firn layer over Antarctic ice sheet and its relation to the snow
accumulation environment, Tellus B, 56, 85–92, 2004.
Suzuki, T., Sakurai, H., Tokanal, F., Inul, E., Shimizu, H., Masuda, K.,
Mitthumslrl, W., Ruffolo, D., Macatangay, R., Kikuchi, S., and Kurebayashi,
Y.: Observation of cosmogenic nuclide Be-7 concentrations in the air at
Bangkok and trajectory analysis of global air-mass motion, in: 35th
International Cosmic Ray Conference, Busan, Korea, 10–20 July 2017,
https://doi.org/10.22323/1.301.0070, 2017.
Sykora, I., Holy, K., Jeskovsky, M., Mullerova, M., Bulko, M., and Povinec,
P. P.: Long-term variations of radionuclides in the Bratislava air, J.
Environ. Radioactiv., 166, 27–35, 2017.
Talbot, R. W. and Andren, A. W.: Relationships between Pb and 210Pb in
aerosol and precipitation at a Semiremote Site in northern Wisconsin, J.
Geophys. Res.-Oceans, 88, 6752–6760, 1983.
Tan, J., Li, M., Jiang, L., and Song, H.: Radioactivity characteristics of
atmospheric aerosol samples in Guangzhou, Nucl. Tech., 39, 1–7, 2016 (in
Chinese).
Tan, K., Yang, Y., Zhu, X., Li, Y., Chen, S., Yu, H., Jiao, X., Gai, N., and
Huang, Y.: Beryllium-7 in near-surface atmospheric aerosols in mid-latitude
(40∘ N) city Beijing, China, J. Radioanal. Nucl. Ch., 298,
883–891, 2013.
Tanahara, A., Nakaema, F., Zamami, Y., and Arakaki, T.: Atmospheric
concentrations of 210Pb and 7Be observed in Okinawa Islands,
Radioisotopes, 63, 175–181, 2014.
Tanaka, N. and Turekian, K. K.: Determination of the dry deposition flux of
SO2 using cosmogenic 35S and 7Be measurements, J. Geophys.
Res., 100, 2841–2848, 1995.
Tateda, Y. and Iwao, K.: High 210Po atmospheric deposition flux in the
subtropical coastal area of Japan, J. Environ. Radioactiv., 99, 98–108,
2008.
Taylor, A., Keith-Roach, M. J., Iurian, A. R., Mabit, L., and Blake, W. H.:
Temporal variability of beryllium-7 fallout in southwest UK, J. Environ.
Radioactiv., 160, 80–86, 2016.
Tenopir, C., Allard, S., Douglass, K., Aydinoglu, A. U., Wu, L., Read, E.,
Manoff, M., and Frame, M.: Data sharing by scientists: practices and
perceptions, PLoS ONE, 6, e21101,
https://doi.org/10.1371/journal.pone.0021101, 2011.
Terzi, L. and Kalinowski, M.: World-wide seasonal variation of 7Be
related to large-scale atmospheric circulation dynamics, J. Environ.
Radioactiv., 178–179, 1–15, 2017.
Thang, D., Bac, V., Long, N., Thu Ha, N., Quynh, N., Khanh, N., Oanh, N.,
and Viet, C.: Activity concentrations of 210Pb in the aerosol at Hanoi,
Nucl. Sci. Technol., 8, 17–22, 2018.
Thompson, L. G., Mosley-Thompson, E., Grootes, P. M., Pourchet, M., and
Hastenrath, S.: Tropical glaciers: Potential for ice core paleoclimatic
reconstructions, J. Geophys. Res., 89, 4638–4646, 1984.
Thor, R. and Zutshi, P. K.: Annual deposition of cosmic ray produced
Be7 at equatorial latitudes, Tellus, 10, 99–103, 1958.
Todd, J. F., Wong, G. T. F., Olsen, C. R., and Larsen, I. L.: Atmospheric
depositional characteristics of beryllium 7 and lead 210 along the
southeastern Virginia coast, J. Geophys. Res., 94, 11106–11116, 1989.
Todorovic, D., Popovic, D., and Djuric, G.: Concentration measurements of
7Be and 137Cs in ground level air in the Belgrade City area,
Environ. Int., 25, 59–66, 1999.
Todorovic, D., Popovic, D., Djuric, G., and Radenkovic, M.: 210Pb in
ground-level air in Belgrade city area, Atmos. Environ., 34, 3245–3248,
2000.
Todorovic, D., Popovic, D., Djuric, G., and Radenkovic, M.: 7Be to
210Pb concentration ratio in ground level air in Belgrade area, J.
