Brief communication 05 Apr 2019
Brief communication | 05 Apr 2019
A comprehensive global oceanic dataset of helium isotope and tritium measurements
William J. Jenkins et al.
Related authors
R. H. R. Stanley, W. J. Jenkins, S. C. Doney, and D. E. Lott III
Biogeosciences, 12, 5199–5210, https://doi.org/10.5194/bg-12-5199-2015, https://doi.org/10.5194/bg-12-5199-2015, 2015
Short summary
Short summary
A long-standing enigma in oceanography is the process in which nutrients are supplied to the sunlit zone of the low nutrient regions of the ocean. In this work, we present one approach for quantifying the physical supply of nitrate to the euphotic zone in the Sargasso Sea through the use of gas tracers. We find that the nitrate supplied is more than enough to support the rates of net community production (balance of photosynthesis respiration) observed.
Are Olsen, Nico Lange, Robert M. Key, Toste Tanhua, Henry C. Bittig, Alex Kozyr, Marta Álvarez, Kumiko Azetsu-Scott, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Sara Jutterström, Camilla S. Landa, Siv K. Lauvset, Patrick Michaelis, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Anton Velo, Rik Wanninkhof, and Ryan J. Woosley
Earth Syst. Sci. Data, 12, 3653–3678, https://doi.org/10.5194/essd-12-3653-2020, https://doi.org/10.5194/essd-12-3653-2020, 2020
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by chemical analysis of water bottle samples at scientific cruises. GLODAPv2.2020 is the second update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality control, including systematic evaluation of measurement biases. This version contains data from 946 hydrographic cruises covering the world's oceans from 1972 to 2019.
Daniel Broullón, Fiz F. Pérez, Antón Velo, Mario Hoppema, Are Olsen, Taro Takahashi, Robert M. Key, Toste Tanhua, J. Magdalena Santana-Casiano, and Alex Kozyr
Earth Syst. Sci. Data, 12, 1725–1743, https://doi.org/10.5194/essd-12-1725-2020, https://doi.org/10.5194/essd-12-1725-2020, 2020
Short summary
Short summary
This work offers a vision of the global ocean regarding the carbon cycle and the implications of ocean acidification through a climatology of a changing variable in the context of climate change: total dissolved inorganic carbon. The climatology was designed through artificial intelligence techniques to represent the mean state of the present ocean. It is very useful to introduce in models to evaluate the state of the ocean from different perspectives.
Are Olsen, Nico Lange, Robert M. Key, Toste Tanhua, Marta Álvarez, Susan Becker, Henry C. Bittig, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Steve D. Jones, Sara Jutterström, Maren K. Karlsen, Alex Kozyr, Siv K. Lauvset, Claire Lo Monaco, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Maciej Telszewski, Bronte Tilbrook, Anton Velo, and Rik Wanninkhof
Earth Syst. Sci. Data, 11, 1437–1461, https://doi.org/10.5194/essd-11-1437-2019, https://doi.org/10.5194/essd-11-1437-2019, 2019
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by chemical analysis of water bottle samples at scientific cruises. GLODAPv2.2019 is the first update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality control, including systematic evaluation of measurement biases. This version contains data from 840 hydrographic cruises covering the world's oceans from 1972 to 2017.
Daniel Broullón, Fiz F. Pérez, Antón Velo, Mario Hoppema, Are Olsen, Taro Takahashi, Robert M. Key, Toste Tanhua, Melchor González-Dávila, Emil Jeansson, Alex Kozyr, and Steven M. A. C. van Heuven
Earth Syst. Sci. Data, 11, 1109–1127, https://doi.org/10.5194/essd-11-1109-2019, https://doi.org/10.5194/essd-11-1109-2019, 2019
Short summary
Short summary
In this work, we are contributing to the knowledge of the consequences of climate change in the ocean. We have focused on a variable related to this process: total alkalinity. We have designed a monthly climatology of total alkalinity using artificial intelligence techniques, that is, a representation of the average capacity of the ocean in the last decades to decelerate the consequences of climate change. The climatology is especially useful to infer the evolution of the ocean through models.
