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Abstract. Effective monitoring of global water resources is increasingly critical due to climate change and
population growth. Advancements in remote sensing technology, specifically in spatial, spectral, and temporal
resolutions, are revolutionizing water resource monitoring, leading to more frequent and high-quality surface
water extent maps using various techniques such as traditional image processing and machine learning algo-
rithms. However, satellite imagery datasets contain trade-offs that result in inconsistencies in performance, such
as disparities in measurement principles between optical (e.g., Sentinel-2) and radar (e.g., Sentinel-1) sensors
and differences in spatial and spectral resolutions among optical sensors. Therefore, developing accurate and
robust surface water mapping solutions requires independent validations from multiple datasets to identify po-
tential biases within the imagery and algorithms. However, high-quality validation datasets are expensive to
build, and few contain information on water resources. For this purpose, we introduce a globally sampled, high-
spatial-resolution dataset labeled using 3 m PlanetScope imagery (Planet Team, 2017). Our surface water extent
dataset comprises 100 images, each with a size of 1024× 1024 pixels, which were sampled using a stratified
random sampling strategy covering all 14 biomes. We highlighted urban and rural regions, lakes, and rivers,
including braided rivers and coastal regions. We evaluated two surface water extent mapping methods using our
dataset – Dynamic World (Brown et al., 2022), based on Sentinel-2, and the NASA IMPACT model (Paul and
Ganju, 2021), based on Sentinel-1. Dynamic World achieved a mean intersection over union (IoU) of 72.16 %
and F1 score of 79.70 %, while the NASA IMPACT model had a mean IoU of 57.61 % and F1 score of 65.79 %.
Performance varied substantially across biomes, highlighting the importance of evaluating models on diverse
landscapes to assess their generalizability and robustness. Our dataset can be used to analyze satellite products
and methods, providing insights into their advantages and drawbacks. Our dataset offers a unique tool for ana-
lyzing satellite products, aiding the development of more accurate and robust surface water monitoring solutions.
The dataset can be accessed via https://doi.org/10.25739/03nt-4f29 (Mukherjee et al., 2024).
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1 Introduction

Mapping surface water is becoming increasingly important
due to the impacts of climate change, as many regions face
the prospect of droughts (Dai, 2013) and floods (Tellman
et al., 2021). Timely, accurate, and reliable monitoring of sur-
face water extent is critical for better management, conserva-
tion, and risk-reduction practices, but this remains a grow-
ing challenge for researchers. Remotely sensed satellite data
have provided a unique vantage point for measuring surface
water extent (Bijeesh and Narasimhamurthy, 2020; Mueller
et al., 2016) using different measurement principles such as
optical and radar sensors (Markert et al., 2018). Recent ad-
vances in satellite sensors have increased spatial, spectral,
and temporal resolutions, leading to significant growth in
methods for monitoring surface water using multiple satellite
products (Pekel et al., 2016; Martinis et al., 2022; Giezendan-
ner et al., 2023). Among these methods, machine learning
and deep learning algorithms gained popularity due to their
ability to leverage large volumes of satellite data (both public
and commercial) to accurately map the Earth’s surface (Isik-
dogan et al., 2017; Wieland et al., 2023).

However, the effectiveness of satellite water products
based on different sensors is not consistent across all con-
ditions, as each product involves trade-offs between spa-
tial, spectral, and temporal resolutions (Wulder et al., 2015).
Higher-spatial-resolution products like PlanetScope (PS)
often produce more accurate maps than lower-resolution
Sentinel-2 (10 m) or Landsat 8 (30 m) data (Acharki, 2022).
Moreover, radar and optical sensors measure surface water
properties differently, leading to variations in accuracy and
suitability (Martinis et al., 2022), even at similar spatial res-
olutions. The study by Ghayour et al. (2021) compared Land-
sat 8 and Sentinel-2 and found performance varied across
methods. As Wolpert (2002) asserted, no single algorithm is
expected to perform optimally in every situation. The study
by Li et al. (2022) summarizes the current common methods
of water extraction based on optical and radar images.

