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Abstract. Dynamics of the urban extent at fine spatial and temporal resolutions over large areas are crucial
for developing urban growth models and achieving sustainable development goals. However, there are limited
practices of mapping urban dynamics with these two merits combined. In this study, we proposed a new method
to map urban dynamics from Landsat time series data using the Google Earth Engine (GEE) platform and devel-
oped a national dataset of annual urban extent (1985–2015) at a fine spatial resolution (30 m) in the conterminous
United States (US). First, we derived the change information of urbanized years in four periods that were de-
termined from the National Land Cover Database (NLCD), using a temporal segmentation approach. Then, we
classified urban extents in the beginning (1985) and ending (2015) years at the cluster level through the im-
plementation of a change vector analysis (CVA)-based approach. We also developed a hierarchical strategy to
apply the CVA-based approach due to the spatially explicit urban sprawl over large areas. The overall accuracy
of mapped urbanized years is around 90 % with the 1-year tolerance strategy. The mapped urbanized areas in
the beginning and ending years are reliable, with overall accuracies of 96 % and 88 %, respectively. Our results
reveal that the total urban area increased by about 20 % during the period of 1985–2015 in the US, and the an-
nual urban area growth is not linear over the years. Overall, the growth pattern of urban extent in most coastal
states is plateaued over the past three decades while the states in the Midwestern US show an accelerated growth
pattern. The derived annual urban extents are of great use for relevant urban studies such as urban area projec-
tion and urban sprawl modeling over large areas. Moreover, the proposed mapping framework is transferable
for developing annual dynamics of urban extent in other regions and even globally. The data are available at
https://doi.org/10.6084/m9.figshare.8190920.v2 (Li et al., 2019c).

1 Introduction

The rapid global urbanization causes environmental, ecolog-
ical, and public concerns for human beings for sustainable
development goals (SDGs) (Rodriguez et al., 2018). Glob-
ally, urban areas, commonly defined as the space dominated
by the built environment (e.g., buildings, roads, and runways)
from remote sensing, only account for a tiny fraction of the
Earth’s surface (Schneider et al., 2010); however, they are
home to most of the global economy, population, energy
consumption, and greenhouse gas emissions (Solecki et al.,
2013). According to the latest World Urbanization Prospects
(United Nations, 2019), more than 50 % of the world’s pop-

ulation lives in urban areas, and this percentage will increase
to 66 % by the middle of this century. Moreover, most urban
population growth would likely to occur in developing re-
gions, where the realization of SDGs faces more challenges
because of potential risks from thermal environment change
caused by the urban heat island (Peng et al., 2012), degra-
dation of urban ecosystem services (Li et al., 2017; Irwin
and Bockstael, 2007), energy consumption with changed en-
vironment and human activities (Güneralp et al., 2017; Zhou
et al., 2014; Alberti et al., 2017), and public health concerns
(Gong et al., 2012; Luber et al., 2014). Therefore, under-
standing the pathway of urban sprawl (i.e., expansion of the
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geographic extent of urban area) and the development of ad-
vanced urban growth models are highly needed for adapting
and mitigating potential risks under future urbanization (Li
and Gong, 2016a; Weng, 2012).

The datasets of urban extent dynamics at the fine spa-
tial (e.g., 30 m) and temporal (e.g., annual) resolutions are
the key to capturing the rate, trend, and stage of urbaniza-
tion for a better understanding of this process (Zhang et al.,
2014). Such datasets can provide fine information about the
urban form (e.g., layout, geometry, and distribution), which
can be further used for relevant studies such as urban en-
ergy consumption (Chen et al., 2011), biodiversity in urban
ecosystem (Andersson and Colding, 2014), and air pollutant
emissions (Fan et al., 2018). In addition, the relationship be-
tween urban dynamics and annual socioeconomic develop-
ment (e.g., population and gross domestic product) can help
to better understand the reasons behind urbanization (Seto et
al., 2002; Xie and Weng, 2017). Finally, the long temporal
span (e.g., decades) of urban dynamics can capture a rela-
tively complete process of urban sprawl with different stages
(Li et al., 2019a; Gong et al., 2019, 2020; Cao et al., 2020).
The information of long-term urban dynamics is valuable in
developing urban growth models, such as investigating the
generation and propagation of errors (or uncertainties) in ur-
ban sprawl models (Santé et al., 2010; Li and Gong, 2016a).
However, current mapping approaches that focus on multi-
temporal (e.g., decade and half-decade) urban extent are lim-
ited to reflect the process of urban sprawl (e.g., acceleration
or deceleration) of cities and explain their differences caused
by demographic and socioeconomic drivers (Sexton et al.,
2013).

