Articles | Volume 12, issue 1
Earth Syst. Sci. Data, 12, 231–243, 2020
https://doi.org/10.5194/essd-12-231-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue: Water, ecosystem, cryosphere, and climate data from the interior...
Data description paper
05 Feb 2020
Data description paper
| 05 Feb 2020
Paleo-hydrologic reconstruction of 400 years of past flows at a weekly time step for major rivers of Western Canada
Andrew R. Slaughter and Saman Razavi
Related authors
David Gwapedza, Andrew Slaughter, Denis Hughes, and Sukhmani Mantel
Proc. IAHS, 377, 19–24, https://doi.org/10.5194/piahs-377-19-2018, https://doi.org/10.5194/piahs-377-19-2018, 2018
Short summary
Short summary
The paper investigates the use of GIS to come up with model parameters. This is part of a process of simplifying model use. The findings show that existing GIS data can be used for estimating model parameters as the outcomes of the research show that model outputs are consistent with previously estimated measures. This research is part of a development of a model which can estimate soil loss and sediment delivery at broad spatial and temporal scales to improve catchment management.
Andrew R. Slaughter and Sukhmani K. Mantel
Proc. IAHS, 377, 25–33, https://doi.org/10.5194/piahs-377-25-2018, https://doi.org/10.5194/piahs-377-25-2018, 2018
Short summary
Short summary
WQSAM is a water quality model designed specifically for South Africa as it relies on flow data generated by South African-specific flow models. However, many of the characteristics of WQSAM would make it suitable for other developing semi-arid countries. This study attempted to adapt WQSAM to take in flow data from the globally-applied WEAP flow model so that WQSAM can be applied elsewhere. WQSAM could effectively use the flow data from the WEAP model as demonstrated on a case-study catchment.
Mohammad Ghoreishi, Amin Elshorbagy, Saman Razavi, Günter Blöschl, Murugesu Sivapalan, and Ahmed Abdelkader
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-172, https://doi.org/10.5194/hess-2022-172, 2022
Revised manuscript under review for HESS
Short summary
Short summary
We propose a quantitative model of the willingness to cooperate at the national and Eastern Nile River Basin. Our results suggest that the 2008 food crisis may account for Sudan recovering its willingness to cooperate with Ethiopia. Long-term lack of trust among the riparian countries may have reduced basin-wide cooperation. The model can be used to explore the effects of changes in future dam operation and other management decisions on the emergence of basin cooperation.
Chris M. DeBeer, Howard S. Wheater, John W. Pomeroy, Alan G. Barr, Jennifer L. Baltzer, Jill F. Johnstone, Merritt R. Turetsky, Ronald E. Stewart, Masaki Hayashi, Garth van der Kamp, Shawn Marshall, Elizabeth Campbell, Philip Marsh, Sean K. Carey, William L. Quinton, Yanping Li, Saman Razavi, Aaron Berg, Jeffrey J. McDonnell, Christopher Spence, Warren D. Helgason, Andrew M. Ireson, T. Andrew Black, Mohamed Elshamy, Fuad Yassin, Bruce Davison, Allan Howard, Julie M. Thériault, Kevin Shook, Michael N. Demuth, and Alain Pietroniro
Hydrol. Earth Syst. Sci., 25, 1849–1882, https://doi.org/10.5194/hess-25-1849-2021, https://doi.org/10.5194/hess-25-1849-2021, 2021
Short summary
Short summary
This article examines future changes in land cover and hydrological cycling across the interior of western Canada under climate conditions projected for the 21st century. Key insights into the mechanisms and interactions of Earth system and hydrological process responses are presented, and this understanding is used together with model application to provide a synthesis of future change. This has allowed more scientifically informed projections than have hitherto been available.
Mohamed E. Elshamy, Daniel Princz, Gonzalo Sapriza-Azuri, Mohamed S. Abdelhamed, Al Pietroniro, Howard S. Wheater, and Saman Razavi
Hydrol. Earth Syst. Sci., 24, 349–379, https://doi.org/10.5194/hess-24-349-2020, https://doi.org/10.5194/hess-24-349-2020, 2020
Short summary
Short summary
Permafrost is an important feature of cold-region hydrology and needs to be properly represented in hydrological and land surface models (H-LSMs), especially under the observed and expected climate warming trends. This study aims to devise a robust, yet computationally efficient, initialization and parameterization approach for permafrost. We used permafrost observations from three sites along the Mackenzie River valley spanning different permafrost classes to test the validity of the approach.
Razi Sheikholeslami, Saman Razavi, and Amin Haghnegahdar
Geosci. Model Dev., 12, 4275–4296, https://doi.org/10.5194/gmd-12-4275-2019, https://doi.org/10.5194/gmd-12-4275-2019, 2019
Short summary
Short summary
The ever-growing complexity of Earth and environmental system models can pose many types of software development and implementation issues such as parameter-induced simulation crashes, which are mainly caused by the violation of numerical stability conditions. Here, we introduce a new approach to handle crashed simulations when performing sensitivity analysis. Our results show that this approach can comply well with the dimensionality of the model, sample size, and the number of crashes.
Fuad Yassin, Saman Razavi, Mohamed Elshamy, Bruce Davison, Gonzalo Sapriza-Azuri, and Howard Wheater
Hydrol. Earth Syst. Sci., 23, 3735–3764, https://doi.org/10.5194/hess-23-3735-2019, https://doi.org/10.5194/hess-23-3735-2019, 2019
Fuad Yassin, Saman Razavi, Jefferson S. Wong, Alain Pietroniro, and Howard Wheater
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-207, https://doi.org/10.5194/hess-2019-207, 2019
Preprint withdrawn
Gonzalo Sapriza-Azuri, Pablo Gamazo, Saman Razavi, and Howard S. Wheater
Hydrol. Earth Syst. Sci., 22, 3295–3309, https://doi.org/10.5194/hess-22-3295-2018, https://doi.org/10.5194/hess-22-3295-2018, 2018
Short summary
Short summary
Arctic and subarctic regions are amongst the most susceptible regions on Earth to climate change. There, models require a proper representation of the interactions between climate and hydrology. Typically these model represent the soil with shallow depths, whereas for cold regions, deep soil is needed. To address this, we run model experiments to characterize the effect of soil depth and temperature soil initialization. Our results demonstrate that 20 m of soil profile is essential.
Zilefac Elvis Asong, Howard Simon Wheater, Barrie Bonsal, Saman Razavi, and Sopan Kurkute
Hydrol. Earth Syst. Sci., 22, 3105–3124, https://doi.org/10.5194/hess-22-3105-2018, https://doi.org/10.5194/hess-22-3105-2018, 2018
Short summary
Short summary
Canada is very susceptible to recurrent droughts, which have damaging impacts on regional water resources and agriculture. However, nationwide drought assessments are currently lacking and impacted by limited ground-based observations. We delineate two major drought regions (Prairies and northern central) over Canada and link drought characteristics to external factors of climate variability. This study helps to determine when the drought events occur, their duration, and how often they occur.
David Gwapedza, Andrew Slaughter, Denis Hughes, and Sukhmani Mantel
Proc. IAHS, 377, 19–24, https://doi.org/10.5194/piahs-377-19-2018, https://doi.org/10.5194/piahs-377-19-2018, 2018
Short summary
Short summary
The paper investigates the use of GIS to come up with model parameters. This is part of a process of simplifying model use. The findings show that existing GIS data can be used for estimating model parameters as the outcomes of the research show that model outputs are consistent with previously estimated measures. This research is part of a development of a model which can estimate soil loss and sediment delivery at broad spatial and temporal scales to improve catchment management.
