Articles | Volume 16, issue 9
https://doi.org/10.5194/essd-16-4311-2024
https://doi.org/10.5194/essd-16-4311-2024
Data description paper
 | 
23 Sep 2024
Data description paper |  | 23 Sep 2024

A globally sampled high-resolution hand-labeled validation dataset for evaluating surface water extent maps

Rohit Mukherjee, Frederick Policelli, Ruixue Wang, Elise Arellano-Thompson, Beth Tellman, Prashanti Sharma, Zhijie Zhang, and Jonathan Giezendanner

Related authors

Review article: Research progress on influencing factors, data, and methods for early identification of landslide hazards
Heng Lu, Zhengli Yang, Kai Song, Zhijie Zhang, Chao Liu, Ruihua Nie, Lei Ma, Wanchang Zhang, Gang Fan, Chen Chen, and Min Zhang
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-68,https://doi.org/10.5194/nhess-2024-68, 2024
Revised manuscript has not been submitted
Short summary
The Early Identification of Flash Flood Disasters: Mechanism, Model and Uncertainty
Zhengli Yang, Heng Lu, Kai Song, Zhijie Zhang, Chao Liu, Ruihua Nie, Lei Ma, Wanchang Zhang, Chen Chen, Min Zhang, and Gang Fan
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-69,https://doi.org/10.5194/hess-2024-69, 2024
Preprint withdrawn
Short summary
A waveform skewness index for measuring time series nonlinearity and its applications to the ENSO–Indian monsoon relationship
Justin Schulte, Frederick Policelli, and Benjamin Zaitchik
Nonlin. Processes Geophys., 29, 1–15, https://doi.org/10.5194/npg-29-1-2022,https://doi.org/10.5194/npg-29-1-2022, 2022
Short summary
A skewed perspective of the Indian rainfall–El Niño–Southern Oscillation (ENSO) relationship
Justin Schulte, Frederick Policielli, and Benjamin Zaitchik
Hydrol. Earth Syst. Sci., 24, 5473–5489, https://doi.org/10.5194/hess-24-5473-2020,https://doi.org/10.5194/hess-24-5473-2020, 2020
Short summary

Related subject area

Domain: ESSD – Land | Subject: Hydrology
Satellite-based near-real-time global daily terrestrial evapotranspiration estimates
Lei Huang, Yong Luo, Jing M. Chen, Qiuhong Tang, Tammo Steenhuis, Wei Cheng, and Wen Shi
Earth Syst. Sci. Data, 16, 3993–4019, https://doi.org/10.5194/essd-16-3993-2024,https://doi.org/10.5194/essd-16-3993-2024, 2024
Short summary
Multivariate characterisation of a blackberry–alder agroforestry system in South Africa: hydrological, pedological, dendrological and meteorological measurements
Sibylle Kathrin Hassler, Rafael Bohn Reckziegel, Ben du Toit, Svenja Hoffmeister, Florian Kestel, Anton Kunneke, Rebekka Maier, and Jonathan Paul Sheppard
Earth Syst. Sci. Data, 16, 3935–3948, https://doi.org/10.5194/essd-16-3935-2024,https://doi.org/10.5194/essd-16-3935-2024, 2024
Short summary
SHIFT: a spatial-heterogeneity improvement in DEM-based mapping of global geomorphic floodplains
Kaihao Zheng, Peirong Lin, and Ziyun Yin
Earth Syst. Sci. Data, 16, 3873–3891, https://doi.org/10.5194/essd-16-3873-2024,https://doi.org/10.5194/essd-16-3873-2024, 2024
Short summary
First comprehensive stable isotope dataset of diverse water units in a permafrost-dominated catchment on the Qinghai–Tibet Plateau
Yuzhong Yang, Qingbai Wu, Xiaoyan Guo, Lu Zhou, Helin Yao, Dandan Zhang, Zhongqiong Zhang, Ji Chen, and Guojun Liu
Earth Syst. Sci. Data, 16, 3755–3770, https://doi.org/10.5194/essd-16-3755-2024,https://doi.org/10.5194/essd-16-3755-2024, 2024
Short summary
LamaH-Ice: LArge-SaMple DAta for Hydrology and Environmental Sciences for Iceland
Hordur Bragi Helgason and Bart Nijssen
Earth Syst. Sci. Data, 16, 2741–2771, https://doi.org/10.5194/essd-16-2741-2024,https://doi.org/10.5194/essd-16-2741-2024, 2024
Short summary

Cited articles

Acharki, S.: PlanetScope contributions compared to Sentinel-2, and Landsat-8 for LULC mapping, Remote Sensing Applications: Society and Environment, 27, 100774, https://doi.org/10.1016/j.rsase.2022.100774, 2022. a
Alemohammad, H. and Booth, K.: LandCoverNet: A global benchmark land cover classification training dataset, arXiv [preprint], arXiv:2012.03111, 2020. a
Bamber, J. and Bindschadler, R.: An improved elevation dataset for climate and ice-sheet modelling: validation with satellite imagery, Ann. Glaciol., 25, 439–444, 1997. a
Bijeesh, T. and Narasimhamurthy, K.: Surface water detection and delineation using remote sensing images: A review of methods and algorithms, Sustainable Water Resour. Manag., 6, 1–23, 2020. a
Bonafilia, D., Tellman, B., Anderson, T., and Issenberg, E.: Sen1Floods11: A georeferenced dataset to train and test deep learning flood algorithms for Sentinel-1, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 835–845, https://doi.org/10.1109/CVPRW50498.2020.00113, 2020. a, b
Download
Short summary

Global water resource monitoring is crucial due to climate change and population growth. This study presents a hand-labeled dataset of 100 PlanetScope images for surface water detection, spanning diverse biomes. We use this dataset to evaluate two state-of-the-art mapping methods. Results highlight performance variations across biomes, emphasizing the need for diverse, independent validation datasets to enhance the accuracy and reliability of satellite-based surface water monitoring techniques.

Altmetrics
Final-revised paper
Preprint