Articles | Volume 12, issue 1
https://doi.org/10.5194/essd-12-357-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-12-357-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A national dataset of 30 m annual urban extent dynamics (1985–2015) in the conterminous United States
Xuecao Li
Department of Geological and Atmospheric Sciences, Iowa State
University, Ames, IA 50011, USA
Department of Geological and Atmospheric Sciences, Iowa State
University, Ames, IA 50011, USA
Zhengyuan Zhu
Department of Statistics, Iowa State University, Ames, IA 50011,
USA
Wenting Cao
Department of Geological and Atmospheric Sciences, Iowa State
University, Ames, IA 50011, USA
Related authors
Xuecao Li, Yuyu Zhou, Lin Meng, Ghassem R. Asrar, Chaoqun Lu, and Qiusheng Wu
Earth Syst. Sci. Data, 11, 881–894, https://doi.org/10.5194/essd-11-881-2019, https://doi.org/10.5194/essd-11-881-2019, 2019
Short summary
Short summary
We generated a long-term (1985–2015) and medium-resolution (30 m) product of phenology indicators in urban domains in the conterminous US using Landsat satellite observations. The derived phenology indicators agree well with in situ observations and provide more spatial details in complex urban areas compared to the existing coarse resolution phenology products (e.g., MODIS). The published data are of great use for urban phenology studies (e.g., pollen-induced respiratory allergies).
Wanru He, Xuecao Li, Yuyu Zhou, Zitong Shi, Guojiang Yu, Tengyun Hu, Yixuan Wang, Jianxi Huang, Tiecheng Bai, Zhongchang Sun, Xiaoping Liu, and Peng Gong
Earth Syst. Sci. Data, 15, 3623–3639, https://doi.org/10.5194/essd-15-3623-2023, https://doi.org/10.5194/essd-15-3623-2023, 2023
Short summary
Short summary
Most existing global urban products with future projections were developed in urban and non-urban categories, which ignores the gradual change of urban development at the local scale. Using annual global urban extent data from 1985 to 2015, we forecasted global urban fractional changes under eight scenarios throughout 2100. The developed dataset can provide spatially explicit information on urban fractions at 1 km resolution, which helps support various urban studies (e.g., urban heat island).
Tao Zhang, Yuyu Zhou, Kaiguang Zhao, Zhengyuan Zhu, Gang Chen, Jia Hu, and Li Wang
Earth Syst. Sci. Data, 14, 5637–5649, https://doi.org/10.5194/essd-14-5637-2022, https://doi.org/10.5194/essd-14-5637-2022, 2022
Short summary
Short summary
We generated a global 1 km daily maximum and minimum near-surface air temperature (Tmax and Tmin) dataset (2003–2020) using a novel statistical model. The average root mean square errors ranged from 1.20 to 2.44 °C for Tmax and 1.69 to 2.39 °C for Tmin. The gridded global air temperature dataset is of great use in a variety of studies such as the urban heat island phenomenon, hydrological modeling, and epidemic forecasting.
Tao Zhang, Yuyu Zhou, Zhengyuan Zhu, Xiaoma Li, and Ghassem R. Asrar
Earth Syst. Sci. Data, 14, 651–664, https://doi.org/10.5194/essd-14-651-2022, https://doi.org/10.5194/essd-14-651-2022, 2022
Short summary
Short summary
We generated a global seamless 1 km daily (mid-daytime and mid-nighttime) land surface temperature (LST) dataset (2003–2020) using MODIS LST products by proposing a spatiotemporal gap-filling framework. The average root mean squared errors of the gap-filled LST are 1.88°C and 1.33°C, respectively, in mid-daytime and mid-nighttime. The global seamless LST dataset is unique and of great use in studies on urban systems, climate research and modeling, and terrestrial ecosystem studies.
Min Zhao, Changxiu Cheng, Yuyu Zhou, Xuecao Li, Shi Shen, and Changqing Song
Earth Syst. Sci. Data, 14, 517–534, https://doi.org/10.5194/essd-14-517-2022, https://doi.org/10.5194/essd-14-517-2022, 2022
Short summary
Short summary
We generated a unique dataset of global annual urban extents (1992–2020) using consistent nighttime light observations and analyzed global urban dynamics over the past 3 decades. Evaluations using other urbanization-related ancillary data indicate that the derived urban areas are reliable for characterizing spatial extents associated with intensive human settlement and high-intensity socioeconomic activities. This dataset can provide unique information for studying urbanization and its impacts.
Zuoqi Chen, Bailang Yu, Chengshu Yang, Yuyu Zhou, Shenjun Yao, Xingjian Qian, Congxiao Wang, Bin Wu, and Jianping Wu
Earth Syst. Sci. Data, 13, 889–906, https://doi.org/10.5194/essd-13-889-2021, https://doi.org/10.5194/essd-13-889-2021, 2021
Short summary
Short summary
An extended time series (2000–2018) of NPP-VIIRS-like nighttime light (NTL) data was proposed through a cross-sensor calibration from DMSP-OLS NTL data (2000–2012) and NPP-VIIRS NTL data (2013–2018). Compared with the annual composited NPP-VIIRS NTL data, our extended NPP-VIIRS-like NTL data have a high accuracy and also show a good spatial pattern and temporal consistency. It could be a useful proxy to monitor the dynamics of urbanization for a longer time period compared to existing NTL data.
Xuecao Li, Yuyu Zhou, Lin Meng, Ghassem R. Asrar, Chaoqun Lu, and Qiusheng Wu
Earth Syst. Sci. Data, 11, 881–894, https://doi.org/10.5194/essd-11-881-2019, https://doi.org/10.5194/essd-11-881-2019, 2019
Short summary
Short summary
We generated a long-term (1985–2015) and medium-resolution (30 m) product of phenology indicators in urban domains in the conterminous US using Landsat satellite observations. The derived phenology indicators agree well with in situ observations and provide more spatial details in complex urban areas compared to the existing coarse resolution phenology products (e.g., MODIS). The published data are of great use for urban phenology studies (e.g., pollen-induced respiratory allergies).