Urban extent mapping at fine spatial and temporal reso-
lutions, especially over large areas, is still lacking, although
urban extent maps with a variety of spatial and temporal res-
olutions have been developed. For example, there are several
global urban extent products such as those from the night-
time light (NTL) data (1 km) (Zhou et al., 2015, 2018; Xie
and Weng, 2016), the Moderate Resolution Imaging Spectro-
radiometer (MODIS) data (500 m) (Schneider et al., 2010),
and even the fine-resolution Landsat data (30 m) (Chen et
al., 2015; Gong et al., 2013; Liu et al., 2018). However,
these existing multitemporal national or global urban ex-
tent maps were generally produced separately in each pe-
riod, with limited consideration of the temporal consistency
of urban growth (Li et al., 2015; Song et al., 2016; Shi et al.,
2017).

There are several challenges in mapping urban extent
at fine spatial and temporal resolutions over large areas.
First, land use and cover changes in urban domains are
complicated, with the interclass conversions and multiphase
changes before urbanization or during the posturbanization
period (Li and Gong, 2016b; Lu and Weng, 2004). For ex-
ample, various land cover types such as vegetation, water,
and barren can be potentially converted to built-up areas, and
such a conversion may experience multiple phases, e.g., from

highly vegetated land to lightly vegetated or barren, and then
eventually to built-up areas with posturbanization changes.
Second, durations of land surface change introduced by ur-
banization are different across regions; that is, urban sprawl
may occur within a short period or last for a couple of years
in different regions (Song et al., 2016; Kennedy et al., 2010).

In general, two approaches have been used to derive spa-
tiotemporally consistent urban extent maps from high spa-
tial and temporal satellite observations. One is improving the
classified urban time series using postprocessing techniques
(Liu and Cai, 2012; Li et al., 2015); the other one is identi-
fying the change information using the continuous time se-
ries data of relevant indicators such as the vegetation index
(Huang et al., 2010; Kennedy et al., 2010). The first method
requires intensive labor for collecting training samples for
classification and specific postprocessing techniques (Gong
et al., 2013, 2019; Chen et al., 2015; Liu and Cai, 2012),
which is challenging and time-consuming for regional and
global mapping over a long temporal span. The second one
poses a new challenge for managing, manipulating, and an-
alyzing the massive amount of time series data over large
areas.

Due to these challenges in mapping urban dynamics at fine
spatial and temporal resolutions over large areas, the devel-
opment of a generalized and efficient mapping approach is
in high demand. In this study, we mapped the annual dynam-
ics (1985–2015) of urban extent in the conterminous United
States (US) by developing a generalized and efficient map-
ping approach on the state-of-the-art Google Earth Engine
(GEE) platform. The remainder of this paper describes the
study area and data (Sect. 2), the proposed national-mapping
approach (Sect. 3), the results with discussion (Sect. 4), the
data availability (Sect. 5), and concluding remarks (Sect. 6).

2 Datasets

Landsat time series data on the GEE platform, spanning from
1985–2015, are the primary data source for mapping annual
urban extent in this study. The advent of GEE is designed for
planetary-scale studies using different sources of satellite im-
ages (Gorelick et al., 2017; Li et al., 2019b), and it is a good
choice for mapping projects over large areas. In this study,
we used multiple L1T-level Landsat surface reflectance prod-
ucts, including the Thematic Mapper (TM), the Enhanced
Thematic Mapper Plus (ETM+), and the Operational Land
Imager (OLI). These products have been corrected for the
radiometric, topographic, and atmospheric effects (Masek et
al., 2006). All clean-sky pixels were used to composite the
time series data for analyses, with clouds and their shadows
removed. In total, around 460 000 Landsat scenes were used
for the conterminous US over the past three decades.