Independently evaluating satellite products and methods
using independent validation datasets is crucial for increas-
ing trust in the results (Bamber and Bindschadler, 1997).
However, such datasets are resource-intensive to create, and
existing ones may not be suitable for all needs. For ex-
ample, BigEarthNet (Sumbul et al., 2019) contains around
600 000 multi-labeled Sentinel-2 image patches, of which
83 000 contain water bodies. This dataset confirms the pres-
ence of water within a patch but does not delineate it at the
pixel level. The Chesapeake Conservancy land cover dataset
(Chesapeake Bay Program, 2023) provides high-resolution
(1 m) per-pixel water labels for the Chesapeake Bay wa-
tershed regional area. LandCoverNet (Alemohammad and
Booth, 2020) contains global 10 m resolution data from
Sentinel-2 with a water class. Flood mapping has also been a
strong research focus, with datasets like the Sentinel-1-based
NASA flood detection (Gahlot et al., 2021), Sen1Floods11

(Bonafilia et al., 2020), Sen12-Flood (Rambour et al., 2020),
and C2S-MS Floods (Cloud to Street et al., 2022) that use
both optical (Sentinel-2) and radar (Sentinel-1) imagery.
While suitable for validating surface water maps, some of
these datasets rely on 10 m resolution public satellite imagery
or lack global coverage at high resolution. The ephemeral na-
ture of floods also requires specialized detection models even
though floodwater is technically surface water (Bonafilia
et al., 2020). Wieland et al. (2023) developed a semiau-
tomated global binary surface water reference dataset with
15 000 tiles (256×256 pixels) sampled from high-resolution
(≤ 1 m) imagery. However, this dataset uses weak labels gen-
erated by a model rather than manual labeling, making it less
suitable for validation.

To thoroughly evaluate a product’s effectiveness and ro-
bustness, multiple independent assessments are needed since
high accuracy on one dataset does not guarantee similar per-
formance on others. No single dataset can fully represent
the real world (Paullada et al., 2021), and manual labels in-
evitably contain some subjectivity (Misra et al., 2016). In-
dependent evaluations also help mitigate the issue of data
leakage, where the validation set is improperly used dur-
ing model training, leading to overfitting (Vandewiele et al.,
2021). Multiple independent validation datasets are therefore
essential for comprehensively evaluating and building trust in
remote sensing-based surface water products and methods.

In this study, we present a high-quality, globally sampled,
high-resolution surface water dataset consisting of 100 hand-
labeled 1024×1024 pixel PlanetScope images at 3 m resolu-
tion. Our work builds upon existing satellite-based datasets
for validating surface water extent. The motivation is to pro-
vide a higher-resolution hand-labeled dataset for evaluat-
ing surface water products derived from medium-resolution
public satellites like Landsat and Sentinel and commer-
cial higher-resolution PlanetScope imagery. Our dataset ad-
dresses some of the limitations of existing datasets by pro-
viding pixel-level water labels at a higher resolution (3 m)
compared to some other datasets and encompassing diverse
biomes and contexts (urban/rural, mountains/plains, river-
s/lakes) for comprehensive evaluations. We evaluate two
state-of-the-art surface water extent mapping methods us-
ing our dataset: the Dynamic World land use and land
cover product based on optical Sentinel-2 imagery and the
NASA IMPACT inundation mapping model based on radar
Sentinel-1 data, which was the winning solution in a recent
flood detection challenge. By applying our validation dataset
to these products and methods, we aim to better understand
their advantages and limitations. We anticipate our dataset
will contribute to improved accuracy assessment, spatial gen-
eralizability analysis, and robustness evaluation of existing
surface water products and methods. These advancements
can ultimately benefit societies by promoting more effective
monitoring and management of water resources, especially
in the face of climate change and population growth.
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2 Data preparation

2.1 Sampling

Our objective was to build a dataset that closely represents
the true distribution of surface water features using only 100
samples. A representative dataset enables testing the spatial
generalizability and accuracy of surface water extent prod-
ucts. However, achieving a true representation is nearly im-
possible (Paullada et al., 2021). We approached this chal-
lenge by sampling from different biomes, as defined by Ol-
son et al. (2001), which encompass various climates and land
conditions, giving a better chance of providing high variance
within samples.