Shuiqing Yin, Zhengyuan Zhu, Li Wang, Baoyuan Liu, Yun Xie, Guannan Wang, and Yishan Li
Hydrol. Earth Syst. Sci., 22, 1695–1712, https://doi.org/10.5194/hess-22-1695-2018, https://doi.org/10.5194/hess-22-1695-2018, 2018
Related subject area
Data, Algorithms, and Models
Improved maps of surface water bodies, large dams, reservoirs, and lakes in China
The Fengyun-3D (FY-3D) global active fire product: principle, methodology and validation
A high-resolution inland surface water body dataset for the tundra and boreal forests of North America
A Central Asia hydrologic monitoring dataset for food and water security applications in Afghanistan
HOTRUNZ: an open-access 1 km resolution monthly 1910–2019 time series of interpolated temperature and rainfall grids with associated uncertainty for New Zealand
A dataset of microphysical cloud parameters, retrieved from Fourier-transform infrared (FTIR) emission spectra measured in Arctic summer 2017
A global long-term (1981–2019) daily land surface radiation budget product from AVHRR satellite data using a residual convolutional neural network
First SMOS Sea Surface Salinity dedicated products over the Baltic Sea
HomogWS-se: a century-long homogenized dataset of near-surface wind speed observations since 1925 rescued in Sweden
Mapping long-term and high-resolution global gridded photosynthetically active radiation using the ISCCP H-series cloud product and reanalysis data
Description of the China global Merged Surface Temperature version 2.0
TimeSpec4LULC: a global multispectral time series database for training LULC mapping models with machine learning
Hyperspectral reflectance spectra of floating matters derived from Hyperspectral Imager for the Coastal Ocean (HICO) observations
Multi-site, multi-crop measurements in the soil–vegetation–atmosphere continuum: a comprehensive dataset from two climatically contrasting regions in southwestern Germany for the period 2009–2018
Full-coverage 1 km daily ambient PM2.5 and O3 concentrations of China in 2005–2017 based on a multi-variable random forest model
Median bed-material sediment particle size across rivers in the contiguous US
A flux tower dataset tailored for land model evaluation
A Landsat-derived annual inland water clarity dataset of China between 1984 and 2018
A harmonized global land evaporation dataset from model-based products covering 1980–2017
Estimating population and urban areas at risk of coastal hazards, 1990–2015: how data choices matter
Landsat-based Irrigation Dataset (LANID): 30 m resolution maps of irrigation distribution, frequency, and change for the US, 1997–2017
GRQA: Global River Water Quality Archive
A 1 km global cropland dataset from 10 000 BCE to 2100 CE
A 1 km global dataset of historical (1979–2013) and future (2020–2100) Köppen–Geiger climate classification and bioclimatic variables
SeaFlux: harmonization of air–sea CO2 fluxes from surface pCO2 data products using a standardized approach
Nitrogen deposition in the UK at 1 km resolution from 1990 to 2017
ERA5-Land: a state-of-the-art global reanalysis dataset for land applications
An all-sky 1 km daily land surface air temperature product over mainland China for 2003–2019 from MODIS and ancillary data
100 years of lake evolution over the Qinghai–Tibet Plateau
The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019
Coastal complexity of the Antarctic continent
UAV-based very high resolution point cloud, digital surface model and orthomosaic of the Chã das Caldeiras lava fields (Fogo, Cabo Verde)
AQ-Bench: a benchmark dataset for machine learning on global air quality metrics
Bias-corrected and spatially disaggregated seasonal forecasts: a long-term reference forecast product for the water sector in semi-arid regions
The consolidated European synthesis of CH4 and N2O emissions for the European Union and United Kingdom: 1990–2017
The consolidated European synthesis of CO2 emissions and removals for the European Union and United Kingdom: 1990–2018
A new merged dataset for analyzing clouds, precipitation and atmospheric parameters based on ERA5 reanalysis data and the measurements of the Tropical Rainfall Measuring Mission (TRMM) precipitation radar and visible and infrared scanner
A new satellite-derived dataset for marine aquaculture areas in China's coastal region
Database of petrophysical properties of the Mid-German Crystalline Rise
Landsat-derived bathymetry of lakes on the Arctic Coastal Plain of northern Alaska
Merging ground-based sunshine duration observations with satellite cloud and aerosol retrievals to produce high-resolution long-term surface solar radiation over China
Hyperspectral-reflectance dataset of dry, wet and submerged marine litter
A climate service for ecologists: sharing pre-processed EURO-CORDEX regional climate scenario data using the eLTER Information System
Crowdsourced air traffic data from the OpenSky Network 2019–2020
A restructured and updated global soil respiration database (SRDB-V5)
The Berkeley Earth Land/Ocean Temperature Record
Dielectric database of organic Arctic soils (DDOAS)
Global Carbon Budget 2020
A global long-term (1981–2000) land surface temperature product for NOAA AVHRR
A coastally improved global dataset of wet tropospheric corrections for satellite altimetry
Xinxin Wang, Xiangming Xiao, Yuanwei Qin, Jinwei Dong, Jihua Wu, and Bo Li
Earth Syst. Sci. Data, 14, 3757–3771, https://doi.org/10.5194/essd-14-3757-2022, https://doi.org/10.5194/essd-14-3757-2022, 2022
Short summary
Short summary
We generated China’s surface water bodies, Large Dams, Reservoirs, and Lakes (China-LDRL) dataset by analyzing all available Landsat imagery in 2019 (19\,338 images) in Google Earth Engine. The dataset provides accurate information on the geographical locations and sizes of surface water bodies, large dams, reservoirs, and lakes in China. The China-LDRL dataset will contribute to the understanding of water security and water resources management in China.
Jie Chen, Qi Yao, Ziyue Chen, Manchun Li, Zhaozhan Hao, Cheng Liu, Wei Zheng, Miaoqing Xu, Xiao Chen, Jing Yang, Qiancheng Lv, and Bingbo Gao
Earth Syst. Sci. Data, 14, 3489–3508, https://doi.org/10.5194/essd-14-3489-2022, https://doi.org/10.5194/essd-14-3489-2022, 2022
Short summary
Short summary
The potential degradation of mainstream global fire products leads to large uncertainty in the effective monitoring of wildfires and their influence. To fill this gap, we produced a Fengyun-3D (FY-3D) global active fire product with a similar spatial and temporal resolution to MODIS fire products, aiming to serve as continuity and a replacement for MODIS fire products. The FY-3D fire product is an ideal tool for global fire monitoring and can be preferably employed for fire monitoring in China.
Yijie Sui, Min Feng, Chunling Wang, and Xin Li
Earth Syst. Sci. Data, 14, 3349–3363, https://doi.org/10.5194/essd-14-3349-2022, https://doi.org/10.5194/essd-14-3349-2022, 2022
Short summary
Short summary
High-latitude water bodies differ greatly in their morphological and topological characteristics related to their formation, type, and vulnerability. In this paper, we present a water body dataset for the North American high latitudes (WBD-NAHL). Nearly 6.5 million water bodies were identified, with approximately 6 million (~90 %) of them smaller than 0.1 km2.
Amy McNally, Jossy Jacob, Kristi Arsenault, Kimberly Slinski, Daniel P. Sarmiento, Andrew Hoell, Shahriar Pervez, James Rowland, Mike Budde, Sujay Kumar, Christa Peters-Lidard, and James P. Verdin
Earth Syst. Sci. Data, 14, 3115–3135, https://doi.org/10.5194/essd-14-3115-2022, https://doi.org/10.5194/essd-14-3115-2022, 2022
Short summary
Short summary
The Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System (FLDAS) global and Central Asia data streams described here generate routine estimates of snow, soil moisture, runoff, and other variables useful for tracking water availability. These data are hosted by NASA and USGS data portals for public use.
Thomas R. Etherington, George L. W. Perry, and Janet M. Wilmshurst
Earth Syst. Sci. Data, 14, 2817–2832, https://doi.org/10.5194/essd-14-2817-2022, https://doi.org/10.5194/essd-14-2817-2022, 2022
Short summary
Short summary
Long time series of temperature and rainfall grids are fundamental to understanding how these variables affects environmental or ecological patterns and processes. We present a History of Open Temperature and Rainfall with Uncertainty in New Zealand (HOTRUNZ) that is an open-access dataset that provides monthly 1 km resolution grids of rainfall and mean, minimum, and maximum daily temperatures with associated uncertainties for New Zealand from 1910 to 2019.
Philipp Richter, Mathias Palm, Christine Weinzierl, Hannes Griesche, Penny M. Rowe, and Justus Notholt
Earth Syst. Sci. Data, 14, 2767–2784, https://doi.org/10.5194/essd-14-2767-2022, https://doi.org/10.5194/essd-14-2767-2022, 2022
Short summary
Short summary
We present a dataset of cloud optical depths, effective radii and water paths from optically thin clouds observed in the Arctic around Svalbard. The data have been retrieved from infrared spectral radiance measured using a Fourier-transform infrared (FTIR) spectrometer. Besides a description of the measurements and retrieval technique, the data are put into context with results of corresponding measurements from microwave radiometer, lidar and cloud radar.
Jianglei Xu, Shunlin Liang, and Bo Jiang
Earth Syst. Sci. Data, 14, 2315–2341, https://doi.org/10.5194/essd-14-2315-2022, https://doi.org/10.5194/essd-14-2315-2022, 2022
Short summary
Short summary
Land surface all-wave net radiation (Rn) is a key parameter in many land processes. Current products have drawbacks of coarse resolutions, large uncertainty, and short time spans. A deep learning method was used to obtain global surface Rn. A long-term Rn product was generated from 1981 to 2019 using AVHRR data. The product has the highest accuracy and a reasonable spatiotemporal variation compared to three other products. Our product will play an important role in long-term climate change.
Verónica González-Gambau, Estrella Olmedo, Antonio Turiel, Cristina González-Haro, Aina García-Espriu, Justino Martínez, Pekka Alenius, Laura Tuomi, Rafael Catany, Manuel Arias, Carolina Gabarró, Nina Hoareau, Marta Umbert, Roberto Sabia, and Diego Fernández
Earth Syst. Sci. Data, 14, 2343–2368, https://doi.org/10.5194/essd-14-2343-2022, https://doi.org/10.5194/essd-14-2343-2022, 2022
Short summary
Short summary
We present the first Soil Moisture and Ocean Salinity Sea Surface Salinity (SSS) dedicated products over the Baltic Sea (ESA Baltic+ Salinity Dynamics). The Baltic+ L3 product covers 9 days in a 0.25° grid. The Baltic+ L4 is derived by merging L3 SSS with sea surface temperature information, giving a daily product in a 0.05° grid. The accuracy of L3 is 0.7–0.8 and 0.4 psu for the L4. Baltic+ products have shown to be useful, covering spatiotemporal data gaps and for validating numerical models.
