Earth Syst. Sci. Data, 13, 2963–2994, 2021 https://doi.org/10.5194/essd-13-2963-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License.

A global dataset of atmospheric ⁷Be and ²¹⁰Pb measurements: annual air concentration and depositional flux

Fule Zhang¹, Jinlong Wang¹, Mark Baskaran², Qiangqiang Zhong³, Yali Wang¹, Jussi Paatero⁴, and Jinzhou Du¹

¹State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China

²Department of Environmental Science and Geology, Wayne State University, Detroit, Michigan 48202, USA ³Laboratory of Marine Isotopic Technology and Environmental Risk Assessment, Third Institute of Oceanography, Ministry of Natural Resource, Xiamen, 361005, China ⁴Observation Services, Finnish Meteorological Institute, Helsinki, 00560, Finland

Correspondence: Jinlong Wang (jlwang@sklec.ecnu.edu.cn)

Received: 29 January 2021 – Discussion started: 9 February 2021 Revised: 27 May 2021 – Accepted: 29 May 2021 – Published: 24 June 2021

Abstract. ⁷Be and ²¹⁰Pb air concentration and depositional flux data provide key information on the origins and movements of air masses, as well as atmospheric deposition processes and residence time of aerosols. After their deposition onto the Earth's surface, they are utilized for tracing soil redistribution processes on land, particle dynamics in aquatic systems, and mixing processes in open ocean. Here we present a global dataset of air concentration and depositional flux measurements of atmospheric ⁷Be and ²¹⁰Pb made by a large number of global research communities. Data were collected from published papers between 1955 and early 2020. It includes the annual surface air concentration data of ⁷Be from 367 sites and ²¹⁰Pb from 270 sites, the annual depositional flux data of ⁷Be from 279 sites and ²¹⁰Pb from 602 sites. When available, appropriate metadata have also been summarized, including geographic location, sampling date, methodology, annual precipitation, and references. The dataset is archived at https://doi.org/10.5281/zenodo.4785136 (Zhang et al., 2021) and is freely available for the scientific community. The purpose of this paper is to provide an overview of the scope and nature of this dataset and its potential utility as baseline data for future research.

1 Introduction

Naturally occurring beryllium-7 (⁷Be, $T_{1/2}$: 53.3 d) and lead-210 (²¹⁰Pb, $T_{1/2}$: 22.3 years) have been widely utilized as tracers to investigate Earth's surface and atmospheric processes (Huh et al., 2006; Du et al., 2012). ⁷Be, a cosmogenic radionuclide, is produced by the spallation of oxygen and nitrogen nuclei by cosmic rays in the stratosphere and upper troposphere (Lal et al., 1958). The production rate of ⁷Be has negligible dependence on longitude or season but depends on the altitude, latitude, and the ~ 11-year solar cycle (Koch et al., 1996; Liu et al., 2001; Su et al., 2003). A major fraction of ⁷Be (67%) production takes place in the stratosphere, but it does not readily reach the troposphere, except during spring when seasonal thinning of the tropopause folds near the jet stream occurs at midlatitudes (Lal and Peters, 1967; Danielsen, 1968). Thus, ⁷Be flux to the Earth's surface varies with latitude and season (Lal and Peters, 1967; Koch and Mann, 1996). ²¹⁰Pb, a progeny of ²²²Rn in the ²³⁸U series, is derived mostly (> 99%) from the radioactive decay of ²²²Rn. Most of the atmospheric ²¹⁰Pb is derived from atmospheric radon. The global ²²²Rn flux from continents ranged from 1300 to 1800 Bq m⁻² d⁻¹, while 2–21 Bq m⁻² d⁻¹ was reported for oceanic areas (Wilkening and Clements, 1975; Nazaroff, 1992). Vertical profiles of ²²²Rn in the atmosphere indicate the highest concentrations occur in the continental boundary layer (CBL, 3-8 Bq m⁻³), while activity that is lower by an order of magnitude ($\sim 40 \,\mathrm{mBq}\,\mathrm{m}^{-3}$) occurs near the tropopause, with decreasing activity with increasing altitude from the CBL (Moore et al., 1977; Liu et al., 1984; Kritz et al., 1993). Consequently, the atmospheric concentration of ²¹⁰Pb decreases with increasing altitude and is strongly controlled by the land-sea distribution pattern. After formation, ⁷Be, ²¹⁰Pb, and short-lived ²²²Rn progeny are all rapidly and irreversibly attached to aerosol particles (Winkler et al., 1998; Elsässer et al., 2011). Subsequently, the fate of ⁷Be and ²¹⁰Pb is closely linked to that of aerosols. Most of ⁷Be and ²¹⁰Pb are in accumulation-mode aerosol particles with an aerodynamic diameter of a few hundred nanometers (Ioannidou and Paatero, 2014; Paatero et al., 2017). Therefore, they are deposited onto the Earth's surface primarily by precipitation because accumulation-mode aerosol particles are too small for gravitational settling and removal and too large to be deposited by Brownian motion.

Owing to their distinctly different source terms but wellknown source distributions and similar tropospheric physicochemical behavior, ⁷Be and ²¹⁰Pb have been widely utilized as powerful atmospheric tracers for studying the origin of air masses (e.g., Graustein and Turekian, 1996; Zheng et al., 2005; Likuku et al., 2006; Dueñas et al., 2011; Lozano et al., 2012), vertical exchange and horizontal transport processes (e.g., Arimoto et al., 1999; Lee et al., 2007; Rastogi and Sarin, 2008; Tositti et al., 2014), deposition velocities and washout ratios of aerosols (e.g., Todd et al., 1989; McNeary and Baskaran, 2003; Dueñas et al., 2005; Lozano et al., 2011; Mohan et al., 2019), and the behavior and fate of analog species (e.g., Crecelius, 1981; Mattsson, 1988; Prospero et al., 1995; Lamborg et al., 2013). Following their deposition on the Earth's surface, both ⁷Be and ²¹⁰Pb are strongly attached to soils, which make them useful for assessing soil erosion rates from episodic to multi-decadal timescales (e.g., Wallbrink and Murry, 1993; Walling and He, 1999; Blake et al., 1999; Walling et al., 1999; Wilson et al., 2003; Mabit et al., 2008, 2014). In aquatic environments, ²¹⁰Pb is most widely used for dating recent sediments (e.g., Appleby, 2008). Meanwhile, ⁷Be and ²¹⁰Pb are also widely used as tracers of sediment source identification and particle dynamics in rivers (e.g., Bonniwell et al., 1999; Matisoff et al., 2005; Jweda et al., 2008; Mudbidre et al., 2014; Baskaran et al., 2020), lakes (e.g., Dominik et al., 1987; Schuler et al., 1991; Vogler et al., 1996), and estuaries and coasts (e.g., Baskaran et al., 1997; Huang et al., 2013; Wang et al., 2016). ⁷Be deposited on open ocean is further used as a tracer for diagnosing ocean ventilation and subduction (Kadko, 2000; Kadko and Olson, 1996), inferring upwelling rates (Kadko and Johns, 2011), and estimating the deposition of trace metals (Kadko et al., 2015; Shelley et al., 2017; Buck et al., 2019).

There have been numerous published datasets with concentrations and depositional fluxes of ²¹⁰Pb and ⁷Be (directly and indirectly) over the past few decades, particularly under national or international monitoring programs, such as the Environmental Measurements Laboratory (EML) Surface Air Sampling Program (Feely et al., 1989), the Sea-Air Exchange (SEAREX) program (Uematsu et al., 1994), the Finnish Meteorological Institute monitoring program (Paatero et al., 2015), the Radioactivity Environmental Monitoring (REM) network (Hernandez-Ceballos et al., 2015), and the International Monitoring System (IMS) operated by the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) (Terzi and Kalinowski, 2017). It is valuable to compile all of these existing data, including those measured in case studies, along with appropriate metadata, in one place for facilitating further data analysis and geological, geochemical, and geophysical applications.

Although several datasets of air concentrations and depositional fluxes of ⁷Be (Bleichrodt, 1978; Brost et al., 1991) and ²¹⁰Pb (Rangarajan et al., 1986; Preiss et al., 1996) have been published, unfortunately, many of the published data are not readily available in a hard data format (e.g., data table), and retrieval of data from published figures is often not precise and can be challenging. To date, only one dataset was published that compiled ⁷Be and ²¹⁰Pb together (Persson, 2015), but it contained limited data. Therefore, the focus of the present work is to build a new and comprehensive dataset. This dataset is the result of many scientists' efforts in generating the data.

2 Methods

2.1 ⁷Be and ²¹⁰Pb air concentrations measurement methodology

Aerosol samples are usually collected by filtering a high volume of air, typically $1.4-1.5 \text{ m}^3 \text{ min}^{-1}$, collected typically for a day, through paper filters. Commonly used aerosol collecting equipment include the following instruments: ASS 500 (CLRP Warsaw, Germany), Anderson PM10 (Anderson Ltd., USA), Snow White (Senya Ltd., Finland), and HV-1000F (Shibata Co. Ltd., Japan). The preferred filter membrane materials include glass fiber, cellulose nitrate or acetate, polypropylene fiber, and quartz fiber. The collection efficiency, the percentage of the particles in the air stream that are collected by the air filter, depends on the aerodynamic diameter of aerosol particles and the filter face velocity (average flow velocity of air into the filter) of the airflow. Although the collection efficiency depends on the distribution of particle sizes, generally the collection efficiency varies between 80 % and 100 % for different filter materials. This was shown by overlapping two filters in tandem and comparing the concentrations separately in the top and bottom filters. The sampling frequency is usually set from daily to monthly, with a typical collection time of ~ 24 h, corresponding to $\sim 2000 \text{ m}^3$ air. The ⁷Be and ²¹⁰Pb trapped on filters can both be analyzed simultaneously by gamma spectrometry (e.g., McNeary and Baskaran, 2003; Bourcier et al., 2011; Lozano et al., 2012; Mohan et al., 2018), while ²¹⁰Pb can also be analyzed by beta counting of its daughter ²¹⁰Bi (e.g., Joshi et al., 1969; Poet et al., 1972; Daish et al., 2005) or via alpha counting of in-grown ²¹⁰Po from the decay of ²¹⁰Pb (e.g., Turekian and Cochran, 1981; Mattsson et al., 1996; Marx et al., 2005).

2.2 ⁷Be and ²¹⁰Pb depositional fluxes measurement methodology

The atmospheric depositional fluxes of ⁷Be and ²¹⁰Pb are commonly measured directly by using rain collectors, such as polyethylene drums or buckets and stainless steel containers, and indirectly by natural archives (e.g., soils, lichens, mosses, snow and ice cores, salt marsh sediments). The direct collecting method is the most reliable technique for the measurement of annual ⁷Be and ²¹⁰Pb depositional fluxes, and this technique is useful in collecting short timescale (daily, weekly, and monthly) depositional fluxes. In contrast, using natural archives avoids the labor- and time-intensive measurement of the ⁷Be and ²¹⁰Pb concentration in precipitation and can serve as a complement to fill regional gaps, especially in remote areas. However, these archives are susceptible to being affected by natural processes and anthropogenic activities; thus, the sampling location of these archives should be restricted to undisturbed areas.

2.2.1 Direct ⁷Be and ²¹⁰Pb flux measurements

Rain collectors are usually placed on the roof of a building so as to prevent contamination from resuspended dust from the ground. Care should be taken to ensure direct overhead atmospheric deposition is collected and that there is no shadowing effect from adjacent structures or buildings or a funneling effect in sample collection. Atmospheric aerosols can be removed not only by precipitation-scavenging but also by settling under the influence of gravitational or electrostatic forces. In most cases, the collectors are continuously exposed over a long enough period, and the bulk (wet + dry) depositional samples are collected periodically (e.g., Baskaran et al., 1993; Hirose et al., 2004; Baskaran and Swarzenski, 2007; Lozano et al., 2011; Du et al., 2015). Fluxes obtained by this method yield the best estimate of the depositional flux. Sometimes, fallout ⁷Be and ²¹⁰Pb samples are collected only during rainfall, and concentration is measured in the individual rainwater sample (e.g., Cho et al., 2011; Chae and Kim, 2019; Du et al., 2020). In this case, only the bulk depositional flux is obtained for the duration of collection. In rare cases, when only a mean concentration of ²¹⁰Pb and/or ⁷Be in rainwater is available, the wet flux can be estimated by multiplying by the annual precipitation (Peirson et al., 1966).

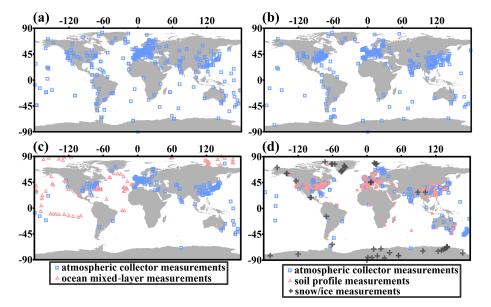
Most of the time, the volume of rainwater sample is large and cannot be directly counted in a gamma-ray spectrometer for the simultaneous measurements of ⁷Be and ²¹⁰Pb, in which case a preconcentration of the sample is required. Since both ⁷Be and ²¹⁰Pb have a strong affinity for solid surfaces, it is strongly recommended to add stable Be (commonly 1-5 mg) and stable Pb (typically 5-20 mg) in about 1 L of 1 M HCl to the rain collector prior to deployment. Alternatively, the spikes can also be immediately added after sample collection, followed by rinsing of rain collector with 1 L of 1 M HCl rinsing twice and combining the rinses with the collected rainwater. An earlier critical review of earlier atmospheric depositional flux studies by Lal et al. (1979) showed that loss of ⁷Be and ²¹⁰Pb by sorption onto rain collector walls was observed when pre-acidification of the collector was not done, resulting in the underestimation of depositional flux. In the case of preconcentration by ferric chloride precipitation method, due to variable scavenging efficiency of ⁷Be and ²¹⁰Pb during the preconcentration method, it is required to add stable Pb and Be as a yield tracer (e.g., Baskaran et al., 1993). The best chemical procedure to obtain high-quality data is to add acid and stable Be and Pb careers with 1 L of 1 M HCl to the rain collector prior to the start of the sample collection. The final calculation for depositional fluxes would involve chemical yield for ⁷Be and ²¹⁰Pb and appropriate decay corrections, as outlined in Baskaran et al. (1993) and Du et al. (2015).

2.2.2 Indirect ⁷Be flux measurements

Measurements of ⁷Be inventory in the upper oceanic water column, from the air-sea interface until the layer where ^{7}Be activity is below the detection limit (in > 400 L water sample), can indirectly yield the bulk depositional flux of ⁷Be (Brost et al., 1991). This requires precise determination of the penetration depth of ⁷Be in the water column. The only uncertainty is the loss of ⁷Be-laden sinking particles from the upper water column where ⁷Be is present. After being deposited on the ocean surface, ⁷Be is generally mixed uniformly within the surface mixed layer (Young and Silker, 1980; Kadko and Olson, 1996). In open ocean, the particle concentration is generally low, and a major fraction of 'Be is expected to be in the dissolved phase, thus allowing particle scavenging losses to be ignored (Silker, 1972; Andrews et al., 2008). Therefore, in the absence of physical removal processes other than radioactive decay, the input flux of ⁷Be should be balanced by the ⁷Be inventory integrated over the water column. In other words, ⁷Be flux of atmospheric fallout $(Bq m^{-2} d^{-1})$ can be obtained from the ⁷Be water column inventory $(Bq m^{-2})$ multiplied by the decay constant $(0.013 d^{-1})$ of ⁷Be. This method has been proven to be reliable in open ocean due to the relatively short half-life of ⁷Be and the constancy of ⁷Be deposition over broad latitudinal bands (Young and Silker, 1980; Aaboe et al., 1981). It is expected that the ⁷Be inventory is season dependent in areas with large seasonal variations in precipitation (e.g., monsoon-dominated continental and oceanic areas). A time series study in Bermuda has shown that the inventory of ⁷Be was relatively constant throughout the year, such that ⁷Be inventory measured at any one time is likely representative (to within 20%) of the instantaneous ⁷Be flux (Kadko and Prospeo, 2011; Kodko et al., 2015). This method is not suitable for coastal and estuarine areas where ⁷Be is scavenged substantially by particulate matter (Olsen et al., 1986; Baskaran and Santschi, 1993) and upwelling-dominated areas where ⁷Be inventory is diluted by ⁷Be "dead" water (Kadko and Johns, 2011; Haskell et al., 2015).

Another potential candidate is undisturbed soil profiles. However, ⁷Be inventories in undisturbed soils were reported to vary by more than an order of magnitude within 1 year (Walling et al., 2009; Kaste et al., 2011; Zhang et al., 2013). Such large variations in depositional fluxes of ⁷Be are attributed to the seasonal fluxes of ⁷Be. Earlier studies have shown that the atmospheric fluxes are highly dependent upon the amount of precipitation (Baskaran, 1995; Du et al., 2015). Since seasonal variations will significantly affect the ⁷Be inventory in soils, the data of ⁷Be soil inventory are not included in our dataset.

2.2.3 Indirect ²¹⁰Pb flux measurements


Several archives (soils, snow and ice cores, sediment cores, etc.) have been used to assay the ²¹⁰Pb fluxes. Here we only present ²¹⁰Pb fluxes estimated from soil profiles and snow and ice cores. The former is the most frequently used, and the latter perfectly fills the regional gap in polar regions and montane permanent snowfields. There are many ²¹⁰Pb measurements in sediment cores; however, due to the sediment focusing and erosion, most sediment cores do not provide a reliable estimate of the atmospheric ²¹⁰Pb flux (Turekian et al., 1977; Preiss et al., 1996); thus, this type of ²¹⁰Pb depositional flux data is not included in our dataset.

 210 Pb in surface (upper ~ 30 cm) soil has two sources: one is generated from the decay of ²²²Rn in the soil minerals, known as supported ²¹⁰Pb, which is produced from the decay of ²³⁸U, and the other comes from atmospheric deposition as unsupported ²¹⁰Pb. The fallout of ²¹⁰Pb is retained generally in the organic-rich surface soils, presumably because of the sequestering properties of the organo-mineral complexes (Covelo et al., 2008). When soil CO₂ combines with percolating water, carbonic acid is produced, which can leach some of the sorbed ²¹⁰Pb, ultimately resulting in slow migration down to a depth of up to 20-30 cm (Matisoff and Whiting, 2012). As a result, the surface soil layer contains excess ²¹⁰Pb compared to that from its equilibrium with ²²⁶Ra (Mabit et al., 2014). This part of the ²¹⁰Pb excess is termed "unsupported" or "excess" ²¹⁰Pb (²¹⁰Pb_{ex}). ²¹⁰Pb_{ex} is the difference between total (measured) ²¹⁰Pb and the supported ²¹⁰Pb in the soils. Supported ²¹⁰Pb is assumed to be the same as ²²⁶Ra activity, under the assumption of a secular equilibrium between ²²⁶Ra and supported ²¹⁰Pb. It can also be obtained by assuming that the supported ²¹⁰Pb activity is equal to the total ²¹⁰Pb at depths greater than 30 cm in the soil profile where atmospherically delivered ²¹⁰Pb has not reached (Matisoff, 2014). The mean residence time of ²¹⁰Pb over a large drainage basin is on the order of 2000-3000 years in surface soils (Benninger et al., 1975; Dominik et al., 1987), so the inventory of ${}^{210}Pb_{ex}$ in a soil profile that has not been disturbed by erosion, accumulation, or human activities for about a century can be used to calculate the depositional flux (Graustein and Turekian, 1986). At steady state, the ²¹⁰Pb depositional flux can be deduced using the ²¹⁰Pb_{ex} inventory multiplied by the decay constant (0.0311 yr^{-1}) of ²¹⁰Pb. This method has been widely used worldwide (e.g., Nozaki et al., 1978; Graustein and Turekian, 1986, 1989; Dörr and Munich, 1991; García-Orellana et al., 2006). At undisturbed soil sites, flux values derived from soil profile measurements were consistent with direct atmospheric flux observations (Olsen et al., 1985; Appleby et al., 2002, 2003), and ²¹⁰Pbex soil inventory showed little discrepancy at different sampling times (Porto et al., 2006, 2016).

Goldberg (1963) was the first to show that the total ²¹⁰Pb activity in a glacier from Greenland decreased with depth, with a possibility of dating ice cores. Subsequently, snow chronology in the Antarctic was determined (Crozaz et al., 1964; Picciotto et al., 1964). Since then, this technique has been used in both the large ice caps of Antarctica (e.g., Picciotto et al., 1968; Koide et al., 1979; Nijampurkar et al., 2002) and the Arctic (e.g., Crozaz and Langway, 1966; Koide et al., 1977; Dibb, 1990a, 1992; Peters et al., 1997) and small montane permanent snowfields (e.g., Windom, 1969; Gäggeler et al., 1983; Monaghan and Holdsworth, 1990). The ²¹⁰Pb flux in snow and ice cores is calculated in the same way as for the soil, except that supported ²¹⁰Pb in snow and ice cores is very low due to low concentration of ²²⁶Ra in snow and ice core and may be negligible, as the lithogenic dust is the primary source of ²²⁶Ra and its concentration in polar regions is very low (Preiss et al., 1996). When the snow accumulation rate is known, the depositional flux can also be obtained by using ²¹⁰Pb concentration in surface snow multiplied by the accumulation rate (Pourchet et al., 1997; Suzuki et al., 2004). The uncertainty in the depositional flux of ²¹⁰Pb from the snow and ice core record is the potential post-depositional movement of the snow and ice due to heavy wind and the possibility of snow melting and percolation.

2.3 Data collection

In order to compile the global dataset for annual ⁷Be and ²¹⁰Pb air concentrations and depositional fluxes comprehensively, we attempted to collect published papers between 1955 and early 2020 in which hard data for their concentrations and depositional fluxes are available or their calculated values are reported. Using a series of keywords or with a search using a combination of words (e.g., ⁷Be, ²¹⁰Pb,

Figure 1. Maps showing sampling locations of (a) ⁷Be concentration in surface air, (b) ²¹⁰Pb concentration in surface air, (c) ⁷Be atmospheric depositional flux, and (d) ²¹⁰Pb atmospheric depositional flux.

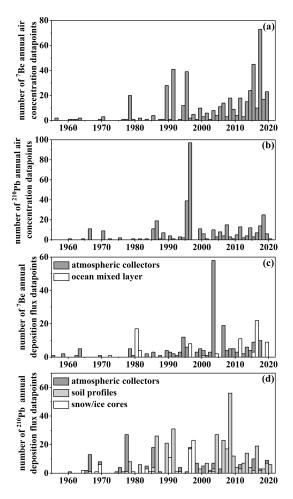
air concentration, depositional flux, fallout radionuclide, atmospheric tracer, or soil erosion), data were retrieved from online literature databases (Web of Science, Science Direct, and China Knowledge Resource Integrated Database). During the literature survey, no a priori criteria (e.g., study area, sampling period, and measurement method) were applied. However, a critical review of the collected literature was conducted to obtain long-term data using the following criteria. For concentrations in air and directly measured fluxes of ⁷Be and ²¹⁰Pb, only those sites with more than 1 year of data were included. When averaged over a longer period, data are more representative because of the inherent seasonal variations (at least a full year of data) and inter-annual fluctuations (multiyear data). For indirectly measured fluxes of ⁷Be and ²¹⁰Pb, only those undisturbed sites clearly stated in the original literature were included.

Here we did not include unpublished data, as data quality control could be a potential issue. In the peer-reviewed published data, it is assumed that the authors, reviewers, and/or editors of the original articles have undertaken the necessary steps to verify data quality. All concentrations in air were converted into $Bq m^{-3}$ and all depositional fluxes were converted into $Bq m^{-2} yr^{-1}$ in cases where data were not already reported in these units. When available, the metadata of latitude, longitude, altitude, sampling date, annual precipitation, methodology, and references are also given. A brief description of different variables that could affect the data is summarized in Table 1. In cases where the air concentration and depositional flux data were only available graphically, a computer program (GetData Graph Digitizer) was used to digitize the data from graphics; the same was done for geographical location and annual precipitation. In rare cases, only the locality name of the study site was available, and thus the geographical coordinates were extracted from Google Earth.

3 Results and discussions

3.1 Scope of the dataset

From 456 references (Appendix A), we have compiled a comprehensive dataset of atmospheric ⁷Be and ²¹⁰Pb measurements made by numerous laboratories. The dataset includes 494 annual surface air concentration data of ⁷Be covering 367 different sites, 366 annual surface air concentration data of ²¹⁰Pb from 270 different sites, 304 annual depositional flux data of ⁷Be from 279 different sites, and 645 annual depositional flux data of ²¹⁰Pb from 602 different sites. In some cases, data collected from different periods were published in different articles. In these cases, all data from the same site are listed as separate datasets; however, in data analysis and plotting, the data from the same site are merged. The sampling locations of this global dataset show broad geographical coverage (Fig. 1). The sampling maps are mainly composed of continental sites, while the oceanic monitoring sites are limited.