The National Land Cover Database (NLCD) and nighttime
light data are ancillary datasets in this study. The NLCD pro-
vides multitemporal urban maps in 1992, 2001, 2006, and
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Figure 1. The proposed framework for mapping annual urban extent dynamics in the conterminous US through the detection of the urbanized
year at the pixel level using the temporal segmentation approach (a) and classifying urbanized areas at the cluster level in periods B1 and F1
using the change vector analysis (b) (Basemap data© 2019 Google).

2011 (Homer et al., 2015; Xian et al., 2009), which were used
as the reference urban areas in these years. The NLCD has
been widely used for its reliable performance at the national
scale (Wickham et al., 2010, 2017). In this study, we derived
the urban extent map in 1992 using the NLCD 1992/2001
retrofit land cover change product, so that all urban extents
derived from the NLCD in different years (i.e., 1992, 2001,
2006, and 2011) are comparable (Fry et al., 2009). In addi-
tion, nighttime light images of the Visible Infrared Imaging
Radiometer Suite (VIIRS) were used to delineate the poten-
tial urban cluster after 2011 (Li and Zhou, 2017).

3 Method

In this study, we developed a new framework with a unique
hierarchical strategy for mapping annual urban extents in
large areas on the GEE platform using long-term Landsat ob-
servations (Fig. 1). First, we grouped the study period (1985–
2015) into four periods, namely B1 (1985–1992), B2 (1992–
2001), B3 (2001–2011), and F1 (2011–2015), based on the
available NLCD. For Landsat time series data in each pe-
riod, we detected the urbanized years at the pixel level by
implementing a temporal segmentation approach (Li et al.,
2018) (Fig. 1a). Second, given that NLCD only provides ur-
ban extent from B2 to B3, we classified urbanized areas at
the cluster level in the periods B1 and F1 using a change
vector analysis (CVA)-based approach. We developed a hi-
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erarchical strategy to implement the CVA-based approach
due to the spatially explicit urban sprawl over large areas.
That is, the CVA-based approach was applied in potential ur-
ban clusters (derived from VIIRS data) in each grid (around
250 km× 250 km), according to the size of potential urban
clusters (Fig. 1b). Details of each procedure are presented in
the following sections.

3.1 Detection of urbanized years

We preprocessed the raw Landsat time series data before im-
plementing the temporal segmentation approach. We system-
atically corrected the OLI surface reflectance data to make
them consistent with other sensors (i.e., TM and ETM+) as
suggested by Roy et al. (2016). After that, we generated the
normalized difference vegetation index (NDVI), the modified
normalized difference water index (MNDWI), and the short-
wave infrared (SWIR) reflectance. These three indexes can
well represent vegetation, water, and bare lands, respectively,
and are the primary conversion sources to urbanized areas
(Li and Gong, 2016b). The annual maximal NDVI was used
to represent the growth of vegetation because the NDVI has
a distinctive seasonal pattern and the greenest season varies
over different biomes, e.g., January–March in the western US
and June–August in the central US. The annual mean values
of MNDWI and SWIR from all observations except for the
winter time were used to composite the annual time series
data.

We implemented the temporal segmentation approach for
each urbanized pixel in four periods (i.e., B1, B2, B3, and
F1). These urbanized pixels during each period were identi-
fied using urban extent maps derived from NLCD and clas-
sified results in B1 and F1 using the CVA-based approach.
Within each period, we identified the starting (P1) and end-
ing (P2) years of change using the temporal segmentation
approach, according to the overall trend of the indicators
(i.e., NDVI, MNDWI, and SWIR). For urbanization from
vegetation, the indicator of NDVI shows a decreasing trend
(Fig. 2a), while curves of MNDWI and SWIR show increas-
ing trends (Fig. 2b). In this temporal segmentation method,
we first applied a linear regression to the annual time series
data of three indicators (i.e., NDVI, MNDWI, and SWIR)
and then determined these two turning points (i.e., P1 and
P2) according to their annual residuals to the regression-
based trend line. If the overall trend of NDVI is decreas-
ing, the years with the largest residuals above and below the
regression-based trend line were identified as P1 and P2, re-
spectively, and vice versa (Fig. 2). The change year derived
from the indicator with the largest change magnitude (i.e.,
change between P1 and P2) was identified as the final result.
In addition, the duration of change is the difference of years
between P1 and P2. More details about the temporal segmen-
tation can be found in Li et al. (2018).