Andrew R. Slaughter and Sukhmani K. Mantel
Proc. IAHS, 377, 25–33, https://doi.org/10.5194/piahs-377-25-2018, https://doi.org/10.5194/piahs-377-25-2018, 2018
Short summary
Short summary
WQSAM is a water quality model designed specifically for South Africa as it relies on flow data generated by South African-specific flow models. However, many of the characteristics of WQSAM would make it suitable for other developing semi-arid countries. This study attempted to adapt WQSAM to take in flow data from the globally-applied WEAP flow model so that WQSAM can be applied elsewhere. WQSAM could effectively use the flow data from the WEAP model as demonstrated on a case-study catchment.
Jefferson S. Wong, Saman Razavi, Barrie R. Bonsal, Howard S. Wheater, and Zilefac E. Asong
Hydrol. Earth Syst. Sci., 21, 2163–2185, https://doi.org/10.5194/hess-21-2163-2017, https://doi.org/10.5194/hess-21-2163-2017, 2017
Short summary
Short summary
This study was conducted to quantify the spatial and temporal variability of the errors associated with various gridded precipitation products in Canada. Overall, WFDEI [GPCC] and CaPA performed best with respect to different performance measures, followed by ANUSPLIN and WEDEI [CRU]. Princeton and NARR demonstrated the lowest quality. Comparing the climate model-simulated products, PCIC ensembles generally performed better than NA-CORDEX ensembles in terms of reliability in four seasons.
Related subject area
Hydrology
High-temporal-resolution hydrometeorological data collected in the tropical Cordillera Blanca, Peru (2004–2020)
Escherichia coli concentration, multiscale monitoring over the decade 2011–2021 in the Mekong River basin, Lao PDR
A 1 km daily surface soil moisture dataset of enhanced coverage under all-weather conditions over China in 2003–2019
Soil moisture observation in a forested headwater catchment: combining a dense cosmic-ray neutron sensor network with roving and hydrogravimetry at the TERENO site Wüstebach
Concentrations and fluxes of suspended particulate matter and associated contaminants in the Rhône River from Lake Geneva to the Mediterranean Sea
A global drought dataset of standardized moisture anomaly index incorporating snow dynamics (SZIsnow) and its application in identifying large-scale drought events
River network and hydro-geomorphological parameters at 1∕12° resolution for global hydrological and climate studies
Integrated hydrogeological and hydrogeochemical dataset of an alpine catchment in the northern Qinghai–Tibet Plateau
GeoDAR: georeferenced global dams and reservoirs dataset for bridging attributes and geolocations
Spatial and seasonal patterns of water isotopes in northeastern German lakes
A new dataset of river flood hazard maps for Europe and the Mediterranean Basin
COSMOS-Europe: a European network of cosmic-ray neutron soil moisture sensors
Meteorological and hydrological data from the Alder Creek watershed, SW Ontario
Distribution and characteristics of wastewater treatment plants within the global river network
Correcting Thornthwaite potential evapotranspiration using a global grid of local coefficients to support temperature-based estimations of reference evapotranspiration and aridity indices
Daily soil moisture mapping at 1 km resolution based on SMAP data for areas affected by desertification in Northern China
CCAM: China Catchment Attributes and Meteorology dataset
A high-accuracy rainfall dataset by merging multiple satellites and dense gauges over the southern Tibetan Plateau for 2014–2019 warm seasons
Baseline data for monitoring geomorphological effects of glacier lake outburst flood: a very-high-resolution image and GIS datasets of the distal part of the Zackenberg River, northeast Greenland
Mineral, thermal and deep groundwater of Hesse, Germany
LamaH-CE: LArge-SaMple DAta for Hydrology and Environmental Sciences for Central Europe
Development of observation-based global multilayer soil moisture products for 1970 to 2016
A year of attenuation data from a commercial dual-polarized duplex microwave link with concurrent disdrometer, rain gauge, and weather observations
Rosalia: an experimental research site to study hydrological processes in a forest catchment
Long time series of daily evapotranspiration in China based on the SEBAL model and multisource images and validation
CAMELS-AUS: hydrometeorological time series and landscape attributes for 222 catchments in Australia
A multi-source 120-year US flood database with a unified common format and public access
C-band radar data and in situ measurements for the monitoring of wheat crops in a semi-arid area (center of Morocco)
An integrated dataset of daily lake surface water temperature over Tibetan Plateau
The three-dimensional groundwater salinity distribution and fresh groundwater volumes in the Mekong Delta, Vietnam, inferred from geostatistical analyses
A national topographic dataset for hydrological modeling over the contiguous United States
Status of the Tibetan Plateau observatory (Tibet-Obs) and a 10-year (2009–2019) surface soil moisture dataset
CLIGEN parameter regionalization for mainland China
Year-long, broad-band, microwave backscatter observations of an alpine meadow over the Tibetan Plateau with a ground-based scatterometer
STH-net: a soil monitoring network for process-based hydrological modelling from the pedon to the hillslope scale
Comprehensive bathymetry and intertidal topography of the Amazon estuary
Virtual water trade and water footprint of agricultural goods: the 1961–2016 CWASI database
Historical cartographic and topo-bathymetric database on the French Rhône River (17th–20th century)
COSMOS-UK: national soil moisture and hydrometeorology data for environmental science research
SoilKsatDB: global database of soil saturated hydraulic conductivity measurements for geoscience applications
ADHI: the African Database of Hydrometric Indices (1950–2018)
Dynamics of shallow wakes on gravel-bed floodplains: dataset from field experiments
Two decades of distributed global radiation time series across a mountainous semiarid area (Sierra Nevada, Spain)
Inventory of dams in Germany
Country-level and gridded estimates of wastewater production, collection, treatment and reuse
Dataset of Georeferenced Dams in South America (DDSA)
The impact of landscape evolution on soil physics: evolution of soil physical and hydraulic properties along two chronosequences of proglacial moraines
The CH-IRP data set: a decade of fortnightly data on δ2H and δ18O in streamflow and precipitation in Switzerland
CAMELS-GB: hydrometeorological time series and landscape attributes for 671 catchments in Great Britain
A dense network of cosmic-ray neutron sensors for soil moisture observation in a highly instrumented pre-Alpine headwater catchment in Germany
Emilio I. Mateo, Bryan G. Mark, Robert Å. Hellström, Michel Baraer, Jeffrey M. McKenzie, Thomas Condom, Alejo Cochachín Rapre, Gilber Gonzales, Joe Quijano Gómez, and Rolando Cesai Crúz Encarnación
Earth Syst. Sci. Data, 14, 2865–2882, https://doi.org/10.5194/essd-14-2865-2022, https://doi.org/10.5194/essd-14-2865-2022, 2022
Short summary
Short summary
This article presents detailed and comprehensive hydrological and meteorological datasets collected over the past two decades throughout the Cordillera Blanca, Peru. With four weather stations and six streamflow gauges ranging from 3738 to 4750 m above sea level, this network displays a vertical breadth of data and enables detailed research of atmospheric and hydrological processes in a tropical high mountain region.