Environ. Radioactiv., 79, 297–307, 2005.
Todorovic, D., Popovic, D., Nikolic, J., and Ajtic, J.: Radioactivity
monitoring in ground level air in Belgrade urban area, Radiat. Prot. Dosim.,
142, 308–313, 2010.
Tokieda, T., Yamanaka, K., Harada, K., and Tsunogai, S.: Seasonal variations
of residence time and upper atmospheric contribution of aerosols studied
with Pb-210, Bi-210, Po-210 and Be-7, Tellus B, 48, 690–702, 1996.
Tositti, L., Brattich, E., Cinelli, G., and Baldacci, D.: 12 years of
7Be and 210Pb in Mt. Cimone, and their correlation with
meteorological parameters, Atmos. Environ., 87, 108–122, 2014.
Tsunogai, S., Suzuki, T., Kurata, T., and Uematsu, M.: Seasonal and areal
variation of continental aerosol in the surface air over the western North
Pacific region, J. Oceanogra. Soc. Jpn., 41, 427–434, 1985.
Tsunogai, S., Kurata, T., Suzuki, T., and Yokota, K.: Seasonal variation of
atmospheric 210Pb and Al in the western North Pacific region, J. Atmos.
Chem., 7, 389–407, 1988.
Tuo, F., Pang, C., Wang, W., Zhang, J., Zhou, Q., Yao, S., Li, W., and Li,
Z.: Level, distribution, variation and sources of Pb-210 in atmosphere in
North China, J. Radioanal. Nucl. Ch., 318, 1855–1862, 2018.
Turekian, K. K. and Cochran, J. K.: 210Pb in surface air at Enewetak
and the Asian dust flux to the Pacific, Nature, 292, 522–524, 1981.
Turekian, K. K., Nozaki, Y., and Benninger, L. K.: Geochemistry of
atmospheric radon and radon products, Ann. Rev. Earth Planet. Sc., 5,
227–255, 1977.
Turekian, K. K., Benninger, L. K., and Dion, E. P.: 7Be and 210Pb
total deposition fluxes at New Haven, Connecticut and at Bermuda, J.
Geophys. Res., 88, 5411–5415, 1983.
Uchida, T., Takahashi, F., Onda, Y., Sisingghi, D., Kato, H., Noro, T., and
Osanai, N.: Estimating soil erosion rate and sediment sources using
radionuclide Pb-210ex in upper Brantas River basin in Indonesia, J.
Japan Soc. Hydrol. Water Resour., 22, 188–197, 2009 (in Japanese).
Uematsu, M., Duce, R. A., and Prospero, J. M.: Atmosphere beryllium-7
concentrations over the Pacific Ocean, Geophys. Res. Lett., 21, 561–564,
1994.
Ueno, T., Nagao, S., and Yamazawa, H.: Atmospheric deposition of 7Be,
40K, 137Cs and 210Pb during 1993–2001 at Tokai-mura, Japan,
J. Radioanal. Nucl. Ch., 255, 335–339, 2003.
Uğur, A., Özden, B., and Filizok, I.: Determination of 210Po
and 210Pb concentrations in atmospheric deposition in İzmir (Aegean
sea-Turkey), Atmos. Environ., 45, 4809–4813, 2011.
Uhlář, R., Količová, P., and Alexa, P.: Short-term
variations in 7Be wet deposition in the eastern part of the Czech
Republic, J. Radioanal. Nucl. Ch., 304, 89–93, 2014.
Valles, I., Camacho, A., Ortega, X., Serrano, I., Blazquez, S., and Perez,
S.: Natural and anthropogenic radionuclides in airborne particulate samples
collected in Barcelona (Spain), J. Environ. Radioactiv., 100, 102–107, 2009.
Van Metre, P. C. and Fuller, C. C.: Dual-core mass-balance approach for
evaluating mercury and 210Pb atmospheric fallout and focusing to lakes,
Environ. Sci. Technol., 43, 26–32, 2009.
Vecchi, R. and Valli, G.: 7Be in surface air: A natural atmospheric
tracer, J. Aerosol Sci., 28, 895–900, 1997.
Vecchi, R., Marcazzan, G., and Valli, G.: Seasonal variation of 210Pb
activity concentration in outdoor air of Milan (Italy), J. Environ.
Radioactiv., 82, 251–266, 2005.
Vogler, S., Jung, M., and Mangini, A.: Scavenging of 234Th and 7Be
in Lake Constance, Limnol. Oceanogr., 41, 1384–1393, 1996.
Von Gunten, H. R. and Moser, R. N.: How reliable is the 210Pb dating
method? Old and new results from Switzerland, J. Paleolimnol., 9, 161–178,
1993.