Chunlüe Zhou, Cesar Azorin-Molina, Erik Engström, Lorenzo Minola, Lennart Wern, Sverker Hellström, Jessika Lönn, and Deliang Chen
Earth Syst. Sci. Data, 14, 2167–2177, https://doi.org/10.5194/essd-14-2167-2022, https://doi.org/10.5194/essd-14-2167-2022, 2022
Short summary
Short summary
To fill the key gap of short availability and inhomogeneity of wind speed (WS) in Sweden, we rescued the early paper records of WS since 1925 and built the first 10-member centennial homogenized WS dataset (HomogWS-se) for community use. An initial WS stilling and recovery before the 1990s was observed, and a strong link with North Atlantic Oscillation was found. HomogWS-se improves our knowledge of uncertainty and causes of historical WS changes.
Wenjun Tang, Jun Qin, Kun Yang, Yaozhi Jiang, and Weihao Pan
Earth Syst. Sci. Data, 14, 2007–2019, https://doi.org/10.5194/essd-14-2007-2022, https://doi.org/10.5194/essd-14-2007-2022, 2022
Short summary
Short summary
Photosynthetically active radiation (PAR) is a fundamental physiological variable for research in the ecological, agricultural, and global change fields. In this study, we produced a 35-year high-resolution global gridded PAR dataset. Compared with the well-known global satellite-based PAR product of the Earth's Radiant Energy System (CERES), our PAR product was found to be a more accurate dataset with higher resolution.
Wenbin Sun, Yang Yang, Liya Chao, Wenjie Dong, Boyin Huang, Phil Jones, and Qingxiang Li
Earth Syst. Sci. Data, 14, 1677–1693, https://doi.org/10.5194/essd-14-1677-2022, https://doi.org/10.5194/essd-14-1677-2022, 2022
Short summary
Short summary
The new China global Merged Surface Temperature CMST 2.0 is the updated version of CMST-Interim used in the IPCC's AR6. The updated dataset is described in this study, containing three versions: CMST2.0 – Nrec, CMST2.0 – Imax, and CMST2.0 – Imin. The reconstructed datasets significantly improve data coverage, especially in the high latitudes in the Northern Hemisphere, thus increasing the long-term trends at global, hemispheric, and regional scales since 1850.
Rohaifa Khaldi, Domingo Alcaraz-Segura, Emilio Guirado, Yassir Benhammou, Abdellatif El Afia, Francisco Herrera, and Siham Tabik
Earth Syst. Sci. Data, 14, 1377–1411, https://doi.org/10.5194/essd-14-1377-2022, https://doi.org/10.5194/essd-14-1377-2022, 2022
Short summary
Short summary
This dataset with millions of 22-year time series for seven spectral bands was built by merging Terra and Aqua satellite data and annotated for 29 LULC classes by spatial–temporal agreement across 15 global LULC products. The mean F1 score was 96 % at the coarsest classification level and 87 % at the finest one. The dataset is born to develop and evaluate machine learning models to perform global LULC mapping given the disagreement between current global LULC products.
Chuanmin Hu
Earth Syst. Sci. Data, 14, 1183–1192, https://doi.org/10.5194/essd-14-1183-2022, https://doi.org/10.5194/essd-14-1183-2022, 2022
Short summary
Short summary
Using data collected by the Hyperspectral Imager for the Coastal Ocean (HICO) between 2010–2014, hyperspectral reflectance of various floating matters in global oceans and lakes is derived for the spectral range of 400–800 nm. Such reflectance spectra are expected to provide spectral endmembers to differentiate and quantify the floating matters from existing multi-band satellite sensors and future hyperspectral satellite missions such as NASA’s PACE, SBG, and GLIMR missions.
Tobias K. D. Weber, Joachim Ingwersen, Petra Högy, Arne Poyda, Hans-Dieter Wizemann, Michael Scott Demyan, Kristina Bohm, Ravshan Eshonkulov, Sebastian Gayler, Pascal Kremer, Moritz Laub, Yvonne Funkiun Nkwain, Christian Troost, Irene Witte, Tim Reichenau, Thomas Berger, Georg Cadisch, Torsten Müller, Andreas Fangmeier, Volker Wulfmeyer, and Thilo Streck
Earth Syst. Sci. Data, 14, 1153–1181, https://doi.org/10.5194/essd-14-1153-2022, https://doi.org/10.5194/essd-14-1153-2022, 2022
Short summary
Short summary
Presented are measurement results from six agricultural fields operated by local farmers in southwestern Germany over 9 years. Six eddy-covariance stations measuring water, energy, and carbon fluxes between the vegetated soil surface and the atmosphere provided the backbone of the measurement sites and were supplemented by extensive soil and vegetation state monitoring. The dataset is ideal for testing process models characterizing fluxes at the vegetated soil surface and in the atmosphere.
Runmei Ma, Jie Ban, Qing Wang, Yayi Zhang, Yang Yang, Shenshen Li, Wenjiao Shi, Zhen Zhou, Jiawei Zang, and Tiantian Li
Earth Syst. Sci. Data, 14, 943–954, https://doi.org/10.5194/essd-14-943-2022, https://doi.org/10.5194/essd-14-943-2022, 2022
Short summary
Short summary
We constructed multi-variable random forest models based on 10-fold cross-validation and estimated daily PM2.5 and O3 concentration of China in 2005–2017 at a resolution of 1 km. The daily R2 values of PM2.5 and O3 were 0.85 and 0.77. The meteorological variables can significantly affect both PM2.5 and O3 modeling. During 2005–2017, PM2.5 exhibited an overall downward trend, while O3 experienced the opposite. The temporal trend of PM2.5 and O3 had spatial characteristics during the study period.
Guta Wakbulcho Abeshu, Hong-Yi Li, Zhenduo Zhu, Zeli Tan, and L. Ruby Leung
Earth Syst. Sci. Data, 14, 929–942, https://doi.org/10.5194/essd-14-929-2022, https://doi.org/10.5194/essd-14-929-2022, 2022
Short summary
Short summary
Existing riverbed sediment particle size data are sparsely available at individual sites. We develop a continuous map of median riverbed sediment particle size over the contiguous US corresponding to millions of river segments based on the existing observations and machine learning methods. This map is useful for research in large-scale river sediment using model- and data-driven approaches, teaching environmental and earth system sciences, planning and managing floodplain zones, etc.
Anna M. Ukkola, Gab Abramowitz, and Martin G. De Kauwe
Earth Syst. Sci. Data, 14, 449–461, https://doi.org/10.5194/essd-14-449-2022, https://doi.org/10.5194/essd-14-449-2022, 2022
Short summary
Short summary
Flux towers provide measurements of water, energy, and carbon fluxes. Flux tower data are invaluable in improving and evaluating land models but are not suited to modelling applications as published. Here we present flux tower data tailored for land modelling, encompassing 170 sites globally. Our dataset resolves several key limitations hindering the use of flux tower data in land modelling, including incomplete forcing variable, data format, and low data quality.
Hui Tao, Kaishan Song, Ge Liu, Qiang Wang, Zhidan Wen, Pierre-Andre Jacinthe, Xiaofeng Xu, Jia Du, Yingxin Shang, Sijia Li, Zongming Wang, Lili Lyu, Junbin Hou, Xiang Wang, Dong Liu, Kun Shi, Baohua Zhang, and Hongtao Duan
Earth Syst. Sci. Data, 14, 79–94, https://doi.org/10.5194/essd-14-79-2022, https://doi.org/10.5194/essd-14-79-2022, 2022
Short summary
Short summary
During 1984–2018, lakes in the Tibetan-Qinghai Plateau had the clearest water (mean 3.32 ± 0.38 m), while those in the northeastern region had the lowest Secchi disk depth (SDD) (mean 0.60 ± 0.09 m). Among the 10 814 lakes with > 10 years of SDD results, 55.4 % and 3.5 % experienced significantly increasing and decreasing trends of SDD, respectively. With the exception of Inner Mongolia–Xinjiang, more than half of lakes in all the other regions exhibited a significant trend of increasing SDD.