Laurie Boithias, Olivier Ribolzi, Emma Rochelle-Newall, Chanthanousone Thammahacksa, Paty Nakhle, Bounsamay Soulileuth, Anne Pando-Bahuon, Keooudone Latsachack, Norbert Silvera, Phabvilay Sounyafong, Khampaseuth Xayyathip, Rosalie Zimmermann, Sayaphet Rattanavong, Priscia Oliva, Thomas Pommier, Olivier Evrard, Sylvain Huon, Jean Causse, Thierry Henry-des-Tureaux, Oloth Sengtaheuanghoung, Nivong Sipaseuth, and Alain Pierret
Earth Syst. Sci. Data, 14, 2883–2894, https://doi.org/10.5194/essd-14-2883-2022, https://doi.org/10.5194/essd-14-2883-2022, 2022
Short summary
Short summary
Fecal pathogens in surface waters may threaten human health, especially in developing countries. The Escherichia coli (E. coli) database is organized in three datasets and includes 1602 records from 31 sampling stations located within the Mekong River basin in Lao PDR. Data have been used to identify the drivers of E. coli dissemination across tropical catchments, including during floods. Data may be further used to interpret new variables or to map the health risk posed by fecal pathogens.
Peilin Song, Yongqiang Zhang, Jianping Guo, Jiancheng Shi, Tianjie Zhao, and Bing Tong
Earth Syst. Sci. Data, 14, 2613–2637, https://doi.org/10.5194/essd-14-2613-2022, https://doi.org/10.5194/essd-14-2613-2022, 2022
Short summary
Short summary
Soil moisture information is crucial for understanding the earth surface, but currently available satellite-based soil moisture datasets are imperfect either in their spatiotemporal resolutions or in ensuring image completeness from cloudy weather. In this study, therefore, we developed one soil moisture data product over China that has tackled most of the above problems. This data product has the potential to promote the investigation of earth hydrology and be extended to the global scale.
Maik Heistermann, Heye Bogena, Till Francke, Andreas Güntner, Jannis Jakobi, Daniel Rasche, Martin Schrön, Veronika Döpper, Benjamin Fersch, Jannis Groh, Amol Patil, Thomas Pütz, Marvin Reich, Steffen Zacharias, Carmen Zengerle, and Sascha Oswald
Earth Syst. Sci. Data, 14, 2501–2519, https://doi.org/10.5194/essd-14-2501-2022, https://doi.org/10.5194/essd-14-2501-2022, 2022
Short summary
Short summary
This paper presents a dense network of cosmic-ray neutron sensing (CRNS) to measure spatio-temporal soil moisture patterns during a 2-month campaign in the Wüstebach headwater catchment in Germany. Stationary, mobile, and airborne CRNS technology monitored the root-zone water dynamics as well as spatial heterogeneity in the 0.4 km2 area. The 15 CRNS stations were supported by a hydrogravimeter, biomass sampling, and a wireless soil sensor network to facilitate holistic hydrological analysis.
Hugo Lepage, Alexandra Gruat, Fabien Thollet, Jérôme Le Coz, Marina Coquery, Matthieu Masson, Aymeric Dabrin, Olivier Radakovitch, Jérôme Labille, Jean-Paul Ambrosi, Doriane Delanghe, and Patrick Raimbault
Earth Syst. Sci. Data, 14, 2369–2384, https://doi.org/10.5194/essd-14-2369-2022, https://doi.org/10.5194/essd-14-2369-2022, 2022
Short summary
Short summary
The dataset contains concentrations and fluxes of suspended particle matter (SPM) and several particle-bound contaminants along the Rhône River downstream of Lake Geneva. These data allow us to understand the dynamics and origins. They show the impact of flood events which mainly contribute to a decrease in the contaminant concentrations while fluxes are significant. On the contrary, concentrations are higher during low flow periods probably due to the increase of organic matter.
Lei Tian, Baoqing Zhang, and Pute Wu
Earth Syst. Sci. Data, 14, 2259–2278, https://doi.org/10.5194/essd-14-2259-2022, https://doi.org/10.5194/essd-14-2259-2022, 2022
Short summary
Short summary
We propose a global monthly drought dataset with a resolution of 0.25° from 1948 to 2010 based on a multitype and multiscalar drought index, the standardized moisture anomaly index adding snow processes (SZIsnow). The consideration of snow processes improved its capability, and the improvement is prominent over snow-covered high-latitude and high-altitude areas. This new dataset is well suited to monitoring, assessing, and characterizing drought and is a valuable resource for drought studies.
Simon Munier and Bertrand Decharme
Earth Syst. Sci. Data, 14, 2239–2258, https://doi.org/10.5194/essd-14-2239-2022, https://doi.org/10.5194/essd-14-2239-2022, 2022
Short summary
Short summary
This paper presents a new global-scale river network at 1/12°, generated automatically and assessed over the 69 largest basins of the world. A set of hydro-geomorphological parameters are derived at the same spatial resolution, including a description of river stretches (length, slope, width, roughness, bankfull depth), floodplains (roughness, sub-grid topography) and aquifers (transmissivity, porosity, sub-grid topography). The dataset may be useful for hydrology modelling or climate studies.
Zhao Pan, Rui Ma, Ziyong Sun, Yalu Hu, Qixin Chang, Mengyan Ge, Shuo Wang, Jianwei Bu, Xiang Long, Yanxi Pan, and Lusong Zhao
Earth Syst. Sci. Data, 14, 2147–2165, https://doi.org/10.5194/essd-14-2147-2022, https://doi.org/10.5194/essd-14-2147-2022, 2022
Short summary
Short summary
We drilled four sets of cluster wells and monitored groundwater level and temperature at different depths in an alpine catchment, northern Tibet plateau. The chemical and isotopic compositions of different waters, including stream water, glacier/snow meltwater, soil water, spring, and groundwater from boreholes, were measured for 6 years. The data can be used to study the impact of soil freeze-thaw process and permafrost degradation on the groundwater flow and its interaction with surface water.
Jida Wang, Blake A. Walter, Fangfang Yao, Chunqiao Song, Meng Ding, Abu Sayeed Maroof, Jingying Zhu, Chenyu Fan, Jordan M. McAlister, Safat Sikder, Yongwei Sheng, George H. Allen, Jean-François Crétaux, and Yoshihide Wada
Earth Syst. Sci. Data, 14, 1869–1899, https://doi.org/10.5194/essd-14-1869-2022, https://doi.org/10.5194/essd-14-1869-2022, 2022
Short summary
Short summary
Improved water infrastructure data on dams and reservoirs remain to be critical to hydrologic modeling, energy planning, and environmental conservation. We present a new global dataset, GeoDAR, that includes nearly 25 000 georeferenced dam points and their associated reservoir boundaries. A majority of these features can be linked to the register of the International Commission on Large Dams, extending the potential of registered attribute information for spatially explicit applications.
Bernhard Aichner, David Dubbert, Christine Kiel, Katrin Kohnert, Igor Ogashawara, Andreas Jechow, Sarah-Faye Harpenslager, Franz Hölker, Jens Christian Nejstgaard, Hans-Peter Grossart, Gabriel Singer, Sabine Wollrab, and Stella Angela Berger
Earth Syst. Sci. Data, 14, 1857–1867, https://doi.org/10.5194/essd-14-1857-2022, https://doi.org/10.5194/essd-14-1857-2022, 2022
Short summary
Short summary
Water isotopes were measured along transects and in the form of time series in northeastern German lakes. The spatial patterns within the data and their seasonal variability are related to morphological and hydrological properties of the studied lake systems. They are further useful for the understanding of biogeochemical and ecological characteristics of these lakes.
