Articles | Volume 12, issue 1
Earth Syst. Sci. Data, 12, 357–371, 2020
https://doi.org/10.5194/essd-12-357-2020
Earth Syst. Sci. Data, 12, 357–371, 2020
https://doi.org/10.5194/essd-12-357-2020
Data description paper
17 Feb 2020
Data description paper | 17 Feb 2020

A national dataset of 30 m annual urban extent dynamics (1985–2015) in the conterminous United States

Xuecao Li et al.

Related authors

A dataset of 30 m annual vegetation phenology indicators (1985–2015) in urban areas of the conterminous United States
Xuecao Li, Yuyu Zhou, Lin Meng, Ghassem R. Asrar, Chaoqun Lu, and Qiusheng Wu
Earth Syst. Sci. Data, 11, 881–894, https://doi.org/10.5194/essd-11-881-2019,https://doi.org/10.5194/essd-11-881-2019, 2019
Short summary

Related subject area

Data, Algorithms, and Models
The Fengyun-3D (FY-3D) global active fire product: principle, methodology and validation
Jie Chen, Qi Yao, Ziyue Chen, Manchun Li, Zhaozhan Hao, Cheng Liu, Wei Zheng, Miaoqing Xu, Xiao Chen, Jing Yang, Qiancheng Lv, and Bingbo Gao
Earth Syst. Sci. Data, 14, 3489–3508, https://doi.org/10.5194/essd-14-3489-2022,https://doi.org/10.5194/essd-14-3489-2022, 2022
Short summary
A high-resolution inland surface water body dataset for the tundra and boreal forests of North America
Yijie Sui, Min Feng, Chunling Wang, and Xin Li
Earth Syst. Sci. Data, 14, 3349–3363, https://doi.org/10.5194/essd-14-3349-2022,https://doi.org/10.5194/essd-14-3349-2022, 2022
Short summary
A Central Asia hydrologic monitoring dataset for food and water security applications in Afghanistan
Amy McNally, Jossy Jacob, Kristi Arsenault, Kimberly Slinski, Daniel P. Sarmiento, Andrew Hoell, Shahriar Pervez, James Rowland, Mike Budde, Sujay Kumar, Christa Peters-Lidard, and James P. Verdin
Earth Syst. Sci. Data, 14, 3115–3135, https://doi.org/10.5194/essd-14-3115-2022,https://doi.org/10.5194/essd-14-3115-2022, 2022
Short summary
HOTRUNZ: an open-access 1 km resolution monthly 1910–2019 time series of interpolated temperature and rainfall grids with associated uncertainty for New Zealand
Thomas R. Etherington, George L. W. Perry, and Janet M. Wilmshurst
Earth Syst. Sci. Data, 14, 2817–2832, https://doi.org/10.5194/essd-14-2817-2022,https://doi.org/10.5194/essd-14-2817-2022, 2022
Short summary
A dataset of microphysical cloud parameters, retrieved from Fourier-transform infrared (FTIR) emission spectra measured in Arctic summer 2017
Philipp Richter, Mathias Palm, Christine Weinzierl, Hannes Griesche, Penny M. Rowe, and Justus Notholt
Earth Syst. Sci. Data, 14, 2767–2784, https://doi.org/10.5194/essd-14-2767-2022,https://doi.org/10.5194/essd-14-2767-2022, 2022
Short summary

Cited articles

Alberti, M., Correa, C., Marzluff, J. M., Hendry, A. P., Palkovacs, E. P., Gotanda, K. M., Hunt, V. M., Apgar, T. M., and Zhou, Y.: Global urban signatures of phenotypic change in animal and plant populations, P. Natl. Acad. Sci. USA, 114, 8951–8956, https://doi.org/10.1073/pnas.1606034114, 2017. 
Andersson, E. and Colding, J.: Understanding how built urban form influences biodiversity, Urban For. Urban Green., 13, 221–226, 2014. 
Cao, W., Zhou, Y., Li, R., and Li, X.: Mapping changes in coastlines and tidal flats in developing islands using the full time series of Landsat images, Remote Sens. Environ., 239, 111665, https://doi.org/10.1016/j.rse.2020.111665, 2020. 
Chen, J., Chen, J., Liao, A., Cao, X., Chen, L., Chen, X., He, C., Han, G., Peng, S., Lu, M., Zhang, W., Tong, X., and Mills, J.: Global land cover mapping at 30 m resolution: A POK-based operational approach, ISPRS J. Photogramm. Remote Sens., 103, 7–27, https://doi.org/10.1016/j.isprsjprs.2014.09.002, 2015. 
Chen, Y., Li, X., Zheng, Y., Guan, Y., and Liu, X.: Estimating the relationship between urban forms and energy consumption: A case study in the Pearl River Delta, 2005–2008, Landscape Urban Plan, 102, 33–42, 2011. 
Download
Short summary
The information of urban dynamics with fine spatial and temporal resolutions is highly needed in urban studies. In this study, we generated a long-term (1985–2015), fine-resolution (30 m) product of annual urban extent dynamics in the conterminous United States using all available Landsat images on the Google Earth Engine (GEE) platform. The data product is of great use for relevant studies such as urban growth projection, urban sprawl modeling, and urbanization impacts on environments.