3.2 Classification of urbanized areas before 1992 and
after 2011

We classified urbanized areas in periods B1 (1985–1992) and
F1 (2011–2015) using a CVA-based approach at the national
level (Fig. 1b). Urbanized areas of two middle periods (i.e.,
B2 and B3) were directly obtained from NLCD. Results from
the temporal segmentation approach (i.e., change magnitude
within each period) were used to identify urbanized areas in
the CVA-based approach in the beginning (B1) and ending
(F1) periods. Full time series data were used in our CVA-
based approach, which is different from the commonly used
approach based on a pair of images in two periods (Xian et
al., 2009; Yu et al., 2016). The change magnitude (1V ) was
calculated using three indicators (Eq. 1). Compared to the
six-spectral-band information of Landsat, the three indica-
tors show similar or even better performance in capturing the
change magnitude (Fig. S1 in the Supplement), as well as
in providing the information of conversion sources of urban-
ized areas. Pixels with a large 1V were regarded as poten-
tially changed areas. We identified these potentially changed
areas using a multithreshold approach because different con-
versions have different thresholds of 1V (Eq. 2).

1V=

√
(NDVIt1−NDVIt2)2

+ (MNDWIt1−MNDWIt2)2

+(SWIRt1−SWIRt2)2, (1)

CVj =

{
1, 1Vj ≥ µj +ασj
0,1Vj < µj +ασj

, (2)

where CVj is the status of change (i.e., 1 is change and 0
is no change) for cover type j ; µj and σj are the mean and
standard deviation of 1Vj ; t1 and t2 are the turning years of
P1 (before change) and P2 (after change), respectively; and
α is an adjustable parameter that was set as 1.5 in this study
as suggested by Morisette and Khorram (2000).

We implemented the CVA-based approach within urban
masks in the first (B1) and last (F1) periods. For B1, the ur-
ban extent of NLCD 1992 was used as a potential urban mask
before 1992. For the period F1, an approximate urban extent
derived from VIIRS data in 2015 (Li et al., 2018) was used as
a potential urban boundary for classification. Within the de-
rived urban boundary, we classified urban areas in 2015 using
urban pixels sampled from NLCD 2011. Finally, we derived
urbanized areas in the period F1, using the potential change
areas from the CVA approach, the urban boundary from NTL
data, and the urban extent from NLCD 2011. Pseudo-changes
that are not relevant to the urban sprawl were removed dur-
ing this process. More details about the CVA-based approach
can be found in Li et al. (2018).

3.3 A hierarchical strategy on the GEE

We developed a hierarchical strategy to implement the CVA-
based approach at the national level. This strategy enables us
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Figure 2. Illustration of the temporal segmentation approach using indicators with decreasing (NDVI) (a) or increasing (MNDWI and SWIR)
(b) trends.

to detect urbanized areas over large areas with spatially ex-
plicit patterns of urban sprawl. In this strategy, we grouped
all potential urban clusters into two categories using a size
filter of 100 km2 (Fig. S2) for implementing different thresh-
olds in the CVA-based approach to derive urbanized areas
(Fig. 3). For those large clusters (i.e., larger than 100 km2),
we isolated each of them as an independent spatial unit and
applied the CVA-based approach to them. For the remaining
small urban clusters within the same grid, we treated them as
an integrated unit to derive urbanized areas.