Francesco Dottori, Lorenzo Alfieri, Alessandra Bianchi, Jon Skoien, and Peter Salamon
Earth Syst. Sci. Data, 14, 1549–1569, https://doi.org/10.5194/essd-14-1549-2022, https://doi.org/10.5194/essd-14-1549-2022, 2022
Short summary
Short summary
We present a set of hazard maps for river flooding for Europe and the Mediterranean basin. The maps depict inundation extent and depth for flood probabilities for up to 1-in-500-year flood hazards and are based on hydrological and hydrodynamic models driven by observed climatology. The maps can identify two-thirds of the flood extent reported by official flood maps, with increasing skill for higher-magnitude floods. The maps are used for evaluating present and future impacts of river floods.
Heye Reemt Bogena, Martin Schrön, Jannis Jakobi, Patrizia Ney, Steffen Zacharias, Mie Andreasen, Roland Baatz, David Boorman, Mustafa Berk Duygu, Miguel Angel Eguibar-Galán, Benjamin Fersch, Till Franke, Josie Geris, María González Sanchis, Yann Kerr, Tobias Korf, Zalalem Mengistu, Arnaud Mialon, Paolo Nasta, Jerzy Nitychoruk, Vassilios Pisinaras, Daniel Rasche, Rafael Rosolem, Hami Said, Paul Schattan, Marek Zreda, Stefan Achleitner, Eduardo Albentosa-Hernández, Zuhal Akyürek, Theresa Blume, Antonio del Campo, Davide Canone, Katya Dimitrova-Petrova, John G. Evans, Stefano Ferraris, Félix Frances, Davide Gisolo, Andreas Güntner, Frank Herrmann, Joost Iwema, Karsten H. Jensen, Harald Kunstmann, Antonio Lidón, Majken Caroline Looms, Sascha Oswald, Andreas Panagopoulos, Amol Patil, Daniel Power, Corinna Rebmann, Nunzio Romano, Lena Scheiffele, Sonia Seneviratne, Georg Weltin, and Harry Vereecken
Earth Syst. Sci. Data, 14, 1125–1151, https://doi.org/10.5194/essd-14-1125-2022, https://doi.org/10.5194/essd-14-1125-2022, 2022
Short summary
Short summary
Monitoring of increasingly frequent droughts is a prerequisite for climate adaptation strategies. This data paper presents long-term soil moisture measurements recorded by 66 cosmic-ray neutron sensors (CRNS) operated by 24 institutions and distributed across major climate zones in Europe. Data processing followed harmonized protocols and state-of-the-art methods to generate consistent and comparable soil moisture products and to facilitate continental-scale analysis of hydrological extremes.
Andrew James Wiebe and David L. Rudolph
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-46, https://doi.org/10.5194/essd-2022-46, 2022
Revised manuscript accepted for ESSD
Short summary
Short summary
Multiple well fields in Waterloo Region, ON, Canada, draw water that enters the groundwater system from rainfall and snowmelt within the Alder Creek watershed. The rates of recharge of the underground aquifers, and human impacts on streamflow are important issues that are typically addressed using computer models. Field observations such as groundwater and stream levels were collected between 2013 and 2018 to provide data for models. The data are available at https://doi.org/10.20383/101.0178.
Heloisa Ehalt Macedo, Bernhard Lehner, Jim Nicell, Günther Grill, Jing Li, Antonio Limtong, and Ranish Shakya
Earth Syst. Sci. Data, 14, 559–577, https://doi.org/10.5194/essd-14-559-2022, https://doi.org/10.5194/essd-14-559-2022, 2022
Short summary
Short summary
We introduce HydroWASTE, a spatially explicit global database of 58 502 wastewater treatment plants (WWTPs) and their characteristics to understand the impact of discharges from such facilities. HydroWASTE was developed by compiling regional datasets and using auxiliary information to complete missing characteristics. The location of the outfall of the WWTPs into the river system is also included, allowing for the identification of the waterbodies most likely affected.
Vassilis Aschonitis, Dimos Touloumidis, Marie-Claire ten Veldhuis, and Miriam Coenders-Gerrits
Earth Syst. Sci. Data, 14, 163–177, https://doi.org/10.5194/essd-14-163-2022, https://doi.org/10.5194/essd-14-163-2022, 2022
Short summary
Short summary
This work provides a global database of correction coefficients for improving the performance of the temperature-based Thornthwaite potential evapotranspiration formula and aridity indices (e.g., UNEP, Thornthwaite) that make use of this formula. The coefficients were produced using as a benchmark the ASCE-standardized reference evapotranspiration formula (formerly FAO-56) that requires temperature, solar radiation, wind speed, and relative humidity data.
Pinzeng Rao, Yicheng Wang, Fang Wang, Yang Liu, Xiaoya Wang, and Zhu Wang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-362, https://doi.org/10.5194/essd-2021-362, 2021
Revised manuscript accepted for ESSD
Short summary
Short summary
It is urgent to obtain accurate soil moisture (SM) with high temporal and spatial resolution for areas affected by desertification in Northern China. A combination of multiple machine learning methods, including multiple linear regression, support vector regression, artificial neural networks, random forest and extreme gradient boosting, have been applied to downscale the 36 km SMAP SM products and produce higher spatial-resolution SM data based on related surface variables.
Zhen Hao, Jin Jin, Runliang Xia, Shimin Tian, Wushuang Yang, Qixing Liu, Min Zhu, Tao Ma, Chengran Jing, and Yanning Zhang
Earth Syst. Sci. Data, 13, 5591–5616, https://doi.org/10.5194/essd-13-5591-2021, https://doi.org/10.5194/essd-13-5591-2021, 2021
Short summary
Short summary
CCAM is proposed to promote large-sample hydrological research in China. The first catchment attribute dataset and catchment-scale meteorological time series dataset in China are built. We also built HydroMLYR, a hydrological dataset with standardized streamflow observations supporting machine learning modeling. The open-source code producing CCAM supports the calculation of custom watersheds.
Kunbiao Li, Fuqiang Tian, Mohd Yawar Ali Khan, Ran Xu, Zhihua He, Long Yang, Hui Lu, and Yingzhao Ma
Earth Syst. Sci. Data, 13, 5455–5467, https://doi.org/10.5194/essd-13-5455-2021, https://doi.org/10.5194/essd-13-5455-2021, 2021
Short summary
Short summary
Due to complex climate and topography, there is still a lack of a high-quality rainfall dataset for hydrological modeling over the Tibetan Plateau. This study aims to establish a high-accuracy daily rainfall product over the southern Tibetan Plateau through merging satellite rainfall estimates based on a high-density rainfall gauge network. Statistical and hydrological evaluation indicated that the new dataset outperforms the raw satellite estimates and several other products of similar types.
Aleksandra M. Tomczyk and Marek W. Ewertowski
Earth Syst. Sci. Data, 13, 5293–5309, https://doi.org/10.5194/essd-13-5293-2021, https://doi.org/10.5194/essd-13-5293-2021, 2021
Short summary
Short summary
We collected detailed (cm-scale) topographical data to illustrate how a single flood event can modify river landscape in the high-Arctic setting of Zackenberg Valley, NE Greenland. The studied flood was a result of an outburst from a glacier-dammed lake. We used drones to capture images immediately before, during, and after the flood for the 2 km long section of the river. Data can be used for monitoring and modelling of flood events and assessment of geohazards for Zackenberg Research Station.