Jiao Lu, Guojie Wang, Tiexi Chen, Shijie Li, Daniel Fiifi Tawia Hagan, Giri Kattel, Jian Peng, Tong Jiang, and Buda Su
Earth Syst. Sci. Data, 13, 5879–5898, https://doi.org/10.5194/essd-13-5879-2021, https://doi.org/10.5194/essd-13-5879-2021, 2021
Short summary
Short summary
This study has combined three existing land evaporation (ET) products to obtain a single framework of a long-term (1980–2017) daily ET product at a spatial resolution of 0.25° to define the global proxy ET with lower uncertainties. The merged product is the best at capturing dynamics over different locations and times among all data sets. The merged product performed well over a range of vegetation cover scenarios and also captured the trend of land evaporation over different areas well.
Kytt MacManus, Deborah Balk, Hasim Engin, Gordon McGranahan, and Rya Inman
Earth Syst. Sci. Data, 13, 5747–5801, https://doi.org/10.5194/essd-13-5747-2021, https://doi.org/10.5194/essd-13-5747-2021, 2021
Short summary
Short summary
New estimates of population and land area by settlement types within low-elevation coastal zones (LECZs) based on four sources of population data, four sources of settlement data and four sources of elevation data for the years 1990, 2000 and 2015. The paper describes the sensitivity of these estimates and discusses the fitness of use guiding user decisions. Data choices impact the number of people estimated within LECZs, but across all sources the LECZs are predominantly urban and growing.
Yanhua Xie, Holly K. Gibbs, and Tyler J. Lark
Earth Syst. Sci. Data, 13, 5689–5710, https://doi.org/10.5194/essd-13-5689-2021, https://doi.org/10.5194/essd-13-5689-2021, 2021
Short summary
Short summary
We created 30 m resolution annual irrigation maps covering the conterminous US for the period of 1997–2017, together with derivative products and ground reference data. The products have several improvements over other data, including field-level details of change and frequency, an annual time step, a collection of ~ 10 000 ground reference locations for the eastern US, and improved mapping accuracy of over 90 %, especially in the east compared to others of 50 % to 80 %.
Holger Virro, Giuseppe Amatulli, Alexander Kmoch, Longzhu Shen, and Evelyn Uuemaa
Earth Syst. Sci. Data, 13, 5483–5507, https://doi.org/10.5194/essd-13-5483-2021, https://doi.org/10.5194/essd-13-5483-2021, 2021
Short summary
Short summary
Water quality modeling is essential for understanding and mitigating water quality deterioration in river networks due to agricultural and industrial pollution. Improving the availability and usability of open data is vital to support global water quality modeling efforts. The GRQA extends the spatial and temporal coverage of previously available water quality data and provides a reproducible workflow for combining multi-source water quality datasets.
Bowen Cao, Le Yu, Xuecao Li, Min Chen, Xia Li, Pengyu Hao, and Peng Gong
Earth Syst. Sci. Data, 13, 5403–5421, https://doi.org/10.5194/essd-13-5403-2021, https://doi.org/10.5194/essd-13-5403-2021, 2021
Short summary
Short summary
In the study, the first 1 km global cropland proportion dataset for 10 000 BCE–2100 CE was produced through the harmonization and downscaling framework. The mapping result coincides well with widely used datasets at present. With improved spatial resolution, our maps can better capture the cropland distribution details and spatial heterogeneity. The dataset will be valuable for long-term simulations and precise analyses. The framework can be extended to specific regions or other land use types.
Diyang Cui, Shunlin Liang, Dongdong Wang, and Zheng Liu
Earth Syst. Sci. Data, 13, 5087–5114, https://doi.org/10.5194/essd-13-5087-2021, https://doi.org/10.5194/essd-13-5087-2021, 2021
Short summary
Short summary
Large portions of the Earth's surface are expected to experience changes in climatic conditions. The rearrangement of climate distributions can lead to serious impacts on ecological and social systems. Major climate zones are distributed in a predictable pattern and are largely defined following the Köppen climate classification. This creates an urgent need to compile a series of Köppen climate classification maps with finer spatial and temporal resolutions and improved accuracy.
Amanda R. Fay, Luke Gregor, Peter Landschützer, Galen A. McKinley, Nicolas Gruber, Marion Gehlen, Yosuke Iida, Goulven G. Laruelle, Christian Rödenbeck, Alizée Roobaert, and Jiye Zeng
Earth Syst. Sci. Data, 13, 4693–4710, https://doi.org/10.5194/essd-13-4693-2021, https://doi.org/10.5194/essd-13-4693-2021, 2021
Short summary
Short summary
The movement of carbon dioxide from the atmosphere to the ocean is estimated using surface ocean carbon (pCO2) measurements and an equation including variables such as temperature and wind speed; the choices of these variables lead to uncertainties. We introduce the SeaFlux ensemble which provides carbon flux maps calculated in a consistent manner, thus reducing uncertainty by using common choices for wind speed and a set definition of "global" coverage.
Samuel J. Tomlinson, Edward J. Carnell, Anthony J. Dore, and Ulrike Dragosits
Earth Syst. Sci. Data, 13, 4677–4692, https://doi.org/10.5194/essd-13-4677-2021, https://doi.org/10.5194/essd-13-4677-2021, 2021
Short summary
Short summary
Nitrogen (N) may impact the environment in many ways, and estimation of its deposition to the terrestrial surface is of interest. N deposition data have not been generated at a high resolution (1 km × 1 km) over a long time series in the UK before now. This study concludes that N deposition has reduced by ~ 40 % from 1990. The impact of these results allows analysis of environmental impacts at a high spatial and temporal resolution, using a consistent methodology and consistent set of input data.
Joaquín Muñoz-Sabater, Emanuel Dutra, Anna Agustí-Panareda, Clément Albergel, Gabriele Arduini, Gianpaolo Balsamo, Souhail Boussetta, Margarita Choulga, Shaun Harrigan, Hans Hersbach, Brecht Martens, Diego G. Miralles, María Piles, Nemesio J. Rodríguez-Fernández, Ervin Zsoter, Carlo Buontempo, and Jean-Noël Thépaut
Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, https://doi.org/10.5194/essd-13-4349-2021, 2021
Short summary
Short summary
The creation of ERA5-Land responds to a growing number of applications requiring global land datasets at a resolution higher than traditionally reached. ERA5-Land provides operational, global, and hourly key variables of the water and energy cycles over land surfaces, at 9 km resolution, from 1981 until the present. This work provides evidence of an overall improvement of the water cycle compared to previous reanalyses, whereas the energy cycle variables perform as well as those of ERA5.
Yan Chen, Shunlin Liang, Han Ma, Bing Li, Tao He, and Qian Wang
Earth Syst. Sci. Data, 13, 4241–4261, https://doi.org/10.5194/essd-13-4241-2021, https://doi.org/10.5194/essd-13-4241-2021, 2021
Short summary
Short summary
This study used remotely sensed and assimilated data to estimate all-sky land surface air temperature (Ta) using a machine learning method, and developed an all-sky 1 km daily mean land Ta product for 2003–2019 over mainland China. Validation results demonstrated that this dataset has achieved satisfactory accuracy and high spatial resolution simultaneously, which fills the current dataset gap in this field and plays an important role in studies of climate change and the hydrological cycle.
Guoqing Zhang, Youhua Ran, Wei Wan, Wei Luo, Wenfeng Chen, Fenglin Xu, and Xin Li
Earth Syst. Sci. Data, 13, 3951–3966, https://doi.org/10.5194/essd-13-3951-2021, https://doi.org/10.5194/essd-13-3951-2021, 2021
Short summary
Short summary
Lakes can be effective indicators of climate change, especially over the Qinghai–Tibet Plateau. Here, we provide the most comprehensive lake mapping covering the past 100 years. The new features of this data set are (1) its temporal length, providing the longest period of lake observations from maps, (2) the data set provides a state-of-the-art lake inventory for the Landsat era (from the 1970s to 2020), and (3) it provides the densest lake observations for lakes with areas larger than 1 km2.
Jie Yang and Xin Huang
Earth Syst. Sci. Data, 13, 3907–3925, https://doi.org/10.5194/essd-13-3907-2021, https://doi.org/10.5194/essd-13-3907-2021, 2021
Short summary
Short summary
We produce the 30 m annual China land cover dataset (CLCD), with an accuracy reaching 79.31 %. Trends and patterns of land cover changes during 1985 and 2019 were revealed, such as expansion of impervious surface (+148.71 %) and water (+18.39 %), decrease in cropland (−4.85 %) and increase in forest (+4.34 %). The CLCD generally reflected the rapid urbanization and a series of ecological projects in China and revealed the anthropogenic implications on LC under the condition of climate change.