The number of peer-reviewed journal articles published annually containing ⁷Be and ²¹⁰Pb data from 1955 to 2020 that are included in this article is plotted in Fig. 2. Measurements of ⁷Be began in the mid-1950s (Arnold and Al-Salih, 1955; Cruikshank et al., 1956; Rama Thor and Zutshi, 1958), earlier than those of ²¹⁰Pb, which began in early 1960s (Burton and Stewart, 1960; Crozaz et al., 1964; Peirson et al., 1966). The long-term monitoring work started in

Field name Field description Field type Unit Site Locality name (city, country) or station name of study site Short text Unitless Sampling time Monitoring period or sampling date in month/year format Unitless Short text 0 Latitude Latitude (N) in decimal degrees (from -90 to +90) either directly Number from original studies or extracted from Google Earth Longitude (E) in decimal degrees (from -180 to +180) either directly 0 Longitude Number from original studies or extracted from Google Earth Altitude Altitudes of study sites either directly from original studies Number m Annual precipitation Mean annual precipitation of study sites directly from original studies Number mm Sampling device^a Model of aerosol sampling device and air flow rate during sampling Short text Unitless Model, material, and dimension of filter membranes Filter^a Unitless Short text **Frequency**^a Sampling frequency set during observation Short text Unitless Data numbera Total number of measurements performed Unitless Integer ⁷Be or ²¹⁰Pb annual concentration in surface air $mBq m^{-3}$ Concentration^a Number Uncertainty in ⁷Be or ²¹⁰Pb annual concentration in surface air Con-error^a $mBq m^{-3}$ Number Minimum to maximum values of ⁷Be or ²¹⁰Pb concentration Con-range^a Number $mBq m^{-3}$ Method^b Short description of ⁷Be or ²¹⁰Pb depositional flux Unitless Short text obtained from different methods Rain collector^b Material, shape, and collection area of rain collectors Short text Unitless Clean procedure^b Rainwater collector cleaning process and reagents used Short text Unitless Preconcentration^b Preconcentration method for rainwater samples Short text Unitless Recovery^b Recovery of ⁷Be or ²¹⁰Pb and the determination method Short text Unitless Calculation of decay-correction for ⁷Be or ²¹⁰Pb Decay-correction^b Unitless Short text $Bq m^{-2} yr^{-1}$ Flux^b ⁷Be or ²¹⁰Pb annual depositional flux derived from different methods Number Uncertainty in ⁷Be or ²¹⁰Pb annual depositional flux $Ba m^{-2} vr^{-1}$ Flux-error^b Number Fraction of dry depositional flux to total depositional flux Contribution of dry Number Unitless of ⁷Be or ²¹⁰Pb deposition^b Investigator and published year of references Reference Short text Unitless Reference's DOI Digital object identifier of references Unitless Short text

Table 1. Fields in the main data table.

^a The field only appears in the ⁷Be or ²¹⁰Pb annual concentration worksheet. ^b The field only appears in the ⁷Be or ²¹⁰Pb annual depositional flux worksheet.

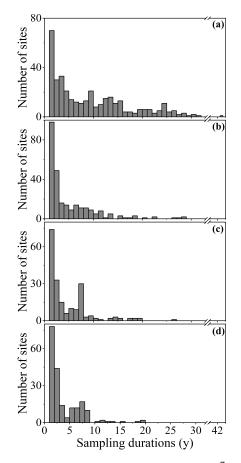

the 1980s with the ⁷Be and ²¹⁰Pb concentration data generated by the EML Surface Air Sampling Program (Feely et al., 1989; Larsen et al., 1995). This was followed by more ambitious international programs, such as the REM network (Hernandez-Ceballos et al., 2015) and IMS-CTBTO (Terzi and Kalinowski, 2017). However, in these two programs, ²¹⁰Pb concentration measurements were conducted only at a few stations (Heinrich et al., 2007; Sangiorgi et al., 2019). In contrast, direct ⁷Be and ²¹⁰Pb flux measurements were rarely supported by the international program, but there were several national monitoring programs initiated by developed countries like Australia (Bonnyman and Molina-Ramos, 1971), Japan (Narazaki et al., 2003; Yamamoto et al., 2006), the United States (Lamborg et al., 2013), and Finland (Paatero et al., 2015; Leppanen, 2019). The measurement of ⁷Be inventory in the ocean mixed layer began in the 1970s (Silker, 1972; Young and Silker, 1974, 1980), and the idea proposed by Young and Silker was subsequently developed in the upper 100–200 m to assess surface water subduction, oxygen utilization, and the rate of upwelling (Kadko,

Figure 2. Distributions of data published between 1955 and early 2020: (a) ⁷Be concentration, (b) ²¹⁰Pb concentration, (c) ⁷Be depositional flux, and (d) ²¹⁰Pb depositional flux.

2009; Kadko and Olson, 1996; Kadko and Johns, 2011). The measurement of 210 Pb_{ex} in an undisturbed soil profile was first conducted by Fisenne (1968). Subsequently, Benninger et al. (1975) and Moore and Poet (1976) showed that excess 210 Pb activities in undisturbed soil profiles can be utilized to estimate the atmospheric 210 Pb depositional flux, which resulted in an increase in the measurements of 210 Pb_{ex} in soil profiles in the late 1980s (Graustein and Turekian, 1986, 1989; Monaghan, 1989; Dörr and Munnich, 1991). Subsequently, 210 Pb_{ex} was shown to be useful for soil erosion studies on agricultural land (Walling and He, 1999; Walling et al, 2003).

The histogram of sampling durations of ⁷Be and ²¹⁰Pb measurements is given in Fig. 3. In general, the duration of sampling for ⁷Be measurements, especially for air concentration, is longer than that of ²¹⁰Pb. Globally, there are 140 sites that monitored ⁷Be air concentration for more than 10 years. The long-term (decades) measurements of ⁷Be were mainly dedicated to investigating the effect of changes in sunspot number on ⁷Be (Megumi et al., 2000; Cannizzaro

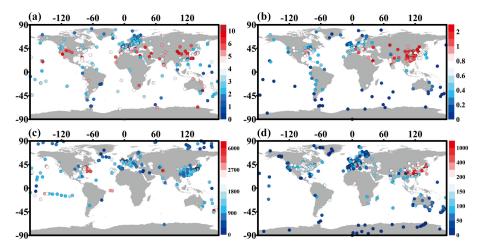
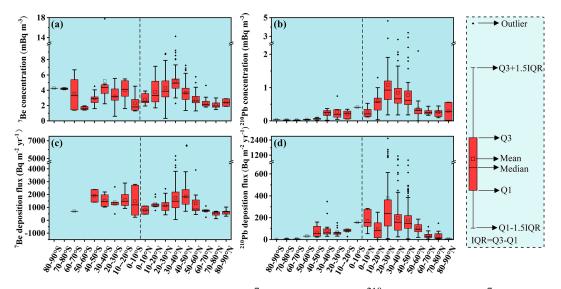


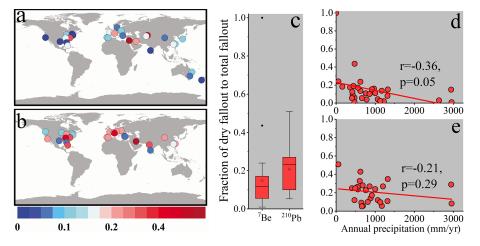
Figure 3. Histogram of sampling durations of (a) ⁷Be concentration, (b) ²¹⁰Pb concentration, (c) ⁷Be depositional flux, and (d) ²¹⁰Pb depositional flux. For those sites with multiple datasets, we added the sampling duration together, after deducting the overlapping period (if there was one). Note that the ⁷Be and ²¹⁰Pb depositional flux data plotted here refer to those obtained using rain collectors.


et al., 2004; Kulan et al., 2006; Pham et al., 2013; Steinmann et al., 2013). Due to the simpler measurement procedure for air concentration, the duration of air concentration measurements, whether for ⁷Be or ²¹⁰Pb, is generally longer than that of ²¹⁰Pb and/or ⁷Be depositional flux measurements.

3.2 Global variability

The global data of ⁷Be and ²¹⁰Pb air concentrations and depositional fluxes are presented in Fig. 4. The range of concentrations of ⁷Be and ²¹⁰Pb are 0.33–17.77 mBq m⁻³ and 0.003–4.65 mBq m⁻³, respectively. The range of depositional fluxes of ⁷Be and ²¹⁰Pb are 59–6350 and 1–2539 Bq m⁻² yr⁻¹, respectively. The concentrations and depositional fluxes of ⁷Be show discernable latitudinal variability (Fig. 5a and c). In general, ⁷Be concentration and flux peak at the mid-latitudes and decrease toward the Equator and poles, as was theoretically predicted by Lal and Pe-

Figure 4. Global distribution of (**a**) ⁷Be annual air concentration (mBq m⁻³), (**b**) ²¹⁰Pb annual air concentration (mBq m⁻³), (**c**) ⁷Be annual depositional flux (Bq m⁻² yr⁻¹), and (**d**) ²¹⁰Pb annual depositional flux (Bq m⁻² yr⁻¹). For those sites with multiple datasets, a weighted average was calculated based on sampling durations.


Figure 5. Latitudinal variability (box and whisker plots) of (a) ⁷Be concentration, (b) ²¹⁰Pb concentration, (c) ⁷Be depositional flux, and (d) ²¹⁰Pb depositional flux plotted by 10° latitudinal bands.

ters (1967). A symmetric pattern is observed between the Northern Hemisphere and Southern Hemisphere, however, a sharp increase in ⁷Be air concentration (lack of flux data) occurred on the Antarctic, which reflects the subsidence of stratospheric air masses over the Antarctic continent (Wagenbach et al., 1988; Elsässer et al., 2011). Although the ²¹⁰Pb concentration and depositional flux are expected to heavily depend on the source(s) of air mass(es) and not on the latitude, the 10° latitudinal variability of ²¹⁰Pb concentration and depositional flux is observed in the Northern Hemisphere and Southern Hemisphere (Fig. 5b and d). The latitudinal variability of ²¹⁰Pb flux is similar to the global fallout curve based on 167 global sites (Baskaran, 2011). Since most of the ²¹⁰Pb data are derived from continental sites, the latitudinal

variation is mostly due to differences in the radon emanation rates with latitude. As the area of the landmass in the Southern Hemisphere is smaller than in the Northern Hemisphere, the ²¹⁰Pb concentration and depositional flux are much lower there. An asymmetry is observed in the ²¹⁰Pb concentration and depositional flux between the Northern Hemisphere and Southern Hemisphere, with the highest values appearing in the mid-latitudes of the Northern Hemisphere.

3.3 Fraction of dry deposition and effect of precipitation on ⁷Be and ²¹⁰Pb depositional flux

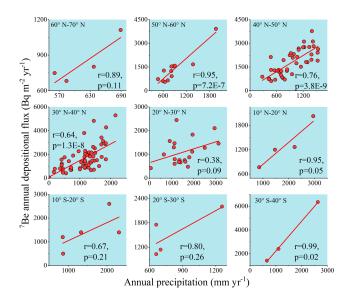
It was reported that dry deposition of ⁷Be and ²¹⁰Pb generally accounts for less than 10% of the total deposition (Tal-

Figure 6. Global distribution of the fraction of dry to total depositional fluxes of (**a**) ⁷Be and (**b**) ²¹⁰Pb. (**c**) Box and whisker plots showing the comparison between the fraction of dry to total depositional fluxes of ⁷Be and the fraction of dry to total depositional fluxes of ²¹⁰Pb. (**d**) The fraction of dry to total depositional fluxes of ⁷Be versus annual precipitation. (**e**) The fraction of dry to total depositional fluxes of ²¹⁰Pb versus annual precipitation.

bot and Andren, 1983; Brown et al., 1989; Todd et al., 1989); however, the fraction of dry deposition of ⁷Be and ²¹⁰Pb is highly variable (McNeary and Baskaran, 2003; Pham et al., 2013). It is likely that the contribution of dry fallout could increase when annual precipitation decreases (McNeary and Baskaran, 2003). The fraction of dry to total depositional flux of ⁷Be and ²¹⁰Pb are presented in Fig. 6a and b. Globally, the fraction of dry to total depositional flux of ⁷Be and ²¹⁰Pb ranged from 1 % to 44 % (mean: 12 ± 9 %; n = 29, excluding one extreme site without precipitation) and from 5 % to 51 %(mean: $21 \pm 12\%$; n = 26), respectively (Fig. 6c). The low fraction of dry to total depositional fluxes of ⁷Be and ²¹⁰Pb suggest that these nuclides are removed from the atmosphere primarily by precipitation (both rain and snowfall). Our results also support previous studies (Baskaran et al., 1993; Benitez-Nelson and Buesseler, 1999) that the fraction of dry deposition is higher for ²¹⁰Pb than for ⁷Be. The fraction of dry fallout of ⁷Be and ²¹⁰Pb is plotted against annual precipitation in Fig. 6d and e, and a weak negative correlation is observed, especially for ²¹⁰Pb.

As precipitation is the primary mechanism of removal of these nuclides from the atmosphere, the annual depositional fluxes generally depend on the amount and frequency of precipitation. In our dataset, the world's lowest ⁷Be depositional flux (only 59 Bq m⁻² yr⁻¹, less than 5% of the global average ⁷Be flux) occurred in the Judean Desert, a precipitation-free area in the horse latitudes (Belmaker et al., 2011). The highest ⁷Be (6350 Bq m⁻² yr⁻¹) and ²¹⁰Pb (2539 Bq m⁻² yr⁻¹) depositional flux were observed in heavy rainfall areas: Hokitika, New Zealand (Harvey and Matthews, 1989), and Taiwan (Huh and Su, 2004), respectively. Positive correlations between annual depositional flux and precipitation have been observed on a local scale (e.g., Narazaki et al., 2003; García-Orellana et al., 2006; Sanchez-

Cabeza et al, 2007; Leppanen et al., 2019). Here we illustrate the effect of precipitation on annual depositional flux on a global scale (Figs. 7 and 8). As both ⁷Be and ²¹⁰Pb depositional flux show latitudinal variability, the linear bestfit curve of annual depositional flux to annual precipitation is plotted within the 10° latitudinal bands (if data are available). The empirical equations and fitting parameters describing the relationships between annual precipitation and ⁷Be and ²¹⁰Pb depositional fluxes are summarized in Table 2. ⁷Be and ²¹⁰Pb annual depositional fluxes generally show a good positive correlation with annual precipitation, although the data are limited in some latitudinal bands. Note that the frequency of precipitation is also an important factor that was not considered in earlier studies.

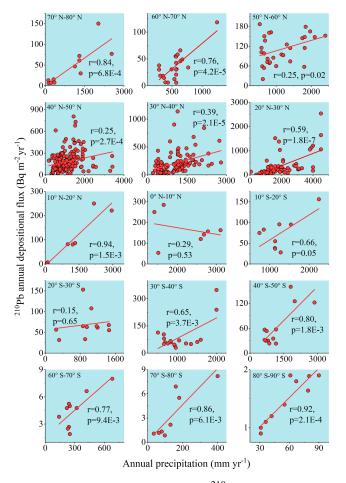

3.4 ⁷Be / ²¹⁰Pb ratios and deposition velocities

Considering that some data come from the same station, we further calculated the ratios of ⁷Be to ²¹⁰Pb and deposition velocities of aerosols using ⁷Be and ²¹⁰Pb data, as shown in Figs. 9 and 10.

The variations in the ⁷Be / ²¹⁰Pb ratios reflect both vertical and horizontal transport in the atmosphere (Baskaran, 1995; Koch et al., 1996; Arimoto et al., 1999; Lee et al., 2007; Tositti et al., 2014). Our dataset exhibits similar global patterns of ⁷Be / ²¹⁰Pb ratio as have been simulated with a threedimensional chemical tracer model (Koch et al., 1996), with a positive south poleward gradient and a little variation in the Northern Hemisphere. Globally, the ⁷Be / ²¹⁰Pb air concentration ratio ranged from 2 to 222, and the ⁷Be / ²¹⁰Pb depositional flux ratio ranged from 2 to 229. At the 19 sites for which ⁷Be / ²¹⁰Pb air concentration ratio and depositional flux ratio were available simultaneously, a paired *t* test indi-

Nuclides	Latitudinal band	Empirical equation	Pearson's r	p value	Number of points
⁷ Be	60–70° N	y = 2.97x - 1000.3	0.89	1.1×10^{-1}	4
	50–60° N	y = 2.16x - 540.0	0.95	7.2×10^{-7}	13
	40–50° N	y = 1.71x + 183.4	0.76	3.8×10^{-9}	43
	30–40° N	y = 1.40x + 97.5	0.64	1.3×10^{-8}	64
	20–30° N	y = 0.29x + 653.9	0.38	9.1×10^{-2}	21
	10–20° N	y = 0.54x + 297.9	0.95	5.3×10^{-2}	4
	10–20° S	y = 0.76x + 293.8	0.67	2.1×10^{-1}	5
	20–30° S	y = 1.50x + 302.5	0.80	2.0×10^{-1}	4
	30–40° S	y = 2.52x - 297.4	0.99	$1.9 imes 10^{-2}$	3
210 _{Pb}	70–80° N	y = 0.04x + 0.07	0.84	6.8×10^{-4}	12
	60–70° N	y = 0.10x - 16.1	0.76	4.2×10^{-5}	22
	50–60° N	y = 0.03x + 74.9	0.25	2.5×10^{-2}	31
	40–50° N	y = 0.06x + 117.5	0.25	2.7×10^{-4}	206
	30–40° N	y = 0.13x + 71.8	0.39	2.1×10^{-5}	113
	20–30° N	y = 0.25x - 124.6	0.59	1.8×10^{-7}	67
	10–20° N	y = 0.09x - 6.4	0.94	1.5×10^{-3}	7
	0–10° N	y = -0.03x + 239.9	0.29	5.3×10^{-1}	7
	10–20° S	y = 0.06x - 2.2	0.66	5.3×10^{-2}	9
	20–30° S	y = 0.01x + 56.5	0.15	6.5×10^{-1}	11
	30–40° S	y = 0.11x - 31.3	0.65	3.7×10^{-3}	18
	40–50° S	y = 0.06x - 3.5	0.80	1.8×10^{-3}	12
	60–70° S	y = 0.01x + 1.7	0.77	9.4×10^{-3}	10
	70–80° S	y = 0.02x + 0.2	0.86	6.1×10^{-3}	8
	80–90° S	y = 0.02x + 0.5	0.92	2.1×10^{-4}	10

Table 2. A summary of empirical equations and fitting parameters describing the relationships between annual precipitation (x) and ⁷Be and ²¹⁰Pb annual depositional fluxes (y) for different latitudinal bands.


Figure 7. Annual depositional fluxes of 7 Be are plotted against annual precipitation for 10° latitudinal bands.

cates that at 0.05 level the $^{7}\text{Be} / ^{210}\text{Pb}$ air concentration ratio and depositional flux ratio are not significantly different.

⁷Be and ²¹⁰Pb are excellent tracers for the determination of the deposition velocities of aerosols for two reasons: (1) their depositional fluxes and air concentrations at any given site remain fairly constant over a long period and (2) their size distributions in aerosols are similar to that of many particulate contaminants of interest (McNeary and Baskaran, 2003; Dueñas et al., 2005). When both air concentration (*C*) and depositional flux (*F*) at the same site are available, the average total deposition velocities of aerosols that carry these nuclides (*V*_d) can be calculated by the following Eq. (1):

$$V_{\rm d} = F/C. \tag{1}$$

Thus, the V_d obtained from ⁷Be and ²¹⁰Pb can be used to determine the depositional flux of analog species with a knowledge of their air concentration (Turekian et al., 1983). The V_d for ⁷Be ranged from 0.2 to 8.4 cm s^{-1} (mean: $1.3 \pm 1.2 \text{ cm s}^{-1}$; n = 70), and for ²¹⁰Pb it ranged from 0.1 to 12.7 cm s^{-1} (mean: $1.2 \pm 1.7 \text{ cm s}^{-1}$; n = 72). The deposition velocity of aerosols collected over a period of 17 months in Detroit, MI, USA, varied over 2 orders of magnitude, from 0.2 to 3.6 cm s^{-1} (mean: 1.6 cm s^{-1} ; n = 30) for ⁷Be

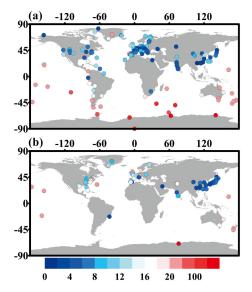
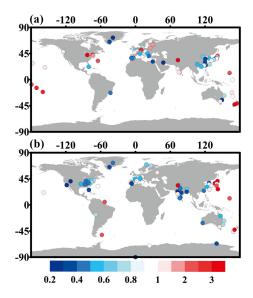


Figure 8. Annual depositional fluxes of 210 Pb are plotted against annual precipitation for 10° latitudinal bands.


and 0.04 to 3.6 cm s^{-1} (mean: 1.1 cm s^{-1} ; n = 30) (McNeary and Baskaran, 2003). A summary of deposition velocity from 10 different stations is also given in McNeary and Baskaran (2003). Earlier studies suggested that at continental sites V_d of ⁷Be will be higher than V_d of ²¹⁰Pb using the ground level as the reference, which is an artifact in the manner in which the calculation is made (Turekian et al., 1983; Todd et al., 1989; McNeary and Baskaran, 2003). However, later works observed opposite results (Dueñas et al., 2005, 2017; Lozano et al., 2011; Mohan et al., 2019). The independent t test analysis indicates that at the 0.05 level the $V_{\rm d}$ calculated by ⁷Be and ²¹⁰Pb are not significantly different in the global dataset, which suggests that ⁷Be and ²¹⁰Pb attach onto the aerosols by similar mechanisms (Winkler et al., 1998; Papastefanou, 2006) and are affected by similar deposition processes (Lozano et al., 2013).

3.5 Investigations of global atmospheric dynamics and climate changes

Developing numerical models in which aerosols, chemistry, radiation, and clouds interact with one another and with at-

Figure 9. Global distribution of (a) $^{7}\text{Be} / ^{210}\text{Pb}$ activity ratio and (b) $^{7}\text{Be} / ^{210}\text{Pb}$ depositional flux ratio. Note that the color bar below applies to both figures.

Figure 10. Global distribution of deposition velocities (V_d) of aerosols (cm s⁻¹) obtained from (**a**) ⁷Be and (**b**) ²¹⁰Pb. Note that the color bar below applies to both figures.

mospheric dynamics is important for understanding and predicting global climate changes (Brost et al., 1991). In such atmospheric dynamic models, the major uncertainty is from the parameterization of subgrid-scale processes such as precipitation scavenging, vertical transport, and radiative effect. Taken together, the cosmogenic ⁷Be and terrigenous ²¹⁰Pb offer an excellent tool in investigating wet scavenging and vertical transport in global models (Liu et al., 2001).

A set of data obtained prior to the 1990s was used to compare simulated results in global models such as ECHAM2 (Brost et al., 1991; Feichter et al., 1991), ECMWF (Rehfeld and Heimann, 1995), chemical transport model (CTM) based on GISS GCM (Balkanski et al., 1993; Koch et al., 1996), GEOS-CHEM (Liu et al., 2001), LMDz (Preiss and Genthon, 1997; Heinrich and Pilon, 2013), and GMI CTM (Liu et al., 2016). By simulating the ratio of $^{7}\text{Be} / ^{210}\text{Pb}$, Koch et al. (1996) eliminated the error associated with the effect of precipitation and provided a better measure of vertical transport. After correcting the cross-tropopause transport, simulation of observed ⁷Be and ²¹⁰Pb surface concentrations and depositional fluxes with no significant global bias was obtained (Liu et al., 2001). Note that the spatial coverage of the dataset used in the previous modeling work was only partial and thus limited the statistical significance of comparisons of simulated and observed results (Feichter et al., 1991). Additional work with more data is needed for detailed comparison and successful validation of models (Brost et al., 1991). The size of the ⁷Be and ²¹⁰Pb datasets has greatly increased in the last 3 decades, and our new dataset is expected to lay a foundation for developing better parameterizations and to contribute to modeling efforts.

3.6 Soil erosion, aquatic particle dynamics, and ocean surface process studies

The atmospheric depositional flux data of ⁷Be and ²¹⁰Pb are useful in utilizing these nuclides as tracers for soil erosion and redistribution studies in terrestrial environments (Mabit et al., 2008) and particle dynamics studies in aquatic environments (e.g., Du et al., 2012; Matisoff, 2014). The basic principle involved in using ⁷Be or ²¹⁰Pb_{ex} as soil tracers are the same, which is to compare the measured inventory of ⁷Be or 210 Pb_{ex} (Bq m⁻²) at a sampling point with the inventory at an undisturbed (or reference) site (Blake et al., 1999; Walling and He, 1999). Depletion of the inventory means that soil erosion has occurred, whereas enrichment provides evidence of accumulation of surficial soil. The first step in these studies is to select a suitable undisturbed site and obtain the reference inventory (Mabit et al., 2009). However, as human activity intensifies, such undisturbed sites are not always readily available. In aquatic systems (including rivers, lakes, estuaries, and coasts), the mass balance models of ⁷Be and ²¹⁰Pbex have become powerful tools to understand the sediment source, transportation and resuspension processes (e.g., Wieland et al., 1991; Feng et al., 1999; Jweda et al., 2008; Huang et al., 2013; Mudbidre et al., 2014). In such models, the atmospheric depositional input of ⁷Be and ²¹⁰Pb is a required source term. Furthermore, the ⁷Be / ²¹⁰Pb_{ex} activity ratio can be used to identify the source area of sediments (Whiting et al., 2005; Jweda et al., 2008; Wang et al., 2021), to quantify the age of sediments (Matisoff et al., 2005; Saari et al., 2010), and to determine the transport distance of suspended particles (Bonniwell et al., 1999; Matisoff et al., 2002). Thus, the atmospheric depositional flux data of ^{7}Be and ²¹⁰Pb are also important for tracing particle dynamics in aquatic systems.