Rafael Schäffer, Kristian Bär, Sebastian Fischer, Johann-Gerhard Fritsche, and Ingo Sass
Earth Syst. Sci. Data, 13, 4847–4860, https://doi.org/10.5194/essd-13-4847-2021, https://doi.org/10.5194/essd-13-4847-2021, 2021
Short summary
Short summary
Knowledge of groundwater properties is relevant, e.g. for drinking-water supply, spas or geothermal energy. We compiled 1035 groundwater datasets from 560 springs or wells sampled since 1810, using mainly publications, supplemented by personal communication and our own measurements. The data can help address spatial–temporal variation in groundwater composition, uncertainties in groundwater property prediction, deep groundwater movement, or groundwater characteristics like temperature and age.
Christoph Klingler, Karsten Schulz, and Mathew Herrnegger
Earth Syst. Sci. Data, 13, 4529–4565, https://doi.org/10.5194/essd-13-4529-2021, https://doi.org/10.5194/essd-13-4529-2021, 2021
Short summary
Short summary
LamaH-CE is a large-sample catchment hydrology dataset for Central Europe. The dataset contains hydrometeorological time series (daily and hourly resolution) and various attributes for 859 gauged basins. Sticking closely to the CAMELS datasets, LamaH includes additional basin delineations and attributes for describing a large interconnected river network. LamaH further contains outputs of a conceptual hydrological baseline model for plausibility checking of the inputs and for benchmarking.
Yaoping Wang, Jiafu Mao, Mingzhou Jin, Forrest M. Hoffman, Xiaoying Shi, Stan D. Wullschleger, and Yongjiu Dai
Earth Syst. Sci. Data, 13, 4385–4405, https://doi.org/10.5194/essd-13-4385-2021, https://doi.org/10.5194/essd-13-4385-2021, 2021
Short summary
Short summary
We developed seven global soil moisture datasets (1970–2016, monthly, half-degree, and multilayer) by merging a wide range of data sources, including in situ and satellite observations, reanalysis, offline land surface model simulations, and Earth system model simulations. Given the great value of long-term, multilayer, gap-free soil moisture products to climate research and applications, we believe this paper and the presented datasets would be of interest to many different communities.
Anna Špačková, Vojtěch Bareš, Martin Fencl, Marc Schleiss, Joël Jaffrain, Alexis Berne, and Jörg Rieckermann
Earth Syst. Sci. Data, 13, 4219–4240, https://doi.org/10.5194/essd-13-4219-2021, https://doi.org/10.5194/essd-13-4219-2021, 2021
Short summary
Short summary
An original dataset of microwave signal attenuation and rainfall variables was collected during 1-year-long field campaign. The monitored 38 GHz dual-polarized commercial microwave link with a short sampling resolution (4 s) was accompanied by five disdrometers and three rain gauges along its path. Antenna radomes were temporarily shielded for approximately half of the campaign period to investigate antenna wetting impacts.
Josef Fürst, Hans Peter Nachtnebel, Josef Gasch, Reinhard Nolz, Michael Paul Stockinger, Christine Stumpp, and Karsten Schulz
Earth Syst. Sci. Data, 13, 4019–4034, https://doi.org/10.5194/essd-13-4019-2021, https://doi.org/10.5194/essd-13-4019-2021, 2021
Short summary
Short summary
Rosalia is a 222 ha forested research watershed in eastern Austria to study water, energy and solute transport processes. The paper describes the site, monitoring network, instrumentation and the datasets: high-resolution (10 min interval) time series starting in 2015 of four discharge gauging stations, seven rain gauges, and observations of air and water temperature, relative humidity, and conductivity, as well as soil water content and temperature, at different depths at four profiles.
Minghan Cheng, Xiyun Jiao, Binbin Li, Xun Yu, Mingchao Shao, and Xiuliang Jin
Earth Syst. Sci. Data, 13, 3995–4017, https://doi.org/10.5194/essd-13-3995-2021, https://doi.org/10.5194/essd-13-3995-2021, 2021
Short summary
Short summary
Evapotranspiration (ET) is a key node linking surface water and energy balance. Satellite observations of ET have been widely used for water resources management in China. In this study, an ET product with high spatiotemporal resolution was generated using a surface energy balance algorithm and multisource remote sensing data. The generated ET product can be used for geoscience studies, especially global change, water resources management, and agricultural drought monitoring, for example.
Keirnan J. A. Fowler, Suwash Chandra Acharya, Nans Addor, Chihchung Chou, and Murray C. Peel
Earth Syst. Sci. Data, 13, 3847–3867, https://doi.org/10.5194/essd-13-3847-2021, https://doi.org/10.5194/essd-13-3847-2021, 2021
Short summary
Short summary
This paper presents the Australian edition of the Catchment Attributes and Meteorology for Large-sample Studies (CAMELS) series of datasets. CAMELS-AUS comprises data for 222 unregulated catchments with long-term monitoring, combining hydrometeorological time series (streamflow and 18 climatic variables) with 134 attributes related to geology, soil, topography, land cover, anthropogenic influence and hydroclimatology. It is freely downloadable from https://doi.pangaea.de/10.1594/PANGAEA.921850.
Zhi Li, Mengye Chen, Shang Gao, Jonathan J. Gourley, Tiantian Yang, Xinyi Shen, Randall Kolar, and Yang Hong
Earth Syst. Sci. Data, 13, 3755–3766, https://doi.org/10.5194/essd-13-3755-2021, https://doi.org/10.5194/essd-13-3755-2021, 2021
Short summary
Short summary
This dataset is a compilation of multi-sourced flood records, retrieved from official reports, instruments, and crowdsourcing data since 1900. This study utilizes the flood database to analyze flood seasonality within major basins and socioeconomic impacts over time. It is anticipated that this dataset can support a variety of flood-related research, such as validation resources for hydrologic models, hydroclimatic studies, and flood vulnerability analysis across the United States.
Nadia Ouaadi, Jamal Ezzahar, Saïd Khabba, Salah Er-Raki, Adnane Chakir, Bouchra Ait Hssaine, Valérie Le Dantec, Zoubair Rafi, Antoine Beaumont, Mohamed Kasbani, and Lionel Jarlan
Earth Syst. Sci. Data, 13, 3707–3731, https://doi.org/10.5194/essd-13-3707-2021, https://doi.org/10.5194/essd-13-3707-2021, 2021
Short summary
Short summary
In this paper, a radar remote sensing database composed of processed Sentinel-1 products and field measurements of soil and vegetation characteristics, weather data, and irrigation water inputs is described. The data set was collected over 3 years (2016–2019) in three drip-irrigated wheat fields in the center of Morocco. It is dedicated to radar data analysis over vegetated surface including the retrieval of soil and vegetation characteristics.
Linan Guo, Hongxing Zheng, Yanhong Wu, Lanxin Fan, Mengxuan Wen, Junsheng Li, Fangfang Zhang, Liping Zhu, and Bing Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-151, https://doi.org/10.5194/essd-2021-151, 2021
Revised manuscript accepted for ESSD
Short summary
Short summary
Lake surface water temperature (LSWT) is a critical physical property of the aquatic ecosystem and an indicator of climate change. By combining the strengths of satellite and model, we produced an integrated dataset on daily LSWT of 160 large lakes across the Tibetan Plateau (TP) for the period 1978–2017. LSWT is found increased significantly with increase rate ranging at 0.01 to 0.4 °C/10 a. The dataset can contribute to explore water and heat balance changes and ecological effects in the TP.
Jan L. Gunnink, Hung Van Pham, Gualbert H. P. Oude Essink, and Marc F. P. Bierkens
Earth Syst. Sci. Data, 13, 3297–3319, https://doi.org/10.5194/essd-13-3297-2021, https://doi.org/10.5194/essd-13-3297-2021, 2021
Short summary
Short summary
In the Mekong Delta (Vietnam) groundwater is important for domestic, agricultural and industrial use. Increased pumping of groundwater has caused land subsidence and increased the risk of salinization, thereby endangering the livelihood of the population in the delta. We made a model of the salinity of the groundwater by integrating different sources of information and determined fresh groundwater volumes. The resulting model can be used by researchers and policymakers.
