Articles | Volume 12, issue 1
https://doi.org/10.5194/essd-12-41-2020
https://doi.org/10.5194/essd-12-41-2020
Data description paper
 | 
06 Jan 2020
Data description paper |  | 06 Jan 2020

Cloud_cci Advanced Very High Resolution Radiometer post meridiem (AVHRR-PM) dataset version 3: 35-year climatology of global cloud and radiation properties

Martin Stengel, Stefan Stapelberg, Oliver Sus, Stephan Finkensieper, Benjamin Würzler, Daniel Philipp, Rainer Hollmann, Caroline Poulsen, Matthew Christensen, and Gregory McGarragh

Related authors

Analysis of ship emission effects on clouds over the southeastern Atlantic using geostationary satellite observations
Nikos Benas, Jan Fokke Meirink, Rob Roebeling, and Martin Stengel
EGUsphere, https://doi.org/10.5194/egusphere-2024-3135,https://doi.org/10.5194/egusphere-2024-3135, 2024
Short summary
Characterizing clouds with the CCClim dataset, a machine learning cloud class climatology
Arndt Kaps, Axel Lauer, Rémi Kazeroni, Martin Stengel, and Veronika Eyring
Earth Syst. Sci. Data, 16, 3001–3016, https://doi.org/10.5194/essd-16-3001-2024,https://doi.org/10.5194/essd-16-3001-2024, 2024
Short summary
A Lagrangian perspective on the lifecycle and cloud radiative effect of deep convective clouds over Africa
William K. Jones, Martin Stengel, and Philip Stier
Atmos. Chem. Phys., 24, 5165–5180, https://doi.org/10.5194/acp-24-5165-2024,https://doi.org/10.5194/acp-24-5165-2024, 2024
Short summary
CLAAS-3: the third edition of the CM SAF cloud data record based on SEVIRI observations
Nikos Benas, Irina Solodovnik, Martin Stengel, Imke Hüser, Karl-Göran Karlsson, Nina Håkansson, Erik Johansson, Salomon Eliasson, Marc Schröder, Rainer Hollmann, and Jan Fokke Meirink
Earth Syst. Sci. Data, 15, 5153–5170, https://doi.org/10.5194/essd-15-5153-2023,https://doi.org/10.5194/essd-15-5153-2023, 2023
Short summary
Sensitivity of cloud-phase distribution to cloud microphysics and thermodynamics in simulated deep convective clouds and SEVIRI retrievals
Cunbo Han, Corinna Hoose, Martin Stengel, Quentin Coopman, and Andrew Barrett
Atmos. Chem. Phys., 23, 14077–14095, https://doi.org/10.5194/acp-23-14077-2023,https://doi.org/10.5194/acp-23-14077-2023, 2023
Short summary

Related subject area

Data, Algorithms, and Models
Improved maps of surface water bodies, large dams, reservoirs, and lakes in China
Xinxin Wang, Xiangming Xiao, Yuanwei Qin, Jinwei Dong, Jihua Wu, and Bo Li
Earth Syst. Sci. Data, 14, 3757–3771, https://doi.org/10.5194/essd-14-3757-2022,https://doi.org/10.5194/essd-14-3757-2022, 2022
Short summary
The Fengyun-3D (FY-3D) global active fire product: principle, methodology and validation
Jie Chen, Qi Yao, Ziyue Chen, Manchun Li, Zhaozhan Hao, Cheng Liu, Wei Zheng, Miaoqing Xu, Xiao Chen, Jing Yang, Qiancheng Lv, and Bingbo Gao
Earth Syst. Sci. Data, 14, 3489–3508, https://doi.org/10.5194/essd-14-3489-2022,https://doi.org/10.5194/essd-14-3489-2022, 2022
Short summary
A high-resolution inland surface water body dataset for the tundra and boreal forests of North America
Yijie Sui, Min Feng, Chunling Wang, and Xin Li
Earth Syst. Sci. Data, 14, 3349–3363, https://doi.org/10.5194/essd-14-3349-2022,https://doi.org/10.5194/essd-14-3349-2022, 2022
Short summary
A Central Asia hydrologic monitoring dataset for food and water security applications in Afghanistan
Amy McNally, Jossy Jacob, Kristi Arsenault, Kimberly Slinski, Daniel P. Sarmiento, Andrew Hoell, Shahriar Pervez, James Rowland, Mike Budde, Sujay Kumar, Christa Peters-Lidard, and James P. Verdin
Earth Syst. Sci. Data, 14, 3115–3135, https://doi.org/10.5194/essd-14-3115-2022,https://doi.org/10.5194/essd-14-3115-2022, 2022
Short summary
HOTRUNZ: an open-access 1 km resolution monthly 1910–2019 time series of interpolated temperature and rainfall grids with associated uncertainty for New Zealand
Thomas R. Etherington, George L. W. Perry, and Janet M. Wilmshurst
Earth Syst. Sci. Data, 14, 2817–2832, https://doi.org/10.5194/essd-14-2817-2022,https://doi.org/10.5194/essd-14-2817-2022, 2022
Short summary

Cited articles

Allan, R. P.: Combining satellite data and models to estimate cloud radiative effect at the surface and in the atmosphere, Meteorol. Appl., 18, 324–333, https://doi.org/10.1002/met.285, 2011. a
ATBD-CC4CL-BBFlux: ESA Cloud_cci Algorithm Theoretical Baseline Document (ATBD) of CC4CL Broadband Radiative Flux Retrieval, issue 1, rev. 1, 14 october 2019 edn., available at: http://www.esa-cloud-cci.org/?q=documentation (last access: 12 December 2019), 2019. a
Baran, A. J., Shcherbakov, V. N., Baker, B. A., Gayet, J. F., and Lawson, R. P.: On the scattering phase-function of non-symmetric ice-crystals, Q. J. Roy. Meteorol. Soc., 131, 2609–2616, https://doi.org/10.1256/qj.04.137, 2005. a
Baró, R., Jiménez-Guerrero, P., Stengel, M., Brunner, D., Curci, G., Forkel, R., Neal, L., Palacios-Peña, L., Savage, N., Schaap, M., Tuccella, P., Denier van der Gon, H., and Galmarini, S.: Evaluating cloud properties in an ensemble of regional online coupled models against satellite observations, Atmos. Chem. Phys., 18, 15183–15199, https://doi.org/10.5194/acp-18-15183-2018, 2018. a
Baum, B. A., Yang, P., Heymsfield, A. J., Bansemer, A., Cole, B. H., Merrelli, A., Schmitt, C., and Wang, C.: Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 µm, J. Quant. Spectrosc. Ra. Transf., 146, 123–139, https://doi.org/10.1016/j.jqsrt.2014.02.029, 2014. a
Download
Short summary
The Cloud_cci AVHRR-PMv3 dataset contains global, cloud and radiative flux properties covering the period of 1982 to 2016. The properties were retrieved from AVHRR measurements recorded by afternoon satellites of the NOAA POES missions. Validation against CALIOP, BSRN and CERES demonstrates the high quality of the data. The Cloud_cci AVHRR-PMv3 dataset allows for a large variety of climate applications that build on cloud properties, radiative flux properties and/or the link between them.
Altmetrics
Final-revised paper
Preprint