The atmospheric depositional flux (or ocean inventory) data of ⁷Be serve as an indispensable parameter for tracing surface ocean process (e.g., subduction, upwelling, and depositional flux of trace metals) (Kadko, 2017; Kadko and Olsen, 1996; Kadko et al., 2015). Due to the low activity of ⁷Be in open-ocean waters, usually 400–700 L of seawater is needed, which imposes some limitations for sampling, especially for deep layers. This constraint has limited its application. If the ⁷Be ocean inventory can be accurately estimated, the collection of a large volume of seawater can be avoided and the application of ⁷Be in open ocean will be expanded.

Scientific data are not simply the outputs of research, but they also provide inputs to new hypotheses, extending research and enabling new scientific insights (Tenopir et al., 2011). Our dataset provides a forum in which a large amount of ⁷Be and ²¹⁰Pb atmospheric depositional flux data for the above-mentioned research communities. This database will help in identifying data gaps and evaluating the empirical relations between ⁷Be and ²¹⁰Pb depositional fluxes and annual precipitation (Table 2). Researchers can rely on previously collected data in planning their research, without additional monitoring of ⁷Be and/or ²¹⁰Pb depositional fluxes. Even for those areas with data gaps, the empirical equations between ⁷Be and ²¹⁰Pb depositional fluxes and annual precipitation provide an empirical method for estimating fluxes, especially for ⁷Be, as ⁷Be depositional flux is independent of longitude and is constant over broad latitudinal bands. In summary, the atmospheric depositional flux data presented in this dataset, along with the meta-analysis of the data, will be useful in the investigations of soil erosion studies in terrestrial environments, particle dynamics studies in aquatic systems, and surface mixing process studies in open ocean.

3.7 Gaps and recommendations

Our dataset is a compilation of most of the published results in international peer-reviewed journal articles. Although the spatial coverage of this dataset is significant, the available sites are unevenly distributed. Compared to spatial and temporal coverage of depositional flux data, the coverage of air concentration data is much larger. The air concentration measurements from deep-ocean sites are limited, but the data from coastal oceanic sites are adequate; however, the depositional flux measurement at oceanic sites is rare. Concerning air concentrations, areas such as Europe, East Asia, eastern Oceania, and the eastern United States are well covered, whereas other areas such as the African continent and northern Asia are limited. A similar spatial coverage pattern exists for the depositional flux of these nuclides, but the regional gaps are more notable, especially for ⁷Be flux data, which are almost non-existent for the Antarctic and African continents. In addition, it needs to be emphasized that the number

of sampling sites, in which both concentration and flux of ⁷Be and ²¹⁰Pb were measured simultaneously, are limited.

We recommend that future studies pay more attention to those areas that are currently undersampled or unsampled to better characterize the expected global variability in the ⁷Be and ²¹⁰Pb air concentrations and depositional fluxes by measuring both nuclides simultaneously to obtain more data, as well as the ^{7}Be / ^{210}Pb ratio, and estimate the deposition velocity of aerosols. In areas with very limited precipitation, such as deserts, it is expected that the dry fallout will dominate the bulk depositional flux, and quantification of the role of dry fallout in the removal of these nuclides will provide insights into the removal of other analog species. As mentioned earlier, combining cosmogenic ⁷Be with ²¹⁰Pb that predominantly originates from the Earth's surface will be useful to trace species that originate from the Earth's surface, such as Hg, SO_4^{2-} , NO_3^{-} , and those that originate in the upper atmosphere, such as O_3 . The size distribution of aerosol particles carrying ⁷Be and ²¹⁰Pb is crucial for understanding atmospheric behavior and tracing analogues, and such studies also need to be conducted. Besides, the troposphere contains \sim 99 % of global water vapor with < 1 % in the stratosphere. The deposition velocity of aerosol in the stratosphere is very low ($\sim 4 \times 10^{-3}$ cm s⁻¹; Junge, 1963) with no precipitation. Thus, the ⁷Be concentration is governed by local production, zonal and vertical downward transport, and its decay. In the middle and upper troposphere where precipitation is much less frequent, the removal rate of aerosols is also slow. Collection of air samples in that part of the atmosphere will provide useful information on the total deposition velocity of aerosols (Lal and Baskaran, 2012).

Finally, we acknowledge that the seasonal data of ⁷Be and ²¹⁰Pb have not been included in the current version of dataset because compiling the seasonal data is more challenging than compiling the annual data. Unlike the annual data, most of the published seasonal data are presented in graphs, without being given in tables, and in some cases the graph quality was poor, and thus the precision of the data extraction is expected to be poor. Besides, in some papers, although seasonal data were measured, only the annual data were provided. Thus, the comprehensive compilation of seasonal data of ⁷Be and ²¹⁰Pb may need collaboration with, and data sharing from, the scientific community. The compilation of seasonal data is expected to be useful to assess seasonal variability of ⁷Be and ²¹⁰Pb and understand the relationship between these changes and influencing factors, such as atmospheric dynamics, meteorological conditions, and geographic location, on a global scale. The seasonal data can also be useful in evaluating the seasonality of transport in global atmospheric models.

4 Data formats and availability

For clarity and convenience, four separate worksheets, each named as ⁷Be or ²¹⁰Pb annual air concentration and ⁷Be or ²¹⁰Pb annual atmospheric flux, are available in one Microsoft Excel[®] file, although sometimes these data come from the same article. In addition, the data of the ⁷Be / ²¹⁰Pb air concentration ratio, ⁷Be / ²¹⁰Pb depositional flux ratio, and deposition velocities for ⁷Be and ²¹⁰Pb are also presented. The dataset can be downloaded from Zenodo (https://doi.org/10.5281/zenodo.4785136, Zhang et al., 2021). It is free for scientific applications, but the free availability does not constitute a license to reproduce or publish it. The compilation of seasonal data is ongoing, and the dataset will be updated in a future effort.

5 Conclusions

This paper summarizes the global dataset of ⁷Be and ²¹⁰Pb for their concentration in atmospheric air and their depositional fluxes from 456 publications spanning the period from 1955 to early 2020. The calculated activity ratios of ⁷Be / ²¹⁰Pb and deposition velocity of aerosols are also reported. Some noteworthy spatial gaps in the dataset are the African continent, northern Asia, and Antarctica (only for ⁷Be flux). Despite these gaps, our dataset is the largest compilation of ⁷Be and ²¹⁰Pb air concentration and depositional flux up to date and could be used to better understand the transport processes of air masses and depositional processes of aerosols. This dataset not only lays a solid foundation to develop better parameterizations contributing to future modeling efforts but also supplies a basic parameter for tracing soil erosion on land, particle dynamics in aquatic systems, and ocean surface processes using ⁷Be and/or ²¹⁰Pb.

Appendix A: List of references in the dataset

Aaboe et al. (1981), Aba et al. (2016), Ahmed et al. (2004), Akata et al. (2008, 2015, 2018a, 2018b), Akram et al. (1999), Al-Azmi et al. (2001), Alegría et al. (2010), Ali et al. (2011a, b), Alonso-Hernández et al. (2004, 2014), Amano and Kasai (1981), Anand and Rangarajan (1990), Anderson et al. (1960), Andres (2018), Appleby et al. (2002, 2003, 2019), Arimoto et al. (1999), Arkian et al. (2010), Arnold and Al-Salih (1955), Azahra et al. (2003, 2004), Azimov et al. (2011, 2017), Bachhuber and Bunzl (1992), Baeza et al. (1996, 2016), Bas et al. (2017), Baskaran and Swarzenski (2007), Baskaran et al. (1993), Batraov et al. (2016), Bazarbaev et al. (2012), Begy et al. (2016), Beks et al. (1998), Belmaker et al. (2011), Belyaev et al. (2004), Benitez-Nelson and Buesseler (1999), Benmansour et al. (2013), Bettoli et al. (1995), Bikkina et al. (2015), Blake et al. (2009), Blazej and Mietelski (2014), Bleichrodt (1978), Bleichrodt and van Abkoude (1963), Bourcier et al. (2011), Brandt et al. (2018), Branford et al. (2004), Brost et al. (1991), Brown et al. (1989), Buck et al. (2019), Buraeva et al. (2013a, 2013b), Burton and Stewart (1960), Caillet et al. (2001), Cámara-Mor et al. (2011), Cannizzaro et al. (1999, 2004), Canuel et al. (1990), Cao et al. (2018), Carpenter et al. (1981), Carvalho et al. (1995, 2013), Chae and Kim (2019), Chae et al. (2011), Chang et al. (2008), Chao et al. (2012, 2014), Chen (2014), Chen et al. (2016, 2020), Chham et al. (2017, 2018, 2019), Cho et al. (2011), Clifton et al. (1995), Conaway et al. (2013), Courtier et al. (2017), Crecelius (1981), Crozaz and Langway (1966), Crozaz et al. (1964), Cruikshank et al. (1956), Cruz et al. (2019), Cui et al. (2012), Daish et al. (2005), Damatto et al. (2005), Damnati et al. (2013), D'Amours et al. (2013), de Tombeur et al. (2020), Deng et al. (2020), Dibb (1989, 1990a, 1990b, 1992, 2007), Dibb and Jaffrezo (1993), Dibb et al. (1994), Ding et al. (2017), Dlugosz-Lisiecka (2019), Doering and Akber (2008a, 2008b), Doering and Saey (2014), Doering et al. (2006), Doi et al. (2007), Dominik et al. (1987, 1989), Dörr and Münnich (1991), Dovhyi et al. (2017), Du et al. (2008, 2015), Du and Walling (2012), Dueñas et al. (1999, 2004, 2005, 2009, 2011, 2017), Durana et al. (1996), Dutkiewicz and Husain (1985), El-Hussein et al. (2001), Elsässer et al. (2011), Eriksson et al. (2004), Fan et al. (2013), Fang et al. (2013), Feely et al. (1989), Filizok and Ugur Gorgun (2019), Filizok et al. (2013), Fogh et al. (1999), Fukuyama et al. (2008), Fuller and Hammond (1983), Gäggeler et al. (1983, 1995), Gai et al. (2015), García-Orellana et al. (2006), Garimella et al. (2003), Garspar et al. (2013), Gavini et al. (1974), Gerasopoulos et al. (2001), Gonzalez-Gomez et al. (2006), Gordo et al. (2015), Grabowska et al. (2003), Graham et al. (2003), Graustein and Turekian (1986, 1989), Grossi et al. (2016), Gustafson et al. (1961), Halstead et al. (2000), Harvey and Matthews (1989), Hasebe et al. (1981), Hasegawa et al. (2007), Haskell et al. (2015), He and Walling (1997), He et al. (2018), Heikkilä et al. (2008), Heinrich et al. (2007), Hernández et al. (2005, 2007, 2008), Hernandez-Ceballos et al. (2015), Hicks and Goodman (1977), Hirose et al. (2004), Hötzl and Winkler (1987), Houali et al. (2019), Hu (2016), Hu and Zhang (2019), Hu et al. (2020), Huang et al. (2019), Huh and Su (2004), Huh et al. (2006), Igarashi et al. (1998), Ioannidou and Paatero (2014), Ioannidou and Papastefanou (2006), Ioannidou et al. (2005, 2019), Irlweck et al. (1997), Isakar et al. (2016), Ishikawa et al. (1995), Itoh and Narazaki (2017), Itthipoonthanakorn et al. (2019), Iurian et al. (2013), Jankovic et al. (2014), Jasiulionis and Wershofen (2005), Jia and Jia (2014), Jia et al. (2003), Jiang (1999), Joshi (1985), Joshi et al. (1969), Juri Ayub et al. (2009), Kadko (2000), Kadko and Johns (2011), Kadko and Olson (1996), Kadko and Prospero (2011), Kadko and Swart (2004), Kadko et al. (2015, 2016), Kapala et al. (2018), Karwan et al. (2016), Kato et al. (2010), Khan et al. (2008, 2009), Khodadadi et al. (2018), Kikuchi et al. (2009), Kim et al. (1998, 1999, 2000, 2005), Kitto et al. (2005, 2006), Klaminder et al. (2006), Koide et al. (1977, 1979), Kolb (1970), Kownacka et al. (1990), Krmar et al. (2015), Kulan et al. (2006), Kurata and Taunogai (1986), Laguionie et al. (2014), Lal et al. (1979), Lambert et al. (1990), Lamborg et al. (2000, 2013), Landis et al. (2014), Larsen et al. (1995), Lee et al. (1985, 2002, 2015), Leppanen (2019), Le Roux et al. (2008), Li et al. (2009, 2013, 2017a, b), Likuku (2006), Likuku et al. (2006), Lin et al. (2014), Lindblom (1969), Liu et al. (2014), Lockhart et al. (1966), Lozano et al. (2011, 2012, 2013), Lujanienë (2003), Luyanas et al. (1970), Mabit et al. (2009), Maenhaut et al. (1979), Magno et al. (1970), Marx et al. (2005), Mattsson (1970), McNeary and Baskaran (2003), Megumi et al. (2000), Mélières et al. (2003), Men et al. (2016), Meusburger et al. (2016, 2018), Mietelski et al. (2017), Milton et al. (2001), Miralles et al. (2004), Mohan et al. (2018, 2019), Mohery et al. (2014, 2016), Momoshima et al. (2006), Monaghan (1989), Monaghan and Holdsworth (1990), Monaghan et al. (1986), Moore and Poet (1976), Muramatsu et al. (2008), Narazaki and Fujitaka (2009), Narazaki et al. (2003), Neroda et al. (2016), Nijampurkar and Clausen (1990), Nijampurkar and Rao (1993), Nijampurkar et al. (2002), Noithong et al. (2019), Nozaki et al. (1978), O'Farrell et al. (2007), Olsen et al. (1985), Othman et al. (1998), Paatero and Hatakka (2000), Paatero et al. (2003, 2010, 2015, 2017), Pacini et al. (2011, 2015), Padilla et al. (2019), Pan et al. (2011, 2017), Papastefanou and Bondietti (1991), Papastefanou and Ioannidou (1991), Papastefanou et al. (1995), Parker (1962), Peirson (1963), Peirson et al. (1966), Peng et al. (2019), Perreault et al. (2017), Persson (2015), Peters et al. (1997), Pfahler et al. (2015), Pfitzner et al. (2004), Pham et al. (2011, 2013), Picciotto et al. (1964, 1968), Piñero-García and Ferro-García (2013), Piñero-García et al. (2012, 2015), Poet et al. (1972), Poreba et al. (2019), Porto and Walling (2012), Porto et al. (2006, 2009, 2013, 2014, 2016), Pourchet et al. (1997), Preiss et al. (1996), Prospero et al. (1995), Qian et al. (1985), Rabesiranana et al. (2016), Rajačić et al. (2015, 2016), Raksawong

F. Zhang et al.: Global dataset of atmospheric ⁷Be and ²¹⁰Pb measurements

et al. (2017), Ram and Sarin (2012), Rangarajan et al. (1966, 1975, 1986), Rastogi and Sarin (2008), Realo et al. (2004, 2007), Reiter et al. (1983), Renfro et al. (2013), Rodas Ceballos et al. (2016), Ródenas et al. (1997), Rodriguez-Perulero et al. (2019), Saari et al. (2010), Sabuti and Mohamed (2016), Sakurai et al. (2005, 2011), Saleh and Abdel-Halim (2017), Sambayev et al. (2019), Samolov et al. (2014), San Miguel et al. (2019), Sanchez-Cabeza et al. (2007), Sanders et al. (2011), Sato et al. (1994, 2003), Savva et al. (2018), Schuler et al. (1991), Schumann and Stoeppler (1963), Shapiro and Forbes-Resha (1976), Sheets and Lawrence (1999), Shelley et al. (2017), Shi et al. (2011, 2017), Shleien and Friend (1966), Short et al. (2007), Silker (1972), Simon et al. (2009), Smith et al. (1997), Song et al. (2003, 2015), Stamoulis et al. (2018), Steinmann et al. (1999, 2013), Stromsoe et al. (2016), Su et al. (2003), Sugihara et al. (2000), Suzuki and Shiono (1995), Suzuki et al. (1999, 2004, 2017), Sykora et al. (2017), Talbot and Andren (1983), Tan et al. (2013, 2016), Tanahara et al. (2014), Tanaka and Turekian (1995), Tateda and Iwao (2008), Taylor et al. (2016), Terzi and Kalinowski (2017), Thang et al. (2018), Thompson et al. (1984), Thor and Zutshi (1958), Todd et al. (1989), Todorovic et al. (1999, 2000, 2005, 2010), Tokieda et al. (1996), Tositti et al. (2014), Tsunogai et al. (1985, 1988), Tuo et al. (2018), Turekian and Cochran (1981), Turekian et al. (1977, 1983), Uchida et al. (2009), Uematsu et al. (1994), Ueno et al. (2003), Uğur et al. (2011), Uhlář et al. (2014), Valles et al. (2009), Van Metre and Fuller (2009), Vecchi and Valli (1997), Vecchi et al. (2005), Vogler et al. (1996), Von Gunten and Moser, (1993), Wagenbach et al. (1988), Wakiyama et al. (2010), Wallbrink and Murray (1994, 1996), Walling and He (1999), Walling et al. (2003), Walton and Fried (1962), Wan et al. (2010), Wang (2010, 2011), B. Wang et al. (2014), Z. Wang et al. (2014), Weiss and Naidu (1986), Wells et al. (2012), Windom (1969), Winkler and Rosner (2000), Winkler et al. (1998), Wu et al. (2011), Yamagata et al. (2019), Yamamoto et al. (2006), Yang et al. (1999, 2011, 2013), Yi et al. (2005, 2007), Yoshimori (2005), Young and Silker (1980), Yu et al. (2017, 2018), Zanis et al. (1999, 2003), Zhang et al. (2003, 2006, 2014, 2016, 2018, 2019), Zhang and Jiang (2018), Zheng et al. (2005, 2007), and Zhu and Olsen (2009).

Author contributions. FZ was responsible for most of the writing of this article, along with the assembly of the data and preparation of the figures. QZ and YW assisted FZ in compiling the data. JW, MB, QZ, PJ and JD contributed to the review of the manuscript.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. We thank all of the scientists conducting research on ⁷Be and/or ²¹⁰Pb, whose previous work and published data made our compilation possible. Fule Zhang would like to thank Yufeng Chen for his assistance in preparing graphics.

Financial support. This research has been supported by the Science and Technology Plan Projects of Guangxi Province (2017AB30024), the 111 Program (BP0820020), the ECNU Academic Innovation Promotion Program for Excellent Doctoral Students, and the China Postdoctoral Science Foundation (2021M693780).

Review statement. This paper was edited by Nellie Elguindi and reviewed by two anonymous referees.

References

- Aaboe, E., Dion, E. P., and Turekian, K. K.: ⁷Be in Sargasso Sea and Long Island Sound waters, J. Geophys. Res., 86, 3255–3257, 1981.
- Aba, A., Al-Dousari, A. M., and Ismaeel, A.: Depositional characteristics of ⁷Be and ²¹⁰Pb in Kuwaiti dust, J. Radioanal. Nucl. Ch., 307, 15–23, 2016.
- Ahmed, A. A., Mohamed, A., Ali, A. E., Barakat, A., Abd El-Hady, M., and El-Hussein, A.: Seasonal variations of aerosol residence time in the lower atmospheric boundary layer, J. Environ. Radioactiv., 77, 275–283, 2004.
- Akata, N., Kawabata, H., Hasegawa, H., Sato, T., Chikuchi, Y., Kondo, K., Hisamatsu, S., and Inaba, J.: Total deposition velocities and scavenging ratios of ⁷Be and ²¹⁰Pb at Rokkasho, Japan, J. Radioanal. Nucl. Ch., 277, 347–355, 2008.
- Akata, N., Hasegawa, H., Kawabata, H., Kakiuchi, H., Chikuchi, Y., Shima, N., Suzuki, T., and Hisamatsu, S.: Atmospheric deposition of radionuclides (⁷Be, ²¹⁰Pb, ¹³⁴Cs, ¹³⁷Cs and ⁴⁰K) during 2000–2012 at Rokkasho, Japan, and impact of the Fukushima Dai-ichi Nuclear Power Plant accident, J. Radioanal. Nucl. Ch., 303, 1217–1222, 2015.
- Akata, N., Shiroma, Y., Furukawa, M., Kato, A., Kakiuchi, H., Hosoda, M., Kanai, Y., and Yanagisawa, F.: Concentrations of chemical components, including ²¹⁰Pb, present in aerosols collected at Naha, Okinawa prefecture, a sub-tropical region of Japan, Jpn. J. Health. Phys., 53, 17–22, 2018a.
- Akata, N., Shiroma, Y., Ikemoto, N., Kato, A., Hegedus, M., Tanaka, M., Kakiuchi, H., and Kovacs, A.: Atmospheric concentration and deposition flux of cosmogenic beryllium-7 at Toki, central part of Japan, Radiat. Environ. Med., 7, 47–52, 2018b.

- Akram, M., Aslam, M., Shafique, M., Jabbar, A., and Orfi, S. D.: Monitoring of radioactive air pollutants in the atmosphere of Karachi, Sindh, using gamma spectrometry technique, Nucleus, 36, 143–145, 1999.
- Al-Azmi, D., Sayed, A. M., and Yatim, H. A.: Variations in ⁷Be concentrations in the atmosphere of Kuwait during the period 1994 to 1998, Appl. Radiat. Isot., 55, 413–417, 2001.
- Alegría, N., Herranz, M., Idoeta, R., and Legarda, F.: Study of ⁷Be activity concentration in the air of northern Spain, J. Radioanal. Nucl. Ch., 286, 347–351, 2010.
- Ali, N., Khan, E. U., Akhter, P., Khattak, N. U., Khan, F., and Rana, M. A.: The effect of air mass origin on the ambient concentrations of ⁷Be and ²¹⁰Pb in Islamabad, Pakistan, J. Environ. Radioactiv., 102, 35–42, 2011a.
- Ali, N., Khan, E. U., Akhter, P., Rana, M. A., Rajput, M. U., Khattak, N. U., Malik, F., and Hussain, S.: Wet depositional fluxes of ²¹⁰Pb- and ⁷Be-bearing aerosols at two different altitude cities of North Pakistan, Atmos. Environ., 45, 5699–5709, 2011b.
- Alonso-Hernández, C. M., Aguila, H. C., Asencio, M. D., and Caravaca, A. M.: Reconstruction of ¹³⁷Cs signal in Cuba using ⁷Be as tracer of vertical transport processes in the atmosphere, J. Environ. Radioactiv., 75, 133–142, 2004.
- Alonso-Hernández, C. M., Morera-Gómez, Y., Cartas-Águila, H., and Guillén-Arruebarrena, A.: Atmospheric deposition patterns of ²¹⁰Pb and ⁷Be in Cienfuegos, Cuba, J. Environ. Radioactiv., 138, 149–155, 2014.
- Amano, H. and Kasai, A.: Concentration of ⁷Be in the lower atmosphere and fallout rate in Tokai, Jpn. J. Health. Phys., 16, 99–103, 1981 (in Japanese).
- Anand, S. J. S. and Rangarajan, C.: Studies on the activity ratios of polonium-210 to lead-210 and their dry-deposition velocities at Bombay in India, J. Environ. Radioactiv., 11, 235–250, 1990.
- Anderson, W., Bentley, R. E., Parker, R. P., Crookall, J. O., and Burton, L. K.: Comparison of fission product and beryllium-7 concentrations in the atmosphere, Nature, 187, 550–553, 1960.
- Andres, P.: Determination of atmospheric concentration of beryllium-7 at ground level, Radiat. Prot. Environ., 41, 148–151, 2018.
- Andrews, J. E., Hartin, C., and Buesseler, K. O.: ⁷Be analyses in seawater by low background gamma-spectroscopy, J. Radioanal. Nucl. Ch., 277, 253–259, 2008.
- Appleby, P. G.: Three decades of dating recent sediments by fallout radionuclides: a review, Holocene, 18, 83–93, 2008.
- Appleby, P. G., Koulikov, A. O., Camarero, L., and Ventura, M.: The input and transmission of fallout radionuclides through Redó, a high mountain lake in the Spanish Pyrenees, Water Air Soil Poll., 2, 19–31, 2002.
- Appleby, P. G., Haworth, E. Y., Michel, H., Short, D. B., Laptev, G., and Piliposian, G. T.: The transport and mass balance of fallout radionuclides in Blelham Tarn, Cumbria (UK), J. Paleolimnol., 29, 459–473, 2003.
- Appleby, P. G., Semertzidou, P., Piliposian, G. T., Chiverrell, R. C., Schillereff, D. N., and Warburton, J.: The transport and mass balance of fallout radionuclides in Brotherswater, Cumbria (UK), J. Paleolimnol., 62, 389–407, 2019.
- Arimoto, R., Snow, J. A., Graustein, W. C., Moody, J. L., Ray, B. J., Duce, R. A., Turekian, K. K., and Maring, H. B.: Influences of atmospheric transport pathways on radionuclide activities in

aerosol particles from over the North Atlantic, J. Geophys. Res., 104, 21301–21316, 1999.