We employed a stratified random sampling strategy to en-
sure the representativeness of our dataset. First, we created
a 2 km buffer around global river and lake shapefiles pro-
vided by the World Wildlife Fund (2005) using QGIS (Quan-
tum GIS). We then clipped these buffers with the shapefiles
of each of the 14 biomes. Within each biome, we randomly
placed 50 points using QGIS’s random point generator and
selected at least 5 of them as samples.

To address the various contexts in which surface water ex-
ists, we randomly selected additional samples from urban-
ized regions (Patterson and Kelso, 2012), braided rivers, and
coastal regions. Urban areas are spatially heterogeneous, of-
ten resulting in increased complexity for water detection. We
also separately sampled from lakes and rivers to ensure a bal-
anced representation of both water body types. Braided rivers
and coastal areas were included.

Figure 1 shows the number of samples for each biome,
while Fig. 2 illustrates the global spatial distribution of the
samples. The numbers of samples from “Tropical and Sub-
tropical Dry Broadleaf Forests” and “Tropical and Subtrop-
ical Coniferous Forests” were limited due to their smaller
areal coverage. Approximately two-thirds of our labels are
from rivers and the remaining one-third are from lakes. We
sampled a larger portion from “Deserts and Xeric Shrub-
lands” (16 samples) because water extraction methods gen-
erally perform worse in these regions, especially when using
radar imagery (Martinis, 2017).

The temporal distribution of our samples spans from 2021
to 2023, covering different seasons to capture seasonal vari-
ations in surface water extent. While our sampling strategy
aimed to maximize representativeness within the constraints
of labeling resources, we acknowledge that the limited num-
ber of samples (100) may not fully capture all global surface
water variations.

During the sampling process, we implemented quality
control measures to ensure that the selected locations were
suitable for labeling and analysis. We downloaded the Plan-
etScope scene for each location, divided the scene into
1024× 1024 sized images, and then selected the image that
contained sufficient water and no cloud cover.

2.2 Data processing

After selecting 100 locations based on our sampling strat-
egy, we downloaded 8-band, 3 m resolution SuperDove Plan-
etScope (PS) imagery from 2021 to 2023 using our access to
the NASA Commercial SmallSat Data Acquisition (CSDA)
program. As our objective was to evaluate most medium-
resolution satellite sensors, including Sentinel-1 (S1), we en-
sured that the failure of the Sentinel-1B satellite, on 23 De-
cember 2021, did not create a large temporal gap between
the label and the last available scene from the satellite. For
locations only covered by Sentinel-1B and not Sentinel-1A,
we acquired PS scenes before the Sentinel-1B failure date.

During the scene selection process, we excluded areas
with perennially frozen water. If a location contained sea-
sonal ice, we replaced that PS image with a summer image
when the water was not frozen. This approach ensured that
our dataset focused on liquid water surfaces, which are more
relevant for surface water extent mapping.

From each larger PS scene, we extracted a 1024×
1024 pixel image, covering an area of approximately
9.4 km2. We chose 1024×1024 pixel images to ensure suffi-
cient pixels and spatial context for comparison with medium-
resolution imagery (e.g., Landsat, Sentinel). For instance, a
30 m Landsat image corresponding to our labels would have
around 100×100 pixels, while a 10 m Sentinel image would
have approximately 376×376 pixels. Figure 3 showcases two
examples of the PS images selected for labeling, displayed in
false-color composite (near-infrared, red, and green bands).

2.3 Data labeling

We used high-resolution 3 m PlanetScope (PS) data for la-
beling, ideal for the evaluation of lower-resolution satellite
products such as Sentinel-1 (S1), Sentinel-2 (S2) at 10 m, or
Landsat sensors at 30 m.