Wagenbach, D., Görlach, U., Moser, K., and Münnich, K. O.: Coastal
Antarctic aerosol: the seasonal pattern of its chemical composition and
radionuclide content, Tellus B, 40, 426–436, 1988.
Wakiyama, Y., Onda, Y., Mizugaki, S., Asai, H., and Hiramatsu, S.: Soil
erosion rates on forested mountain hillslopes estimated using 137Cs and
210Pbex, Geoderma, 159, 39–52, 2010.
Wallbrink, P. J. and Murray, A. S.: Use of fallout radionuclides as
indicators of erosion processes, Hydrol. Process., 7, 297–304, 1993.
Wallbrink, P. J. and Murray, A. S.: Fallout of 7Be in south eastern
Australia, J. Environ. Radioactiv., 25, 213–228, 1994.
Wallbrink, P. J. and Murray, A. S.: Determining soil loss using the
inventory ratio of excess lead-210 to cesium-137, Soil Sci. Soc. Am. J., 60,
1201–1208, 1996.
Walling, D. E. and He, Q.: Using fallout lead-210 measurements to estimate
soil erosion on cultivated land, Soil Sci. Soc. Am. J., 63, 1404–1412, 1999.
Walling, D. E., He, Q., and Blake, W.: Use of 7Be and 137Cs
measurements to document short-and medium-term rates of water-induced soil
erosion on agricultural land, Water Resour. Res., 35, 3865–3874, 1999.
Walling, D. E., Collins, A. L., and Sichingabula, H. M.: Using unsupported
lead-210 measurements to investigate soil erosion and sediment delivery in a
small Zambian catchment, Geomorphology, 52, 193–213, 2003.
Walling, D. E., Schuller, P., Zhang, Y., and Iroume, A.: Extending the
timescale for using beryllium 7 measurements to document soil redistribution
by erosion, Water Resour. Res., 45, W02418, https://doi.org/10.1029/2008WR007143, 2009.
Walton, A. and Fried, R. E.: The deposition of beryllium 7 and phosphorus 32
in precipitation at north temperate latitudes, J. Geophys. Res., 67,
5335–5340, 1962.
Wan, G., Zheng, X., Lee, H. N., Bai, Z. G., Wan, E., Wang, S., Yang, W., Su,
F., Yang, J., Wang, C., Huang, R., and Liu, P.: 210Pb and 7Be as
tracers for aerosol transfers at center Guizhou, China: the
interpretation by monthly and yearly intervals, Adv. Earth Sci., 25,
505–514, 2010 (in Chinese).
Wang, B., Wu, J., Sun, W., Luo, W., Zhang, F., and Wang, Y.: Monitoring the
variation of 210Pb concentration in aerosol of Lanzhou from 2009–2012,
Nucl. Electron. Detect. Technol., 34, 114–116, 2014a (in Chinese).
Wang, J., Du, J., Baskaran, M., and Zhang, J.: Mobile mud dynamics in the
East China Sea elucidated using 210Pb, 137Cs, 7Be, and
234Th as tracers, J. Geophys. Res.-Oceans, 121, 224–239, 2016.
Wang, J., Huang, D., Xie, W., He, Q., and Du, J.: Particle dynamics in a
managed navigation channel under different tidal conditions as determined
using multiple radionuclide tracers, J. Geophys. Res.-Oceans, 126,
e2020JC016683, https://doi.org/10.1029/2020JC016683, 2021.
Wang, L.: Study on soil erosion rates in Zhenjiang district using 137Cs
and 210Pbex tracers [MS thesis], Nanjing Normal University,
China, 2011 (in Chinese).
Wang, Y.: Investigating the soil erosion rates on the cultivated slopes in
the northeast black soil region of China using 137Cs and
210Pbex measurements [MS thesis], University of Chinese Academy
of Sciences, China, 2010 (in Chinese).
Wang, Z., Yang, W., Chen, M., Lin, P., and Qiu, Y.: Intra-Annual Deposition
of Atmospheric 210Pb, 210Po and the Residence Times of Aerosol in
Xiamen, China, Aerosol Air Qual. Res., 14, 1402–1410, 2014b.
Weiss, H. V. and Naidu, H. V.: 210Pb flux in an Arctic coastal region,
Arctic, 39, 59–64, 1986.
Wells, T., Hancock, G. R., Dever, C., and Murphy, D.: Prediction of vertical
soil organic carbon profiles using soil properties and environmental tracer
data at an untilled site, Geoderma, 170, 337–346, 2012.