- Arkian, F., Meshkatee, A. H., and Bidokhti, A. A.: The effects of large-scale atmospheric flows on berylium-7 activity concentration in surface air, Environ. Monit. Assess., 168, 429–439, 2010.
- Arnold, J. R. and Al-Salih, H. A.: Beryllium-7 produced by cosmic rays, Science, 121, 451–453, 1955.
- Azahra, M., Camacho-García, A., González-Gómez, C., López-Peñalver, J. J., and El Bardouni, T.: Seasonal ⁷Be concentrations in near-surface air of Granada (Spain) in the period 1993–2001, Appl. Radiat. Isot., 59, 159–164, 2003.
- Azahra, M., González-Gómez, C., López-Peñalver, J. J., El Bardouni, T., Camacho Garcí a, A., Boukhal, H., El Moussaoui, F., Chakir, E., Erradi, L., Kamili, A., and Sekaki, A.: The seasonal variations of ⁷Be and ²¹⁰Pb concentrations in air, Radiat. Phys. Chem., 71, 789–790, 2004.
- Azimov, A. N., Safarov, A. N., Kungurov, F. R., and Muminov, A. T.: ⁷Be variation in monthly atmospheric precipitation in 2002– 2005 in Samarkand, Atom. Energy, 111, 151–154, 2011.
- Azimov, A. N., Mukhamedov, A. K., Safarov, A. A., Bazarbaev, N. N., Inoyatov, A. K., Muminov, I. T., Omonov, K. S., Rashidova, D. S., Kholbaev, I. K., and Eshkobilov, S. K.: Atmospheric Fallout of ⁷Be in 2009–2014 in Tashkent and Samarkand, Atom. Energy, 123, 63–67, 2017.
- Bachhuber, H. and Bunzl, K.: Background levels of atmospheric deposition to ground and temporal variation of ¹²⁹I, ¹²⁷I, ¹³⁷Cs and ⁷Be in a rural area of Germany, J. Environ. Radioactiv., 16, 77–89, 1992.
- Baeza, A., Delrío, L. M., Jiménez, A., Miró, C., Paniagua, J. M., and Rufo, M.: Analysis of the temporal evolution of atmospheric ⁷Be as a vector of the behavior of other radionuclides in the atmosphere, J. Radioanal. Nucl. Ch., 207, 331–344, 1996.
- Baeza, A., Rodriguez-Perulero, A., and Guillen, J.: Anthropogenic and naturally occurring radionuclide content in near surface air in Caceres (Spain), J. Environ. Radioactiv., 165, 24–31, 2016.
- Balkanski, Y. J., Jacob, D. J., Gardner, G. M., Graustein, W. C., and Turekian, K. K.: Transport and residence times of tropospheric aerosols inferred from a global three-dimension simulation of ²¹⁰Pb, J. Geophys. Res., 98, 20573–20586, 1993.
- Bas, M. D., Ortiz, J., Ballesteros, L., and Martorell, S.: Evaluation of a multiple linear regression model and SARIMA model in forecasting ⁷Be air concentrations, Chemosphere, 177, 326–333, 2017.
- Baskaran, M.: A search for the seasonal variability on the depositional fluxes of ⁷Be and ²¹⁰Pb. J. Geophys. Res., 100, 2833– 2840, 1995.
- Baskaran, M.: Po-210 and Pb-210 as atmospheric tracers and global atmospheric Pb-210 fallout: a Review. J. Environ. Radioactiv., 102, 500–513, 2011.
- Baskaran, M. and Santschi, P. H.: The role of particles and colloids in the transport of radionuclides in coastal environments of Texas, Mar. Chem., 43, 95–114, 1993.
- Baskaran, M. and Swarzenski, P. W.: Seasonal variations on the residence times and partitioning of short-lived radionuclides (²³⁴Th, ⁷Be and ²¹⁰Pb) and depositional fluxes of ⁷Be and ²¹⁰Pb in Tampa Bay, Florida, Mar. Chem., 104, 27–42, 2007.
- Baskaran, M., Coleman, C. H., and Santschi, P. H.: Atmospheric depositional fluxes of ⁷Be and ²¹⁰Pb at Galveston and College Station, Texas, J. Geophys. Res., 98, 20555–20571, 1993.

- Baskaran, M., Ravichandran, M., and Bianchi, T. S.: Cycling of ⁷Be and ²¹⁰Pb in a high DOC, shallow, turbid estuary of south-east Texas, Estuar. Coast. Shelf S., 45, 165–176, 1997.
- Baskaran, M., Mudbidre, R., and Schweitzer, L.: Quantification of Po-210 and Pb-210 as tracer of sediment resuspension rate in a shallow riverine system: case study from Southeast Michigan, USA, J. Environ. Radioact., 222, 106339, https://doi.org/10.1016/j.jenvrad.2020.106339, 2020.
- Batraov, G. F., Kremenchutskii, D. A., Nazarov, A. B., and Kholoptsev, A. V.: Factors influence on atmospheric concentrations of beryllium-7 (⁷Be) in the Chernobyl zone, Probl. Mod. Sci. Educ., 45, 248–254, https://doi.org/10.20861/2304-2338-2016-45-002, 2016.
- Bazarbaev, N. N., Inoyatov, A. K., Muminov, I. T., Rashidova, D. S., Mukhamedov, A. K., and Safarov, A. N.: Cosmogenic ⁷Be fallout near Samarkand in 2002–2009, Atom. Energy, 111, 295–300, 2012.
- Begy, R. C., Kovacs, T., Veres, D., and Simon, H.: Atmospheric flux, transport and mass balance of ²¹⁰Pb and ¹³⁷Cs radiotracers in different regions of Romania, Appl. Radiat. Isot., 111, 31–39, 2016.
- Beks, J. P., Eisma, D., and van der Plicht, J.: A record of atmospheric ²¹⁰Pb deposition in The Netherlands, Sci. Total. Environ., 222, 35–44, 1998.
- Belmaker, R., Lazar, B., Stein, M., and Beer, J.: Short residence time and fast transport of fine detritus in the Judean Desert: Clues from ⁷Be in settled dust, Geophys. Res. Lett., 38, L16714, https://doi.org/10.1029/2011GL048672, 2011.
- Benninger, L. K., Lewis, D. M., and Turekian, K. K.: The use of natural Pb-210 as a heavy metal tracer in the river-estuarine system, in: Marine Chemistry in the Coastal Environment/ACS Symposium Serious 18, Washington, DC, USA, 202–210, 1975.
- Belyaev, V. R., Wallbrink, P. J., Golosov, V. N., Murray, A. S., and Sidorchuk, A. Y.: Reconstructing the development of a gully in the upper Kalaus basin, Stavropol region (southern Russia), Earth Surf. Proc. Land., 29, 323–341, 2004.
- Benitez-Nelson, C. R. and Buesseler, K. O.: Phosphorus 32, phosphorus 37, beryllium 7, and lead 210: Atmospheric fluxes and utility in tracing stratosphere/troposphere exchange, J. Geophys. Res., 104, 11745–11754, 1999.
- Benmansour, M., Mabit, L., Nouira, A., Moussadek, R., Bouksirate, H., Duchemin, M., and Benkdad, A.: Assessment of soil erosion and deposition rates in a Moroccan agricultural field using fallout ¹³⁷Cs and ²¹⁰Pb_{ex}, J. Environ. Radioactiv., 115, 97–106, 2013.
- Bettoli, M. G., Cantelli, L., Degetto, S., Tositti, L., Tubertini, O., and Valcher, S.: Preliminary investigations on ⁷Be as a tracer in the study of environmental processes, J. Radioanal. Nucl. Ch., 190, 137–147, 1995.
- Bikkina, S., Sarin, M. M., and Chinni, V.: Atmospheric ²¹⁰Pb and anthropogenic trace metals in the continental outflow to the Bay of Bengal, Atmos. Environ., 122, 737–747, 2015.
- Blake, W., Walling, D. E., and He, Q.: Fallout beryllium-7 as a tracer in soil erosion investigations, Appl. Radiat. Isotopes, 51, 599–605, 1999.
- Blake, W. H., Wallbrink, P. J., Wilkinson, S. N., Humphreys, G. S., Doerr, S. H., Shakesby, R. A., and Tomkins, K. M.: Deriving hillslope sediment budgets in wildfire-affected forests using fallout radionuclide tracers, Geomorphology, 104, 105–116, 2009.

- Blazej, S. and Mietelski, J. W.: Cosmogenic ²²Na, ⁷Be and terrestrial ¹³⁷Cs, ⁴⁰K radionuclides in ground level air samples collected weekly in Krakow (Poland) over years 2003–2006, J. Radioanal. Nucl. Chem., 300, 747–756, 2014.
- Bleichrodt, J. F.: Mean tropospheric residence time of cosmic-rayproduced beryllium 7 at north temperate latitudes, J. Geophys. Res., 83, 3058–3062, 1978.
- Bleichrodt, J. F. and van Abkoude, E. R.: On the deposition of cosmic-ray-produced beryllium 7, J. Geophys. Res., 68, 5283– 5288, 1963.
- Bonniwell, E. C., Matisoff, G., and Whiting, P. J.: Determining the times and distances of particle transit in a mountain stream using fallout radionuclides, Geomorphology, 27, 75–92, 1999.
- Bonnyman, J. and Molina-Ramos, J.: Concentrations of lead-210 in rainwater in Australia during the years 1964–1970, Tech. Rep. CXRL/7, Commonw. X-Ray Radium Lab., Melbourne, 1971.
- Bourcier, L., Masson, O., Laj, P., Pichon, J. M., Paulat, P., Freney, E., and Sellegri, K.: Comparative trends and seasonal variation of ⁷Be, ²¹⁰Pb and ¹³⁷Cs at two altitude sites in the central part of France, J. Environ. Radioactiv., 102, 294–301, 2011.
- Brandt, C., Benmansour, M., Walz, L., Nguyen, L. T., Cadisch, G., and Rasche, F.: Integrating compound-specific δ^{13} C isotopes and fallout radionuclides to retrace land use type-specific net erosion rates in a small tropical catchment exposed to intense land use change, Geoderma, 310, 53–64, 2018.
- Branford, D., Fowler, D., and Moghaddam, M. V.: Study of Aerosol Deposition at a Wind Exposed Forest Edge Using ²¹⁰Pb and ¹³⁷Cs Soil Inventories, Water Air Soil Poll., 157, 107–116, 2004.
- Brost, R. A., Feichter, J., and Heimann, M.: Three-dimensional simulation of ⁷Be in a global climate model, J. Geophys. Res., 96, 22423–22445, 1991.
- Brown, L., Stensland, G. J., Klein, J., and Middleton, R.: Atmospheric deposition of ⁷Be and ¹⁰Be, Geochim. Cosmochim. Ac., 53, 135–142, 1989.
- Buck, C. S., Aguilar-Islas, A., Marsay, C., Kadko, D., and Landing, W. M.: Trace element concentrations, elemental ratios, and enrichment factors observed in aerosol samples collected during the US GEOTRACES eastern Pacific Ocean transect (GP16), Chem. Geol., 511, 212–224, 2019.
- Buraeva, E. A., Malyshevsky, V. S., Nephedov, V. C., Shramenko, B. I., Stasov, V. V., and Zorina, L. V.: Cosmogenic ⁷Be in ground level air in Rostov-on-Don (Russia) (2001–2011), Physics, arXiv [preprint], arXiv:1310.5271v1, October 2013a.
- Buraeva, E. A., Malyshevsky, V. S., Shramenko, B. I., Zorina, L. V., and Shramenko, B. I.: A record of atmospheric ²¹⁰Pb accumulation in the industrial city, Physics, arXiv [preprint], arXiv:1310.5305, October 2013b.
- Burton, W. M. and Stewart, N. G.: Use of long-lived natural radioactivity as an atmospheric tracer, Nature, 186, 584–589, 1960.
- Caillet, S., Arpagaus, P., Monna, F., and Dominik, J.: Factors controlling ⁷Be and ²¹⁰Pb atmospheric deposition as revealed by sampling individual rain events in the region of Geneva, Switzerland, J. Environ. Radioactiv., 53, 241–256, 2001.
- Cámara-Mor, P., Masque, P., García-Orellana, J., Kern, S., Cochran, J. K., and Hanfland, C.: Interception of atmospheric fluxes by Arctic sea ice: Evidence from cosmogenic ⁷Be, J. Geophys. Res., 116, C12041, https://doi.org/10.1029/2010JC006847, 2011.
- Cannizzaro, F., Greco, G., Raneli, M., Spitale, M. C., and Tomarchio, E.: Determination of ²¹⁰Pb concentration in the air at

ground-level by gamma-ray spectrometry, Appl. Radiat. Isot., 51, 239–245, 1999.

- Cannizzaro, F., Greco, G., Raneli, M., Spitale, M. C., and Tomarchio, E.: Concentration measurements of ⁷Be at ground level air at Palermo, Italy – comparison with solar activity over a period of 21 years, J. Environ. Radioactiv., 72, 259–271, 2004.
- Canuel, E. A., Martens, C. S., and Benninger, L. K.: Seasonal variations in ⁷Be activity in the sediments of Cape Lookout Bight, North Carolina, Geochim. Cosmochim. Ac., 54, 237–245, 1990.
- Cao, Z., Yang, Y., Wang, L., and Wang, K.: The activity concentration of ²¹⁰Pb and ²¹⁰Po in Hangzhou atmosphere and induced public dose assessment, Radiat. Prot., 38, 8–14, 2018 (in Chinese).
- Carpenter, R., Bennett, J. T., and Peterson, M. L.: ²¹⁰Pb activities in and fluxes to sediments of the Washington continental slope and shelf, Geochim. Cosmochim. Ac., 45, 1155–1172, 1981.
- Carvalho, F. P.: Origins and concentrations of ²²²Rn, ²¹⁰Pb, ²¹⁰Bi and ²¹⁰Po in the surface air at Lisbon, Portugal, at the Atlantic edge of the European continental landmass, Atmos. Environ., 29, 1809–1819, 1995.
- Carvalho, A. C., Reis, M., Silva, L., and Madruga, M. J.: A decade of ⁷Be and ²¹⁰Pb activity in surface aerosols measured over the Western Iberian Peninsula, Atmos. Environ., 67, 193–202, 2013.
- Chae, J. S. and Kim, G.: Large seasonal variations in fine aerosol precipitation rates revealed using cosmogenic ⁷Be as a tracer, Sci. Total. Environ., 673, 1–6, 2019.
- Chae, J. S., Byun, J. I., Yim, S. A., Choi, H. Y., and Yun, J. Y.: ⁷Be in ground level air in Daejeon, Korea, Radiat. Prot. Dosim., 146, 334–337, 2011.
- Chang, Y., Wang, X., Wang, S., and Wang, J.: Radionuclides monitoring in atmospheric aerosol samples in Xi'an, Nucl. Tech., 31, 796–800, 2008 (in Chinese).
- Chao, J. H., Chiu, Y. J., Lee, H. P., and Lee, M. C.: Deposition of beryllium-7 in Hsinchu, Taiwan, Appl. Radiat. Isot., 70, 415–422, 2012.
- Chao, J. H., Liu, C. C., Cho, I. C., and Niu, H.: Monitoring of ⁷Be in surface air of varying PM₁₀ concentrations, Appl. Radiat. Isot., 89, 95–101, 2014.
- Chen, J., Luo, S., and Huang, Y.: Scavenging and fractionation of particle-reactive radioisotopes ⁷Be, ²¹⁰Pb and ²¹⁰Po in the atmosphere, Geochim. Cosmochim. Ac., 188, 208–223, 2016.
- Chen, J., Zhang, X., Navas, A., Wen, A., Wang, X., and Zhang, R.: A study on a ²¹⁰Pb_{ex} accumulation-decay model for dating moraine soils to trace glacier retreat time, J. Environ. Radioactiv., 212, 106124, https://doi.org/10.1016/j.jenvrad.2019.106124, 2020.
- Chen, R.: Study on soil erosion tracer and nutrient element distribution in Honghu watershed, Jiangxi [MS thesis], Nanjing Normal University, China, 2014 (in Chinese).
- Chham, E., Pinero-García, F., Gonzalez-Rodelas, P., and Ferro-García, M. A.: Impact of air masses on the distribution of ²¹⁰Pb in the southeast of Iberian Peninsula air, J. Environ. Radioactiv., 177, 169–183, 2017.
- Chham, E., Pinero-García, F., Brattich, E., El Bardouni, T., and Ferro-García, M. A.: ⁷Be spatial and temporal pattern in southwest of Europe (Spain): Evaluation of a predictive model, Chemosphere, 205, 194–202, 2018.
- Chham, E., Milena-Pérez, A., Piñero-García, F., Hernández-Ceballos, M. A., Orza, J. A. G., Brattich, E., El Bardouni, T.,

and Ferro-García, M. A.: Sources of the seasonal-trend behaviour and periodicity modulation of ⁷Be air concentration in the atmospheric surface layer observed in southeastern Spain, Atmos. Environ., 213, 148–158, 2019.

- Cho, H. M., Hong, Y. L., and Kim, G.: Atmospheric depositional fluxes of cosmogenic ³⁵S and ⁷Be: Implications for the turnover rate of sulfur through the biosphere, Atmos. Environ., 45, 4230–4234, 2011.
- Clifton, R. J., Watson, P. G., Davey, J. T., and Frickers, P. E.: A study of processes affecting the uptake of contaminants by intertidal sediments, using the radioactive tracers: ⁷Be, ¹³⁷Cs and unsupported ²¹⁰Pb, Estuar. Coast. Shelf S., 41, 459–474, 1995.
- Conaway, C. H., Storlazzi, C. D., Draut, A. E., and Swarzenski, P. W.: Short-term variability of ⁷Be atmospheric deposition and watershed response in a Pacific coastal stream, Monterey Bay, California, USA, J. Environ. Radioactiv., 120, 94–103, 2013.
- Courtier, J., Sdraulig, S., and Hirth, G.: ⁷Be and ²¹⁰Pb wet/dry deposition in Melbourne, Australia and the development of deployable units for radiological emergency monitoring, J. Environ. Radioactiv., 178–179, 419–425, 2017.
- Covelo, E. F., Vega, F. A., and Andrade, M. L.: Sorption and desorption of Cd, Cr, Cu, Ni, Pb and Zn by a Fibric Histosol and its organo-mineral fraction, J. Hazard. Mater., 159, 342–347, 2008.
- Crecelius, E. A.: Prediction of marine atmospheric deposition rates using total ⁷Be deposition velocities, Atmos. Environ., 15, 579– 582, 1981.
- Crozaz, G. and Langway, C. C.: Dating Greenland firn-ice cores with Pb-210, Earth Planet. Sc. Lett., 1, 194–196, 1966.
- Crozaz, G., Picciotto, E., and De Breuck, W.: Antarctic snow chronology with Pb²¹⁰, J. Geophys. Res., 69, 2597–2604, 1964.
- Cruikshank, A. J., Cowper, G., and Grummitt, W. E.: Production of Be⁷ in the atmosphere, Cann. J. Chem., 34, 214–219, 1956.
- Cruz, P. T. F., Bonga, A. C., Dela Sada, C. L., Olivares, J. U., Dela Cruz, F. M., Palad, L. J. H., Jesuitas, A. J., Cabatbat, E. C., Omandam, V. J., García, T. Y., and Feliciano, C. P.: Assessment of temporal variations of natural radionuclides Beryllium-7 and Lead-212 in surface air in Tanay, Philippines, J. Environ. Radioactiv., 208–209, https://doi.org/10.1016/j.jenvrad.2019.105989, 2019.
- Cui, W., Zhang, M., Yang, H., Yang, B., and Lu, J.: Estimating soil erosion rates of cultivated fields using ¹³⁷Cs and ²¹⁰Pb_{ex} in Jiangxi red soils region, J. Anhui Agri. Sci., 40, 8515–8517, 2012 (in Chinese).
- Daish, S. R., Dale, A. A., Dale, C. J., May, R., and Rowe, J. E.: The temporal variations of ⁷Be, ²¹⁰Pb and ²¹⁰Po in air in England, J. Environ. Radioactiv., 84, 457–467, 2005.
- Damatto, S. R., Máduar, M. F., Nisti, M. B., Nogueira, P. R., and Pecequilo, B. R. S.: Preliminary results of ⁷Be concentrations in ground level air at So Paulo, Brazil, in: The 2nd International Conference on Radioactivity in the Environment, Nice, France, 2–6 October 2005, 140–146, 2005.
- Damnati, B., Ibrahimi, S., and Radakovitch, O.: Quantifying erosion using ¹³⁷Cs and ²¹⁰Pb in cultivated soils in three Mediterranean watershed: Synthesis study from El Hachef, Raouz and Nakhla (North West Morocco), J. Afr. Earth Sci., 79, 50–57, 2013.
- Danielsen, E. F.: Stratospheric-tropospheric exchange based on radioactivity, ozone, and potential vorticity. J. Atmos. Sci., 25, 502–518, 1968.

- D'Amours, R., Mintz, R., Mooney, C., and Wiens, B. J.: A modeling assessment of the origin of Beryllium-7 and Ozone in the Canadian Rocky Mountains, J. Geophys. Res.-Atmos., 118, 10125– 10138, 2013.
- de Tombeur, F., Cornu, S., Bourlès, D., Duvivier, A., Pupier, J., Aster, T., Brossard, M., and Evrard, O.: Retention of ¹⁰Be, ¹³⁷Cs and ²¹⁰Pb_{xs} in soils: Impact of physico-chemical characteristics, Geoderma, 367, 114242, https://doi.org/10.1016/j.geoderma.2020.114242, 2020.
- Deng, B., Zhong, Q., Wang, Q., Du, J., and Zhang, X.: Temporal variation of ²¹⁰Pb concentration in the urban aerosols of Shanghai, China, J. Radioanal. Nucl. Ch., 323, 1135–1143, 2020.
- Dibb, J. E.: Atmospheric deposition of beryllium 7 in the Chesapeake Bay region, J. Geophys. Res., 94, 2261–2265, 1989.
- Dibb, J. E.: Recent deposition of ²¹⁰Pb on the Greenland Ice Sheet: variations in space and time, Ann. Glaciol., 14, 51–54, 1990a.
- Dibb, J. E.: Beryllium-7 and lead-210 in the atmosphere and surface snow over the Greenland Ice Sheet in the summer of 1989, J. Geophys. Res., 95, 22407–22415, 1990b.
- Dibb, J. E.: The accumulation of ²¹⁰Pb at Summit, Greenland since 1855, Tellus B, 44, 72–79, 1992.
- Dibb, J. E.: Vertical mixing above Summit, Greenland: Insights into seasonal and high frequency variability from the radionuclide tracers ⁷Be and ²¹⁰Pb, Atmos. Environ., 41, 5020–5030, 2007.
- Dibb, J. E. and Jaffrezo, J. L.: Beryllium-7 and lead-210 in aerosol and snow in the dye 3 gas, aerosol and snow sampling program, Atmos. Environ., 27, 2751–2760, 1993.
- Dibb, J. E., Meeker, L. D., Finkel, R. C., Southon, J. R., Caffee, M. W., and Barrie, L. A.: Estimation of stratospheric input to the Arctic troposphere: ⁷Be and ¹⁰Be in aerosols at Alert, Canada, J. Geophys. Res., 99, 12855–12864, 1994.
- Ding, M., Su, L., Liu, G., Zhu, J., Feng, J., and Zhang, H.: Atmospheric depositional fluxes of ⁷Be and depositional velocities of aerosols in Shenzhen, Geochimica, 46, 81–86, 2017 (in Chinese).
- Dlugosz-Lisiecka, M.: Chemometric methods for source apportionment of ²¹⁰Pb, ²¹⁰Bi and ²¹⁰Po for 10 years of urban air radioactivity monitoring in Lodz city, Poland, Chemosphere, 220, 163–168, 2019.
- Doering, C. and Akber, R.: Beryllium-7 in near-surface air and deposition at Brisbane, Australia, J. Environ. Radioactiv., 99, 461– 467, 2008a.
- Doering, C. and Akber, R.: Describing the annual cyclic behaviour of ⁷Be concentrations in surface air in Oceania, J. Environ. Radioactiv., 99, 1703–1707, 2008b.
- Doering, C. and Saey, P.: Hadley cell influence on ⁷Be activity concentrations at Australian mainland IMS radionuclide particulate stations, J. Environ. Radioactiv., 127, 88–94, 2014.
- Doering, C., Akber, R., and Heijnis, H.: Vertical distributions of ²¹⁰Pb excess, ⁷Be and ¹³⁷Cs in selected grass covered soils in Southeast Queensland, Australia, J. Environ. Radioactiv., 87, 135–147, 2006.
- Doi, T., Sato, S., and Sato, J.: Atmospheric concentration of ²¹⁰Pb in East Asia and its contribution to Japanese islands by long-range transport, Radioisotopes, 56, 115–130, 2007.
- Dominik, J., Burrus, D., and Vernet, J. P.: Transport of the environmental radionuclides in an alpine watershed, Earth Planet. Sc. Lett., 84, 165–180, 1987.