Richard Porter-Smith, John McKinlay, Alexander D. Fraser, and Robert A. Massom
Earth Syst. Sci. Data, 13, 3103–3114, https://doi.org/10.5194/essd-13-3103-2021, https://doi.org/10.5194/essd-13-3103-2021, 2021
Short summary
Short summary
This study quantifies the characteristic complexity
signaturesaround the Antarctic outer coastal margin, giving a multiscale estimate of the magnitude and direction of undulation or complexity at each point location along the entire coastline. It has numerous applications for both geophysical and biological studies and will contribute to Antarctic research requiring quantitative information about this important interface.
Gonçalo Vieira, Carla Mora, Pedro Pina, Ricardo Ramalho, and Rui Fernandes
Earth Syst. Sci. Data, 13, 3179–3201, https://doi.org/10.5194/essd-13-3179-2021, https://doi.org/10.5194/essd-13-3179-2021, 2021
Short summary
Short summary
Fogo in Cabo Verde is one of the most active ocean island volcanoes on Earth, posing important hazards to local populations and at a regional level. The last eruption occurred from November 2014 to February 2015. A survey of the Chã das Caldeiras area was conducted using a fixed-wing unmanned aerial vehicle. A point cloud, digital surface model and orthomosaic with 10 and 25 cm resolutions are provided, together with the full aerial survey projects and datasets.
Clara Betancourt, Timo Stomberg, Ribana Roscher, Martin G. Schultz, and Scarlet Stadtler
Earth Syst. Sci. Data, 13, 3013–3033, https://doi.org/10.5194/essd-13-3013-2021, https://doi.org/10.5194/essd-13-3013-2021, 2021
Short summary
Short summary
With the AQ-Bench dataset, we contribute to shared data usage and machine learning methods in the field of environmental science. The AQ-Bench dataset contains air quality data and metadata from more than 5500 air quality observation stations all over the world. The dataset offers a low-threshold entrance to machine learning on a real-world environmental dataset. AQ-Bench thus provides a blueprint for environmental benchmark datasets.
Christof Lorenz, Tanja C. Portele, Patrick Laux, and Harald Kunstmann
Earth Syst. Sci. Data, 13, 2701–2722, https://doi.org/10.5194/essd-13-2701-2021, https://doi.org/10.5194/essd-13-2701-2021, 2021
Short summary
Short summary
Semi-arid regions depend on the freshwater resources from the rainy seasons as they are crucial for ensuring security for drinking water, food and electricity. Thus, forecasting the conditions for the next season is crucial for proactive water management. We hence present a seasonal forecast product for four semi-arid domains in Iran, Brazil, Sudan/Ethiopia and Ecuador/Peru. It provides a benchmark for seasonal forecasts and, finally, a crucial contribution for improved disaster preparedness.
Ana Maria Roxana Petrescu, Chunjing Qiu, Philippe Ciais, Rona L. Thompson, Philippe Peylin, Matthew J. McGrath, Efisio Solazzo, Greet Janssens-Maenhout, Francesco N. Tubiello, Peter Bergamaschi, Dominik Brunner, Glen P. Peters, Lena Höglund-Isaksson, Pierre Regnier, Ronny Lauerwald, David Bastviken, Aki Tsuruta, Wilfried Winiwarter, Prabir K. Patra, Matthias Kuhnert, Gabriel D. Oreggioni, Monica Crippa, Marielle Saunois, Lucia Perugini, Tiina Markkanen, Tuula Aalto, Christine D. Groot Zwaaftink, Hanqin Tian, Yuanzhi Yao, Chris Wilson, Giulia Conchedda, Dirk Günther, Adrian Leip, Pete Smith, Jean-Matthieu Haussaire, Antti Leppänen, Alistair J. Manning, Joe McNorton, Patrick Brockmann, and Albertus Johannes Dolman
Earth Syst. Sci. Data, 13, 2307–2362, https://doi.org/10.5194/essd-13-2307-2021, https://doi.org/10.5194/essd-13-2307-2021, 2021
Short summary
Short summary
This study is topical and provides a state-of-the-art scientific overview of data availability from bottom-up and top-down CH4 and N2O emissions in the EU27 and UK. The data integrate recent emission inventories with process-based model data and regional/global inversions for the European domain, aiming at reconciling them with official country-level UNFCCC national GHG inventories in support to policy and to facilitate real-time verification procedures.
Ana Maria Roxana Petrescu, Matthew J. McGrath, Robbie M. Andrew, Philippe Peylin, Glen P. Peters, Philippe Ciais, Gregoire Broquet, Francesco N. Tubiello, Christoph Gerbig, Julia Pongratz, Greet Janssens-Maenhout, Giacomo Grassi, Gert-Jan Nabuurs, Pierre Regnier, Ronny Lauerwald, Matthias Kuhnert, Juraj Balkovič, Mart-Jan Schelhaas, Hugo A. C. Denier van der
Gon, Efisio Solazzo, Chunjing Qiu, Roberto Pilli, Igor B. Konovalov, Richard A. Houghton, Dirk Günther, Lucia Perugini, Monica Crippa, Raphael Ganzenmüller, Ingrid T. Luijkx, Pete Smith, Saqr Munassar, Rona L. Thompson, Giulia Conchedda, Guillaume Monteil, Marko Scholze, Ute Karstens, Patrick Brockmann, and Albertus Johannes Dolman
Earth Syst. Sci. Data, 13, 2363–2406, https://doi.org/10.5194/essd-13-2363-2021, https://doi.org/10.5194/essd-13-2363-2021, 2021
Short summary
Short summary
This study is topical and provides a state-of-the-art scientific overview of data availability from bottom-up and top-down CO2 fossil emissions and CO2 land fluxes in the EU27+UK. The data integrate recent emission inventories with ecosystem data, land carbon models and regional/global inversions for the European domain, aiming at reconciling CO2 estimates with official country-level UNFCCC national GHG inventories in support to policy and facilitating real-time verification procedures.
Lilu Sun and Yunfei Fu
Earth Syst. Sci. Data, 13, 2293–2306, https://doi.org/10.5194/essd-13-2293-2021, https://doi.org/10.5194/essd-13-2293-2021, 2021
Short summary
Short summary
Multi-source dataset use is hampered by use of different spatial and temporal resolutions. We merged Tropical Rainfall Measuring Mission precipitation radar and visible and infrared scanner measurements with ERA5 reanalysis. The statistical results indicate this process has no unacceptable influence on the original data. The merged dataset can help in studying characteristics of and changes in cloud and precipitation systems and provides an opportunity for data analysis and model simulations.
Yongyong Fu, Jinsong Deng, Hongquan Wang, Alexis Comber, Wu Yang, Wenqiang Wu, Shixue You, Yi Lin, and Ke Wang
Earth Syst. Sci. Data, 13, 1829–1842, https://doi.org/10.5194/essd-13-1829-2021, https://doi.org/10.5194/essd-13-1829-2021, 2021
Short summary
Short summary
Marine aquaculture areas in a region up to 30 km from the coast in China were mapped for the first time. It was found to cover a total area of ~1100 km2, of which more than 85 % is marine plant culture areas, with 87 % found in four coastal provinces. The results confirm the applicability and effectiveness of deep learning when applied to GF-1 data at the national scale, identifying the detailed spatial distributions and supporting the sustainable management of coastal resources in China.
Sebastian Weinert, Kristian Bär, and Ingo Sass
Earth Syst. Sci. Data, 13, 1441–1459, https://doi.org/10.5194/essd-13-1441-2021, https://doi.org/10.5194/essd-13-1441-2021, 2021
Short summary
Short summary
Physical rock properties are a key element for resource exploration, the interpretation of results from geophysical methods or the parameterization of physical or geological models. Despite the need for physical rock properties, data are still very scarce and often not available for the area of interest. The database presented aims to provide easy access to physical rock properties measured at 224 locations in Bavaria, Hessen, Rhineland-Palatinate and Thuringia (Germany).