Whiting, P. J., Matisoff, G., Fornes, W., and Soster, F. M.: Suspended
sediment sources and transport distances in the Yellowstone River basin,
Geol. Soc. Am. Bull., 117, 515–529, 2005.
Wieland, E., Santschi, P. H., and Beer, J.: A multitracer study of
radionuclides in Lake Zurich, Switzerland: 2. Residence times, removal
processes, and sediment focusing, J. Geophys. Res.-Oceans, 96, 17067–17080,
1991.
Wilkening, M. H. and Clements, W. E.: Radon 222 from the ocean surface, J.
Geophys. Res., 80, 3828–3830, 1975.
Wilson, C., Matisoff, G., and Whiting, P.: Short-term erosion rates from a
7Be inventory balance, Earth Surf. Proc. Land., 28, 967–977, 2003.
Windom, H. L.: Atmospheric dust records in permanent snowfields:
Implications to marine sedimentation, Geol. Soc. Am. Bull., 80, 761–782,
1969.
Winkler, R. and Rosner, G.: Seasonal and long-term variation of 210Pb
concentration in air, atmospheric deposition rate and total deposition
velocity in south Germany, Sci. Total. Environ., 263, 57–68, 2000.
Winkler, R., Dietl, F., Frank, G., and Tschiersch, J.: Temporal variation of
7Be and 210Pb size distributions in ambient aerosol, Atmos.
Environ., 32, 983–991, 1998.
Wu, J., Sun, W., Wang, B., Luo, W., Kang, F., Zhang, B., and Wang, Y.: The
concentrations of 7Be in air aerosols of Lanzhou City, Chin. J. Radiol.
Health, 20, 333–334, 2011 (in Chinese).
Yamagata, T., Nagai, H., Matsuzaki, H., and Narasaki, Y.: Decadal variations
of atmospheric 7Be and 10Be concentrations between 1998 and 2014
in Japan, Nucli. Instrum. Meth. B, 455, 265–270, 2019.
Yamamoto, M., Sakaguchi, A., Sasaki, K., Hirose, K., Igarashi, Y., and Kim,
C. K.: Seasonal and spatial variation of atmospheric 210Pb and 7Be
deposition: features of the Japan Sea side of Japan, J. Environ.
Radioactiv., 86, 110–131, 2006.
Yang, H., Jun, E., Kim, Y., and Ok, G.: Residence times and chemical
composition of atmospheric aerosols: Residence times of aerosols in
Pusan, J. Korean Environ. Sci. Soc., 8, 171–176, 1999 (in Korean).
Yang, Y. H., Yan, B. X., and Zhu, H.: Estimating soil erosion in northeast
China using 137Cs and 210Pbex, Pedosphere, 21, 706–711, 2011.
Yang, Y. L., Gai, N., Geng, C. Z., Zhu, X. H., Li, Y., Xue, Y., Yu, H. Q.,
and Tan, K. Y.: East Asia monsoon's influence on seasonal changes of
beryllium-7 and typical POPs in near-surface atmospheric aerosols in
mid-latitude city Qingdao, China, Atmos. Environ., 79, 802–810, 2013.
Yi, Y., Bai, J., Liu, G., Yang, W., Yi, Q., Huang, Y., and Chen, H.:
Measurements of atmospheric deposition fluxes of 7Be, 210Pb and
210Po, Mar. Sci., 29, 20–24, 2005 (in Chinese).
Yi, Y., Zhou, P., and Liu, G.: Atmospheric deposition fluxes of 7Be,
210Pb and 210Po at Xiamen, China, J. Radioanal. Nucl. Ch., 273,
157–162, 2007.
Yoshimori, M.: Beryllium 7 radionucleide as a tracer of vertical air mass
transport in the troposphere, Adv. Space Res., 36, 828–832, 2005.
Young, J. A. and Silker, W. B.: The determination of air-sea exchange and
oceanic mixing rates using 7Be during the BOMEX experiment, J. Geophys.
Res., 79, 4481–4489, 1974.
Young, J. A. and Silker, W. B.: Aerosol deposition velocities on the Pacific
and Atlantic oceans calculated from 7Be measurements, Earth Planet. Sc.
Lett., 50, 92–104, 1980.
Yu, D., Sha, Z., Wang, Q., Hu, J., and Wang, Z.: Distribution
characteristics of 137Cs and 210Pbex in soil of grassland
region in the northeastern of Qinghai-Tibet Plateau, J. Arid. Land Resour.
Environ., 32, 160–166, 2018 (in Chinese).
Yu, Z., Tang, L., Qiu, X., Xiao, P., and Wu, Y.: Research about the change
trend of 210Pb and 210Po of a year in aerosol, Prog. Rep. China
Nucl. Sci. Technol., 5, 61–65, 2017 (in Chinese).