The labeling was performed by experienced analysts to
distinguish between three classes: water, low-confidence wa-
ter, and non-water. The water class represents areas with a
clear presence of water, while the low-confidence water class
marks pixels where the presence of water is uncertain but
probable. The non-water class encompasses all other land
cover types. To assist the labelers, we provided true-color
composite (TCC) and false-color composite (FCC) images
using the near-infrared, red, and green bands for each sam-
ple.

In cases where the presence of water was unclear in the
PS imagery, we cross-referenced them with higher-resolution
basemaps from Bing and Google. Unresolved features were
assigned to the low-confidence water category, ensuring that
the water class only includes pixels with a high degree of
certainty. During the evaluation process, the low-confidence
water class can be excluded or added to the water category
as necessary.
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Figure 1. Distribution of sampled labels across different biomes. The bar chart illustrates the number of surface water labels collected from
each of the 14 biomes defined by Olson et al. (2001). The sampling strategy aimed to ensure a balanced representation of surface water
features across diverse ecological regions while accounting for the areal coverage of each biome.

Figure 2. Global distribution of the 100 surface water labels sampled for the dataset. The map depicts the geographical locations of the
sampled labels, which were sampled to represent diverse global biomes (refer to Table 1 for the number of labels per biome) and ensure a
representative dataset of water features. The sampling approach also aimed to capture the variability of surface water features across urban
areas, braided rivers, and coastal regions.

To streamline the labeling process and ensure the creation
of high-quality labels, we utilized the Labelbox platform (La-
belbox, 2024), which provides efficient tools for data annota-
tion. After the initial labeling, we performed several rounds

of quality checks on each label to maintain accuracy and con-
sistency across the dataset.

In total, we labeled 100 images, each with a size of
1024×1024 pixels, covering a total surface area of 940 km2.
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Figure 3. PlanetScope images selected for labeling are shown in false-color composite (near infrared, red, and green). Left: Vilyuy river,
Republic of Sakha, Russia, SID09 (Image © Planet Labs PBC 2021); right: Tagus river, Toledo, Spain, SID17 (Image © Planet Labs
PBC 2022).

The labeling process, including quality control, took approx-
imately 2 h per image, resulting in a total of 200 h of work.
The labeled surface water accounts for nearly 250 km2 of the
total area. Each label is assigned a unique sample ID (SID)
ranging from 1 to 100 and includes the date (YYYYMMDD)
of the PS image used for labeling.

2.4 Dataset analysis

We labeled a total of one-hundred 1024× 1024 PS images
at 3 m, with the overall class distribution covering 24.9 % of
the total surface area, low-confidence water covering 1.2 %,
and the rest (73.9 %) being non-water (Fig. 5). The distri-
bution of water pixel percentages for each individual label,
as displayed in Fig. 6, demonstrates that most labels contain
less than 50 % water pixels by design, with the mean water
surface area per label being 26.10 km2. This focus on hav-
ing more non-water area enables better delineation of water
boundaries, as the water class itself tends to be more homo-
geneous and therefore less complex from both labeling and
mapping perspectives.

As mentioned previously, our labeled dataset covers wa-
ter surface areas across different biomes (Table 1). The
mean percentage of water content per label varies substan-
tially between biomes, from a low of 5.29 % for “Mediter-
ranean Forests, Woodlands and Scrub” to a high of 42.95 %
for “Temperate Grasslands, Savannas and Shrublands”. This
demonstrates the diversity of landscapes and water cover-
age captured in our dataset. In total, our dataset provides
2609.78 km2 of labeled water surface area, covering a va-
riety of landscapes such as rivers passing through urban re-
gions, braided rivers in deltas, rivers passing through forests
and agricultural fields, and waterbodies in plain and moun-

tainous regions. The diversity and representativeness of our
dataset make it a valuable resource for testing the limits and
robustness of satellite data products and mapping methods.