- Dominik, J., Schuler, C., and Santschi, P. H.: Residence times of ²³⁴Th and ⁷Be in Lake Geneva, Earth Planet. Sc. Lett., 93, 345–358, 1989.
- Dörr, H. and Münnich, K. O.: Lead and cesium transport in European forest soils, Water Air Soil Poll., 57, 809–818, 1991.
- Dovhyi, I. I., Kremenchutskii, D. A., Proskurnin, V. Y., and Kozlovskaya, O. N.: Atmospheric depositional fluxes of cosmogenic ³²P, ³³P and ⁷Be in the Sevastopol region, J. Radioanal. Nucl. Ch., 314, 1643–1652, 2017.
- Du, J., Zhang, J., Zhang, J., and Wu, Y.: Deposition patterns of atmospheric ⁷Be and ²¹⁰Pb in coast of East China Sea, Shanghai, China, Atmos. Environ., 42, 5101–5109, 2008.
- Du, J., Zhang, J., and Baskaran, M.: Applications of shortlived radionuclides (⁷Be, ²¹⁰Pb, ²¹⁰Po, ¹³⁷Cs and ²³⁴Th) to trace the sources, transport pathways and deposition of particles/sediments in rivers, estuaries and coasts, in: Handbook of environmental isotope geochemistry, edited by: Baskaran, M., Springer, Berlin, Heidelberg, Germany, 305–329, https://doi.org/10.1007/978-3-642-10637-8_16, 2012.
- Du, J., Du, J., Baskaran, M., Bi, Q., Huang, D., and Jiang, Y.: Temporal variations of atmospheric depositional fluxes of ⁷Be and ²¹⁰Pb over 8 years (2006–2013) at Shanghai, China, and synthesis of global fallout data, J. Geophys. Res.-Atmos., 120, 4323– 4339, 2015.
- Du, J., Baskaran, M., and Du, J.: Atmospheric deposition of ⁷Be, ²¹⁰Pb and ²¹⁰Po during typhoons and thunderstorm in Shanghai, China and global data synthesis, Sci. China-Earth Sci., 63, 602–614, 2020.
- Du, P. and Walling, D. E.: Using ²¹⁰Pb measurements to estimate sedimentation rates on river floodplains, J. Environ. Radioactiv., 103, 59–75, 2012.
- Dueñas, C., Fernández, M. C., Liger, E., and Carretero, J.: Gross alpha, gross beta activities and ⁷Be concentrations in surface air: analysis of their variations and prediction model, Atmos. Environ., 33, 3705–3715, 1999.
- Dueñas, C., Fernández, M. C., Carretero, J., Liger, E., and Cañete, S.: Long-term variation of the concentrations of long-lived Rn descendants and cosmogenic ⁷Be and determination of the MRT of aerosols, Atmos. Environ., 38, 1291–1301, 2004.
- Dueñas, C., Fernández, M. C., Carretero, J., Liger, E., and Cañete, S.: Deposition velocities and washout ratios on a coastal site (southeastern Spain) calculated from ⁷Be and ²¹⁰Pb measurements, Atmos. Environ., 39, 6897–6908, 2005.
- Dueñas, C., Fernández, M. C., Cañete, S., and Pérez, M.: ⁷Be to ²¹⁰Pb concentration ratio in ground level air in Málaga (36.7° N, 4.5° W), Atmos. Res., 92, 49–57, 2009.
- Dueñas, C., Orza, J. A. G., Cabello, M., Fernández, M. C., Cañete, S., Pérez, M., and Gordo, E.: Air mass origin and its influence on radionuclide activities (⁷Be and ²¹⁰Pb) in aerosol particles at a coastal site in the western Mediterranean, Atmos. Res., 101, 205–214, 2011.
- Dueñas, C., Gordo, E., Liger, E., Cabello, M., Canete, S., Perez, M., and Torre-Luque, P.: ⁷Be, ²¹⁰Pb and ⁴⁰K depositions over 11 years in Malaga, J. Environ. Radioactiv., 178–179, 325–334, 2017.
- Ďurana, L., Chudý, M., and Masarik, J.: Investigation of ⁷Be in the Bratislava atmosphere, J. Radioanal. Nucl. Ch., 207, 345–356, 1996.

- Dutkiewicz, V. A. and Husain, L.: Stratospheric and tropospheric components of ⁷Be in surface air, J. Geophys. Res., 90, 5783– 5788, 1985.
- El-Hussein, A., Mohamemed, A., Abd El-Hady, M., Ahmed, A. A., Ali, A. E., and Barakat, A.: Diurnal and seasonal variation of short-lived radon progeny concentration and atmospheric temporal variations of ²¹⁰Pb and ⁷Be in Egypt, Atmos. Environ., 35, 4305–4313, 2001.
- Elsässer, C., Wagenbach, D., Weller, R., Auer, M., Wallner, A., and Christl, M.: Continuous 25-yr aerosol records at coastal Antarctica, Tellus B, 63, 920–934, 2011.
- Eriksson, M., Holm, E., Roos, P., and Dahlgaard, H.: Distribution and flux of ²³⁸Pu, ^{239,240}Pu, ²⁴¹Am, ¹³⁷Cs and ²¹⁰Pb to high arctic lakes in the Thule district (Greenland), J. Environ. Radioactiv., 75, 285–299, 2004.
- Fan, Y., Wang, S., Li, H., Zhang, X., Li, Q., Jia, H., Zhao, Y., Chen, Z., Chang, Y., and Liu, S.: Preliminary study of ⁷Be, ¹³⁷Cs and ¹³¹I activity concentration distribution rule in Beijing aerosol, At. Energy Sci. Technol., 47, 189–192, 2013 (in Chinese).
- Fang, H. Y., Sheng, M. L., Tang, Z. H., and Cai, Q. G.: Assessment of soil redistribution and spatial pattern for a small catchment in the black soil region, Northeastern China: Using fallout ²¹⁰Pb_{ex}, Soil. Till. Res., 133, 85–92, 2013.
- Feely, H. W., Larsen, R. J., and Sanderson, C. G.: Factors that cause seasonal variations in beryllium-7 concentrations in surface air, J. Environ. Radioactiv., 9, 223–249, 1989.
- Feng, H., Cochran, J. K., and Hirschberg, D. J.: ²³⁴Th and ⁷Be as tracers for the transport and dynamics of suspended particles in a partially mixed estuary, Geochim. Cosmochim. Ac., 63, 2487– 2505, 1999.
- Feichter, J., Brost, R. A., and Heimann, M.: Three-dimensional modeling of the concentration and deposition of ²¹⁰Pb aerosols, J. Geophys. Res., 96, 22447–22460, 1991.
- Filizok, I. and Ugur Gorgun, A.: Atmospheric depositional characteristics of ²¹⁰Po, ²¹⁰Pb and some trace elements in Izmir, Turkey, Chemosphere, 220, 468–475, 2019.
- Filizok, I., Uğur, A., and Özden, B.: Local Enhancement of ²¹⁰Po Atmospheric Flux at a Site in İzmir, Turkey, Water Air Soil Poll., 225, 1823, https://doi.org/10.1007/s11270-013-1823-7, 2013.
- Fisenne, I. M.: Distribution of lead-210 and radium-226 in soil, U.S. Dep. of Energy, Rep. UCRL-18140, Washington, DC, 1968.
- Fogh, C. L., Roed, J., and Andersson, K. G.: Radionuclide resuspension and mixed deposition at different heights, J. Environ. Radioactiv., 46, 67–75, 1999.
- Fukuyama, T., Onda, Y., Takenaka, C., and Walling, D. E.: Investigating erosion rates within a Japanese cypress plantation using Cs-137 and Pb-210 exmeasurements, J. Geophys. Res., 113, F02007, https://doi.org/10.1029/2006JF000657, 2008.
- Fuller, C. and Hammond, D. E.: The fallout rate of Pb-210 on the western coast of the United States, Geophys. Res. Lett., 10, 1164–1167, 1983.
- Gäggeler, H., von Gunten, H. R., Rössler, E., Oeschger, H., and Schotterer, U.: ²¹⁰Pb-dating of cold alpine firn/ice cores from Colle Gnifetti, Switzerland, J. Glaciol., 29, 165–177, 1983.
- Gäggeler, H. W., Jost, D. T., Baltensperger, U., Schwikowski, M., and Seibert, P.: Radon and thoron decay product and ²¹⁰Pb measurements at Jungfraujoch, Switzerland, Atmos. Environ., 29, 607–616, 1995.

- Gai, N., Pan, J., Yin, X. C., Zhu, X. H., Yu, H. Q., Li, Y., Tan, K. Y., Jiao, X. C., and Yang, Y. L.: Latitudinal distributions of activities in atmospheric aerosols, deposition fluxes, and soil inventories of ⁷Be in the East Asian monsoon zone, J. Environ. Radioactiv., 148, 59–66, 2015.
- García-Orellana, J., Sánchez-Cabeza, J. A., Masqué, P., Ávila, A., Costa, E., Loÿe-Pilot, M. D., and Bruach-Menchén J. M.: Atmospheric fluxes of ²¹⁰Pb to the western Mediterranean Sea and the Saharan dust influence, J. Geophys. Res., 111, D15305, https://doi.org/10.1029/2005JD006660, 2006.
- Garimella, S., Koshy, K., and Singh, S.: Concentration of ⁷Be in surface air at Suva, Fiji, S. Pac. J. Nat. Appl. Sci., 21, 15–19, 2003.
- Gaspar, L., Navas, A., Machín, J., and Walling, D. E.: Using ²¹⁰Pb_{ex} measurements to quantify soil redistribution along two complex toposequences in Mediterranean agroecosystems, northern Spain, Soil. Till. Res., 130, 81–90, 2013.
- Gavini, M. B., Beck, J. N., and Kuroda, P. K.: Mean residence times of the long-lived radon daughters in the atmosphere, J. Geophys. Res., 79, 4447–4452, 1974.
- Gerasopoulos, E., Zanis, P., Stohl, A., Zerefos, C. S., Papastefanou, C., Ringer, W., Tobler, L., Hübener, S., Gäggeler, H. W., Kanter, H. J., Tositti, L., and Sandrini, S.: A climatology of ⁷Be at four high-altitude stations at the Alps and the Northern Apennines, Atmos. Environ., 35, 6347–6360, 2001.
- Goldberg, E. D.: Geochronology with lead-210, in: Radioactive Dating, Int. At. Energy Agency, Vienna, 1963.
- Gonzalez-Gomez, C., Azahra, M., Lopez-Penalver, J. J., Camacho-García, A., El Bardouni, T., and Boukhal, H.: Seasonal variability in ⁷Be depositional fluxes at Granada, Spain, Appl. Radiat. Isot., 64, 228–234, 2006.
- Gordo, E., Liger, E., Dueñas, C., Fernandez, M. C., Canete, S., and Perez, M.: Study of ⁷Be and ²¹⁰Pb as radiotracers of African intrusions in Malaga (Spain), J. Environ. Radioactiv., 148, 141– 153, 2015.
- Grabowska, S., Mietelski, J. W., Kozak, K., and Gaca, P.: Gamma emitters on micro-becquerel activity level in air at Kraków (Poland), J. Atmos. Chem., 46, 103–116, 2003.
- Graham, I., Ditchburn, R., and Barry, B.: Atmospheric deposition of ⁷Be and ¹⁰Be in New Zealand rain (1996–98), Geochim. Cosmochim. Ac., 67, 361–373, 2003.
- Graustein, W. C. and Turekian, K. K.: ²¹⁰Pb and ¹³⁷Cs in air and soils measure the rate and vertical profile of aerosol scavenging, J. Geophys. Res., 91, 14355–14366, 1986.
- Graustein, W. C. and Turekian, K. K.: The effects of forests and topography on the deposition of sub-micrometer aerosols measured by lead-210 and cesium-137 in soils, Agr. Forest Meteorol., 47, 199–220, 1989.
- Graustein, W. C. and Turekian, K. K.: ⁷Be and ²¹⁰Pb indicate an upper troposphere source for elevated ozone in the summertime subtropical free troposphere of the eastern North Atlantic, Geophys. Res. Lett., 23, 539–542, 1996.
- Grossi, C., Ballester, J., Serrano, I., Galmarini, S., Camacho, A., Curcoll, R., Morgui, J. A., Rodo, X., and Duch, M. A.: Influence of long-range atmospheric transport pathways and climate teleconnection patterns on the variability of surface ²¹⁰Pb and ⁷Be concentrations in southwestern Europe, J. Environ. Radioactiv., 165, 103–114, 2016.

- Gustafson, P. F., Kerrigan, M. A., and Brar, S. S.: Comparison of beryllium-7 and cæsium-137 radioactivity in ground-level air, Nature, 191, 454–456, 1961.
- Halstead, M. J. R., Cunninghame, R. G., and Hunter, K. A.: Wet deposition of trace metals to a remote site in Fiordland, New Zealand, Atmos. Environ., 34, 665–676, 2000.
- Harvey, M. J. and Matthews, K. M.: ⁷Be deposition in a highrainfall area of New Zealand, J. Atmos. Chem., 8, 299–306, 1989.
- Hasebe, N., Doke, T., Kikuchi, J., Takeuchi, Y., and Sugiyama, T.: Observation of fallout rates of atmospheric ⁷Be and ²²Na produced by cosmic rays – concerning estimation of the fallout rate of atmospheric ²⁶Al, J. Geophys. Res., 86, 520–524, 1981.
- Hasegawa, H., Akata, N., Kawabata, H., Chikuchi, Y., Sato, T., Kondo, K., and Inaba, J.: Mechanism of ⁷Be scavenging from the atmosphere through precipitation in relation to seasonal variations in Rokkasho Village, Aomori Prefecture, Japan, J. Radioanal. Nucl. Ch., 273, 171–175, 2007.
- Haskell, W. Z., Kadko, D., Hammond, D. E., Knapp, A. N., Prokopenko, M. G., Berelson, W. M., and Capone, D. G.: Upwelling velocity and eddy diffusivity from ⁷Be measurements used to compare vertical nutrient flux to export POC flux in the Eastern Tropical South Pacific, Mar. Chem., 168, 140–150, 2015.
- He, Q. and Walling, D. E.: The distribution of fallout ¹³⁷Cs and ²¹⁰Pb in undisturbed and cultivated soils, Appl. Radiat. Isot., 48, 677–690, 1997.
- He, X., Liao, Y., Lu, D., Peng, C., Chen, B., Zhou, H., Lin, M., Wang, L., and Yang, Y.: A preliminary analysis of the distribution of ⁷Be in the ground-level air in Nanning, Sci-Tech. Dev. Enterp., 3, 98–99, 2018 (in Chinese).
- Heikkilä, U., Beer, J., and Alfimov, V.: Beryllium-10 and beryllium-7 in precipitation in Dübendorf (440 m) and at Jungfraujoch (3580 m), Switzerland (1998–2005), J. Geophys. Res., 113, D11104, https://doi.org/10.1029/2007JD009160, 2008.
- Heinrich, P. and Pilon, R.: Simulation of ²¹⁰Pb and ⁷Be scavenging in the tropics by the LMDz general circulation model, Atmos. Res., 132–133, 490–505, 2013.
- Heinrich, P., Coindreau, O., Grillon, Y., Blanchard, X., and Gross, P.: Simulation of the atmospheric concentrations of ²¹⁰Pb and ⁷Be and comparison with daily observations at three surface sites, Atmos. Environ., 41, 6610–6621, 2007.
- Hernández, F., Hernández-Armas, J., Catalán, A., Fernández-Aldecoa, J. C., and Karlsson, L.: Gross alpha, gross beta activities and gamma emitting radionuclides composition of airborne particulate samples in an oceanic island, Atmos. Environ., 39, 4057–4066, 2005.
- Hernández, F., Karlsson, L., and Hernandez-Armas, J.: Impact of the tropical storm Delta on the gross alpha, gross beta, ⁹⁰Sr, ²¹⁰Pb, ⁷Be, ⁴⁰K and ¹³⁷Cs activities measured in atmospheric aerosol and water samples collected in Tenerife (Canary Islands), Atmos. Environ., 41, 4940–4948, 2007.
- Hernández F., Rodríguez, S., Karlsson, L., Alonso-Pérez, S., López-Pérez, M., Hernandez-Armas, J., and Cuevas, E.: Origin of observed high ⁷Be and mineral dust concentrations in ambient air on the Island of Tenerife, Atmos. Environ., 42, 4247–4256, 2008.
- Hernandez-Ceballos, M. A., Cinelli, G., Ferrer, M. M., Tollefsen, T., De Felice, L., Nweke, E., Tognoli, P. V., Vanzo, S., and De Cort, M.: A climatology of ⁷Be in surface air in European Union, J. Environ. Radioactiv., 141, 62–70, 2015.

- Hicks, B. B. and Goodman, H. S.: Seasonal and latitudinal variations of atmospheric radioactivity along Australia's east coast (150° E longitude), Tellus, 29, 182–188, 1977.
- Hirose, K., Honda, T., Yagishita, S., Igarashi, Y., and Aoyama, M.: Deposition behaviors of ²¹⁰Pb, ⁷Be and thorium isotopes observed in Tsukuba and Nagasaki, Japan, Atmos. Environ., 38, 6601–6608, 2004.
- Hötzl, H. and Winkler, R.: Activity concentrations of ²²⁶Ra, ²²⁸Ra, ²¹⁰Pb, ⁴⁰K and ⁷Be and their temporal variations in surface air, J. Environ. Radioactiv., 5, 445–458, 1987.
- Houali, A., Azahra, M., El Bardouni, T., Ferro García, M. A., Piňero García, F., and Chham, E.: Impact of the meteorological parameters on the behaviour of ⁷Be at ground level in Tetouan city, Morocco from June 2015 to February 2017, J. Radioanal. Nucl. Ch., 322, 271–280, 2019.
- Hu, J.: Distribution characteristics and tracing techniques using ²¹⁰Pb_{ex} applied to soil erosion in alpine grassland regionillustrated by a case of Ziketan of Xinghai basin [MS thesis], University of Chinese Academy of Sciences, 2016 (in Chinese).
- Hu, J., Sha, Z., Wang, J., Du, J., and Ma, Y.: Atmospheric deposition of ⁷Be, ²¹⁰Pb in Xining, a typical city on the Qinghai-Tibet Plateau, China, J. Radioanal. Nucl. Ch., 324, 1141–1150, 2020.
- Hu, Y. and Zhang, Y.: Using ¹³⁷Cs and ²¹⁰Pb_{ex} to investigate the soil erosion and accumulation moduli on the southern margin of the Hunshandake Sandy Land in Inner Mongolia, Acta Geol. Sin., 74, 1890–1903, 2019 (in Chinese).
- Huang, D., Du, J., Moore, W. S., and Zhang, J.: Particle dynamics of the Changjiang Estuary and adjacent coastal region determined by natural particle-reactive radionuclides (⁷Be, ²¹⁰Pb, and ²³⁴Th), J. Geophys. Res.-Oceans, 118, 1736–1748, 2013.
- Huang, D., Bao, H., and Yu, T.: Temporal Variations in Radionuclide Activity (⁷Be and ²¹⁰Pb) in Surface Aerosols at a Coastal Site in Southeastern China, Aerosol Air Qual. Res., 19, 1969– 1979, 2019.
- Huh, C. A. and Su, C. C.: Distribution of fallout radionuclides (⁷Be, ¹³⁷Cs, ²¹⁰Pb and ^{239,240}Pu) in soils of Taiwan, J. Environ. Radioactiv., 77, 87–100, 2004.
- Huh, C. A., Su, C. C., and Shiau, L. J.: Factors controlling temporal and spatial variations of atmospheric deposition of ⁷Be and ²¹⁰Pb in northern Taiwan, J. Geophys. Res., 111, D16304, https://doi.org/10.1029/2006JD007180, 2006.
- Igarashi, Y., Hirose, K., and Otsuji-Hatori, M.: Beryllium-7 deposition and its relation to sulfate deposition, J. Atmos. Chem., 29, 217–231, 1998.
- Ioannidou, A. and Paatero, J.: Activity size distribution and residence time of ⁷Be aerosols in the Arctic atmosphere, Atmos. Environ., 88, 99–106, 2014.
- Ioannidou, A. and Papastefanou, C.: Precipitation scavenging of ⁷Be and ¹³⁷Cs radionuclides in air, J. Environ. Radioactiv., 85, 121–136, 2006.
- Ioannidou, A., Manolopoulou, M., and Papastefanou, C.: Temporal changes of ⁷Be and ²¹⁰Pb concentrations in surface air at temperate latitudes (40° N), Appl. Radiat. Isot., 63, 277–284, 2005.
- Ioannidou, A., Eleftheriadis, K., Gini, M., Gini, L., Manenti, S., and Groppi, F.: Activity size distribution of radioactive nuclide ⁷Be at different locations and under different meteorological conditions, Atmos. Environ., 212, 272–280, 2019.

- Irlweck, K., Hinterdorfer, K., and Karg, V.: Beryllium-7 and ozone correlations in surface atmosphere, Naturwissenschaften, 84, 353–356, 1997.
- Isakar, K., Kiisk, M., Realo, E., and Suursoo, S.: Lead-210 in the atmospheric air of North and South Estonia: long-term monitoring and back-trajectory calculations, P. Est. Acad. Sci., 65, 442–451, 2016.
- Ishikawa, Y., Murakami, H., Sekine, T., and Yoshihara, K.: Precipitation scavenging studies of radionuclides in air using cosmogenic ⁷Be, J. Environ. Radioactiv., 26, 19–36, 1995.
- Itoh, H. and Narazaki, Y.: Meteorological Notes for Understanding the Transport of Beryllium-7 in the Troposphere, Jpn. J. Health. Phys., 52, 122–133, 2017.
- Itthipoonthanakorn, T., Dann, S. E., Crout, N. M. J., and Shaw, G.: Nuclear weapons fallout ¹³⁷Cs in temperate and tropical pine forest soils, 50 years post-deposition, Sci. Total. Environ., 660, 807–816, 2019.
- Iurian, A. R., Mabit, L., Begy, R., and Cosma, C.: Comparative assessment of erosion and deposition rates on cultivated land in the Transylvanian Plain of Romania using ¹³⁷Cs and ²¹⁰Pb_{ex}, J. Environ. Radioactiv., 125, 40–49, 2013.
- Jankovic, M., Todorovic, D., Nikolic, J., Rajacic, M., Pantelic, G., and Sarap, N.: Temporal changes of beryllium-7 and lead-210 in ground level air in Serbia, Hem. Ind., 68, 83–88, 2014.
- Jasiulionis, R. and Wershofen, H.: A study of the vertical diffusion of the cosmogenic radionuclides, ⁷Be and ²²Na in the atmosphere, J. Environ. Radioactiv., 79, 157–169, 2005.
- Jia, C., Liu, G., Yang, W., Zhang, L., and Huang, Y.: Atmospheric depositional fluxes of ⁷Be and ²¹⁰Pb at Xiamen, J. Xiamen Univ., 42, 352–357, 2003 (in Chinese).
- Jia, G. and Jia, J.: Atmospheric Residence Times of the fine-aerosol in the region of south Italy estimated from the activity concentration ratios of ²¹⁰Po / ²¹⁰Pb in air particulates, J. Anal. Bioanal. Tech., 5, 216, https://doi.org/10.4172/2155-9872.1000216, 2014.
- Jiang, R.: ⁷Be content and its seasonal variation in the ground air around Hangzhou area, Nucl. Sci. Tech., 10, 230–234, 1999.
- Joshi, S. R.: Recent sedimentation rates and ²¹⁰Pb fluxes in Georgian Bay and Lake Huron, Sci. Total. Environ., 41, 219–233, 1985.
- Joshi, L. U., Rangarajan, C., and Gopalakrishnan, S.: Measurement of lead-210 in surface air and precipitation, Tellus, 21, 107–112, 1969.
- Junge, C. E., Air chemistry and radioactivity, Academic Press, San Diego, USA, 1963.
- Juri Ayub, J., Di Gregorio, D. E., Velasco, H., Huck, H., Rizzotto, M., and Lohaiza, F.: Short-term seasonal variability in ⁷Be wet deposition in a semiarid ecosystem of central Argentina, J. Environ. Radioactiv., 100, 977–981, 2009.
- Jweda, J., Baskaran, M., van Hees, E., and Schweitzer, L.: Shortlived radionuclides (⁷Be and ²¹⁰Pb) as tracers of particle dynamics in a river system in southeast Michigan, Limnol. Oceanogr., 53, 1934–1944, 2008.
- Kadko, D.: Modeling the evolution of the Arctic mixed layer during the fall 1997 Surface Heat Budget of the Arctic Ocean (SHEBA) Project using measurements of ⁷Be, J. Geophys. Res., 105, 3369–3378, 2000.
- Kadko, D.: Rapid oxygen utilization in the ocean twilight zone assessed with the cosmogenic isotope ⁷Be, Global Biogeochem. Cy., 23, GB4010, https://doi.org/10.1029/2009GB003510, 2009.