Zanis, P., Schuepbach, E., Gäggeler, H. W., Hubener, S., and Tobler, L.:
Factors controlling beryllium-7 at Jungfraujoch in Switzerland, Tellus B, 51,
789–805, 1999.
Zanis, P., Gerasopoulos, E., Priller, A., Schnabel, C., Stohl, A., Zerefos,
C., Gäggeler, H. W., Tobler, L., Kubik, P. W., Kanter, H. J., Scheel, H.
E., Luterbacher, J., and Berger, M.: An estimate of the impact of
stratosphere-to-troposphere transport (STT) on the lower free tropospheric
ozone over the Alps using 10Be and 7Be measurements, J. Geophys.
Res., 108, 8520, https://doi.org/10.1029/2002JD002604, 2003.
Zhang, F., Zhang, B., and Yang, M.: Beryllium-7 atmospheric deposition and
soil inventory on the northern Loess Plateau of China, Atmos. Environ., 77,
178–184, 2013.
Zhang, F., Wang, J., Baskaran, M., Zhong, Q., Wang, Y., Paatero, J., and Du,
J.: A comprehensive global dataset of atmospheric 7Be and 210Pb
measurements: air concentration and depositional flux, Zenodo, https://doi.org/10.5281/zenodo.4785136, 2021.
Zhang, L., Yang, W., Chen, M., Wang, Z., Lin, P., Fang, Z., Qiu, Y., and
Zheng, M.: Atmospheric Deposition of 7Be in the southeast of China: A
case study in Xiamen, Aerosol Air Qual. Res., 16, 105–113, 2016.
Zhang, L., Yang, W., Chen, M., Zhu, Y., and Wang, Z.: Atmospheric deposition
of 210Po and 210Pb near the coast of Xiamen, Acta Oceanol. Sin.,
41, 114–122, 2019 (in Chinese).
Zhang, W., Lam, K., and Ungar, K.: The development of a digital gamma-gamma
coincidence/anticoincidence spectrometer and its applications to monitor
low-level atmospheric 22Na/7Be activity ratios in Resolute Bay,
Canada, J. Environ. Radioactiv., 192, 434–439, 2018b.
Zhang, X., Walling, D. E., Feng, M., and Wen, A.: 210Pbex depth
distribution in soil and calibration models for assessment of soil erosion
rates from 210Pbex measurements, Chinese Sci. Bull., 48, 813–818,
2003 (in Chinese).
Zhang, X., Qi, Y., Walling, D. E., He, X., Wen, A., and Fu, J.: A
preliminary assessment of the potential for using 210Pbex
measurement to estimate soil redistribution rates on cultivated slopes in
the Sichuan Hilly Basin of China, Catena, 68, 1–9, 2006.
Zhang, Y., Long, Y., Yu, X., and An, J.: A comparison of measured 137Cs
and excess 210Pb levels in the cultivated brown and cinnamon soils of
the Yimeng Mountain area, Chin. J. Geochem., 33, 155–162, 2014.
Zhang, Y. and Jiang, Z.: Estimation of Po-210 and Pb-210 emissions from
coal energy use in China, Adv. Eng. Res., 163, 1576–1581, 2018a (in
Chinese).
Zheng, X., Wan, G., Yang, J., Zhang, X., Yang, W., Lee, H. N., and Wang, C.:
7Be and 210Pb radioactivity and implications on sources of surface
ozone at Mt. Waliguan, Chinese Sci. Bull., 50, 167–171, 2005 (in Chinese).
Zheng, J. J., He, X. B., Walling, D., Zhang, X. B., Flanagan, D., and Qi, Y.
Q.: Assessing soil erosion rates on manually-tilled hillslopes in the
Sichuan hilly basin using 137Cs and 210Pbex measurements,
Pedosphere, 17, 273–283, 2007.
Zhu, J. and Olsen, C. R.: Beryllium-7 atmospheric deposition and sediment
inventories in the Neponset River estuary, Massachusetts, USA, J. Environ.
Radioactiv., 100, 192–197, 2009.
Short summary
Here we present a global dataset of air concentration and depositional flux measurements of atmospheric 7Be and 210Pb. The dataset could be used to better understand the transport processes of air masses and depositional processes of aerosols. This dataset not only lays a solid foundation to develop better parameterizations contributing to future modeling efforts but also supplies a basic parameter for tracing soil erosion, particle dynamics, and ocean surface process using 7Be and/or 210Pb.
Here we present a global dataset of air concentration and depositional flux measurements of...
Altmetrics
Final-revised paper
Preprint