2.5 Dataset structure

All 100 labels are in the GeoTIFF format with the UInt8 data
type and a single band. Each pixel can contain four possible
values: 0 (no data), 1 (non-water), 2 (low-confidence water),
and 3 (water). The labels are in the WGS84 (EPSG:4326)
coordinate reference system. Each label has a corresponding
PlanetScope image used for labeling in Labelbox. The Plan-
etScope images are also in the WGS84 (EPSG:4326) coordi-
nate reference system and contain three spectral bands (red,
green, and blue) in true-color composite. Based on our PS
image release agreement with Planet, we converted the orig-
inal surface reflectance values to byte format with possible
pixel values between 0 and 255, instead of UInt16.

The label files are named using the following convention:
SIDX_YYYYMMDD.tif, where “SIDX” is the unique sam-
ple ID (with X ranging from 1 to 100) and “YYYYMMDD”
represents the date of the PlanetScope image used for label-
ing. The corresponding PlanetScope images follow the nam-
ing convention: SIDX_PSID.tif, where SIDX is the same as
the label, but PSID is the original SuperDove PlanetScope
image ID, allowing for the retrieval of the original surface
reflectance values, provided there is access.

Our dataset is organized using the SpatioTemporal Asset
Catalog (STAC) format, which is a standardized way to de-
scribe and catalog geospatial data. The STAC format pro-
vides a clear and consistent structure for storing and access-
ing the labels and their corresponding PlanetScope images,
along with relevant metadata.
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Figure 4. Examples of PlanetScope imagery and corresponding labels (top row: Dong Tranh River, Ho Chi Minh City, Vietnam (SID46);
bottom row: Siran River, Pakistan (SID28)). The images are labeled with three categories: (1) non-water, (2) low-confidence water, and
(3) water. The low-confidence water category marks pixels where delineating between water and non-water is not apparent, but the probability
of water being present is moderately high. Image © Planet Labs PBC 2022.

3 Evaluating surface water mapping methods using
our hand-labeled dataset

We evaluated two surface water mapping methods based on
an optical and a radar satellite imagery product to demon-
strate the use of our validation dataset. We used standard met-
rics for classification – precision, sensitivity, specificity, F1
score, intersection over union (IoU), and accuracy for evalu-
ating the two surface water maps. We measured their perfor-
mance across each biome and their overall performance.

3.1 Performance of Sentinel-2-based Dynamic World on
detecting surface water

Dynamic World (DW) is a land use land cover product from
Google that utilizes a deep learning model trained on their
own labeled dataset. The product includes nine classes, in-
cluding water, and produces a map for every Sentinel-2 im-
age. Each Sentinel-2 image is post-processed and with clouds
removed. We downloaded Sentinel-2 images within 3 d of
each of the 100 labeled PlanetScope images. We also ap-
plied a not-a-number (NaN) filter, ensuring that images with
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Figure 5. Class distribution across labels (non-water, low-confidence water, and water). The non-water class shares the largest percentage as
it encompasses the water class. Low-confidence water pixels are only a minor percentage.

Figure 6. Distribution of water pixels per sample. The figure shows the percentage of water pixels within one sample. Most samples contain
less than 50 % of water by design, as the focus is to delineate the boundaries since the water class is more homogeneous and, therefore, less
complex.

at least 90 % valid pixels are considered. After applying
the temporal and NaN filters, there were 53 corresponding
Sentinel-2-based DW maps out of our 100 labels. From each
DW map, we extracted the first band, which contains the
water class. Each DW class contains continuous values be-
tween 0 and 1, where 1 denotes the highest confidence in the
model prediction. We converted the continuous values to bi-
nary, thresholding at 0.3. The water class is one of the least
confused classes in the DW product, so mixed pixels are less
likely. Finally, we evaluated DW on our labels. Note that for
evaluation we converted the low-confidence water class to
water. We finally resampled the DW water class to match the
resolution of the labels at 3 m using nearest-neighbor interpo-
lation before evaluating. Note that for evaluation we merged

the low-confidence water class with water. Therefore, labels
were either 0 (non-water) or 1 (water).

