Preprints
https://doi.org/10.5194/essd-2024-168
https://doi.org/10.5194/essd-2024-168
21 May 2024
 | 21 May 2024
Status: this preprint is currently under review for the journal ESSD.

Version 1 NOAA-20/OMPS Nadir Mapper Total Column SO2 Product: Continuation of NASA Long-term Global Data Record

Can Li, Nickolay A. Krotkov, Joanna Joiner, Vitali Fioletov, Chris McLinden, Debora Griffin, Peter J. T. Leonard, Simon Carn, Colin Seftor, and Alexander Vasilkov

Abstract. For nearly two decades, the Ozone Monitoring Instrument (OMI) aboard the NASA Aura spacecraft (launched in 2004) and the Ozone Mapping and Profiler Suite (OMPS) aboard the NASA/NOAA Suomi National Polar-orbiting Partnership (SNPP) satellite (launched in 2011) have been providing global monitoring of SO2 column densities from both anthropogenic and volcanic activities. Here, we describe the version 1 NOAA-20 (N20)/OMPS SO2 product, aimed at extending the long-term climate data record. To achieve this goal, we apply a principal component analysis (PCA) retrieval technique, also used for the OMI and SNPP/OMPS SO2 products, to N20/OMPS. For volcanic SO2 retrievals, the algorithm is identical between N20 and SNPP/OMPS and produces consistent retrievals for eruptions such as the 2018 Kilauea and 2019 Raikoke. For anthropogenic SO2 retrievals, the algorithm has been customized for N20/OMPS, considering its greater spatial resolution and reduced signal-to-noise ratio as compared with SNPP/OMPS. Over background areas, N20/OMPS SO2 slant column densities (SCD) show relatively small biases, comparable retrieval noise with SNPP/OMPS (after aggregation to the same spatial resolution), and remarkable stability with essentially no drift during 2018–2023. Over major anthropogenic source areas, the two OMPS retrievals are generally well-correlated but N20/OMPS SO2 is biased low especially for India and the Middle East, where the differences reach ~20 % on average. The reasons for these differences are not fully understood but are partly due to algorithmic differences. Better agreement (typical differences of ~10–15 %) is found over degassing volcanoes. SO2 emissions from large point sources, inferred from N20/OMPS retrievals, agree well with those based on OMI, SNPP/OMPS, and TROPOspheric Monitoring Instrument (TROPOMI), with correlation coefficients > 0.98 and overall differences < 10 %. The ratios between the estimated emissions and their uncertainties offer insights into the ability of different satellite instruments to detect and quantify SO2 sources. While TROPOMI has the highest ratios among all four sensors, ratios from N20/OMPS are slightly greater than OMI and substantially greater than SNPP/OMPS. Overall, our results suggest that the version 1 N20/OMPS SO2 product will successfully continue the long-term OMI and SNPP/OMPS SO2 data records. Efforts currently underway will further enhance the consistency of retrievals between different instruments, facilitating the development of multi-decade, coherent global SO2 datasets across multiple satellites.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Can Li, Nickolay A. Krotkov, Joanna Joiner, Vitali Fioletov, Chris McLinden, Debora Griffin, Peter J. T. Leonard, Simon Carn, Colin Seftor, and Alexander Vasilkov

Status: open (until 27 Jun 2024)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
Can Li, Nickolay A. Krotkov, Joanna Joiner, Vitali Fioletov, Chris McLinden, Debora Griffin, Peter J. T. Leonard, Simon Carn, Colin Seftor, and Alexander Vasilkov

Data sets

OMPS-N20 NM PCA SO2 Step 1 Total Column 1-Orbit L2 Swath 17x13km Can Li et al. https://doi.org/10.5067/OMPS/OMPS_N20_NMSO2_PCA_L2_Step1.1

Multi-Satellite Air Quality Sulfur Dioxide (SO2) Database Long-Term L4 Global V2 Vitali Fioletov, Chris A. McLinden, Debora Griffin, Ihab Abboud, Nickolay Krotkov, Peter J. T. Leonard, Can Li, Joanna Joiner, Nicolas Theys, and Simon Carn https://doi.org/10.5067/MEASURES/SO2/DATA406

Can Li, Nickolay A. Krotkov, Joanna Joiner, Vitali Fioletov, Chris McLinden, Debora Griffin, Peter J. T. Leonard, Simon Carn, Colin Seftor, and Alexander Vasilkov

Viewed

Total article views: 193 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
147 36 10 193 8 7
  • HTML: 147
  • PDF: 36
  • XML: 10
  • Total: 193
  • BibTeX: 8
  • EndNote: 7
Views and downloads (calculated since 21 May 2024)
Cumulative views and downloads (calculated since 21 May 2024)

Viewed (geographical distribution)

Total article views: 185 (including HTML, PDF, and XML) Thereof 185 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 15 Jun 2024
Download
Short summary
Sulfur dioxide (SO2), a poisonous gas from human activities and volcanoes, causes air pollution, acid rain, and changes to climate and ozone layer. Satellites have been used to monitor SO2 globally, including remote areas. Here we describe a new satellite SO2 dataset from the OMPS instrument that flies on the NOAA-20 satellite. Results show that the new dataset agrees well with the existing ones from other satellites and can help to continue the global monitoring of SO2 from space.
Altmetrics