Claire E. Simpson, Christopher D. Arp, Yongwei Sheng, Mark L. Carroll, Benjamin M. Jones, and Laurence C. Smith
Earth Syst. Sci. Data, 13, 1135–1150, https://doi.org/10.5194/essd-13-1135-2021, https://doi.org/10.5194/essd-13-1135-2021, 2021
Short summary
Short summary
Sonar depth point measurements collected at 17 lakes on the Arctic Coastal Plain of Alaska are used to train and validate models to map lake bathymetry. These models predict depth from remotely sensed lake color and are able to explain 58.5–97.6 % of depth variability. To calculate water volumes, we integrate this modeled bathymetry with lake surface area. Knowledge of Alaskan lake bathymetries and volumes is crucial to better understanding water storage, energy balance, and ecological habitat.
Fei Feng and Kaicun Wang
Earth Syst. Sci. Data, 13, 907–922, https://doi.org/10.5194/essd-13-907-2021, https://doi.org/10.5194/essd-13-907-2021, 2021
Els Knaeps, Sindy Sterckx, Gert Strackx, Johan Mijnendonckx, Mehrdad Moshtaghi, Shungudzemwoyo P. Garaba, and Dieter Meire
Earth Syst. Sci. Data, 13, 713–730, https://doi.org/10.5194/essd-13-713-2021, https://doi.org/10.5194/essd-13-713-2021, 2021
Short summary
Short summary
This paper describes a dataset consisting of 47 hyperspectral-reflectance measurements of plastic litter samples. The plastic litter samples include virgin and real samples. They were measured in dry conditions, and a selection of the samples were also measured in wet conditions and submerged in a water tank. The dataset can be used to better understand the effect of water absorption on the plastics and develop algorithms to detect and characterize marine plastics.
Susannah Rennie, Klaus Goergen, Christoph Wohner, Sander Apweiler, Johannes Peterseil, and John Watkins
Earth Syst. Sci. Data, 13, 631–644, https://doi.org/10.5194/essd-13-631-2021, https://doi.org/10.5194/essd-13-631-2021, 2021
Short summary
Short summary
This paper describes a pan-European climate service data product intended for ecological researchers. Access to regional climate scenario data will save ecologists time, and, for many, it will allow them to work with data resources that they will not previously have used due to a lack of knowledge and skills to access them. Providing easy access to climate scenario data in this way enhances long-term ecological research, for example in general regional climate change or impact assessments.
Martin Strohmeier, Xavier Olive, Jannis Lübbe, Matthias Schäfer, and Vincent Lenders
Earth Syst. Sci. Data, 13, 357–366, https://doi.org/10.5194/essd-13-357-2021, https://doi.org/10.5194/essd-13-357-2021, 2021
Short summary
Short summary
Flight data have been used widely for research by academic researchers and (supra)national institutions. Example domains range from epidemiology (e.g. examining the spread of COVID-19 via air travel) to economics (e.g. use as proxy for immediate forecasting of the state of a country's economy) and Earth sciences (climatology in particular). Until now, accurate flight data have been available only in small pieces from closed, proprietary sources. This work changes this with a crowdsourced effort.
Jinshi Jian, Rodrigo Vargas, Kristina Anderson-Teixeira, Emma Stell, Valentine Herrmann, Mercedes Horn, Nazar Kholod, Jason Manzon, Rebecca Marchesi, Darlin Paredes, and Ben Bond-Lamberty
Earth Syst. Sci. Data, 13, 255–267, https://doi.org/10.5194/essd-13-255-2021, https://doi.org/10.5194/essd-13-255-2021, 2021
Short summary
Short summary
Field soil-to-atmosphere CO2 flux (soil respiration, Rs) observations were compiled into a global database (SRDB) a decade ago. Here, we restructured and updated the database to the fifth version, SRDB-V5, with data published through 2017 included. SRDB-V5 aims to be a data framework for the scientific community to share seasonal to annual field Rs measurements, and it provides opportunities for the scientific community to better understand the spatial and temporal variability of Rs.
Robert A. Rohde and Zeke Hausfather
Earth Syst. Sci. Data, 12, 3469–3479, https://doi.org/10.5194/essd-12-3469-2020, https://doi.org/10.5194/essd-12-3469-2020, 2020
Short summary
Short summary
A global land and ocean temperature record was created by combining the Berkeley Earth monthly land temperature field with a newly interpolated version of the HadSST3 ocean dataset. The resulting dataset covers the period from 1850 to present.
This paper describes the methods used to create that combination and compares the results to other estimates of global temperature and the associated recent climate change, giving similar results.
Igor Savin, Valery Mironov, Konstantin Muzalevskiy, Sergey Fomin, Andrey Karavayskiy, Zdenek Ruzicka, and Yuriy Lukin
Earth Syst. Sci. Data, 12, 3481–3487, https://doi.org/10.5194/essd-12-3481-2020, https://doi.org/10.5194/essd-12-3481-2020, 2020
Short summary
Short summary
This article presents a dielectric database of organic Arctic soils. This database was created based on dielectric measurements of seven samples of organic soils collected in various parts of the Arctic tundra. The created database can serve not only as a source of experimental data for the development of new soil dielectric models for the Arctic tundra but also as a source of training data for artificial intelligence satellite algorithms of soil moisture retrievals based on neural networks.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone Alin, Luiz E. O. C. Aragão, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp, Selma Bultan, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Wiley Evans, Liesbeth Florentie, Piers M. Forster, Thomas Gasser, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Luke Gregor, Nicolas Gruber, Ian Harris, Kerstin Hartung, Vanessa Haverd, Richard A. Houghton, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Koji Kadono, Etsushi Kato, Vassilis Kitidis, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Gregg Marland, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Adam J. P. Smith, Adrienne J. Sutton, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Guido van der Werf, Nicolas Vuichard, Anthony P. Walker, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Xu Yue, and Sönke Zaehle
Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, https://doi.org/10.5194/essd-12-3269-2020, 2020
Short summary
Short summary
The Global Carbon Budget 2020 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Jin Ma, Ji Zhou, Frank-Michael Göttsche, Shunlin Liang, Shaofei Wang, and Mingsong Li
Earth Syst. Sci. Data, 12, 3247–3268, https://doi.org/10.5194/essd-12-3247-2020, https://doi.org/10.5194/essd-12-3247-2020, 2020
Short summary
Short summary
Land surface temperature is an important parameter in the research of climate change and many land surface processes. This article describes the development and testing of an algorithm for generating a consistent global long-term land surface temperature product from 20 years of NOAA AVHRR radiance data. The preliminary validation results indicate good accuracy of this new long-term product, which has been designed to simplify applications and support the scientific research community.
Clara Lázaro, Maria Joana Fernandes, Telmo Vieira, and Eliana Vieira
Earth Syst. Sci. Data, 12, 3205–3228, https://doi.org/10.5194/essd-12-3205-2020, https://doi.org/10.5194/essd-12-3205-2020, 2020
Short summary
Short summary
In satellite altimetry (SA), the wet tropospheric correction (WTC) accounts for the path delay induced mainly by atmospheric water vapour. In coastal regions, the accuracy of the WTC determined by the on-board radiometer deteriorates. The GPD+ methodology, developed by the University of Porto in the remit of ESA-funded projects, computes improved WTCs for SA. Global enhanced products are generated for all past and operational altimetric missions, forming a relevant dataset for coastal altimetry.
Cited articles
Alberti, M., Correa, C., Marzluff, J. M., Hendry, A. P., Palkovacs, E. P.,
Gotanda, K. M., Hunt, V. M., Apgar, T. M., and Zhou, Y.: Global urban
signatures of phenotypic change in animal and plant populations, P. Natl. Acad.
Sci. USA, 114, 8951–8956, https://doi.org/10.1073/pnas.1606034114, 2017.
Andersson, E. and Colding, J.: Understanding how built urban form
influences biodiversity, Urban For. Urban Green., 13, 221–226,
2014.
Cao, W., Zhou, Y., Li, R., and Li, X.: Mapping changes in coastlines and
tidal flats in developing islands using the full time series of Landsat
images, Remote Sens. Environ., 239, 111665, https://doi.org/10.1016/j.rse.2020.111665, 2020.
Chen, J., Chen, J., Liao, A., Cao, X., Chen, L., Chen, X., He, C., Han, G.,
Peng, S., Lu, M., Zhang, W., Tong, X., and Mills, J.: Global land cover
mapping at 30 m resolution: A POK-based operational approach, ISPRS J. Photogramm. Remote Sens., 103, 7–27, https://doi.org/10.1016/j.isprsjprs.2014.09.002, 2015.