Figure 7 illustrates the performance of the water class in
the Dynamic World product across different biomes using
IoU. IoU provides an assessment of the overlap between the
predicted and ground truth water pixels, with higher values
indicating better performance. The number of samples per
biome varies, with some biomes having more representative
data than others. For biomes with a larger number of samples,
such as “Deserts and Xeric Shrublands” and “Boreal Forests
and Taiga”, the IoU scores provide a more robust evaluation
of the DW water class performance. Despite the variations in
sample size, notable differences in performance can be ob-
served among the biomes. It is important to note that the IoU
metric is influenced by the amount of water present in each
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Table 1. Mean percentage of water content per label across different biomes. The table shows the average proportion of water pixels within
the labeled samples for each biome, highlighting the variability in water coverage across diverse ecological regions.

Biome Mean water content per label, %

Boreal Forests and Taiga 22.48
Deserts and Xeric Shrublands 18.96
Flooded Grasslands and Savannas 27.45
Mangroves 40.75
Mediterranean Forests, Woodlands and Scrub 5.29
Montane Grasslands and Shrublands 23.71
Temperate Broadleaf and Mixed Forests 19.48
Temperate Coniferous Forests 6.55
Temperate Grasslands, Savannas and Shrublands 42.95
Tropical and Subtropical Coniferous Forests 16.80
Tropical and Subtropical Dry Broadleaf Forests 20.71
Tropical and Subtropical Grasslands, Savannas and Shrublands 11.96
Tropical and Subtropical Moist Broadleaf Forests 27.39
Tundra 30.77

Figure 7. Intersection over union (IoU) performance of the Dynamic World (DW) water class across different biomes. The number of
samples per biome is shown on the right of each bar. Higher IoU scores suggest better performance in detecting surface water. The error bars
represent the standard deviation of IoU scores within each biome.

label. Higher water percentage often leads to higher IoU.
However, our dataset has an average of 26.1 % surface wa-
ter pixels, providing a balanced assessment of the DW water
class performance.

Figure 8 provides a visual comparison of the Dynamic
World water class predictions with the labels for two loca-
tions: Sundarban National Park, Bangladesh (SID01), and
Shandong, China (SID13). The DW product appears to cap-
ture the majority of the water pixels accurately; however, it
misses the narrow rivers (SID01) and it incorrectly ignores
two bridges (SID13).

Table 2 summarizes the performance metrics for the Dy-
namic World water class evaluated on our hand-labeled

Table 2. Performance metrics for the Dynamic World (DW) water
class evaluated on our hand-labeled dataset. The table presents the
mean and standard deviation of various metrics. IoU denotes inter-
section over union. Higher values indicate better performance.

Metric Mean SD

Precision 0.8812 0.2301
Sensitivity 0.7745 0.2830
Specificity 0.9656 0.0888
F1 score 0.7970 0.2623
IoU 0.7216 0.2763
Accuracy 0.9529 0.0542
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Figure 8. Comparison of a PlanetScope true-color image (left), the corresponding hand-labeled image (middle), and the Dynamic World
water class prediction (right). Top: Sundarban National Park, Bangladesh (SID01); bottom: Shandong, China (SID13). Image © Planet Labs
PBC 2022.

dataset. The mean precision of 0.8812 indicates that, on av-
erage, 88.12 % of the pixels predicted as water by DW are
actually water in our ground truth labels. The mean sensi-
tivity (recall) of 0.7745 suggests that DW correctly identi-
fies 77.45 % of the water pixels in our labels. The high mean
specificity (0.9656) indicates that DW accurately classifies
non-water pixels, with minimal misclassification as water.
The F1 score, which is the harmonic mean of precision and
recall, has a mean value of 0.7970, indicating a good balance
between the two metrics. The mean IoU of 0.7216 signifies
that, on average, there is a 72.16 % overlap between the pre-
dicted and ground truth water pixels. Lastly, the mean accu-
racy of 0.9529 shows that DW correctly classifies 95.29 % of
the pixels overall, including non-water pixels. However, the
high standard deviation indicates that there is a large variabil-
ity in performance for almost all metrics except specificity
and accuracy, since they take into account the non-water pix-
els.