Jun Zhang, Laura E. Condon, Hoang Tran, and Reed M. Maxwell
Earth Syst. Sci. Data, 13, 3263–3279, https://doi.org/10.5194/essd-13-3263-2021, https://doi.org/10.5194/essd-13-3263-2021, 2021
Short summary
Short summary
Existing national topographic datasets for the US may not be compatible with gridded hydrologic models. A national topographic dataset developed to support physically based hydrologic models at 1 km and 250 m over the contiguous US is provided. We used a Priority Flood algorithm to ensure hydrologically consistent drainage networks and evaluated the performance with an integrated hydrologic model. Datasets and scripts are available for direct data usage or modification of processing as desired.
Pei Zhang, Donghai Zheng, Rogier van der Velde, Jun Wen, Yijian Zeng, Xin Wang, Zuoliang Wang, Jiali Chen, and Zhongbo Su
Earth Syst. Sci. Data, 13, 3075–3102, https://doi.org/10.5194/essd-13-3075-2021, https://doi.org/10.5194/essd-13-3075-2021, 2021
Short summary
Short summary
This paper reports on the status of the Tibet-Obs and presents a 10-year (2009–2019) surface soil moisture (SM) dataset produced based on in situ measurements taken at a depth of 5 cm collected from the Tibet-Obs. This surface SM dataset includes the original 15 min in situ measurements collected by multiple SM monitoring sites of three networks (i.e. the Maqu, Naqu, and Ngari networks) and the spatially upscaled SM records produced for the Maqu and Shiquanhe networks.
Wenting Wang, Shuiqing Yin, Bofu Yu, and Shaodong Wang
Earth Syst. Sci. Data, 13, 2945–2962, https://doi.org/10.5194/essd-13-2945-2021, https://doi.org/10.5194/essd-13-2945-2021, 2021
Short summary
Short summary
A gridded input dataset at a 10 km resolution of a weather generator, CLIGEN, was established for mainland China. Based on this, CLIGEN can generate a series of daily temperature, solar radiation, precipitation data, and rainfall intensity information. In each grid, the input file contains 13 groups of parameters. All parameters were first calculated based on long-term observations and then interpolated by universal kriging. The accuracy of the gridded input dataset has been fully assessed.
Jan G. Hofste, Rogier van der Velde, Jun Wen, Xin Wang, Zuoliang Wang, Donghai Zheng, Christiaan van der Tol, and Zhongbo Su
Earth Syst. Sci. Data, 13, 2819–2856, https://doi.org/10.5194/essd-13-2819-2021, https://doi.org/10.5194/essd-13-2819-2021, 2021
Short summary
Short summary
The dataset reported in this paper concerns the measurement of microwave reflections from an alpine meadow over the Tibetan Plateau. These microwave reflections were measured continuously over 1 year. With it, variations in soil water content due to evaporation, precipitation, drainage, and soil freezing/thawing can be seen. A better understanding of the effects aforementioned processes have on microwave reflections may improve methods for estimating soil water content used by satellites.
Edoardo Martini, Matteo Bauckholt, Simon Kögler, Manuel Kreck, Kurt Roth, Ulrike Werban, Ute Wollschläger, and Steffen Zacharias
Earth Syst. Sci. Data, 13, 2529–2539, https://doi.org/10.5194/essd-13-2529-2021, https://doi.org/10.5194/essd-13-2529-2021, 2021
Short summary
Short summary
We present the in situ data available from the soil monitoring network
STH-net, recently implemented at the Schäfertal Hillslope site (Germany). The STH-net provides data (soil water content, soil temperature, water level, and meteorological variables – measured at a 10 min interval since 1 January 2019) for developing and testing modelling approaches in the context of vadose zone hydrology at spatial scales ranging from the pedon to the hillslope.
Alice César Fassoni-Andrade, Fabien Durand, Daniel Moreira, Alberto Azevedo, Valdenira Ferreira dos Santos, Claudia Funi, and Alain Laraque
Earth Syst. Sci. Data, 13, 2275–2291, https://doi.org/10.5194/essd-13-2275-2021, https://doi.org/10.5194/essd-13-2275-2021, 2021
Short summary
Short summary
We present a seamless dataset of river, land, and ocean topography of the Amazon River estuary with a 30 m spatial resolution. An innovative remote sensing approach was used to estimate the topography of the intertidal flats, riverbanks, and adjacent floodplains. Amazon River bathymetry was generated from digitized nautical charts. The novel dataset opens up a broad range of opportunities, providing the poorly known underwater digital topography required for environmental sciences.
Stefania Tamea, Marta Tuninetti, Irene Soligno, and Francesco Laio
Earth Syst. Sci. Data, 13, 2025–2051, https://doi.org/10.5194/essd-13-2025-2021, https://doi.org/10.5194/essd-13-2025-2021, 2021
Short summary
Short summary
The database includes water footprint and virtual water trade data for 370 agricultural goods in all countries, starting from 1961 and 1986, respectively. Data improve upon earlier datasets because of the annual variability of data and the tracing of goods’ origin within the international trade. The CWASI database aims at supporting national and global assessments of water use in agriculture and food production/consumption and welcomes contributions from the research community.
Fanny Arnaud, Lalandy Sehen Chanu, Jules Grillot, Jérémie Riquier, Hervé Piégay, Dad Roux-Michollet, Georges Carrel, and Jean-Michel Olivier
Earth Syst. Sci. Data, 13, 1939–1955, https://doi.org/10.5194/essd-13-1939-2021, https://doi.org/10.5194/essd-13-1939-2021, 2021
Short summary
Short summary
This article provides a database of 350 cartographic and topographic resources on the 530-km-long French Rhône River, compiled from the 17th to mid-20th century in 14 national, regional, and departmental archive services. The database has several potential applications in geomorphology, retrospective hydraulic modelling, historical ecology, and sustainable river management and restoration, as well as permitting comparisons of channel changes with other human-impacted rivers worldwide.
Hollie M. Cooper, Emma Bennett, James Blake, Eleanor Blyth, David Boorman, Elizabeth Cooper, Jonathan Evans, Matthew Fry, Alan Jenkins, Ross Morrison, Daniel Rylett, Simon Stanley, Magdalena Szczykulska, Emily Trill, Vasileios Antoniou, Anne Askquith-Ellis, Lucy Ball, Milo Brooks, Michael A. Clarke, Nicholas Cowan, Alexander Cumming, Philip Farrand, Olivia Hitt, William Lord, Peter Scarlett, Oliver Swain, Jenna Thornton, Alan Warwick, and Ben Winterbourn
Earth Syst. Sci. Data, 13, 1737–1757, https://doi.org/10.5194/essd-13-1737-2021, https://doi.org/10.5194/essd-13-1737-2021, 2021
Short summary
Short summary
COSMOS-UK is a UK network of environmental monitoring sites, with a focus on measuring field-scale soil moisture. Each site includes soil and hydrometeorological sensors providing data including air temperature, humidity, net radiation, neutron counts, snow water equivalent, and potential evaporation. These data can provide information for science, industry, and agriculture by improving existing understanding and data products in fields such as water resources, space sciences, and biodiversity.