Chen, Y., Li, X., Zheng, Y., Guan, Y., and Liu, X.: Estimating the
relationship between urban forms and energy consumption: A case study in the
Pearl River Delta, 2005–2008, Landscape Urban Plan, 102, 33–42, 2011.
Fan, C., Tian, L., Zhou, L., Hou, D., Song, Y., Qiao, X., and Li, J.:
Examining the impacts of urban form on air pollutant emissions: Evidence
from China, J. Environ. Manage., 212, 405–414,
https://doi.org/10.1016/j.jenvman.2018.02.001, 2018.
Fry, J., Coan, M., Homer, C., Meyer, D., and Wickham, J.: Completion of the
National Land Cover Database (NLCD) 1992–2001 land cover change retrofit
product, Reston, VA, Report 2008-1379, 2009.
Gong, P., Liang, S., Carlton, E. J., Jiang, Q., Wu, J., Wang, L., and
Remais, J. V.: Urbanisation and health in China, Lancet, 379, 843–852,
https://doi.org/10.1016/S0140-6736(11)61878-3, 2012.
Gong, P., Wang, J., Yu, L., Zhao, Y., Zhao, Y., Liang, L., Niu, Z., Huang,
X., Fu, H., Liu, S., Li, C., Li, X., Fu, W., Liu, C., Xu, Y., Wang, X.,
Cheng, Q., Hu, L., Yao, W., Zhang, H., Zhu, P., Zhao, Z., Zhang, H., Zheng,
Y., Ji, L., Zhang, Y., Chen, H., Yan, A., Guo, J., Yu, L., Wang, L., Liu,
X., Shi, T., Zhu, M., Chen, Y., Yang, G., Tang, P., Xu, B., Giri, C.,
Clinton, N., Zhu, Z., Chen, J., and Chen, J.: Finer resolution observation
and monitoring of global land cover: first mapping results with Landsat TM
and ETM+ data, Int. J. Remote Sens., 34, 2607–2654,
https://doi.org/10.1080/01431161.2012.748992, 2013.
Gong, P., Li, X., and Zhang, W.: 40-year (1978–2017) human settlement
changes in China reflected by impervious surfaces from satellite remote
sensing, Sci. Bull., 64, 756–763,
https://doi.org/10.1016/j.scib.2019.04.024, 2019.
Gong, P., Li, X., Wang, J., Bai, Y., Chen, B., Hu, T., Liu, X., Xu, B.,
Yang, J., Zhang, W., and Zhou, Y.: Annual maps of global artificial
impervious areas (GAIA) between 1985 and 2018, Remote Sens. Environ., 236,
111510, https://doi.org/10.1016/j.rse.2019.111510, 2020.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore,
R.: Google Earth Engine: Planetary-scale geospatial analysis for everyone,
Remote Sens. Environ., 202, 18–27, https://doi.org/10.1016/j.rse.2017.06.031, 2017.
Güneralp, B., Zhou, Y., Ürge-Vorsatz, D., Gupta, M., Yu, S., Patel,
P. L., Fragkias, M., Li, X., and Seto, K. C.: Global scenarios of urban
density and its impacts on building energy use through 2050, P. Natl. Acad. Sci.
USA, 114, 8945–8950, https://doi.org/10.1073/pnas.1606035114, 2017.
Homer, C. G., Dewitz, J. A., Yang, L., Jin, S., Danielson, P., Xian, G.,
Coulston, J., Herold, N. D., Wickham, J., and Megown, K.: Completion of the
2011 National Land Cover Database for the conterminous United
States-Representing a decade of land cover change information, Photogramm.
Eng. Remote Sens., 81, 345–354, 2015.
Huang, C., Goward, S. N., Masek, J. G., Thomas, N., Zhu, Z., and Vogelmann,
J. E.: An automated approach for reconstructing recent forest disturbance
history using dense Landsat time series stacks, Remote Sens. Environ., 114,
183–198, https://doi.org/10.1016/j.rse.2009.08.017, 2010.
Irwin, E. G. and Bockstael, N. E.: The evolution of urban sprawl: Evidence
of spatial heterogeneity and increasing land fragmentation, P. Natl. Acad. Sci.
USA, 104, 20672–20677, https://doi.org/10.1073/pnas.0705527105, 2007.
Kennedy, R. E., Yang, Z., and Cohen, W. B.: Detecting trends in forest
disturbance and recovery using yearly Landsat time series: 1. LandTrendr –
Temporal segmentation algorithms, Remote Sens. Environ., 114, 2897–2910,
https://doi.org/10.1016/j.rse.2010.07.008, 2010.
Li, X. and Gong, P.: Urban growth models: progress and perspective, Sci.
Bull., 61, 1637–1650, https://doi.org/10.1007/s11434-016-1111-1, 2016a.
Li, X. and Gong, P.: An “exclusion-inclusion” framework for extracting
human settlements in rapidly developing regions of China from Landsat
images, Remote Sens. Environ., 186, 286–296, https://doi.org/10.1016/j.rse.2016.08.029, 2016b.
Li, X. and Zhou, Y.: Urban mapping using DMSP/OLS stable night-time light:
a review, Int. J. Remote Sens., 38, 1–17, https://doi.org/10.1080/01431161.2016.1274451, 2017.
Li, X., Liu, X., and Yu, L.: A systematic sensitivity analysis of
constrained cellular automata model for urban growth simulation based on
different transition rules, Int. J. Geogr. Inf. Sci., 28, 1317–1335,
https://doi.org/10.1080/13658816.2014.883079, 2014.
Li, X., Gong, P., and Liang, L.: A 30-year (1984–2013) record of annual
urban dynamics of Beijing City derived from Landsat data, Remote Sens.
Environ., 166, 78–90, https://doi.org/10.1016/j.rse.2015.06.007, 2015.
Li, X., Zhou, Y., Asrar, G. R., Mao, J., Li, X., and Li, W.: Response of
vegetation phenology to urbanization in the conterminous United States,
Glob. Change Biol., 23, 2818–2830, https://doi.org/10.1111/gcb.13562, 2017.
Li, X., Zhou, Y., Zhu, Z., Liang, L., Yu, B., and Cao, w.: Mapping annual
urban dynamics (1985–2015) using time series of Landsat data, Remote Sens.
Environ., 216, 674–683, 2018.
Li, X., Zhou, Y., Eom, J., Yu, S., and Asrar, G. R.: Projecting global urban
area growth through 2100 based on historical time-series data and future
Shared Socioeconomic Pathways, Earth's Future, 7, 351–362,
https://doi.org/10.1029/2019EF001152, 2019a.
Li, X., Zhou, Y., Meng, L., Asrar, G. R., Lu, C., and Wu, Q.: A dataset of 30 m annual vegetation phenology indicators (1985–2015) in urban areas of the conterminous United States, Earth Syst. Sci. Data, 11, 881–894, https://doi.org/10.5194/essd-11-881-2019, 2019b.
Li, X., Zhou, Y., Zhu, Z., and Cao, W.: A national dataset of annual urban extent (1985–2015) in the conterminous United States using Landsat time series data, figshare, Dataset, https://doi.org/10.6084/m9.figshare.8190920.v2, 2019c.
Liu, D. and Cai, S.: A Spatial-Temporal Modeling Approach to Reconstructing
Land-Cover Change Trajectories from Multi-temporal Satellite Imagery, Ann.
Assoc. Am. Geogr., 102, 1329–1347, https://doi.org/10.1080/00045608.2011.596357, 2012.
Liu, X., Hu, G., Chen, Y., Li, X., Xu, X., Li, S., Pei, F., and Wang, S.:
High-resolution multi-temporal mapping of global urban land using Landsat
images based on the Google Earth Engine Platform, Remote Sens. Environ., 209,
227–239, https://doi.org/10.1016/j.rse.2018.02.055, 2018.
Lu, D. and Weng, Q.: Spectral mixture analysis of the urban landscape in
Indianapolis with Landsat ETM+ imagery, Photogramm. Eng. Rem. S., 70,
1053–1062, 2004.
Luber, G., Knowlton, K., Balbus, J., Frumkin, H., Hayden, M., Hess, J.,
McGeehin, M., Sheats, N., Backer, L., Beard, C. B., Ebi, K. L., Maibach, E.,
Ostfeld, R. S., Wiedinmyer, C., Zielinski-Gutiérrez, E., and Ziska, L.:
chap. 9: Human Health, in: Climate Change Impacts in the United States: The
Third National Climate Assessment, edited by: Melillo, J. M., Richmond, T.