3.2 Performance of the Sentinel-1-based deep learning
model

We evaluated the performance of a deep learning model (Paul
and Ganju, 2021) for inundation mapping that uses S1 radar
imagery. This deep learning model was the competition win-

ner at the NASA IMPACT challenge for flood detection. Un-
like Dynamic World, which contained a surface water class,
this method focuses on flood or more specifically inundation
class. Technically, our hand-labeled dataset also labels inun-
dation, although our labels did not focus on capturing flood-
ing. Therefore, we are not directly comparing the S1 IM-
PACT flood model against the Dynamic World water class.

We processed radiometrically corrected S1 imagery from
Alaska Satellite Facility (ASF)’s data repository using the
Hyp3 API (application programming interface). S1 imagery
was searched for each label 3 d before and after the labeled
date. We clipped the S1 scenes based on the labels, and then
we applied the trained model to these clipped S1 scenes using
the trained model. We then evaluated the predictions from
the deep learning model on our labels after resampling the
imagery to match the resolution of the higher-resolution la-
bels using nearest-neighbor interpolation. Thus, 72 S1 im-
ages were selected for this evaluation. Note that for evalu-
ation we converted the low-confidence water class to water.
Therefore, labels were either 0 (non-water) or 1 (water).

Figure 9 illustrates the performance of the S1-based deep
learning model across different biomes using the intersec-
tion over union (IoU) metric. Performance across biomes
has a large variation, with some notable differences. For ex-
ample, the IMPACT model performed robustly on “Tropi-
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Figure 9. Intersection over union (IoU) performance of the Sentinel-1-based deep learning model across different biomes. The number
of samples per biome is on the right of each bar. Higher IoU scores suggest better performance in detecting surface water. The error bars
represent the standard deviation of IoU scores within each biome.

cal and Subtropical Dry Broadleaf Forests”, “Tropical and
Subtropical Moist Broadleaf Forests”, “Tundra”, and “Man-
groves”. Although for “Tropical and Subtropical Coniferous
Forests”, “Temperate Coniferous Forests”, and “Deserts and
Xeric Shrublands”, the model performed less accurately and
with large variations; this was especially true for “Mediter-
ranean Forests, Woodlands and Scrub” where the model con-
sistently performed poorly. The effectiveness is influenced by
the fact that the training dataset of this model is focused on
only five flood events globally. Therefore, performing accu-
rately on the global surface water dataset is not the objective
of this model. Nonetheless, the objective is still detection in-
undation, and the variation in performance provides clues to
how such a model can be improved by sampling from biomes
or other contexts (urban, river, lake, etc.).

Figure 10 provides a visual comparison of the Sentinel-
1-based deep learning model’s predictions with the ground
truth labels for two locations: Nam Ði.nh, Vietnam (SID33),
and Paymaster Landing, California, USA (SID59). The
model appears to capture the majority of the water pixels
accurately. However, the labels and the corresponding pre-
diction by the S1-based model demonstrates the complexity
of labeling and identifying water in a meandering braided
river (SID33). In the case of SID59, the S1 model performs
well, except for the coarser edges of a river in a more arid
landscape.

Table 3 summarizes the performance metrics for the S1-
based deep learning model evaluated on our hand-labeled
dataset. The metrics exhibit significant variability across the
evaluated labels. The S1 IMPACT model generally found it
difficult to predict water pixels across several biomes. Apart
from the differences in resolution, turbulent water and wa-

Table 3. Performance metrics for the Sentinel-1 (S1) IMPACT
flood detection model evaluated on our hand-labeled dataset. The
table presents the mean and standard deviation of various metrics.
IoU denotes intersection over union. Higher values indicate better
performance.

Metric Mean SD

Precision 0.6547 0.3488
Sensitivity 0.7485 0.3408
Specificity 0.8653 0.2309
F1 Score 0.6579 0.3435
IoU 0.5761 0.3406
Accuracy 0.8734 0.1922

ter located in spatially heterogeneous landscapes are more
complicated to detect. Given the cloud-free observations, S1-
based models can be of considerable benefit for regular mon-
itoring and consistent observations.