4 Results and discussion

4.1 Annual urban growth

The annual growth of urban areas varies across years in the
conterminous US, which cannot be revealed by the NLCD
(Fig. 4). Overall, the average growth rate at the national
scale is around 1000 km2 yr−1 during 1985–2015. The total
increment is about 31 000 km2, which is around 20 % rel-
ative to the urban area in 1985 (Fig. 4a). Our results pro-
vide more details of urban dynamics according to the an-
nual growth rate (km2 yr−1) of urban areas, compared to
the growth rate (km2 yr−1) of the NLCD in each period
(Fig. 4b). The mean growth rates of NLCD are 1015, 1512,
and 929 km2 yr−1 during the periods of 1992–2001, 2001–
2006, and 2006–2011, respectively. However, the annual dy-
namics within each period are notably different. In general,
there are notably decreasing trends of growth during the peri-
ods of 1997–2001 and 2007–2010 and a profound increasing
trend during 2004–2006. Particularly, the decreasing trend
during 2006–2011 is the most significant, with a total de-
crease from 1380 km2 yr−1 in 2007 to 520 km2 yr−1 in 2010,
which is likely caused by the financial crisis around 2008.

The annual growth of urban areas is different across states.
There is an overall increasing trend in the early years and a
decreasing trend in the latter years in period of 2001–2011
(Fig. 5). The mean growth rate in all states is 25 km2 yr−1.
Texas (TX), Florida (FL), and California (CA) are three
states with the highest growth rates, which are 117, 93, and
80 km2 yr−1, respectively. In general, in most states, their

relative changes of annual growth in urban area are higher
than the mean growth rate of NLCD in the early years. After
that, their relative changes of annual growth are below the
mean growth rate. This trend is consistent with NLCD re-
sults, with a declined mean growth rate of around 40 % dur-
ing the period of 2006–2011 relative to 2001–2006 (Fig. 4b).
It is worth noting that NLCD in 2006 was not used in our
mapping approach. The comparison of the urban area growth
during 2001–2006 shows a good agreement between our re-
sults and NLCD (Fig. S3). Therefore, the NLCD in 2006 in-
dependently indicates that our approach can well capture the
dynamic of urban areas.

A distinctive urban area growth was observed for cities
with a rapid population growth. We chose the top 10 cities
in the US based on the population growth rate during 2010–
2017 (Fig. 6). Most of them are in the southern and the east-
ern US, such as TX, FL, and North Carolina (NC). Overall,
the growth of urban areas in these top 10 cities is significant.
The rank-based urban area growth agrees well with the re-
sult from population growth (Fig. S4). For example, there is
a remarkable urban sprawl around 2006–2015 in the Village
city (FL), which is also the city with the fastest population
growth among the top 10.

4.2 Long-term patterns of urban growth

Our annual urban extent data reveal different long-term pat-
terns of urban growth across states in the US during the past
three decades. We calculated the percentage of urban area
growth relative to the base year 1985 for each state from
1986 to 2015. States show different patterns (i.e., convex or
concave hull) according to the time series of relative change
(Fig. 7a). As such, we defined two urban area growth patterns
by comparing the derived time series curve to the reference
line (Fig. 7b). If the curve of urban area growth was overall
above the reference line (e.g., Missouri, MO), then we re-
garded this pattern as a plateaued growth; on the contrary, it
belongs to an accelerated growth pattern (e.g., Arizona, AZ).
In general, urban area growth patterns in most coastal states
are plateaued, and states in the south and the midwestern US
show an accelerated growth pattern in general (Fig. 7c). In
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Figure 3. An illustration of the CVA-based approach. An example grid with potential urban clusters including Dallas, Texas, for imple-
menting the CVA-based approach (a). An example of the CVA-based approach in the cluster of Dallas, Texas (b). The change magnitude
is the difference of three indicators (i.e., NDVI, MNDWI, and SWIR) before and after the urbanized year, and the changed areas are pixels
with magnitudes greater than the determined threshold (µ+ 1.5σ ) from the histogram (dotted red line). µ and σ are the mean and standard
derivation of change magnitudes in the potential urban cluster.