- Kadko, D.: Upwelling and primary production during the U.S. GEOTRACES East Pacific Zonal Transect, Global Biogeochem. Cy., 31, 218–232, 2017.
- Kadko, D. and Johns, W.: Inferring upwelling rates in the equatorial Atlantic using ⁷Be measurements in the upper ocean, Deep-Sea Res. Pt. I, 58, 647–657, 2011.
- Kadko, D. and Olson, D.: Beryllium-7 as a tracer of surface water subduction and mixed-layer history, Deep-Sea Res. Pt. I, 43, 89– 116, 1996.
- Kadko, D. and Prospero, J.: Deposition of ⁷Be to Bermuda and the regional ocean: Environmental factors affecting estimates of atmospheric flux to the ocean, J. Geophys. Res., 116, C02013, https://doi.org/10.1029/2010JC006629, 2011.
- Kadko, D. and Swart, P.: The source of the high heat and freshwater content of the upper ocean at the SHEBA site in the Beaufort Sea in 1997, J. Geophys. Res., 109, C01022, https://doi.org/10.1029/2004GL021262, 2004.
- Kadko, D., Landing, W. M., and Shelley, R. U.: A novel tracer technique to quantify the atmospheric flux of trace elements to remote ocean regions, J. Geophys. Res.-Oceans, 120, 848–858, 2015.
- Kadko, D., Galfond, B., Landing, W. M., and Shelley, R. U.: Determining the pathways, fate, and flux of atmospherically derived trace elements in the Arctic ocean/ice system, Mar. Chem., 182, 38–50, 2016.
- Kapala, J., Karpinska, M., Mnich, S., Gromotowicz-Poplawska, A., and Kulesza, G.: ⁷Be concentration in the near-surface layer of the air in Bialystok (north-eastern Poland) in the years 1992– 2010, J. Environ. Radioactiv., 187, 40–44, 2018.
- Karwan, D. L., Siegert, C. M., Levia, D. F., Pizzuto, J., Marquard, J., Aalto, R., and Aufdenkampe, A. K.: Beryllium-7 wet deposition variation with storm height, synoptic classification, and tree canopy state in the mid-Atlantic USA, Hydrol. Process., 30, 75– 89, 2016.
- Kaste, J. M., Elmore, A. J., Vest, K. R., and Okin, G. S.: Beryllium-7 in soils and vegetation along an arid precipitation gradient in Owens Valley, California, Geophys. Res. Lett., 38, L09401, https://doi.org/10.1029/2011GL047242, 2011.
- Kato, H., Onda, Y., and Tanaka, Y.: Using ¹³⁷Cs and ²¹⁰Pb_{ex} measurements to estimate soil redistribution rates on semi-arid grassland in Mongolia, Geomorphology, 114, 508–519, 2010.
- Khan, K., Jabbar, A., and Akhter, P.: Climatic variations of beryllium-7 activity in the atmosphere of Peshawar basin, Pakistan, during 2001-2006, Nucl. Technol. Radiat. Prot., 2, 104– 108, 2009.
- Khan, S., Alaamer, A. S., and Tahir, S. N.: Assessment of ⁷Be concentration in outdoor ambient air, Health Phys., 95, 433–435, 2008.
- Khodadadi, M., Mabit, L., Zaman, M., Porto, P., and Gorji, M.: Using ¹³⁷Cs and ²¹⁰Pb_{ex} measurements to explore the effectiveness of soil conservation measures in semi-arid lands: a case study in the Kouhin region of Iran, J. Soil. Sediment., 19, 2103–2113, 2018.
- Kikuchi, S., Sakurai, H., Gunji, S., and Tokanai, F.: Temporal variation of ⁷Be concentrations in atmosphere for 8y from 2000 at Yamagata, Japan: solar influence on the ⁷Be time series, J. Environ. Radioactiv., 100, 515–521, 2009.

- Kim, G., Alleman, L. Y., and Church, T. M.: Atmospheric depositional fluxes of trace elements, ²¹⁰Pb, and ⁷Be to the Sargasso Sea, Global Biogeochem. Cy., 13, 1183–1192, 1999.
- Kim, G., Hussain, N., Scudlark, J. R., and Church, T. M.: Factors influencing the atmospheric depositional fluxes of stable Pb, ²¹⁰Pb, and ⁷Be into Chesapeake Bay, J. Atmos. Chem., 36, 65–79, 2000.
- Kim, G., Hong, Y. L., Jang, J., Lee, I., Hwang, D. W., and Yang, H. S.: Evidence for anthropogenic ²¹⁰Po in the urban atmosphere of Seoul, Korea, Environ. Sci. Technol., 39, 1519–1522, 2005.
- Kim, S. H., Hong, G. H., Baskaran, M., Park, K. M., Chung, C. S., and Kim, K. H.: Wet removal of atmospheric ⁷Be and ²¹⁰Pb at the Korean Yellow Sea coast, Yellow Sea, 4, 58–68, 1998.
- Kitto, M. E., Hartt, G. M., and Gillen, E. A.: Airborne activities of gross beta, ⁷Be, and ¹³¹I in New York, J. Radioanal. Nucl. Ch., 264, 387–392, 2005.
- Kitto, M. E., Fielman, E. M., Hartt, G. M., Gillen, E. A., Semkow, T. M., Parekh, P. P., and Bari, A.: Long-term monitoring of radioactivity in surface air and deposition in New York State, Health Phys., 90, 31–37, 2006.
- Klaminder, J., Bindler, R., Emteryd, O., Appleby, P., and Grip, H.: Estimating the mean residence time of lead in the organic horizon of boreal forest soils using 210-lead, stable lead and a soil chronosequence, Biogeochemistry, 78, 31–49, 2006.
- Koch, D. M. and Mann, M. E.: Spatial and temporal variability of ⁷Be surface concentration, Tellus B, 48, 387–396, 1996.
- Koch, D. M., Jacob, D. J., and Graustein, W. C.: Vertical transport of tropospheric aerosols as indicated by and in a chemical tracer model, J. Geophys. Res., 101, 18651–18618, 1996.
- Koide, M., Goldberg, E. D., Herron, M. M., and Langway, C. C.: Transuranic depositional history in South Greenland firn layers, Nature, 269, 137–139, 1977.
- Koide, M., Michel, R., Goldberg, E. D., Herron, M. M., and Langway, C. C.: Depositional history of artificial radionuclides in the Ross Ice Shelf, Antarctica, Earth Planet. Sc. Lett., 44, 205–223, 1979.
- Kolb, W.: Jahreszeitliche Schwankungen der ⁷Be-, ⁵⁴Mn- und Spaltprodukt-Konzentrationen der bodennahen Luft, Tellus, 22, 443–450, 1970 (in German).
- Kownacka, L., Jaworowski, Z., and Suplinska, M.: Vertical distribution and flows of lead and natural radionuclides in the atmosphere, Sci. Total. Environ., 91, 199–221, 1990.
- Kritz, M. A., Rosner, S. W., Kelly, K. K., Loewenstein, M., and Chan, K. R.: Radon measurements in the lower tropical stratosphere: evidence for rapid vertical transport and dehydration of tropospheric air, J. Geophys. Res., 98, 8725–8736, 1993.
- Krmar, M., Velojić, M., Hansman, J., Ponjarac, R., Mihailović, A., Todorović, N., Vučinić-Vasić, M., and Savić, R.: Wind erosion on Deliblato (the largest European continental sandy terrain) studied using ²¹⁰Pb_{ex} and ¹³⁷Cs measurements, J. Radioanal. Nucl. Ch., 303, 2511–2515, 2015.
- Kulan, A., Aldahan, A., Possnert, G., and Vintersved, I.: Distribution of ⁷Be in surface air of Europe, Atmos. Environ., 40, 3855– 3868, 2006.
- Kurata, T. and Tsunogai, S.: Exhalation rates of ²²²Rn and deposition surface estimated from ²²⁶Ra and rates of ²¹⁰Pb at the earth's ²¹⁰Pb profiles in soils, Geochem. J., 20, 81–90, 1986.
- Laguionie, P., Roupsard, P., Maro, D., Solier, L., Rozet, M., Hébert, D., and Connan, O.: Simultaneous quantification of the contributions of dry, washout and rainout deposition to the total deposi-

tion of particle-bound ⁷Be and ²¹⁰Pb on an urban catchment area on a monthly scale, J. Aerosol Sci., 77, 67–84, 2014.

- Lal, D. and Baskaran, M.: Applications of cosmogenic isotopes as atmospheric tracers, in: Handbook of environmental isotope geochemistry, edited by: Baskaran, M., Springer, Berlin, Heidelberg, Germany, 575–589, https://doi.org/10.1007/978-3-642-10637-8_28, 2012.
- Lal, D. and Peters, B.: Cosmic ray produced radioactivity on the Earth, in: Handbuch der Physik/Encyclopedia of Physics, edited by: Sittle, K., Springer, Berlin, Heidelberg, Germany, 551–612, https://doi.org/10.1007/978-3-642-46079-1_7, 1967.
- Lal, D., Malhotra, P. K., and Peters, B.: On the production of radioisotopes in the atmosphere by cosmic radiation and their application to meteorology, J. Atmos. Sol-Terr. Phys., 12, 306–328, 1958.
- Lal, D., Nijampurkar, V. N., Rajagopalan, G., and Somayajulu, B. L. K.: Annual fallout of ³²Si, ²¹⁰Pb, ²²Na, ³⁵S and ⁷Be in rains in India, P. Indian Acad. Sci., 88, 29–40, 1979.
- Lambert, G., Ardouin, B., and Sanak, J.: Atmospheric transport of trace elements toward Antarctica, Tellus B, 42, 76–82, 1990.
- Lamborg, C. H., Fitzgerald, W. F., Graustein, W. C., and Turekian, K. K.: An examination of the atmospheric chemistry of mercury using ²¹⁰Pb and ⁷Be, J. Atmos. Chem., 36, 325–338, 2000.
- Lamborg, C. H., Engstrom, D. R., Fitzgerald, W. F., and Balcom, P. H.: Apportioning global and non-global components of mercury deposition through ²¹⁰Pb indexing, Sci. Total. Environ., 448, 132–140, 2013.
- Landis, J. D., Renshaw, C. E., and Kaste, J. M.: Quantitative retention of atmospherically deposited elements by native vegetation is traced by the fallout radionuclides ⁷Be and ²¹⁰Pb, Environ. Sci. Technol., 48, 12022–12030, 2014.
- Larsen, R. J., Sanderson, C. G., and Kada, J.: EML Surface Air Sampling Program, 1990–1993 Data, U.S. Dep. of Energy, New York, Environ. Rep. EML-572, 1995.
- Le Roux, G., Pourcelot, L., Masson, O., Duffa, C., Vray, F., and Renaud, P.: Aerosol deposition and origin in French mountains estimated with soil inventories of ²¹⁰Pb and artificial radionuclides, Atmos. Environ., 42, 1517–1524, 2008.
- Lee, H. I., Huh, C. A., Lee, T., and Huang, N. E.: Time series study of a 17-year record of ⁷Be and ²¹⁰Pb fluxes in northern Taiwan using ensemble empirical mode decomposition, J. Environ. Radioactiv., 147, 14–21, 2015.
- Lee, H. N., Tositti, L., Zheng, X., and Bonasoni, P.: Analyses and comparisons of variations of ⁷Be, ²¹⁰Pb and ⁷Be / ²¹⁰Pb with ozone observations at two Global Atmosphere Watch stations from high mountains, J. Geophys. Res., 112, D05303, https://doi.org/10.1029/2006JD007421, 2007.
- Lee, S. C., Saleh, A. I., Banavali, A. D., Jonooby, L., and Kuroda, P. K.: Beryllium-7 deposition at Fayetteville, Arkansas, and excess polonium-210 from the 1980 eruption of Mount St. Helens, Geochem. J., 19, 317–322, 1985.
- Lee, S. H., Pham, M. K., and Povinec, P. P.: Radionuclide variations in the air over Monaco, J. Radioanal. Nucl. Ch., 254, 445–453, 2002.
- Leppanen, A. P.: Deposition of naturally occurring ⁷Be and ²¹⁰Pb in Northern Finland, J. Environ. Radioactiv., 208–209, 105995, https://doi.org/10.1016/j.jenvrad.2019.105995, 2019.
- Li, C., Le Roux, G., Sonke, J., van Beek, P., Souhaut, M., Van der Putten, N., and De Vleeschouwer, F.: Recent ²¹⁰Pb, ¹³⁷Cs and

²⁴¹Am accumulation in an ombrotrophic peatland from Amsterdam Island (Southern Indian Ocean), J. Environ. Radioactiv., 175–176, 164–169, 2017a.

- Li, J., Li, Y., Wang, Y., and Wu, J.: Study of soil erosion on the east-west transects in the Three-Rivers headwaters region using ¹³⁷Cs and ²¹⁰Pb_{ex} tracing, Res. Environ. Sci., 22, 1452–1459, 2009 (in Chinese).
- Li, J., Wang, Y., Li, D., Zhuo, M., and Wu, J.: Characterization and evaluation of agricultural soil erosion in Shenzhen City using environmental radionuclides, Res. Environ. Sci., 26, 780–786, 2013 (in Chinese).
- Li, X., Zhao, Q., Wang, Q., and Luo, M.: Application of ²¹⁰Pb analysis method in aerosol determination of Chengdu, Sichuan Environ., 36, 142–146, 2017b (in Chinese).
- Likuku, A. S.: Factors influencing ambient concentrations of ²¹⁰Pb and ⁷Be over the city of Edinburgh (55.9° N, 03.2° W), J. Environ. Radioactiv., 87, 289–304, 2006a.
- Likuku, A. S., Branford, D., Fowler, D., and Weston, K. J.: Inventories of fallout ²¹⁰Pb and ¹³⁷Cs radionuclides in moorland and woodland soils around Edinburgh urban area (UK), J. Environ. Radioactiv., 90, 37–47, 2006b.
- Lin, Y. C., Huh, C. A., Hsu, S. C., Lin, C. Y., Liang, M. C., and Lin, P. H.: Stratospheric influence on the concentration and seasonal cycle of lower tropospheric ozone: Observation at Mount Hehuan, Taiwan, J. Geophys. Res.-Atmos., 119, 3527–3536, 2014.
- Lindblom, G.: Fallout gamma-emitting radionuclides in air, precipitation, and the human body up to spring 1967, Tellus, 22, 443– 450, 1969.
- Liu, G., Luo, Q., Pan, Y., Liu, D., Li, Z., Zhang, H., and Sun, H.: Variations of airborne ⁷Be in Shenzhen and its implication for atmospheric transport, Geochimica, 43, 32–38, 2014 (in Chinese).
- Liu, H., Jacob, D. J., Hey, I., and Yantosca, R. M.: Constraints from ²¹⁰Pb and ⁷Be on wet deposition and transport in a global threedimensional chemical tracer model driven by assimilated meteorological fields, J. Geophys. Res., 106, 12109–12128, 2001.
- Liu, H., Considine, D. B., Horowitz, L. W., Crawford, J. H., Rodriguez, J. M., Strahan, S. E., Damon, M. R., Steenrod, S. D., Xu, X., Kouatchou, J., Carouge, C., and Yantosca, R. M.: Using beryllium-7 to assess cross-tropopause transport in global models, Atmos. Chem. Phys., 16, 4641–4659, https://doi.org/10.5194/acp-16-4641-2016, 2016.
- Liu, S. C., McAfee, J. R., and Cicerone, R. J.: Radon 222 and tropospheric vertical transport, J. Geophys. Res., 89, 7291–7297, 1984.
- Lockhart Jr., L. B., Patterson Jr., R. L., and Saunders Jr., A. W.: Airborne radioactivity in Antarctica, J. Geophys. Res., 71, 1985– 1991, 1966.
- Lozano, R. L., San Miguel, E. G., Bolívar, J. P., and Baskaran, M.: Depositional fluxes and concentrations of ⁷Be and ²¹⁰Pb in bulk precipitation and aerosols at the interface of Atlantic and Mediterranean coasts in Spain, J. Geophys. Res., 116, D18213, https://doi.org/10.1029/2011JD015675, 2011.
- Lozano, R. L., Hernández-Ceballos, M. A., San Miguel, E. G., Adame, J. A., and Bolívar, J. P.: Meteorological factors influencing the ⁷Be and ²¹⁰Pb concentrations in surface air from the southwestern Iberian Peninsula, Atmos. Environ., 63, 168–178, 2012.

- Lozano, R. L., Hernández-Ceballos, M. A., Rodrigo, J. F., San Miguel, E. G., Casas-Ruiz, M., García-Tenorio, R., and Bolívar, J. P.: Mesoscale behavior of ⁷Be and ²¹⁰Pb in superficial air along the Gulf of Cadiz (south of Iberian Peninsula), Atmos. Environ., 80, 75–84, 2013.
- Lujanienë, G.: Study of removal processes of ⁷Be and ¹³⁷Cs from the atmosphere, Czech. J. Phys., 53, A57–A65, 2003.
- Luyanas, V. Y., Yasyulyonis, R. Y., Shopauskiene, D. A., and Styra, B. I.: Cosmogenic ²²Na, ⁷Be, ³²P, and ³³P in atmospheric dynamics research, J. Geophys. Res., 75, 3665–3667, 1970.
- Mabit, L., Benmansour, M., and Walling, D. E.: Comparative advantages and limitations of the fallout radionuclides ¹³⁷Cs, ²¹⁰Pb_{ex} and ⁷Be for assessing soil erosion and sedimentation, J. Environ. Radioactiv., 99, 1799–1807, 2008.
- Mabit, L., Klik, A., Benmansour, M., Toloza, A., Geisler, A., and Gerstmann, U. C.: Assessment of erosion and deposition rates within an Austrian agricultural watershed by combining ¹³⁷Cs, ²¹⁰Pb_{ex} and conventional measurements, Geoderma, 150, 231–239, 2009.
- Mabit, L., Benmansour, M., Abril, J. M., Walling, D. E., Meusburger, K., Iurian, A. R., Bernard, C., Tarjan, S., Owens, P. N., Blake, W. H., and Alewell, C.: Fallout ²¹⁰Pb as a soil and sediment tracer in catchment sediment budget investigations: a review. Earth-Sci. Rev., 138, 335–351, 2014.
- Maenhaut, W., Zoller, W. H., and Coles, D. G.: Radionuclides in the south pole atmosphere, J. Geophys. Res., 84, 3131–3138, 1979.
- Magno, P. J., Groulx, P. R., and Apidianakis, J. C.: Lead-210 in air and total diets in the United States during 1966, Health Phys., 18, 383–388, 1970.
- Marx, S. K., Kamber, B. S., and McGowan, H. A.: Estimates of Australian dust flux into New Zealand: Quantifying the eastern Australian dust plume pathway using trace element calibrated ²¹⁰Pb as a monitor, Earth Planet. Sc. Lett., 239, 336–351, 2005.
- Matisoff, G.: ²¹⁰Pb as a tracer of soil erosion, sediment source area identification and particle transport in the terrestrial environment, J. Environ. Radioactiv., 138, 343–354, 2014.
- Matisoff, G. and Whiting, P. J.: Measuring soil erosion rates using natural (⁷Be, ²¹⁰Pb) and anthropogenic (¹³⁷Cs, ^{239,240}Pu) radionuclides, in: Handbook of environmental isotope geochemistry, edited by: Baskaran, M., Springer, Berlin, Heidelberg, Germany, 487–519, https://doi.org/10.1007/978-3-642-10637-8_25, 2012.
- Matisoff, G., Bonniwell, E. C., and Whiting, P. J.: Radionuclides as indicators of sediment transport in agricultural watersheds that drain to Lake Erie, J. Environ. Qual., 31, 62–72, 2002.
- Matisoff, G., Wilson, C. G., and Whiting, P. J.: The $^{7}\text{Be} / ^{210}\text{Pb}_{xs}$ ratio as an indicator of suspended sediment age or fraction new sediment in suspension, Earth Surf. Proc. Land., 30, 1191–1201, 2005.
- Mattsson, R.: Seasonal variation of short-lived radon progeny, Pb²¹⁰ and Po²¹⁰, in ground level air in Finland, J. Geophys. Res., 75, 1741–1744, 1970.
- Mattsson, R.: ²¹⁰Pb and ²²²Rn as guides in adjudicating SO_4^{2-} and SO_2 air concentrations sulphate in the air in Finland 1962–1985, Sci. Total Environ., 69, 211–224, 1988.
- Mattsson, R., Paatero, J., and Hatakka, J.: Automatic alpha/beta analyser for air filter samples-absolute determination of radon progeny by pseudo-coincidence techniques, Radiat. Prot. Dosim., 63, 133–139, 1996.

- McNeary, D. and Baskaran, M.: Depositional characteristics of ⁷Be and ²¹⁰Pb in southeastern Michigan, J. Geophys. Res.-Atmos., 108, 4210, https://doi.org/10.1029/2002JD003021, 2003.
- Megumi, K., Matsunami, T., Ito, N., Kiyoda, S., Mizohata, A., and Asano, T.: Factors, especially sunspot number, causing variations in surface air concentrations and depositions of ⁷Be in Osaka, Japan, Geophys. Res. Lett., 27, 361–364, 2000.
- Mélières, M. A., Pourchet, M., and Richard, S.: Surface air concentration and deposition of lead-210 in French Guiana: two years of continuous monitoring, J. Environ. Radioactiv., 66, 261–269, 2003.
- Men, W., Lin, J., Wang, F., and Yin, M.: Atmospheric processes studies and radiation dose assessment based on ⁷Be, ²¹⁰Pb and ²¹⁰Po around Xiamen Island, J. Appl. Oceanogr., 35, 266–274, 2016 (in Chinese).
- Meusburger, K., Mabit, L., Ketterer, M., Park, J. H., Sandor, T., Porto, P., and Alewell, C.: A multi-radionuclide approach to evaluate the suitability of ²³⁹⁺²⁴⁰Pu as soil erosion tracer, Sci. Total. Environ., 566–567, 1489–1499, 2016.
- Meusburger, K., Porto, P., Mabit, L., La Spada, C., Arata, L., and Alewell, C.: Excess Lead-210 and Plutonium-239+240: Two suitable radiogenic soil erosion tracers for mountain grassland sites, Environ. Res., 160, 195–202, 2018.
- Mietelski, J. W., Nalichowska, E., Tomankiewicz, E., Brudecki, K., Janowski, P., and Kierepko, R.: Gamma emitters in atmospheric precipitation in Krakow (Southern Poland) during the years 2005–2015, J. Environ. Radioactiv., 166, 10–16, 2017.
- Milton, G. M., Kramer, S. J., Watson, W. L., and Kotzer, T. G.: Qualitative estimates of soil disturbance in the vicinity of CAN-DUS stations, utilizing measurements of ¹³⁷Cs and ²¹⁰Pb in soil cores, J. Environ. Radioactiv., 55, 195–205, 2001.
- Miralles, J., Radakovitch, O., Cochran, J. K., Véron, A., and Masqué, P.: Multitracer study of anthropogenic contamination records in the Camargue, Southern France, Sci. Total. Environ., 320, 63–72, 2004.
- Mohan, M. P., D'Souza, R. S., Rashmi Nayak, S., Kamath, S. S., Shetty, T., Sudeep Kumara, K., Yashodhara, I., Mayya, Y. S., and Karunakara, N.: A study of temporal variations of ⁷Be and ²¹⁰Pb concentrations and their correlations with rainfall and other parameters in the South West Coast of India, J. Environ. Radioactiv., 192, 194–207, 2018.
- Mohan, M. P., D'Souza, R. S., Nayak, S. R., Kamath, S. S., Shetty, T., Kumara, K. S., Mayya, Y. S., and Karunakara, N.: Influence of rainfall on atmospheric deposition fluxes of ⁷Be and ²¹⁰Pb in Mangaluru (Mangalore) at the Southwest Coast of India, Atmos. Environ., 202, 281–295, 2019.
- Mohery, M., Abdallah, A. M., Al-Amoudi, Z. M., and Baz, S. S.: Activity size distribution of some natural radionuclides, Radiat. Prot. Dosim., 158, 435–441, 2014.
- Mohery, M., Abdallah, A. M., Ali, A., and Baz, S. S.: Daily variation of radon gas and its short-lived progeny concentration near ground level and estimation of aerosol residence time, Chinese Phys. B, 25, 050701, https://doi.org/10.1088/1674-1056/25/5/050701, 2016.
- Momoshima, N., Nishio, S., Kusano, Y., Fukuda, A., and Ishimoto, A.: Seasonal variations of atmospheric ²¹⁰Pb and ⁷Be concentrations at Kumamoto, Japan and their removal from the atmosphere as wet and dry depositions, J. Radioanal. Nucl. Ch., 268, 297–304, 2006.

- Monaghan, M. C.: Lead 210 in surface air and soils from California: Implications for the behavior of trace constituents in the planetary boundary layer, J. Geophys. Res., 94, 6449–6456, 1989.
- Monaghan, M. C. and Holdsworth, G.: The origin of non-sea-salt sulphate in the Mount Logan ice core, Nature, 343, 245–248, 1990.
- Monaghan, M. C., Krishnaswami, S., and Turekian, K. K.: The global-average production rate of ¹⁰Be, Earth Planet. Sc. Lett., 76, 279–287, 1986.
- Moore, H. E. and Poet, S. E.: ²¹⁰Pb fluxes determined from ²¹⁰Pb and ²²⁶Ra soil profiles, J. Geophys. Res., 81, 1056–1058, 1976.
- Moore, H. E., Poet, S. E., and Martell, E. A.: Vertical profiles of ²²²Rn and its long-lived daughters over the eastern Pacific, Environ. Sci. Technol., 11, 1207–1210, 1977.
- Mudbidre, R., Baskaran, M., and Schweitzer, L.: Investigations of the partitioning and residence times of Po-210 and Pb-210 in a riverine system in Southeast Michigan USA, J. Environ. Radioact., 138, 375–383, 2014.
- Muramatsu, H., Yoshizawa, S., Abe, T., Ishii, T., Wada, M., Horiuchi, Y., and Kanekatsu, R.: Variation of ⁷Be concentration in surface air at Nagano, Japan, J. Radioanal. Nucl. Ch., 275, 299– 307, 2008.
- Narazaki, Y. and Fujitaka, K.: Cosmogenic ⁷Be: atmospheric concentration and deposition in Japan, Jpn. J. Health Phys., 44, 95– 105, 2009.
- Narazaki, Y., Fujitaka, K., Igarashi, S., Ishikawa, Y., and Fujinami, N.: Seasonal variation of ⁷Be deposition in Japan, J. Radioanal. Nucl. Ch., 256, 489–496, 2003.
- Nazaroff, W. W.: Radon transport from soil to air, Rev. Geophys., 30, 137–160, 1992.
- Neroda, A. S., Goncharova, A. A., Goryachev, V. A., Mishukov, V. F., and Shlyk, N. V.: Long-range atmospheric transport Beryllium-7 to region the Sea of Japan, J. Environ. Radioactiv., 160, 102–111, 2016.
- Nijampurkar, V. N. and Clausen, H. B.: A century old record of lead-210 fallout on the Greenland ice sheet, Tellus B, 42, 29–38, 1990.
- Nijampurkar, V. N. and Rao, D. K.: Polar fallout of radionuclides ³²Si, ⁷Be and ²¹⁰Pb and past accumulation rate of ice at Indian station, Dakshin Gangotri, East Antarctica, J. Environ. Radioactiv., 21, 107–117, 1993.
- Nijampurkar, V. N., Rao, D. K., Clausen, H. B., Kaul, M. K., and Chaturvedi, A.: Records of climatic changes and volcanic events in an ice core from Central Dronning Maud Land (East Antarctica) during the past century, Proc. Indian Acad. Sci. (Earth Planet. Sci.), 111, 39–49, 2002.
- Noithong, P., Rittirong, A., and Hazama, R.: Study of the factors influence on variation of Be-7 concentration in surface air at Osaka, Japan, J. Phys. Conf. Ser., 1285, 012016, https://doi.org/10.1088/1742-6596/1285/1/012016, 2019.
- Nozaki, Y., DeMaster, D. J., Lewis, D. M., and Turekian, K. K.: Atmospheric ²¹⁰Pb fluxes determined from soil profiles, J. Geophys. Res., 83, 4047–4051, 1978.
- O'Farrell, C. R., Heimsath, A. M., and Kaste, J. M.: Quantifying hillslope erosion rates and processes for a coastal California landscape over varying timescales, Earth Surf. Proc. Land., 32, 544– 560, 2007.
- Olsen, C. R., Larsen, I. L., Lowry, P. D., Cutshall, N. H., Todd, J. F., Wong, G. T. F., and Casey, W. H.: Atmospheric fluxes and

marsh-soil inventories of ⁷Be and ²¹⁰Pb, J. Geophys. Res., 90, 10487–10495, 1985.