4 Limitations

Although our hand-labeled dataset provides a valuable re-
source for evaluating surface water extent products, it has
several limitations that must be considered. First, the spa-
tial resolution of the dataset is limited to 3 m, making it
more suitable for evaluating lower-spatial-resolution imagery
(> 3 m). For higher resolutions (≤ 3 m), the influence of
human labeling errors on the evaluation results is likely
to increase. Despite our efforts to cross-reference multi-
ple sources of higher resolution (< 1 m Bing and Google
basemaps) during our labeling process and implement con-
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Figure 10. Comparison of a PlanetScope true-color image (left), the corresponding hand-labeled image (middle), and the surface water
predictions of the Sentinel-1-based deep learning model (right). Top: Nam Ði.nh, Vietnam, SID33 (Image © Planet Labs PBC 2021); bottom:
Paymaster Landing, California, USA, SID59 (Image © Planet Labs PBC 2022).

siderable quality control, the dataset unavoidably contains
biases from our labelers, in addition to the biases in the opti-
cal PS imagery itself. A model using PS will likely perform
the best since PS was the primary source for labeling. More-
over, some features remained unresolved, especially features
finer than 3 m, leading to the addition of another class called
“low-confidence water”.

While we made an effort to include samples from diverse
contexts in which water can be found (urban, lakes, braided
rivers, mountainous regions) and multiple biomes covering
different seasons, designing a truly representative dataset is
not feasible. The stratified random sampling strategy used to
create the dataset aims to cover diverse contexts and biomes
but may not capture all the variability in surface water ap-
pearance across different regions and seasons. Additionally,
the dataset only represents a snapshot in time and does not
account for temporal changes in surface water extent, which
can be significant in some regions due to seasonal variations,
human interventions, or flooding. For example, this dataset
does not include frozen water bodies.

Therefore, we recommend using evaluations from multi-
ple independent datasets from various sources to achieve fur-
ther robustness in evaluation. While our dataset is primarily
designed for validation purposes, it can still be used for fine-
tuning pretrained models. However, it does not include the
original input PlanetScope images of our labels, which are
required for training models. This ensures that there is no
data leak from the training process, maintaining the integrity
of the evaluation process. Nevertheless, relying on a single
dataset for evaluation has its limitations, and using multiple
independent datasets is crucial for assessing the robustness
and generalizability of surface water mapping methods.

5 Data availability

Our global surface water dataset used in this study is
available in the CyVerse Data Commons, accessible via
https://doi.org/10.25739/03nt-4f29 (Mukherjee et al., 2024).
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6 Discussion and conclusions

In this study, we have presented a globally sampled, high-
resolution surface water dataset consisting of 100 hand-
labeled images derived from 3 m PlanetScope imagery. Our
dataset covers diverse biomes and contexts, including urban
and rural areas, lakes, rivers, braided rivers, and coastal re-
gions. The thorough labeling process, which involves cross-
referencing multiple data sources and extensive quality con-
trol, ensures the reliability of the labels. These characteristics
make our dataset a valuable resource for evaluating the per-
formance and robustness of surface water mapping methods
across a wide range of landscapes.

By applying our dataset to the S2-based Dynamic World
and S1-based NASA IMPACT models, we demonstrated its
utility in identifying the strengths and limitations of different
satellite imagery products and methodologies. The variabil-
ity in performance across biomes highlights the importance
of using representative validation data to assess the spatial
generalizability of mapping methods. Our findings under-
score the need for multiple independent validation datasets to
comprehensively evaluate surface water products and build
trust in their results.

Accurate and reliable monitoring of surface water re-
sources is crucial for sustainable water management, climate
change adaptation, and conservation efforts. High-quality
validation datasets like ours play a vital role in advancing
these goals by enabling the development and assessment
of more effective mapping methods. We anticipate that our
dataset will contribute to improving the accuracy, robustness,
and spatial generalizability of surface water mapping prod-
ucts, ultimately supporting better-informed decision-making
and more efficient management of our precious water re-
sources in the face of growing global challenges.
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