Figure 4. Annual growth of urban areas in the conterminous US (1985–2015) (a) and their annual growth rates (km2 yr−1) compared to the
NLCD in the three periods (shadow frames) of 1992–2001, 2001–2006, and 2006–2011 (b).

particular, the relatively accelerated growth of urban areas
over the past three decades in agricultural states such as Iowa
(IA), North Dakota (ND), and South Dakota (SD) challenges
the sustainable development of agriculture system. Also, the
annual urban areas over a long term indicate that the urban
area growth is not linear over the years, although the lin-
ear growth of urban areas was widely used in urban sprawl
modeling, if only the coarse-temporal-resolution urban ex-
tent data are available (Li et al., 2014; Sexton et al., 2013).

4.3 Conversion sources of urbanized areas

The primary conversion sources of urbanized areas are differ-
ent across states and change over time (Fig. 8). Most urban-
ized areas were converted from cropland and forest within a
relatively short duration (i.e., 1–3 years) (Fig. S5–S6). Over-
all, vegetation (i.e., cropland, forest, grass, and shrub) is the
dominant source of urbanized areas over all the states and
years. In particular, the cropland is the most predominant
source of urbanized areas, accounting for 46 % of the total
urbanized areas during 1992–2015. Besides, there is a certain
percentage of urbanized areas converted from water or wet-
land in some states in the eastern and southern coastal areas,
e.g., FL, Louisiana (LA), and South Carolina (SC). Addi-
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Figure 5. State-based relative change of annual growth of urban areas compared to the mean growth rate of NLCD during the period of
2001–2011 (Basemap data© 2019 Esri).

Figure 6. An illustration of urban area growth in the top 10 fast-growing cities in the US according to the population growth during 2010–
2017. (1) Village (Florida), (2) Myrtle Beach (South Carolina/North Carolina), (3) Round Rock (Texas), (4) Midland (Texas), (5) Greeley
(Colorado), (6) St. George (Utah), (7) Fort Myers (Florida), (8) Redmond (Oregon), (9) Raleigh (North Carolina), and (10) Orlando (Florida)
(Basemap data© 2019 Google).
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Figure 7. Urban area growth patterns over the past three decades of each state in the US (a), the proposed conceptual model (b), and the
classified urban area growth types (c) (Basemap data© 2019 Esri).

tionally, percentages of land cover encroached by urban vary
over the years. For example, the percentage of encroached
cropland decreases, while the encroached grass increases in
North Dakota (ND).

4.4 Evaluation

4.4.1 Detected urbanized years

The identified urbanized years using the temporal segmen-
tation approach agree well with the manually interpreted re-
sult using samples from NLCD, with an overall accuracy of
around 90 % using the 1-year tolerance strategy (Fig. 9). We
visually interpreted more than 500 samples randomly col-

lected from urbanized regions from NLCD during the peri-
ods B1, B2, and B3 (Fig. S7), aided by multitemporal Land-
sat images, Google Earth high-resolution images, and time
series data of relevant indicators (i.e., NDVI, MNDWI, and
SWIR) (Li et al., 2018). Period F1 is not included due to its
short term (2011–2015). Given that there are uncertainties
in the manual interpretation, we validated our results using
the identified absolute year and the 1-year tolerance strategy
(Song et al., 2016). The overall accuracies of B1, B2, and
B3 without the 1-year tolerance strategy are 58 %, 48 %, and
57 %, respectively. When the 1-year tolerance strategy was
used, their agreements were considerably improved to 89 %,
83 %, and 88 %, respectively (Fig. 9). The adoption of the 1-
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Figure 8. Conversion sources of urbanized areas during 1992–2015.

year strategy is reasonable because the urban sprawl may oc-
cur in the beginning or ending phases of a given year, which
may cause confusion among neighboring years (Song et al.,
2016; Huang et al., 2010).

The spatial pattern of detected urbanized years is reliable
through the visual inspection in eight selected representa-
tive cities, with different urban sprawl rates during 1985–
2015 and population sizes ranging from 200 000 to 900 000
(Fig. 10). In general, urban areas in these cities expanded
from the center to the fringe areas, whereas the pathways of
urban sprawl are notably different among these cities. For ex-
ample, the direction of urban sprawl is opposite between Des
Moines (IA) and Memphis (TN). The snapshots in Fig. 11
suggest a good agreement of urbanized years between our
results and Landsat observations. For example, most urban-
ized areas in Las Vegas (Region B in Fig. 11) occurred after
2000, which is consistent with our mapped urbanized years
(i.e., pixels colored from yellow to red). Similar cases can
also be found in other regions such as Des Moines (A) and
Kansas (C) (Fig. 11).