- Olsen, C. R., Larsen, I. L., Lowry, P. D., Cutshall, N. H., and Nichols, M. M.: Geochemistry and deposition of ⁷Be in river, estuarine and coastal waters, J. Geophys. Res., 91, 896–908, 1986.
- Othman, I., Al-Masri, M. S., and Hassan, M.: Fallout of ⁷Be in Damascus City, J. Radioanal. Nucl. Ch., 238, 187–192, 1998.
- Paatero, J. and Hatakka, J.: Source areas of airborne ⁷Be and ²¹⁰Pb measured in Northern Finland, Health Phys., 79, 691–696, 2000.
- Paatero, J., Hatakka, J., Holmén, K., Eneroth, K., and Viisanen, Y.: Lead-210 concentration in the air at Mt. Zeppelin, Ny-Ålesund, Svalbard, Phys. Chem. Earth., 28, 1175–1180, 2003.
- Paatero, J., Buyukay, M., Holmén, K., Hatakka, J., and Viisanen, Y.: Seasonal variation and source areas of airborne lead-210 at Ny-Ålesund in the High Arctic, Polar Res., 29, 345–352, 2010.
- Paatero, J., Vaaramaa, K., Buyukay, M., Hatakka, J., and Lehto, J.: Deposition of atmospheric ²¹⁰Pb and total beta activity in Finland, J. Radioanal. Nucl. Ch., 303, 2413–2420, 2015.
- Paatero, J., Ioannidou, A., Ikonen, J., and Lehto, J.: Aerosol particle size distribution of atmospheric lead-210 in northern Finland, J. Environ. Radioactiv., 172, 10–14, 2017.
- Pacini, A. A., Usoskin, I. G., Evangelista, H., Echer, E., and de Paula, R.: Cosmogenic isotope ⁷Be: A case study of depositional processes in Rio de Janeiro in 2008–2009, Adv. Space Res., 48, 811–818, 2011.
- Pacini, A. A., Usoskin, I. G., Mursula, K., Echer, E., and Evangelista, H.: Signature of a sudden stratospheric warming in the near-ground ⁷Be flux, Atmos. Environ., 113, 27–31, 2015.
- Padilla, S., Lopez-Gutierrez, J. M., Manjon, G., García-Tenorio, R., Galvan, J. A., and García-Leon, M.: Meteoric ¹⁰Be in aerosol filters in the city of Seville, J. Environ. Radioactiv., 196, 15–21, 2019.
- Pan, J., Yang, Y. L., Zhang, G., Shi, J. L., Zhu, X. H., Li, Y., and Yu, H. Q.: Simultaneous observation of seasonal variations of beryllium-7 and typical POPs in near-surface atmospheric aerosols in Guangzhou, China, Atmos. Environ., 45, 3371–3380, 2011.
- Pan, J., Wen, F., Chen, L., Ren, X., Zhang, J., Zhao, S., Cao, Z., and Pan, Z.: Preliminary analysis of activity concentration distributions of airborne ²¹⁰Po and ²¹⁰Pb in major cities in China, Radiat. Prot., 37, 433–437, 2017 (in Chinese).
- Papastefanou, C.: Residence time of tropospheric aerosols in association with radioactive nuclides, Appl. Radiat. Isotopes, 64, 93–100, 2006.
- Papastefanou, C. and Bondietti, E. A.: Mean residence times of atmospheric aerosols in the boundary layer as determined from ²¹⁰Bi / ²¹⁰Pb activity ratios, J. Aerosol Sci., 22, 927–931, 1991.
- Papastefanou, C. and Ioannidou, A.: Depositional fluxes and other physical characteristics of atmospheric beryllium-7 in the temperate zones (40° N) with a dry (precipitation-free) climate, Atmos. Environ., 25, 2335–2343, 1991.
- Papastefanou, C., Ioannidou, A., Stoulos, S., and Manolopoulou, M.: Atmospheric deposition of cosmogenic ⁷Be and ¹³⁷Cs from fallout of the Chernobyl accident, Sci. Total. Environ., 170, 151– 156, 1995.
- Parker, R. P.: Beryllium-7 and fission products in surface air, Nature, 193, 967–968, 1962.
- Peirson, D. H.: Beryllium 7 in air and rain, J. Geophys. Res., 68, 3831–3832, 1963.

Peirson, D. H., Cambray, R. S., and Spicer, G. S.: Lead-210 and polonium-210 in the atmosphere, Tellus, 18, 427–433, 1966.

- Peng, A., Liu, G., Jiang, Z., Liu, G., and Liu, M.: Wet depositional fluxes of ⁷Be and ²¹⁰Pb and their influencing factors at two characteristic cities of China, Appl. Radiat. Isot., 147, 21–30, 2019.
- Perreault, L. M., Yager, E. M., and Aalto, R.: Effects of gradient, distance, curvature and aspect on steep burned and unburned hillslope soil erosion and deposition, Earth Surf. Proc. Land., 42, 1033–1048, 2017.
- Persson, B. R. R.: Global distribution of ⁷Be, ²¹⁰Pb and, ²¹⁰Po in the surface air, Acta Sci. Lundensia, 8, 1–24, https://doi.org/10.13140/RG.2.1.4196.2960, 2015.
- Peters, A. J., Gregor, D. J., Wilkinson, P., and Spencer, C.: Deposition of ²¹⁰Pb to the Agassiz Ice Cap, Canada, J. Geophys. Res., 102, 5971–5978, 1997.
- Pfahler, V., Glaser, B., McKey, D., and Klemt, E.: Soil redistribution in abandoned raised fields in French Guiana assessed by radionuclides, J. Plant. Nutr. Soil Sci., 178, 468–476, 2015.
- Pfitzner, J., Brunskill, G., and Zagorskis, I.: ¹³⁷Cs and excess ²¹⁰Pb deposition patterns in estuarine and marine sediment in the central region of the Great Barrier Reef Lagoon, north-eastern Australia, J. Environ. Radioactiv., 76, 81–102, 2004.
- Pham, M. K., Betti, M., Nies, H., and Povinec, P. P.: Temporal changes of ⁷Be, ¹³⁷Cs and ²¹⁰Pb activity concentrations in surface air at Monaco and their correlation with meteorological parameters, J. Environ. Radioactiv., 102, 1045–1054, 2011.
- Pham, M. K., Povinec, P. P., Nies, H., and Betti, M.: Dry and wet deposition of ⁷Be, ²¹⁰Pb and ¹³⁷Cs in Monaco air during 1998– 2010: seasonal variations of deposition fluxes, J. Environ. Radioactiv., 120, 45–57, 2013.
- Picciotto, E., Crozaz, G., and De Breuck, W.: Rate of accumulation of snow at the south pole as determined by radioactive measurements, Nature, 203, 393–394, 1964.
- Picciotto, E., Cameron, R., Crozaz, G., Deutsch, S., and Wiloain, S.: Determination of the rate of snow accumulation at the pole of relative inaccessibility, Eastern Antarctica: a comparison of glaciological and isotopic methods, J. Glaciol., 7, 273–287, 1968.
- Piñero-García, F. and Ferro-García, M. A.: Evolution and solar modulation of ⁷Be during the solar cycle 23, J. Radioanal. Nucl. Ch., 296, 1193–1204, 2013.
- Piñero-García, F., Ferro-García, M. A., and Azahra, M.: ⁷Be behaviour in the atmosphere of the city of Granada January 2005 to December 2009, Atmos. Environ., 47, 84–91, 2012.
- Piñero-García, F., Ferro-García, M. A., Chham, E., Cobos-Díaz, M., and González-Rodelas, P.: A cluster analysis of back trajectories to study the behaviour of radioactive aerosols in the south-east of Spain, J. Environ. Radioactiv., 147, 142–152, 2015.
- Poet, S. E., Moore, H. E., and Martell, E. A.: Lead 210, bismuth 210, and polonium 210 in the atmosphere: Accurate ratio measurement and application to aerosol residence time determination, J. Geophys. Res., 77, 6515–6527, 1972.
- Poreba, G., Snieszko, Z., Moska, P., Mroczek, P., and Malik, I.: Interpretation of soil erosion in a Polish loess area using OSL, ¹³⁷Cs, ²¹⁰Pb_{ex}, dendrochronology and micromorphology-case study: Biedrzykowice site (S Poland), Geochronometria, 46, 57– 78, 2019.
- Porto, P. and Walling, D. E.: Validating the use of ¹³⁷Cs and ²¹⁰Pb_{ex} measurements to estimate rates of soil loss from culti-

vated land in southern Italy, J. Environ. Radioactiv., 106, 47–57, 2012.

- Porto, P., Walling, D. E., Callegari, G., and Catona, F.: Using fallout lead-210 measurements to estimate soil erosion in three small catchments in southern Italy, Water Air Soil Poll., 6, 657–667, 2006.
- Porto, P., Walling, D. E., Callegari, G., and Capra, A.: Using caesium-137 and unsupported lead-210 measurements to explore the relationship between sediment mobilisation, sediment delivery and sediment yield for a Calabrian catchment, Mar. Freshwater Res., 60, 680–689, 2009.
- Porto, P., Walling, D. E., and Callegari, G.: Using ¹³⁷Cs and ²¹⁰Pb_{ex} measurements to investigate the sediment budget of a small forested catchment in southern Italy, Hydrol. Process., 27, 795–806, 2013.
- Porto, P., Walling, D. E., and Capra, A.: Using ¹³⁷Cs and ²¹⁰Pb_{ex} measurements and conventional surveys to investigate the relative contributions of interrill/rill and gully erosion to soil loss from a small cultivated catchment in Sicily, Soil. Till. Res., 135, 18–27, 2014.
- Porto, P., Walling, D. E., Cogliandro, V., and Callegari, G.: Exploring the potential for using ²¹⁰Pb_{ex} measurements within a resampling approach to document recent changes in soil redistribution rates within a small catchment in southern Italy, J. Environ. Radioactiv., 164, 158–168, 2016.
- Pourchet, M., Bartarya, S. K., Maignan, M., Jouzel, J., Pinglot, J. F., Aristarain, A. J., Furdada, G., Kotlyakov, V. M., Mosley-Thompson, E., Preiss, N., and Young, N. W.: Distribution and fall-out of ¹³⁷Cs and other radionuclides over Antarctica, J. Glaciol., 43, 435–445, 1997.
- Preiss, N. and Genthon, C.: Use of a new database of lead 210 for global aerosol model validation, J. Geophys. Res.-Atmos., 102, 25347–25357, 1997.
- Preiss, N., Mélières, M. A., and Pourchet, M.: A compilation of data on lead 210 concentration in surface air and fluxes at the air-surface and water-sediment interfaces, J. Geophys. Res., 101, 28847–28862, 1996.
- Prospero, J. M., Schmitt, R., Cuevas, E., Savoie, D. L., Graustein, W. C., Turekian, K. K., Volz-Thomas, A., Díaz, A., Oltmans, S. J., and Levy II, H.: Temporal variability of summer-time ozone and aerosols in the free troposphere over the eastern North Atlantic, Geophys. Res. Lett., 22, 2925–2928, 1995.
- Qian, J., Wang, X., and Xu, Z.: The Pb-210 atmospheric precipitation flux near the East China Sea, Donghai Mar. Sci., 4, 27–33, 1985 (in Chinese).
- Rabesiranana, N., Rasolonirina, M., Solonjara, A. F., Ravoson, H. N., Raoelina, A., and Mabit, L.: Assessment of soil redistribution rates by ¹³⁷Cs and ²¹⁰Pb_{ex} in a typical Malagasy agricultural field, J. Environ. Radioactiv., 152, 112–118, 2016.
- Rajačić, M. M., Todorović, D. J., Janković, M. M., Nikolić, J. D., Sarap, N. B., and Pantelić, G. K.: ⁷Be in atmospheric deposition: determination of seasonal indices, J. Radioanal. Nucl. Ch., 303, 2535–2538, 2015.
- Rajačić, M. M., Todorovic, D. J., Krneta Nikolic, J. D., Jankovic, M. M., and Djurdjevic, V. S.: The Fourier analysis applied to the relationship between ⁷Be activity in the Serbian atmosphere and meteorological parameters, Environ. Pollut., 216, 919–923, 2016.

- Raksawong, S., Krmar, M., and Bhongsuwan, T.: The ⁷Be profiles in the undisturbed soil used for reference site to estimate the soil erosion, J. Phys. Conf. Ser., 860, 012009, https://doi.org/10.1088/1742-6596/860/1/012009, 2017.
- Ram, K. and Sarin, M. M.: Atmospheric ²¹⁰Pb, ²¹⁰Po and ²¹⁰Po / ²¹⁰Pb activity ratio in urban aerosols: temporal variability and impact of biomass burning emission, Tellus B, 64, 17513, https://doi.org/10.3402/tellusb.v64i0.17513, 2012.
- Rama Thor, and Zutshi, P. K.: Annual deposition of cosmic ray produced Be⁷ at equatorial latitudes, Tellus, 10, 99–103, 1958.
- Rangarajan, C., Gopalakrishnan, S. S., Sadasivan, S., and Chitale, P. V.: Atmospheric and precipitation radioactivity in India, Tellus, 20, 269–283, 1966.
- Rangarajan, C., Gopalakrishnan, S., Chandrasekaran, V. R., and Eapen, C. D.: The relative concentrations of radon daughter products in surface air and the significance of their ratios, J. Geophys. Res., 80, 845–848, 1975.
- Rangarajan, C., Madhavan, R., and Gopalakrishnan, S. S.: Spatial and temporal distribution of lead-210 in the surface layers of the atmosphere, J. Environ. Radioactiv., 3, 23–33, 1986.
- Rastogi, N. and Sarin, M. M.: Atmospheric ²¹⁰Pb and ⁷Be in ambient aerosols over low- and high-altitude sites in semiarid region: Temporal variability and transport processes, J. Geophys. Res., 113, D11103, https://doi.org/10.1029/2007JD009298, 2008.
- Realo, E., Realo, K., Lust, M., Koch, R., and Uljas, A.: Lead-210 in air and in surface soil in NE Estonia, in: 11th International Congress of International Radiation Protection Association, Madrid, Spanish, 23–28 May 2004, 1–8, 2004.
- Realo, K., Isakar, K., Lust, M., and Realo, E.: Weekly variation of the ²¹⁰Pb air concentration in North Estonia, Boreal Environ. Res., 12, 37–41, 2007.
- Rehfeld, S. and Helmann, M.: Three dimensional atmospheric transport simulation of the radioactive tracers ²¹⁰Pb, ⁷Be, ¹⁰Be and ⁹⁰Sr, J. Geophys. Res., 100, 26141–26161, 1995.
- Reiter, R., Munzert, K., Kanter, H. J., and Pötzl, K.: Cosmogenic radionuclides and ozone at a mountain station at 3.0 km a.s.l, Arch. Met. Geoph. Biocl. Ser. B, 32, 131–160, 1983.
- Renfro, A. A., Cochran, J. K., and Colle, B. A.: Atmospheric fluxes of ⁷Be and ²¹⁰Pb on monthly time-scales and during rainfall events at Stony Brook, New York (USA), J. Environ. Radioactiv., 116, 114–123, 2013.
- Rodas Ceballos, M., Borras, A., Gomila, E., Estela, J. M., Cerda, V., and Ferrer, L.: Monitoring of ⁷Be and gross beta in particulate matter of surface air from Mallorca Island, Spain, Chemosphere, 152, 481–489, 2016.
- Ródenas, C., Gómez, J., Quindós, L. S., Fernández, P. L., and Soto, J.: ⁷Be concentrations in air, rain water and soil in Cantabria (Spain), Appl. Radiat. Isot., 48, 545–548, 1997.
- Rodriguez-Perulero, A., Baeza, A., and Guillen, J.: Seasonal evolution of ^{7,10}Be and ²²Na in the near surface atmosphere of Caceres (Spain), J. Environ. Radioactiv., 197, 55–61, 2019.
- Saari, H. K., Schmidt, S., Castaing, P., Blanc, G., Sautour, B., Masson, O., and Cochran, J. K.: The particulate $^{7}\text{Be}/^{210}\text{Pb}_{xs}$ and $^{234}\text{Th}/^{210}\text{Pb}_{xs}$ activity ratios as tracers for tidal-to-seasonal particle dynamics in the Gironde estuary (France): implications for the budget of particle-associated contaminants, Sci. Total. Environ., 408, 4784–4794, 2010.
- Sabuti, A. A. and Mohamed, C. A.: Impact of northern and southern air mass transport on the temporal distribution of atmospheric

²¹⁰Po and ²¹⁰Pb in the east coast of Johor, Malaysia, Environ. Sci. Pollut. Res., 23, 18451–18465, 2016.

- Sakurai, H., Shouji, Y., Osaki, M., Aoki, T., Gandou, T., Kato, W., Takahashi, Y., Gunji, S., and Tokanai, F.: Relationship between daily variation of cosmogenic nuclide Be-7 concentration in atmosphere and solar activities, Adv. Space Res., 36, 2492–2496, 2005.
- Sakurai, H., Sato, T., Oe, T., Takahashi, Y., Matsubara, Y., Miyahara, H., Ohashi, H., Tavera, W., and Salinas, J.: Daily variation of cosmogenic nuclide Be-7 concentrations in high altitude atmosphere at Mt. Chacaltaya at the solar minimum from 2009, in: 32nd International Cosmic Ray Conference, Beijing, China, 11–18 August 2011, 420–423, 2011.
- Saleh, I. H. and Abdel-Halim, A. A.: ⁷Be in soil, deposited dust and atmospheric air and its using to infer soil erosion along Alexandria region, Egypt, J. Environ. Radioactiv., 172, 24–29, 2017.
- Sambayev, Y. K., Zhumalina, A. G., Zhumadilov, K. S., Sakaguchi, A., Kajimoto, T., Tanaka, K., Endo, S., Kawano, N., Hoshi, M., and Yamamoto, M.: Temporal variation of atmospheric ⁷Be and ²¹⁰Pb concentrations and their activity size distributions at Astana, Kazakhstan in Central Asia, J. Radioanal. Nucl. Ch., 323, 663–674, 2019.
- Samolov, A., Dragovic, S., Dakovic, M., and Bacic, G.: Analysis of ⁷Be behaviour in the air by using a multilayer perceptron neural network, J. Environ. Radioactiv., 137, 198–203, 2014.
- San Miguel, E. G., Hernández-Ceballos, M. A., García-Mozo, H., and Bolívar, J. P.: Evidences of different meteorological patterns governing ⁷Be and ²¹⁰Pb surface levels in the southern Iberian Peninsula, J. Environ. Radioactiv., 198, 1–10, 2019.
- Sanchez-Cabeza, J. A., García-Talavera, M., Costa, E., Peña, V., García-Orellana, J., Masqué, P., and Nalda, C.: Regional calibration of erosion radiotracers (²¹⁰Pb and ¹³⁷Cs): atmospheric fluxes to soils (northern Spain), Environ. Sci. Technol., 41, 1324– 1330, 2007.
- Sanders, C. J., Smoak, J. M., Cable, P. H., Patchineelam, S. R., and Sanders, L. M.: Lead-210 and Beryllium-7 fallout rates on the southeastern coast of Brazil, J. Environ. Radioactiv., 102, 1122– 1125, 2011.
- Sangiorgi, M., Hernández Ceballos, M. A., Iurlaro, G., Cinelli, G., and de Cort, M.: 30 years of European Commission Radioactivity Environmental Monitoring data bank (REMdb) – an open door to boost environmental radioactivity research, Earth Syst. Sci. Data, 11, 589–601, https://doi.org/10.5194/essd-11-589-2019, 2019.
- Sato, J., Doi, T., Segawa, T., and Sugawara, S.: Seasonal variation at Tsukuba, Japan, from the 1991 of atmospheric concentrations of ²¹⁰Pb and ⁷Be with a possible observation of ²¹⁰Pb originating from the 1991 eruption of Pinatubo volcano, Philippines, Geochem. J., 28, 123–129, 1994.
- Sato, S., Koike, Y., Saito, T., and Sato, J.: Atmospheric concentration of ²¹⁰Pb and ⁷Be at Sarufutsu, Hokkaido, Japan, J. Radioanal. Nucl. Ch., 255, 351–353, 2003.
- Savva, M. I., Karangelos, D. J., and Anagnostakis, M. J.: Determination of ⁷Be and ²²Na activity in air and rainwater samples by gamma-ray spectrometry, Appl. Radiat. Isot., 134, 466–469, 2018.
- Schuler, C., Wieland, E., Santschi, P. H., Sturm, M., Lueck, A., Bollhalder, S., Beer, J., Bonani, G., Hofmann, H. J., Suter, M., and Wolfli, W.: A multitracer study of radionuclides in Lake Zurich, Switzerland: 1. Comparison of atmospheric and sedi-

F. Zhang et al.: Global dataset of atmospheric ⁷Be and ²¹⁰Pb measurements

mentary fluxes of ⁷Be, ¹⁰Be, ²¹⁰Pb, ²¹⁰Po, and ¹³⁷Cs, J. Geophys. Res., 96, 17051–17065, 1991.

- Schumann, G. and Stoeppler, M.: Beryllium 7 in the atmosphere, J. Geophys. Res., 68, 3827–3830, 1963.
- Shapiro, M. H. and Forbes-Resha, J. L.: Mean residence time of ⁷Be-bearing aerosols in the troposphere, J. Geophys. Res., 81, 2647–2649, 1976.
- Sheets, R. W. and Lawrence, A. E.: Temporal dynamics of airborne lead-210 in Missouri (USA): implications for geochronological methods, Environ. Geol., 38, 343–348, 1999.
- Shelley, R. U., Roca-Martí, M., Castrillejo, M., Sanial, V., Masqué, P., Landing, W. M., van Beek, P., Planquette, H., and Sarthou, G.: Quantification of trace element atmospheric deposition fluxes to the Atlantic Ocean (> 40° N; GEOVIDE, GEOTRACES GA01) during spring 2014, Deep-Sea Res. Pt. I, 119, 34–49, 2017.
- Shi, H., Zhang, Y., Deng, A., and Dong, Z.: Variation in activity concentration of ²¹⁰Pb in atmospheric aerosol and its radiation dose assessment in Qingdao, Chin. J. Radiol. Med. Prot., 37, 372–375, 2017 (in Chinese).
- Shi, Z., Wen, A., Yan, D., Zhang, X., and Ju, L.: Temporal variation of ⁷Be fallout and its inventory in purple soil in the Three Gorges Reservoir region, China, J. Radioanal. Nucl. Ch., 288, 671–676, 2011.
- Shleien, B. and Friend, A. G.: Local ground-level air concentrations of lead-210 at Winchester, Massachusetts, Nature, 210, 579–580, 1966.
- Short, D. B., Appleby, P. G., and Hilton, J.: Measurement of atmospheric fluxes of radionuclides at a UK site using both direct (rain) and indirect (soils) methods, Int. J. Environ. Pollut., 29, 392–404, 2007.
- Silker, W. B.: Beryllium-7 and fission products in the Geosecs II water column and applications of their oceanic distributions, Earth Planet. Sc. Lett., 16, 131–137, 1972.
- Simon, J., Meresova, J., Sykora, I., Jeskovsky, M., and Holy, K.: Modeling of temporal variations of vertical concentration profile of ⁷Be in the atmosphere, Atmos. Environ., 43, 2000–2004, 2009.
- Smith, J. T., Appleby, P. G., Hilton, J., and Richardson, N.: Inventories and fluxes of ²¹⁰Pb, ¹³⁷Cs and ²⁴¹Am determined from the soils of three small catchments in Cumbria, UK, J. Environ. Radioactiv., 37, 127–142, 1997.
- Song, H., Li, L., Li, Q., Mo, G., and Huang, N.: Levels of ²¹⁰Pb in aerosols of Daya Bay, Guangdong, in: National Seminar on Radioactive Effluent and Environmental Monitoring and Evaluation, Hangzhou, China, 25–27 November 2003, 484–486, 2003 (in Chinese).
- Song, H., Mo, G., Li, L., Chen, W., Wang, J, Li, Q., and Huang, N.: Variations of ⁷Be concentrations in the atmosphere of Guangdong Daya Bay district, China during the period 1994 to 2003, Prog. Rep. China Nucl. Sci. Technol., 4, 46–50, 2015 (in Chinese).
- Stamoulis, K. C., Tsiligou, Z., Aslanoglou, X., and Ioannides, K. G.: Variation of both tritium (³H) and beryllium (⁷Be) concentrations in air, rain and humidity samples collected at Ioannina, North-western Greece, HNPS Proc., 26, 220-223, 2018.
- Steinmann, P., Billen, T., Loizeau, J. L., and Dominik, J.: Beryllium-7 as a tracer to study mechanisms and rates of metal scavenging from lake surface waters, Geochim. Cosmochim. Ac., 63, 1621–1633, 1999.

