Articles | Volume 12, issue 1
https://doi.org/10.5194/essd-12-41-2020
https://doi.org/10.5194/essd-12-41-2020
Data description paper
 | 
06 Jan 2020
Data description paper |  | 06 Jan 2020

Cloud_cci Advanced Very High Resolution Radiometer post meridiem (AVHRR-PM) dataset version 3: 35-year climatology of global cloud and radiation properties

Martin Stengel, Stefan Stapelberg, Oliver Sus, Stephan Finkensieper, Benjamin Würzler, Daniel Philipp, Rainer Hollmann, Caroline Poulsen, Matthew Christensen, and Gregory McGarragh

Related authors

CLARA-A3: The third edition of the AVHRR-based CM SAF climate data record on clouds, radiation and surface albedo covering the period 1979 to 2023
Karl-Göran Karlsson, Martin Stengel, Jan Fokke Meirink, Aku Riihelä, Jörg Trentmann, Tom Akkermans, Diana Stein, Abhay Devasthale, Salomon Eliasson, Erik Johansson, Nina Håkansson, Irina Solodovnik, Nikos Benas, Nicolas Clerbaux, Nathalie Selbach, Marc Schröder, and Rainer Hollmann
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-133,https://doi.org/10.5194/essd-2023-133, 2023
Preprint under review for ESSD
Short summary
Validation of the Cloud_CCI cloud products in the Arctic
Kameswara S. Vinjamuri, Marco Vountas, Luca Lelli, Martin Stengel, Matthew D. Shupe, Kerstin Ebell, and John P. Burrows
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-312,https://doi.org/10.5194/amt-2022-312, 2023
Revised manuscript accepted for AMT
Short summary
Cloud_cci ATSR-2 and AATSR data set version 3: a 17-year climatology of global cloud and radiation properties
Caroline A. Poulsen, Gregory R. McGarragh, Gareth E. Thomas, Martin Stengel, Matthew W. Christensen, Adam C. Povey, Simon R. Proud, Elisa Carboni, Rainer Hollmann, and Roy G. Grainger
Earth Syst. Sci. Data, 12, 2121–2135, https://doi.org/10.5194/essd-12-2121-2020,https://doi.org/10.5194/essd-12-2121-2020, 2020
Short summary
Satellite observations of aerosols and clouds over southern China from 2006 to 2015: analysis of changes and possible interaction mechanisms
Nikos Benas, Jan Fokke Meirink, Karl-Göran Karlsson, Martin Stengel, and Piet Stammes
Atmos. Chem. Phys., 20, 457–474, https://doi.org/10.5194/acp-20-457-2020,https://doi.org/10.5194/acp-20-457-2020, 2020
Short summary
Cross-comparison of cloud liquid water path derived from observations by two space-borne and one ground-based instrument in northern Europe
Vladimir S. Kostsov, Anke Kniffka, Martin Stengel, and Dmitry V. Ionov
Atmos. Meas. Tech., 12, 5927–5946, https://doi.org/10.5194/amt-12-5927-2019,https://doi.org/10.5194/amt-12-5927-2019, 2019
Short summary

Related subject area

Data, Algorithms, and Models
Improved maps of surface water bodies, large dams, reservoirs, and lakes in China
Xinxin Wang, Xiangming Xiao, Yuanwei Qin, Jinwei Dong, Jihua Wu, and Bo Li
Earth Syst. Sci. Data, 14, 3757–3771, https://doi.org/10.5194/essd-14-3757-2022,https://doi.org/10.5194/essd-14-3757-2022, 2022
Short summary
The Fengyun-3D (FY-3D) global active fire product: principle, methodology and validation
Jie Chen, Qi Yao, Ziyue Chen, Manchun Li, Zhaozhan Hao, Cheng Liu, Wei Zheng, Miaoqing Xu, Xiao Chen, Jing Yang, Qiancheng Lv, and Bingbo Gao
Earth Syst. Sci. Data, 14, 3489–3508, https://doi.org/10.5194/essd-14-3489-2022,https://doi.org/10.5194/essd-14-3489-2022, 2022
Short summary
A high-resolution inland surface water body dataset for the tundra and boreal forests of North America
Yijie Sui, Min Feng, Chunling Wang, and Xin Li
Earth Syst. Sci. Data, 14, 3349–3363, https://doi.org/10.5194/essd-14-3349-2022,https://doi.org/10.5194/essd-14-3349-2022, 2022
Short summary
A Central Asia hydrologic monitoring dataset for food and water security applications in Afghanistan
Amy McNally, Jossy Jacob, Kristi Arsenault, Kimberly Slinski, Daniel P. Sarmiento, Andrew Hoell, Shahriar Pervez, James Rowland, Mike Budde, Sujay Kumar, Christa Peters-Lidard, and James P. Verdin
Earth Syst. Sci. Data, 14, 3115–3135, https://doi.org/10.5194/essd-14-3115-2022,https://doi.org/10.5194/essd-14-3115-2022, 2022
Short summary
HOTRUNZ: an open-access 1 km resolution monthly 1910–2019 time series of interpolated temperature and rainfall grids with associated uncertainty for New Zealand
Thomas R. Etherington, George L. W. Perry, and Janet M. Wilmshurst
Earth Syst. Sci. Data, 14, 2817–2832, https://doi.org/10.5194/essd-14-2817-2022,https://doi.org/10.5194/essd-14-2817-2022, 2022
Short summary

Cited articles

Allan, R. P.: Combining satellite data and models to estimate cloud radiative effect at the surface and in the atmosphere, Meteorol. Appl., 18, 324–333, https://doi.org/10.1002/met.285, 2011. a
ATBD-CC4CL-BBFlux: ESA Cloud_cci Algorithm Theoretical Baseline Document (ATBD) of CC4CL Broadband Radiative Flux Retrieval, issue 1, rev. 1, 14 october 2019 edn., available at: http://www.esa-cloud-cci.org/?q=documentation (last access: 12 December 2019), 2019. a
Baran, A. J., Shcherbakov, V. N., Baker, B. A., Gayet, J. F., and Lawson, R. P.: On the scattering phase-function of non-symmetric ice-crystals, Q. J. Roy. Meteorol. Soc., 131, 2609–2616, https://doi.org/10.1256/qj.04.137, 2005. a
Baró, R., Jiménez-Guerrero, P., Stengel, M., Brunner, D., Curci, G., Forkel, R., Neal, L., Palacios-Peña, L., Savage, N., Schaap, M., Tuccella, P., Denier van der Gon, H., and Galmarini, S.: Evaluating cloud properties in an ensemble of regional online coupled models against satellite observations, Atmos. Chem. Phys., 18, 15183–15199, https://doi.org/10.5194/acp-18-15183-2018, 2018. a
Baum, B. A., Yang, P., Heymsfield, A. J., Bansemer, A., Cole, B. H., Merrelli, A., Schmitt, C., and Wang, C.: Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 µm, J. Quant. Spectrosc. Ra. Transf., 146, 123–139, https://doi.org/10.1016/j.jqsrt.2014.02.029, 2014. a
Download
Short summary
The Cloud_cci AVHRR-PMv3 dataset contains global, cloud and radiative flux properties covering the period of 1982 to 2016. The properties were retrieved from AVHRR measurements recorded by afternoon satellites of the NOAA POES missions. Validation against CALIOP, BSRN and CERES demonstrates the high quality of the data. The Cloud_cci AVHRR-PMv3 dataset allows for a large variety of climate applications that build on cloud properties, radiative flux properties and/or the link between them.