C., and Yohe, G. W., US Global Change Research Program, 220–256, 2014.
Masek, J. G., Vermote, E. F., Saleous, N. E., Wolfe, R., Hall, F. G.,
Huemmrich, K. F., Gao, F., Kutler, J., and Lim, T.-K.: A Landsat surface
reflectance dataset for North America, 1990–2000, IEEE Geosci. Remote
Sens. Lett., 3, 68–72, 2006.
Mertes, C. M., Schneider, A., Sulla-Menashe, D., Tatem, A. J., and Tan, B.:
Detecting change in urban areas at continental scales with MODIS data,
Remote Sens. Environ., 158, 331–347, https://doi.org/10.1016/j.rse.2014.09.023, 2015.
Morisette, J. T. and Khorram, S.: Accuracy assessment curves for
satellite-based change detection, Photogramm. Eng. Rem. S., 66, 875–880, 2000.
National Oceanic and Atmospheric Administration: The VIIRS nighttime light data, available at: https://ngdc.noaa.gov/eog/download.html, last access: 20 April 2019.
Peng, S., Piao, S., Ciais, P., Friedlingstein, P., Ottle, C., Bréon,
F.-M., Nan, H., Zhou, L., and Myneni, R. B.: Surface Urban Heat Island
Across 419 Global Big Cities, Environ. Sci. Technol., 46,
696–703, https://doi.org/10.1021/es2030438, 2012.
Rodriguez, R. S., Ürge-Vorsatz, D., and Barau, A. S.: Sustainable
Development Goals and climate change adaptation in cities, Nat. Clim. Change,
8, 181–183, 2018.
Roy, D. P., Kovalskyy, V., Zhang, H. K., Vermote, E. F., Yan, L., Kumar, S.
S., and Egorov, A.: Characterization of Landsat-7 to Landsat-8 reflective
wavelength and normalized difference vegetation index continuity, Remote
Sens. Environ., 185, 57–70, https://doi.org/10.1016/j.rse.2015.12.024, 2016.
Santé, I., García, A. M., Miranda, D., and Crecente, R.: Cellular
automata models for the simulation of real-world urban processes: A review
and analysis, Landscape Urban Plan., 96, 108–122,
https://doi.org/10.1016/j.landurbplan.2010.03.001, 2010.
Schneider, A., Friedl, M. A., and Potere, D.: Mapping global urban areas
using MODIS 500-m data: New methods and datasets based on 'urban
ecoregions', Remote Sens. Environ., 114, 1733–1746, https://doi.org/10.1016/j.rse.2010.03.003,
2010.
Seto, K. C., Woodcock, C. E., Song, C., Huang, X., Lu, J., and Kaufmann, R.
K.: Monitoring land-use change in the Pearl River Delta using Landsat TM,
Int. J. Remote Sens., 23, 1985–2004, https://doi.org/10.1080/01431160110075532, 2002.
Sexton, J. O., Song, X.-P., Huang, C., Channan, S., Baker, M. E., and
Townshend, J. R.: Urban growth of the Washington, DC, Baltimore, MD
metropolitan region from 1984 to 2010 by annual, Landsat-based estimates of
impervious cover, Remote Sens. Environ., 129, 42–53, https://doi.org/10.1016/j.rse.2012.10.025, 2013.
Shi, L., Ling, F., Ge, Y., Foody, G., Li, X., Wang, L., Zhang, Y., and Du,
Y.: Impervious Surface Change Mapping with an Uncertainty-Based
Spatial-Temporal Consistency Model: A Case Study in Wuhan City Using Landsat
Time-Series Datasets from 1987 to 2016, Remote Sens., 9, 1148, https://doi.org/10.3390/rs9111148, 2017.
Solecki, W., Seto, K. C., and Marcotullio, P. J.: It's Time for an
Urbanization Science, Environment: Science and Policy for Sustainable
Development, Environment: Science and Policy for Sustainable Development, 55, 12–17, https://doi.org/10.1080/00139157.2013.748387, 2013.
Song, X.-P., Sexton, J. O., Huang, C., Channan, S., and Townshend, J. R.:
Characterizing the magnitude, timing and duration of urban growth from time
series of Landsat-based estimates of impervious cover, Remote Sens. Environ.,
175, 1–13, https://doi.org/10.1016/j.rse.2015.12.027, 2016.
United Nations: World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420), New York, United Nations, 2019.
US Geological Survey: The National Land Cover Database, available at: https://www.mrlc.gov/data, last access: 20 April 2019.
Weng, Q.: Remote sensing of impervious surfaces in the urban areas:
Requirements, methods, and trends, Remote Sens. Environ., 117, 34–49,
https://doi.org/10.1016/j.rse.2011.02.030, 2012.
Wickham, J., Stehman, S. V., Gass, L., Dewitz, J. A., Sorenson, D. G.,
Granneman, B. J., Poss, R. V., and Baer, L. A.: Thematic accuracy assessment
of the 2011 National Land Cover Database (NLCD), Remote Sens. Environ., 191,
328–341, https://doi.org/10.1016/j.rse.2016.12.026, 2017.
Wickham, J. D., Stehman, S. V., Fry, J. A., Smith, J. H., and Homer, C. G.:
Thematic accuracy of the NLCD 2001 land cover for the conterminous United
States, Remote Sens. Environ., 114, 1286–1296, https://doi.org/10.1016/j.rse.2010.01.018, 2010.
Xian, G., Homer, C., and Fry, J.: Updating the 2001 National Land Cover
Database land cover classification to 2006 by using Landsat imagery change
detection methods, Remote Sens. Environ., 113, 1133–1147, https://doi.org/10.1016/j.rse.2009.02.004, 2009.
Xie, Y. and Weng, Q.: Updating urban extents with nighttime light imagery
by using an object-based thresholding method, Remote Sens. Environ., 187,
1–13, https://doi.org/10.1016/j.rse.2016.10.002, 2016.
Xie, Y. and Weng, Q.: Spatiotemporally enhancing time-series DMSP/OLS
nighttime light imagery for assessing large-scale urban dynamics, ISPRS
J. Photogramm. Remote Sens., 128, 1–15, 2017.
Yu, W., Zhou, W., Qian, Y., and Yan, J.: A new approach for land cover
classification and change analysis: Integrating backdating and an
object-based method, Remote Sens. Environ., 177, 37–47, https://doi.org/10.1016/j.rse.2016.02.030, 2016.
Zhang, Z., Wang, X., Zhao, X., Liu, B., Yi, L., Zuo, L., Wen, Q., Liu, F.,
Xu, J., and Hu, S.: A 2010 update of National Land Use/Cover Database of
China at 1:100 000 scale using medium spatial resolution satellite images,
Remote Sens. Environ., 149, 142–154, https://doi.org/10.1016/j.rse.2014.04.004, 2014.
Zhou, Y., Clarke, L., Eom, J., Kyle, P., Patel, P., Kim, S. H., Dirks, J.,
Jensen, E., Liu, Y., Rice, J., Schmidt, L., and Seiple, T.: Modeling the
effect of climate change on U.S. state-level buildings energy demands in an
integrated assessment framework, Appl. Energ., 113, 1077–1088, https://doi.org/10.1016/j.apenergy.2013.08.034, 2014.
Zhou, Y., Smith, S. J., Zhao, K., Imhoff, M., Thomson, A., Bond-Lamberty,
B., Asrar, G. R., Zhang, X., He, C., and Elvidge, C. D.: A global map of
urban extent from nightlights, Environ. Res. Lett., 10, 1–11,
https://doi.org/10.1088/1748-9326/10/5/054011, 2015.
Zhou, Y., Li, X., Asrar, G. R., Smith, S. J., and Imhoff, M.: A global
record of annual urban dynamics (1992–2013) from nighttime lights, Remote
Sens. Environ., 219, 206–220, 2018.
Short summary
The information of urban dynamics with fine spatial and temporal resolutions is highly needed in urban studies. In this study, we generated a long-term (1985–2015), fine-resolution (30 m) product of annual urban extent dynamics in the conterminous United States using all available Landsat images on the Google Earth Engine (GEE) platform. The data product is of great use for relevant studies such as urban growth projection, urban sprawl modeling, and urbanization impacts on environments.
The information of urban dynamics with fine spatial and temporal resolutions is highly needed in...
Altmetrics
Final-revised paper
Preprint