4.4.2 Classification of urbanized areas in periods B1
and F1

The CVA-based approach performs well for classifying ur-
banized areas, according to the accuracy assessment using

samples randomly generated on both nonurban and urban-
ized areas during the periods B1 (1985–1992) and F1 (2011–
2015) (Table 1). Validation samples for period B1 were ran-
domly collected from persistent urban areas since 1985 and
urbanized areas during 1985–1992. For the period F1, sam-
ples were generated based on nonurban areas and urbanized
areas during 2011–2015, within the VIIRS-derived potential
urban boundary (Fig. S8). The manual interpretation is based
on the time series of Landsat and high-resolution Google
Earth images in the two periods. The overall accuracies of
classified urbanized areas for periods B1 and F1 are 96 %
and 88 %, respectively (Table 1). The higher accuracy in the
period B1 compared with the period F1 is because the val-
idation samples in this period are within the possible urban
extent of 1992 from the NLCD. Also, the misclassified ur-
banized areas in the period F1 are mainly caused by the con-
fusion between bared land (e.g., rocks, or dry soil) and an ur-
ban area with similar spectral features (Mertes et al., 2015).

4.4.3 Uncertainties of annual urban extent data

There are several sources of uncertainties in our annual urban
extent data. The first is the classification error in the NLCD,
despite this being the most reliable database in the US with
a fine resolution and multiple periods (Homer et al., 2015).
On the one hand, the detected change information is incor-
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Figure 9. Accuracy assessment of urbanized years over different periods B1 (1985–1992) (a), B2 (1992–2001) (b), and F1 (2001–2011) (c).
Each grid labels the urbanized year from the manual interpretation (reference) and our approach (detected).

rect in the misclassified urbanized pixels from NLCD. On
the other hand, for those urbanized pixels, but not identified
in NLCD, their change information is not captured in our re-
sult. However, the overall accuracy of land cover classifica-
tion in NLCD is about 85 %–90 % (Wickham et al., 2017),
and the accuracy of urban land cover is even higher (i.e.,
larger than 95 % in selected examples of US) (Li et al., 2018).
Moreover, the CVA-based approach can be implemented to
improve the urban extent maps of NLCD as change magni-

tudes of those pseudo-urban pixels in the NLCD are notably
lower than changes caused by urban sprawl. In addition, the
omitted urbanized pixels in the NLCD can be potentially cap-
tured using the CVA-based approach. The second is the clas-
sification error in mapped urbanized areas in the beginning
and ending years. Uncertainties caused by spectral similar-
ities between urban and bared lands could still exist in our
results (Table 1), although we have used different constraints
(e.g., change vector, classification results, and NTL) to mit-
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Figure 10. Annual dynamics of urban extent in eight selected US cities over the past three decades. The black frames are regions in Fig. 11
for further comparison with Landsat images.

Table 1. Accuracy assessment of classified urbanized areas for periods B1 and F1.

Reference

1985–1992 No change Change Producer’s accuracy (%)

M
ap

pe
d No change 99 1 99 %

Change 8 92 92 %
User’s accuracy (%) 93 % 99 %
Overall accuracy 96 % Kappa 0.91

2011–2015 No change Change Producer’s accuracy (%)

M
ap

pe
d No change 92 8 92 %

Change 17 83 83 %
User’s accuracy (%) 84 % 91 %
Overall accuracy 88 % Kappa 0.75

igate such uncertainties. More advanced classification algo-
rithms and additional information such as thermal features
could be helpful for improving our algorithm in monitoring
urban dynamics.