Surya Gupta, Tomislav Hengl, Peter Lehmann, Sara Bonetti, and Dani Or
Earth Syst. Sci. Data, 13, 1593–1612, https://doi.org/10.5194/essd-13-1593-2021, https://doi.org/10.5194/essd-13-1593-2021, 2021
Yves Tramblay, Nathalie Rouché, Jean-Emmanuel Paturel, Gil Mahé, Jean-François Boyer, Ernest Amoussou, Ansoumana Bodian, Honoré Dacosta, Hamouda Dakhlaoui, Alain Dezetter, Denis Hughes, Lahoucine Hanich, Christophe Peugeot, Raphael Tshimanga, and Patrick Lachassagne
Earth Syst. Sci. Data, 13, 1547–1560, https://doi.org/10.5194/essd-13-1547-2021, https://doi.org/10.5194/essd-13-1547-2021, 2021
Short summary
Short summary
This dataset provides a set of hydrometric indices for about 1500 stations across Africa with daily discharge data. These indices represent mean flow characteristics and extremes (low flows and floods), allowing us to study the long-term evolution of hydrology in Africa and support the modeling efforts that aim at reducing the vulnerability of African countries to hydro-climatic variability.
Oleksandra O. Shumilova, Alexander N. Sukhodolov, George S. Constantinescu, and Bruce J. MacVicar
Earth Syst. Sci. Data, 13, 1519–1529, https://doi.org/10.5194/essd-13-1519-2021, https://doi.org/10.5194/essd-13-1519-2021, 2021
Short summary
Short summary
Obstructions (vegetation and/or boulders) located on a riverbed alter flow structure and affect riverbed morphology and biodiversity. We studied flow dynamics around obstructions by carrying out experiments in a gravel-bed river. Flow rates, size, submergence and solid fractions of the obstructions were varied in a set of 30 experimental runs, in which high-resolution patterns of mean and turbulent flow were obtained. For an introduction to the experiments see: https://youtu.be/5wXjvzqxONI.
Cristina Aguilar, Rafael Pimentel, and María J. Polo
Earth Syst. Sci. Data, 13, 1335–1359, https://doi.org/10.5194/essd-13-1335-2021, https://doi.org/10.5194/essd-13-1335-2021, 2021
Short summary
Short summary
This work presents the reconstruction of 19 years of daily, monthly, and annual global radiation maps in Sierra Nevada (Spain) derived using daily historical records from weather stations in the area and a modeling scheme that captures the topographic effects that constitute the main sources of the spatial and temporal variability of solar radiation. The generated datasets are valuable in different fields, such as hydrology, ecology, or energy production systems downstream.
Gustavo Andrei Speckhann, Heidi Kreibich, and Bruno Merz
Earth Syst. Sci. Data, 13, 731–740, https://doi.org/10.5194/essd-13-731-2021, https://doi.org/10.5194/essd-13-731-2021, 2021
Short summary
Short summary
Dams are an important element of water resources management. Data about dams are crucial for practitioners, scientists, and policymakers. We present the most comprehensive open-access dam inventory for Germany to date. The inventory combines multiple sources of information. It comprises 530 dams with information on name, location, river, start year of construction and operation, crest length, dam height, lake area, lake volume, purpose, dam structure, and building characteristics.
Edward R. Jones, Michelle T. H. van Vliet, Manzoor Qadir, and Marc F. P. Bierkens
Earth Syst. Sci. Data, 13, 237–254, https://doi.org/10.5194/essd-13-237-2021, https://doi.org/10.5194/essd-13-237-2021, 2021
Short summary
Short summary
Continually improving and affordable wastewater management provides opportunities for both pollution reduction and clean water supply augmentation. This study provides a global outlook on the state of domestic and industrial wastewater production, collection, treatment and reuse. Our results can serve as a baseline in evaluating progress towards policy goals (e.g. Sustainable Development Goals) and as input data in large-scale water resource assessments (e.g. water quality modelling).
Bolivar Paredes-Beltran, Alvaro Sordo-Ward, and Luis Garrote
Earth Syst. Sci. Data, 13, 213–229, https://doi.org/10.5194/essd-13-213-2021, https://doi.org/10.5194/essd-13-213-2021, 2021
Short summary
Short summary
We present a dataset of 1010 entries of dams in South America describing several attributes such as the dams' names, characteristics, purposes, georeferenced locations and also relevant data on the dams' catchments. Information was obtained from extensive research through numerous sources and then validated individually.
With this work we expect to contribute to the development of new research in the region, which to date has been limited to certain basins due to the absence of information.
Anne Hartmann, Markus Weiler, and Theresa Blume
Earth Syst. Sci. Data, 12, 3189–3204, https://doi.org/10.5194/essd-12-3189-2020, https://doi.org/10.5194/essd-12-3189-2020, 2020
Short summary
Short summary
Our analysis of soil physical and hydraulic properties across two soil chronosequences of 10 millennia in the Swiss Alps provides important observation of the evolution of soil hydraulic behavior. A strong co-evolution of soil physical and hydraulic properties was revealed by the observed change of fast-draining coarse-textured soils to slow-draining soils with a high water-holding capacity in correlation with a distinct change in structural properties and organic matter content.
Maria Staudinger, Stefan Seeger, Barbara Herbstritt, Michael Stoelzle, Jan Seibert, Kerstin Stahl, and Markus Weiler
Earth Syst. Sci. Data, 12, 3057–3066, https://doi.org/10.5194/essd-12-3057-2020, https://doi.org/10.5194/essd-12-3057-2020, 2020
Short summary
Short summary
The data set CH-IRP provides isotope composition in precipitation and streamflow from 23 Swiss catchments, being unique regarding its long-term multi-catchment coverage along an alpine–pre-alpine gradient. CH-IRP contains fortnightly time series of stable water isotopes from streamflow grab samples complemented by time series in precipitation. Sampling conditions, catchment and climate information, lab standards and errors are provided together with areal precipitation and catchment boundaries.
Gemma Coxon, Nans Addor, John P. Bloomfield, Jim Freer, Matt Fry, Jamie Hannaford, Nicholas J. K. Howden, Rosanna Lane, Melinda Lewis, Emma L. Robinson, Thorsten Wagener, and Ross Woods
Earth Syst. Sci. Data, 12, 2459–2483, https://doi.org/10.5194/essd-12-2459-2020, https://doi.org/10.5194/essd-12-2459-2020, 2020
Short summary
Short summary
We present the first large-sample catchment hydrology dataset for Great Britain. The dataset collates river flows, catchment attributes, and catchment boundaries for 671 catchments across Great Britain. We characterise the topography, climate, streamflow, land cover, soils, hydrogeology, human influence, and discharge uncertainty of each catchment. The dataset is publicly available for the community to use in a wide range of environmental and modelling analyses.
Benjamin Fersch, Till Francke, Maik Heistermann, Martin Schrön, Veronika Döpper, Jannis Jakobi, Gabriele Baroni, Theresa Blume, Heye Bogena, Christian Budach, Tobias Gränzig, Michael Förster, Andreas Güntner, Harrie-Jan Hendricks Franssen, Mandy Kasner, Markus Köhli, Birgit Kleinschmit, Harald Kunstmann, Amol Patil, Daniel Rasche, Lena Scheiffele, Ulrich Schmidt, Sandra Szulc-Seyfried, Jannis Weimar, Steffen Zacharias, Marek Zreda, Bernd Heber, Ralf Kiese, Vladimir Mares, Hannes Mollenhauer, Ingo Völksch, and Sascha Oswald
Earth Syst. Sci. Data, 12, 2289–2309, https://doi.org/10.5194/essd-12-2289-2020, https://doi.org/10.5194/essd-12-2289-2020, 2020
Cited articles
Agafonov, L. I., Meko, D. M., and Panyushkina, I. P.: Reconstruction of Ob
River, Russia, discharge from ring widths of floodplain trees, J. Hydrol.,
543, 198–207, 2016.