- Steinmann, P., Zeller, M., Beuret, P., Ferreri, G., and Estier, S.: Cosmogenic ⁷Be and ²²Na in ground level air in Switzerland (1994– 2011), J. Environ. Radioactiv., 124, 68–73, 2013.
- Stromsoe, N., Marx, S. K., Callow, N., McGowan, H. A., and Heijnis, H.: Estimates of late Holocene soil production and erosion in the Snowy Mountains, Australia, Catena, 145, 68–82, 2016.
- Su, C. C., Huh, C. A., and Lin, F. J.: Factors controlling atmospheric fluxes of ⁷Be and ²¹⁰Pb in northern Taiwan, Geophys. Res. Lett., 30, 2018, https://doi.org/10.1029/2003GL018221, 2003.
- Sugihara, S., Momoshima, N., Maeda, Y., and Osaki, S.: Variation of atmospheric ⁷Be and ²¹⁰Pb depositions at Fukuoka, Japan, in: 10th International Congress of the International Radiation Protection Association, Hiroshima, Japan, 10–16 May 2000.
- Suzuki, T. and Shiono, H.: Comparison of ²¹⁰Po / ²¹⁰Pb activity ratio between aerosol and deposition in the atmospheric boundary layer over the west coast of Japan, Geochem. J., 29, 287–291, 1995.
- Suzuki, T., Maruyama, Y., Nakayama, N., Yamada, K., and Ohta, K.: Measurement of the ²¹⁰Po/²¹⁰Pb activity ratio in size fractionated aerosols from the coast of the Japan sea, Atmos. Environ., 33, 2285–2288, 1999.
- Suzuki, T., Kamiyama, K., Furukawa, T., and Fujii, Y.: Lead-210 profile in firn layer over Antarctic ice sheet and its relation to the snow accumulation environment, Tellus B, 56, 85–92, 2004.
- Suzuki, T., Sakurai, H., Tokanal, F., Inul, E., Shimizu, H., Masuda, K., Mitthumslrl, W., Ruffolo, D., Macatangay, R., Kikuchi, S., and Kurebayashi, Y.: Observation of cosmogenic nuclide Be-7 concentrations in the air at Bangkok and trajectory analysis of global air-mass motion, in: 35th International Cosmic Ray Conference, Busan, Korea, 10–20 July 2017, https://doi.org/10.22323/1.301.0070, 2017.
- Sykora, I., Holy, K., Jeskovsky, M., Mullerova, M., Bulko, M., and Povinec, P. P.: Long-term variations of radionuclides in the Bratislava air, J. Environ. Radioactiv., 166, 27–35, 2017.
- Talbot, R. W. and Andren, A. W.: Relationships between Pb and ²¹⁰Pb in aerosol and precipitation at a Semiremote Site in northern Wisconsin, J. Geophys. Res.-Oceans, 88, 6752–6760, 1983.
- Tan, J., Li, M., Jiang, L., and Song, H.: Radioactivity characteristics of atmospheric aerosol samples in Guangzhou, Nucl. Tech., 39, 1–7, 2016 (in Chinese).
- Tan, K., Yang, Y., Zhu, X., Li, Y., Chen, S., Yu, H., Jiao, X., Gai, N., and Huang, Y.: Beryllium-7 in near-surface atmospheric aerosols in mid-latitude (40° N) city Beijing, China, J. Radioanal. Nucl. Ch., 298, 883–891, 2013.
- Tanahara, A., Nakaema, F., Zamami, Y., and Arakaki, T.: Atmospheric concentrations of ²¹⁰Pb and ⁷Be observed in Okinawa Islands, Radioisotopes, 63, 175–181, 2014.
- Tanaka, N. and Turekian, K. K.: Determination of the dry deposition flux of SO₂ using cosmogenic ³⁵S and ⁷Be measurements, J. Geophys. Res., 100, 2841–2848, 1995.
- Tateda, Y. and Iwao, K.: High ²¹⁰Po atmospheric deposition flux in the subtropical coastal area of Japan, J. Environ. Radioactiv., 99, 98–108, 2008.
- Taylor, A., Keith-Roach, M. J., Iurian, A. R., Mabit, L., and Blake, W. H.: Temporal variability of beryllium-7 fallout in southwest UK, J. Environ. Radioactiv., 160, 80–86, 2016.
- Tenopir, C., Allard, S., Douglass, K., Aydinoglu, A. U., Wu, L., Read, E., Manoff, M., and Frame, M.: Data sharing by

scientists: practices and perceptions, PLoS ONE, 6, e21101, https://doi.org/10.1371/journal.pone.0021101, 2011.

- Terzi, L. and Kalinowski, M.: World-wide seasonal variation of ⁷Be related to large-scale atmospheric circulation dynamics, J. Environ. Radioactiv., 178–179, 1–15, 2017.
- Thang, D., Bac, V., Long, N., Thu Ha, N., Quynh, N., Khanh, N., Oanh, N., and Viet, C.: Activity concentrations of ²¹⁰Pb in the aerosol at Hanoi, Nucl. Sci. Technol., 8, 17–22, 2018.
- Thompson, L. G., Mosley-Thompson, E., Grootes, P. M., Pourchet, M., and Hastenrath, S.: Tropical glaciers: Potential for ice core paleoclimatic reconstructions, J. Geophys. Res., 89, 4638–4646, 1984.
- Thor, R. and Zutshi, P. K.: Annual deposition of cosmic ray produced Be⁷ at equatorial latitudes, Tellus, 10, 99–103, 1958.
- Todd, J. F., Wong, G. T. F., Olsen, C. R., and Larsen, I. L.: Atmospheric depositional characteristics of beryllium 7 and lead 210 along the southeastern Virginia coast, J. Geophys. Res., 94, 11106–11116, 1989.
- Todorovic, D., Popovic, D., and Djuric, G.: Concentration measurements of ⁷Be and ¹³⁷Cs in ground level air in the Belgrade City area, Environ. Int., 25, 59–66, 1999.
- Todorovic, D., Popovic, D., Djuric, G., and Radenkovic, M.: ²¹⁰Pb in ground-level air in Belgrade city area, Atmos. Environ., 34, 3245–3248, 2000.
- Todorovic, D., Popovic, D., Djuric, G., and Radenkovic, M.: ⁷Be to ²¹⁰Pb concentration ratio in ground level air in Belgrade area, J. Environ. Radioactiv., 79, 297–307, 2005.
- Todorovic, D., Popovic, D., Nikolic, J., and Ajtic, J.: Radioactivity monitoring in ground level air in Belgrade urban area, Radiat. Prot. Dosim., 142, 308–313, 2010.
- Tokieda, T., Yamanaka, K., Harada, K., and Tsunogai, S.: Seasonal variations of residence time and upper atmospheric contribution of aerosols studied with Pb-210, Bi-210, Po-210 and Be-7, Tellus B, 48, 690–702, 1996.
- Tositti, L., Brattich, E., Cinelli, G., and Baldacci, D.: 12 years of ⁷Be and ²¹⁰Pb in Mt. Cimone, and their correlation with meteorological parameters, Atmos. Environ., 87, 108–122, 2014.
- Tsunogai, S., Suzuki, T., Kurata, T., and Uematsu, M.: Seasonal and areal variation of continental aerosol in the surface air over the western North Pacific region, J. Oceanogra. Soc. Jpn., 41, 427–434, 1985.
- Tsunogai, S., Kurata, T., Suzuki, T., and Yokota, K.: Seasonal variation of atmospheric ²¹⁰Pb and Al in the western North Pacific region, J. Atmos. Chem., 7, 389–407, 1988.
- Tuo, F., Pang, C., Wang, W., Zhang, J., Zhou, Q., Yao, S., Li, W., and Li, Z.: Level, distribution, variation and sources of Pb-210 in atmosphere in North China, J. Radioanal. Nucl. Ch., 318, 1855– 1862, 2018.
- Turekian, K. K. and Cochran, J. K.: ²¹⁰Pb in surface air at Enewetak and the Asian dust flux to the Pacific, Nature, 292, 522–524, 1981.
- Turekian, K. K., Nozaki, Y., and Benninger, L. K.: Geochemistry of atmospheric radon and radon products, Ann. Rev. Earth Planet. Sc., 5, 227–255, 1977.
- Turekian, K. K., Benninger, L. K., and Dion, E. P.: ⁷Be and ²¹⁰Pb total deposition fluxes at New Haven, Connecticut and at Bermuda, J. Geophys. Res., 88, 5411–5415, 1983.
- Uchida, T., Takahashi, F., Onda, Y., Sisingghi, D., Kato, H., Noro, T., and Osanai, N.: Estimating soil erosion rate and sediment

sources using radionuclide Pb-210_{ex} in upper Brantas River basin in Indonesia, J. Japan Soc. Hydrol. Water Resour., 22, 188–197, 2009 (in Japanese).

- Uematsu, M., Duce, R. A., and Prospero, J. M.: Atmosphere beryllium-7 concentrations over the Pacific Ocean, Geophys. Res. Lett., 21, 561–564, 1994.
- Ueno, T., Nagao, S., and Yamazawa, H.: Atmospheric deposition of ⁷Be, ⁴⁰K, ¹³⁷Cs and ²¹⁰Pb during 1993–2001 at Tokai-mura, Japan, J. Radioanal. Nucl. Ch., 255, 335–339, 2003.
- Uğur, A., Özden, B., and Filizok, I.: Determination of ²¹⁰Po and ²¹⁰Pb concentrations in atmospheric deposition in İzmir (Aegean sea-Turkey), Atmos. Environ., 45, 4809–4813, 2011.
- Uhlář, R., Količová, P., and Alexa, P.: Short-term variations in ⁷Be wet deposition in the eastern part of the Czech Republic, J. Radioanal. Nucl. Ch., 304, 89–93, 2014.
- Valles, I., Camacho, A., Ortega, X., Serrano, I., Blazquez, S., and Perez, S.: Natural and anthropogenic radionuclides in airborne particulate samples collected in Barcelona (Spain), J. Environ. Radioactiv., 100, 102–107, 2009.
- Van Metre, P. C. and Fuller, C. C.: Dual-core mass-balance approach for evaluating mercury and ²¹⁰Pb atmospheric fallout and focusing to lakes, Environ. Sci. Technol., 43, 26–32, 2009.
- Vecchi, R. and Valli, G.: ⁷Be in surface air: A natural atmospheric tracer, J. Aerosol Sci., 28, 895–900, 1997.
- Vecchi, R., Marcazzan, G., and Valli, G.: Seasonal variation of ²¹⁰Pb activity concentration in outdoor air of Milan (Italy), J. Environ. Radioactiv., 82, 251–266, 2005.
- Vogler, S., Jung, M., and Mangini, A.: Scavenging of ²³⁴Th and ⁷Be in Lake Constance, Limnol. Oceanogr., 41, 1384–1393, 1996.
- Von Gunten, H. R. and Moser, R. N.: How reliable is the ²¹⁰Pb dating method? Old and new results from Switzerland, J. Paleolimnol., 9, 161–178, 1993.
- Wagenbach, D., Görlach, U., Moser, K., and Münnich, K. O.: Coastal Antarctic aerosol: the seasonal pattern of its chemical composition and radionuclide content, Tellus B, 40, 426–436, 1988.
- Wakiyama, Y., Onda, Y., Mizugaki, S., Asai, H., and Hiramatsu, S.: Soil erosion rates on forested mountain hillslopes estimated using ¹³⁷Cs and ²¹⁰Pbex, Geoderma, 159, 39–52, 2010.
- Wallbrink, P. J. and Murray, A. S.: Use of fallout radionuclides as indicators of erosion processes, Hydrol. Process., 7, 297–304, 1993.
- Wallbrink, P. J. and Murray, A. S.: Fallout of ⁷Be in south eastern Australia, J. Environ. Radioactiv., 25, 213–228, 1994.
- Wallbrink, P. J. and Murray, A. S.: Determining soil loss using the inventory ratio of excess lead-210 to cesium-137, Soil Sci. Soc. Am. J., 60, 1201–1208, 1996.
- Walling, D. E. and He, Q.: Using fallout lead-210 measurements to estimate soil erosion on cultivated land, Soil Sci. Soc. Am. J., 63, 1404–1412, 1999.
- Walling, D. E., He, Q., and Blake, W.: Use of ⁷Be and ¹³⁷Cs measurements to document short-and medium-term rates of waterinduced soil erosion on agricultural land, Water Resour. Res., 35, 3865–3874, 1999.
- Walling, D. E., Collins, A. L., and Sichingabula, H. M.: Using unsupported lead-210 measurements to investigate soil erosion and sediment delivery in a small Zambian catchment, Geomorphology, 52, 193–213, 2003.

F. Zhang et al.: Global dataset of atmospheric ⁷Be and ²¹⁰Pb measurements

- Walling, D. E., Schuller, P., Zhang, Y., and Iroume, A.: Extending the timescale for using beryllium 7 measurements to document soil redistribution by erosion, Water Resour. Res., 45, W02418, https://doi.org/10.1029/2008WR007143, 2009.
- Walton, A. and Fried, R. E.: The deposition of beryllium 7 and phosphorus 32 in precipitation at north temperate latitudes, J. Geophys. Res., 67, 5335–5340, 1962.
- Wan, G., Zheng, X., Lee, H. N., Bai, Z. G., Wan, E., Wang, S., Yang, W., Su, F., Yang, J., Wang, C., Huang, R., and Liu, P.: ²¹⁰Pb and ⁷Be as tracers for aerosol transfers at center Guizhou, China: the interpretation by monthly and yearly intervals, Adv. Earth Sci., 25, 505–514, 2010 (in Chinese).
- Wang, B., Wu, J., Sun, W., Luo, W., Zhang, F., and Wang, Y.: Monitoring the variation of ²¹⁰Pb concentration in aerosol of Lanzhou from 2009–2012, Nucl. Electron. Detect. Technol., 34, 114–116, 2014a (in Chinese).
- Wang, J., Du, J., Baskaran, M., and Zhang, J.: Mobile mud dynamics in the East China Sea elucidated using ²¹⁰Pb, ¹³⁷Cs, ⁷Be, and ²³⁴Th as tracers, J. Geophys. Res.-Oceans, 121, 224–239, 2016.
- Wang, J., Huang, D., Xie, W., He, Q., and Du, J.: Particle dynamics in a managed navigation channel under different tidal conditions as determined using multiple radionuclide tracers, J. Geophys. Res.-Oceans, 126, e2020JC016683, https://doi.org/10.1029/2020JC016683, 2021.
- Wang, L.: Study on soil erosion rates in Zhenjiang district using ¹³⁷Cs and ²¹⁰Pb_{ex} tracers [MS thesis], Nanjing Normal University, China, 2011 (in Chinese).
- Wang, Y.: Investigating the soil erosion rates on the cultivated slopes in the northeast black soil region of China using ¹³⁷Cs and ²¹⁰Pb_{ex} measurements [MS thesis], University of Chinese Academy of Sciences, China, 2010 (in Chinese).
- Wang, Z., Yang, W., Chen, M., Lin, P., and Qiu, Y.: Intra-Annual Deposition of Atmospheric ²¹⁰Pb, ²¹⁰Po and the Residence Times of Aerosol in Xiamen, China, Aerosol Air Qual. Res., 14, 1402–1410, 2014b.
- Weiss, H. V. and Naidu, H. V.: ²¹⁰Pb flux in an Arctic coastal region, Arctic, 39, 59–64, 1986.
- Wells, T., Hancock, G. R., Dever, C., and Murphy, D.: Prediction of vertical soil organic carbon profiles using soil properties and environmental tracer data at an untilled site, Geoderma, 170, 337– 346, 2012.
- Whiting, P. J., Matisoff, G., Fornes, W., and Soster, F. M.: Suspended sediment sources and transport distances in the Yellowstone River basin, Geol. Soc. Am. Bull., 117, 515–529, 2005.
- Wieland, E., Santschi, P. H., and Beer, J.: A multitracer study of radionuclides in Lake Zurich, Switzerland: 2. Residence times, removal processes, and sediment focusing, J. Geophys. Res.-Oceans, 96, 17067–17080, 1991.
- Wilkening, M. H. and Clements, W. E.: Radon 222 from the ocean surface, J. Geophys. Res., 80, 3828–3830, 1975.
- Wilson, C., Matisoff, G., and Whiting, P.: Short-term erosion rates from a ⁷Be inventory balance, Earth Surf. Proc. Land., 28, 967– 977, 2003.
- Windom, H. L.: Atmospheric dust records in permanent snowfields: Implications to marine sedimentation, Geol. Soc. Am. Bull., 80, 761–782, 1969.
- Winkler, R. and Rosner, G.: Seasonal and long-term variation of ²¹⁰Pb concentration in air, atmospheric deposition rate and total

deposition velocity in south Germany, Sci. Total. Environ., 263, 57–68, 2000.

- Winkler, R., Dietl, F., Frank, G., and Tschiersch, J.: Temporal variation of ⁷Be and ²¹⁰Pb size distributions in ambient aerosol, Atmos. Environ., 32, 983–991, 1998.
- Wu, J., Sun, W., Wang, B., Luo, W., Kang, F., Zhang, B., and Wang,
 Y.: The concentrations of ⁷Be in air aerosols of Lanzhou City,
 Chin. J. Radiol. Health, 20, 333–334, 2011 (in Chinese).
- Yamagata, T., Nagai, H., Matsuzaki, H., and Narasaki, Y.: Decadal variations of atmospheric ⁷Be and ¹⁰Be concentrations between 1998 and 2014 in Japan, Nucli. Instrum. Meth. B, 455, 265–270, 2019.
- Yamamoto, M., Sakaguchi, A., Sasaki, K., Hirose, K., Igarashi, Y., and Kim, C. K.: Seasonal and spatial variation of atmospheric ²¹⁰Pb and ⁷Be deposition: features of the Japan Sea side of Japan, J. Environ. Radioactiv., 86, 110–131, 2006.
- Yang, H., Jun, E., Kim, Y., and Ok, G.: Residence times and chemical composition of atmospheric aerosols: Residence times of aerosols in Pusan, J. Korean Environ. Sci. Soc., 8, 171–176, 1999 (in Korean).
- Yang, Y. H., Yan, B. X., and Zhu, H.: Estimating soil erosion in northeast China using ¹³⁷Cs and ²¹⁰Pb_{ex}, Pedosphere, 21, 706– 711, 2011.
- Yang, Y. L., Gai, N., Geng, C. Z., Zhu, X. H., Li, Y., Xue, Y., Yu, H. Q., and Tan, K. Y.: East Asia monsoon's influence on seasonal changes of beryllium-7 and typical POPs in near-surface atmospheric aerosols in mid-latitude city Qingdao, China, Atmos. Environ., 79, 802–810, 2013.
- Yi, Y., Bai, J., Liu, G., Yang, W., Yi, Q., Huang, Y., and Chen, H.: Measurements of atmospheric deposition fluxes of ⁷Be, ²¹⁰Pb and ²¹⁰Po, Mar. Sci., 29, 20–24, 2005 (in Chinese).
- Yi, Y., Zhou, P., and Liu, G.: Atmospheric deposition fluxes of ⁷Be, ²¹⁰Pb and ²¹⁰Po at Xiamen, China, J. Radioanal. Nucl. Ch., 273, 157–162, 2007.
- Yoshimori, M.: Beryllium 7 radionucleide as a tracer of vertical air mass transport in the troposphere, Adv. Space Res., 36, 828–832, 2005.
- Young, J. A. and Silker, W. B.: The determination of air-sea exchange and oceanic mixing rates using ⁷Be during the BOMEX experiment, J. Geophys. Res., 79, 4481–4489, 1974.
- Young, J. A. and Silker, W. B.: Aerosol deposition velocities on the Pacific and Atlantic oceans calculated from ⁷Be measurements, Earth Planet. Sc. Lett., 50, 92–104, 1980.
- Yu, D., Sha, Z., Wang, Q., Hu, J., and Wang, Z.: Distribution characteristics of ¹³⁷Cs and ²¹⁰Pb_{ex} in soil of grassland region in the northeastern of Qinghai-Tibet Plateau, J. Arid. Land Resour. Environ., 32, 160–166, 2018 (in Chinese).
- Yu, Z., Tang, L., Qiu, X., Xiao, P., and Wu, Y.: Research about the change trend of ²¹⁰Pb and ²¹⁰Po of a year in aerosol, Prog. Rep. China Nucl. Sci. Technol., 5, 61–65, 2017 (in Chinese).
- Zanis, P., Schuepbach, E., Gäggeler, H. W., Hubener, S., and Tobler, L.: Factors controlling beryllium-7 at Jungfraujoch in Switzerland, Tellus B, 51, 789–805, 1999.
- Zanis, P., Gerasopoulos, E., Priller, A., Schnabel, C., Stohl, A., Zerefos, C., Gäggeler, H. W., Tobler, L., Kubik, P. W., Kanter, H. J., Scheel, H. E., Luterbacher, J., and Berger, M.: An estimate of the impact of stratosphere-to-troposphere transport (STT) on the lower free tropospheric ozone over the Alps us-

ing ¹⁰Be and ⁷Be measurements, J. Geophys. Res., 108, 8520, https://doi.org/10.1029/2002JD002604, 2003.

- Zhang, F., Zhang, B., and Yang, M.: Beryllium-7 atmospheric deposition and soil inventory on the northern Loess Plateau of China, Atmos. Environ., 77, 178–184, 2013.
- Zhang, F., Wang, J., Baskaran, M., Zhong, Q., Wang, Y., Paatero, J., and Du, J.: A comprehensive global dataset of atmospheric ⁷Be and ²¹⁰Pb measurements: air concentration and depositional flux, Zenodo, https://doi.org/10.5281/zenodo.4785136, 2021.
- Zhang, L., Yang, W., Chen, M., Wang, Z., Lin, P., Fang, Z., Qiu, Y., and Zheng, M.: Atmospheric Deposition of ⁷Be in the southeast of China: A case study in Xiamen, Aerosol Air Qual. Res., 16, 105–113, 2016.
- Zhang, L., Yang, W., Chen, M., Zhu, Y., and Wang, Z.: Atmospheric deposition of ²¹⁰Po and ²¹⁰Pb near the coast of Xiamen, Acta Oceanol. Sin., 41, 114–122, 2019 (in Chinese).
- Zhang, W., Lam, K., and Ungar, K.: The development of a digital gamma-gamma coincidence/anticoincidence spectrometer and its applications to monitor low-level atmospheric ²²Na/⁷Be activity ratios in Resolute Bay, Canada, J. Environ. Radioactiv., 192, 434–439, 2018b.
- Zhang, X., Walling, D. E., Feng, M., and Wen, A.: ²¹⁰Pb_{ex} depth distribution in soil and calibration models for assessment of soil erosion rates from ²¹⁰Pb_{ex} measurements, Chinese Sci. Bull., 48, 813–818, 2003 (in Chinese).

- Zhang, X., Qi, Y., Walling, D. E., He, X., Wen, A., and Fu, J.: A preliminary assessment of the potential for using ²¹⁰Pb_{ex} measurement to estimate soil redistribution rates on cultivated slopes in the Sichuan Hilly Basin of China, Catena, 68, 1–9, 2006.
- Zhang, Y., Long, Y., Yu, X., and An, J.: A comparison of measured ¹³⁷Cs and excess ²¹⁰Pb levels in the cultivated brown and cinnamon soils of the Yimeng Mountain area, Chin. J. Geochem., 33, 155–162, 2014.
- Zhang, Y. and Jiang, Z.: Estimation of Po-210 and Pb-210 emissions from coal energy use in China, Adv. Eng. Res., 163, 1576–1581, 2018a (in Chinese).
- Zheng, X., Wan, G., Yang, J., Zhang, X., Yang, W., Lee, H. N., and Wang, C.: ⁷Be and ²¹⁰Pb radioactivity and implications on sources of surface ozone at Mt. Waliguan, Chinese Sci. Bull., 50, 167–171, 2005 (in Chinese).
- Zheng, J. J., He, X. B., Walling, D., Zhang, X. B., Flanagan, D., and Qi, Y. Q.: Assessing soil erosion rates on manually-tilled hillslopes in the Sichuan hilly basin using ¹³⁷Cs and ²¹⁰Pb_{ex} measurements, Pedosphere, 17, 273–283, 2007.
- Zhu, J. and Olsen, C. R.: Beryllium-7 atmospheric deposition and sediment inventories in the Neponset River estuary, Massachusetts, USA, J. Environ. Radioactiv., 100, 192–197, 2009.