5 Data availability

The generated data of annual urban dynamics are available
at https://doi.org/10.6084/m9.figshare.8190920.v2 (Li et al.,
2019c). The dataset is organized by state (total 49) in the
conterminous US. The location of US states can be found
in the figure “US_State.jpg”. Full names and abbreviations
of US states are provided in the file “US_StateList.xls”.
The data are in GeoTIFF, with the georeferenced informa-

tion embedded. Each file was projected to the Albers equal-
area conic projection, with a spatial resolution of 30 m.
The legend of the GeoTIFF file can be found in the fig-
ure “Legend.jpg”. The lookup table between pixel values
(1–31) and urbanized years (1985–2015) can be found in
the file “Year_Code_Loopup.csv”. The National Land Cover
Database was retrieved from the US Geological Survey at
https://www.mrlc.gov/data (US Geological Survey, 2019),
and the VIIRS nighttime light data were downloaded from
the National Oceanic and Atmospheric Administration at
https://ngdc.noaa.gov/eog/download.html (NOAA, 2019).
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Figure 11. Comparison of annual urban dynamics with Landsat images. The geographic location of each region (A–H) corresponds to the
black frames in Fig. 10. The spatial extent of each region is 25 km2.

6 Conclusions

In this study, we mapped annual urban extents in the conter-
minous US by developing an efficient framework on the GEE
platform using long-term Landsat observations. First, aided
by the NLCD, we temporally grouped the entire temporal
span into four periods (i.e., B1: 1985–1992; B2: 1992–2001,
B3: 2001–2011; and F1: 2011–2015). Then, we derived the

urbanized years and change magnitudes measured by indi-
cators of NDVI, MNDWI, and SWIR at the pixel level, us-
ing a temporal segmentation approach in each period. Af-
ter that, we classified urbanized areas at the cluster level in
the beginning (1985) and the ending (2015) years through
the implementation of a CVA-based approach. Considering
the spatially explicit urban sprawl over large areas, we devel-
oped a unique hierarchical strategy to apply the CVA-based
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approach at the national level. Finally, the mapped urban dy-
namics in these four periods were combined as a complete
dataset of 30-year dynamics of urban extent in the contermi-
nous US.

The proposed mapping framework with the unique hierar-
chical strategy achieves a good performance in mapping an-
nual dynamics of urban extent at a fine spatial resolution at
the national level. The overall accuracies of detected urban-
ized years for the periods B1, B2, and B3 are 89 %, 83 %, and
88 %, respectively, with a 1-year tolerance strategy. Mean-
while, the CVA-based approach on the output from temporal
segmentation can classify urbanized areas well, with overall
accuracies of 96 % and 88 % for periods B1 and F1, respec-
tively. Also, the implementation of the CVA-based approach
using the proposed hierarchical strategy can capture the het-
erogeneity of urban growth over different regions, periods,
and urban sizes, which helps to build a reliable dataset of
urban dynamics.

There is a notable difference in the growth rates and pat-
terns of annual urban areas across states in the US over the
past three decades. The total increment of urban areas is
about 31 000 km2, which accounts for around 20 % of the
urban area in 1985. The long-term growth of urban areas
is not linear over the years. The results suggest there is an
increasing trend of urban area growth in the early years of
2001–2011 and then a decreasing trend in the latter years.
Using the annual time series data of urban areas, we observed
a plateaued growth pattern of urban areas in most coastal
states and an accelerated growth pattern in the Midwestern
US. Besides, the cropland is the most predominant source of
increased urban areas, accounting for 46 % of the total urban-
ized areas during 1992–2015.

This study provides a successful application of mapping
annual urban extent at the national scale through the com-
bination of existing good-quality NLCD urban extent maps,
long-term Landsat time series data, and the GEE cloud-based
platform. The proposed approach can be transferred to other
regions with similar multitemporal land cover datasets to
the NLCD, for updating existing land cover datasets with
a higher temporal resolution. This study opens a new av-
enue to use all available Landsat observations for mapping
annual urban extent at the national level compared with pre-
vious studies using the supervised classification or postpro-
cessing (Schneider et al., 2010; Li et al., 2015; Liu and Cai,
2012). Moreover, the derived change information from the
temporal segmentation using annual observations is more re-
liable compared with the research using a pair of Landsat
images in 2 years (Yu et al., 2016). However, this approach
may introduce uncertainties if the composited annual time
series Landsat observations fluctuate too much, especially
when this fluctuation is larger than the change induced by
urbanization.
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