Alberta Environment: Water Resources Management Model (WRMM), Government of
Alberta, Edmonton, Alberta, 2002.
Axelson, J. N., Sauchyn, D. J., and Barichivich, J.: New reconstructions of
streamflow variability in the South Saskatchewan River Basin from a network
of tree ring chronologies, Alberta, Canada, Water Resour. Res., 45, W09422,
https://doi.org/10.1029/2008WR007639, 2009.
Boucher, Ė., Ouarda, T. B. M. J., Bėgin, Y., and Nicault, A.: Spring
flood reconstruction from continuous and discrete tree ring series, Water
Resour. Res., 47, W07516, https://doi.org/10.1029/2010WR010131, 2011.
Brigode, P., Brissette, F., Nicault, A., Perreault, L., Kuentz, A., Mathevet, T.,
and Gailhard, J.: Streamflow variability over the 1881–2011 period in northern Québec:
comparison of hydrological reconstructions based on tree rings and geopotential height field reanalysis, Clim. Past, 12, 1785–1804, https://doi.org/10.5194/cp-12-1785-2016, 2016.
Case, R. A. and MacDonald, G. M.: Tree ring reconstructions of streamflow
for three Canadian prairie rivers, J. Am. Water Resour. As., 39, 703–716,
2003.
Cohn, T. A. and Lins, H. F.: Nature's style: Naturally trendy, Geophys. Res. Lett., 32, L23402, https://doi.org/10.1029/2005GL024476, 2005.
Cook, E. R., Woodhouse, C. A., Eakin, C. M., Meko, D. M., and Stahle, D. W.:
Long-term aridity changes in the Western United States, Science, 306,
1015–1018, 2004.
Elshorbagy, A., Wagener, T., Razavi, S., and Sauchyn, D.: Correlation and
causation in tree-ring-based reconstruction of paleohydrology in cold
semiarid regions, Water Resour. Res., 52, 7053–7069, 2016.
Ferrero, M. E., Villalba, R., De Membiela, M. D., Hidalgo, L. F., and
Luckman, B. H.: Tree-ring based reconstruction of Río Bermejo
streamflow in subtropical South America, J. Hydrol., 525, 572–584, 2015.
Gangopadhyay, S., Harding, B. L., Rajagopalan, B., Lukas, J. J., and Fulp, T.
J.: A nonparametric approach for paleohydrologic reconstruction of annual
streamflow ensembles, Water Resour. Res., 45, W06417,
https://doi.org/10.1029/2008WR007201, 2009.
Hurst, H. E.: Long-term storage capacity of reservoirs, T. Am. Soc. Civ.
Eng., 116, 770–808, 1951.
Lara, A., Bahamondez, A., González-Reyes, A., Muñoz, A. A, Cuq, E., and Ruiz-Gómez, C.:
Reconstructing streamflow variation of the Baker River from tree-rings in Northern Patagonia since 1765, J. Hydrol., 529, 511–523, 2015.
Martz, L., Armstrong, R., and Pietroniro, E.: Climate Change and Water:
SSRB Final Technical Report, GIServices, University of Saskatchewan:
Saskatoon, Canada, 2007.
Maxwell, R. S., Hessl, A. E., Cook, E. R., and Pederson, N.: A multispecies
tree ring reconstruction of Potomac River streamflow (950–2001), Water
Resour. Res., 47, W05512, https://doi.org/10.1029/2010WR010019, 2011.
Milly, P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz, Z. W.,
Lettenmaier, D. P., and Stouffer, R. J.: Stationarity is dead: whither water
management?, Science, 319, 573–574, 2008.
Mokria, M., Gebrekirstos, A., Abiyu, A., and Bräuning, A.: Upper Nile
River flow reconstructed to A.D. 1784 from tree-rings for a long-term
perspective on hydrologic-extremes and effective water resource management,
Quaternary Sci. Rev., 199, 126–143, 2018.
NOAA: Tree-ring Data, available online at:
http://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring, last access: February 2020.
Pomeroy, J., De Boer, D., and Martz, L.: Hydrology and water resources of
Saskatchewan, Center for Hydrology, Report no. 1, Saskatoon,
Canada, 2005.
Razavi, S. and Vogel, R.: Prewhitening of hydroclimatic time
series? Implications for inferred change and variability across time scales,
J. Hydrol., 557, 109–115, 2018.
Razavi, S., Elshorbagy, A., Wheater, H., and Sauchyn, D.: Toward
understanding nonstationarity in climate and hydrology through tree ring
proxy records, Water Resour. Res., 51, 1813–1830, https://doi.org/10.1002/2014WR015696, 2015.
Razavi, S., Elshorbagy, A., Wheater, H., and Sauchyn, D.: Time scale effect
and uncertainty in reconstruction of paleo-hydrology, Hydrol. Process.,
30, 1985–1999, 2016.
Sauchyn, D. and Ilich, N.: Nine hundren years of weekly streamflows:
stochastic downscaling of ensemble tree-ring reconstructions, Water Resour.
Res., 53, 9266–9283, https://doi.org/10.1002/2017WR021585,
2017.
Sauchyn, D., Vanstone, J., and Perez-Valdivia, C.: Modes and forcing of
hydroclimatic variability in the Upper North Saskatchewan River Basin since
1063, Can. Water Resour. J., 36, 205–218, 2011.
Slaughter, A. and Razavi, S.: An ensemble of 500 time series of weekly flows
from 1600–2001 for the four sub-basins of the Saskatchewan River Basin
generated through disaggregating tree-ring reconstructed flow [Dataset],
Federated Research Data Repository,
https://doi.org/10.20383/101.0139, 2019.
Urrutia, R. B., Lara, A., Villalba, R., Christie, D. A., Le Quesne, C., and
Cuq, A.: Multicentury tree ring reconstruction of annual streamflow for the
Maule River watershed in south central Chile, Water Resour. Res., 47,
W06527, https://doi.org/10.1029/2010WR009562, 2011.
Woodborne, S., Hall, G., Robertson, I., Patrut, A., Rouault, M., Loader, N.
J., and Hofmeyer, M.: A 1000-Year Carbon Isotope Rainfall Proxy Record from
South African Baobab Trees (Adansonia digitata L.), PLOS ONE, 10,
e0124202, https://doi.org/10.1371/journal.pone.0124202, 2015.
Woodhouse, C. A. and Lukas, J. J.: Drought, tree rings and water resource
management in Colorado, Can. Water Resour. J., 31, 297–310, 2006.
Woodhouse, C. A., Gray, S. T., and Meko, D. M.: Updated streamflow
reconstructions for the Upper Colorado River Basin, Water Resour. Res., 42,
W05415, https://doi.org/10.1029/2005WR004455, 2006.
Short summary
Water management faces the challenge of non-stationarity in future flows. To extend flow datasets beyond the gauging data, this study presents a method of generating an ensemble of weekly flows from tree-ring reconstructed flows to represent uncertainty that can overcome certain long-standing data challenges with paleo-reconstruction. An ensemble of 500 flow time series were generated for the four sub-basins of the Saskatchewan River basin, Canada, for the period 1600–2001.
Water management faces the challenge of non-stationarity in future flows. To extend flow...