Corinne Le Quéré, Robbie M. Andrew, Pierre Friedlingstein, Stephen Sitch, Judith Hauck, Julia Pongratz, Penelope A. Pickers, Jan Ivar Korsbakken, Glen P. Peters, Josep G. Canadell, Almut Arneth, Vivek K. Arora, Leticia Barbero, Ana Bastos, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Philippe Ciais, Scott C. Doney, Thanos Gkritzalis, Daniel S. Goll, Ian Harris, Vanessa Haverd, Forrest M. Hoffman, Mario Hoppema, Richard A. Houghton, George Hurtt, Tatiana Ilyina, Atul K. Jain, Truls Johannessen, Chris D. Jones, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Peter Landschützer, Nathalie Lefèvre, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-ichiro Nakaoka, Craig Neill, Are Olsen, Tsueno Ono, Prabir Patra, Anna Peregon, Wouter Peters, Philippe Peylin, Benjamin Pfeil, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Matthias Rocher, Christian Rödenbeck, Ute Schuster, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Tobias Steinhoff, Adrienne Sutton, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Ingrid T. van der Laan-Luijkx, Guido R. van der Werf, Nicolas Viovy, Anthony P. Walker, Andrew J. Wiltshire, Rebecca Wright, Sönke Zaehle, and Bo Zheng
Earth Syst. Sci. Data, 10, 2141–2194, https://doi.org/10.5194/essd-10-2141-2018, https://doi.org/10.5194/essd-10-2141-2018, 2018
Short summary
Short summary
The Global Carbon Budget 2018 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
James C. Orr, Raymond G. Najjar, Olivier Aumont, Laurent Bopp, John L. Bullister, Gokhan Danabasoglu, Scott C. Doney, John P. Dunne, Jean-Claude Dutay, Heather Graven, Stephen M. Griffies, Jasmin G. John, Fortunat Joos, Ingeborg Levin, Keith Lindsay, Richard J. Matear, Galen A. McKinley, Anne Mouchet, Andreas Oschlies, Anastasia Romanou, Reiner Schlitzer, Alessandro Tagliabue, Toste Tanhua, and Andrew Yool
Geosci. Model Dev., 10, 2169–2199, https://doi.org/10.5194/gmd-10-2169-2017, https://doi.org/10.5194/gmd-10-2169-2017, 2017
Short summary
Short summary
The Ocean Model Intercomparison Project (OMIP) is a model comparison effort under Phase 6 of the Coupled Model Intercomparison Project (CMIP6). Its physical component is described elsewhere in this special issue. Here we describe its ocean biogeochemical component (OMIP-BGC), detailing simulation protocols and analysis diagnostics. Simulations focus on ocean carbon, other biogeochemical tracers, air-sea exchange of CO2 and related gases, and chemical tracers used to evaluate modeled circulation.
Mohamed Ayache, Jean-Claude Dutay, Anne Mouchet, Nadine Tisnérat-Laborde, Paolo Montagna, Toste Tanhua, Giuseppe Siani, and Philippe Jean-Baptiste
Biogeosciences, 14, 1197–1213, https://doi.org/10.5194/bg-14-1197-2017, https://doi.org/10.5194/bg-14-1197-2017, 2017
Short summary
Short summary
A high-resolution dynamical model was used to give the first simulation of the distribution of natural and anthropogenic radiocarbon (14C) across the whole Mediterranean Sea. The model correctly simulates the main features of 14C distribution during and after the bomb perturbation. The results demonstrate the major influence of the flux of Atlantic water through the Strait of Gibraltar, and a significant increase in 14C in the Aegean deep water during the Eastern Mediterranean Transient event.
Are Olsen, Robert M. Key, Steven van Heuven, Siv K. Lauvset, Anton Velo, Xiaohua Lin, Carsten Schirnick, Alex Kozyr, Toste Tanhua, Mario Hoppema, Sara Jutterström, Reiner Steinfeldt, Emil Jeansson, Masao Ishii, Fiz F. Pérez, and Toru Suzuki
Earth Syst. Sci. Data, 8, 297–323, https://doi.org/10.5194/essd-8-297-2016, https://doi.org/10.5194/essd-8-297-2016, 2016
Short summary
Short summary
The GLODAPv2 data product collects data from more than 700 hydrographic cruises into a global and internally calibrated product. It provides access to the data from almost all ocean carbon cruises carried out since the 1970s and is a unique resource for marine science, in particular regarding the ocean carbon cycle. GLODAPv2 will form the foundation for future routine synthesis of hydrographic data of the same sort.
Siv K. Lauvset, Robert M. Key, Are Olsen, Steven van Heuven, Anton Velo, Xiaohua Lin, Carsten Schirnick, Alex Kozyr, Toste Tanhua, Mario Hoppema, Sara Jutterström, Reiner Steinfeldt, Emil Jeansson, Masao Ishii, Fiz F. Perez, Toru Suzuki, and Sylvain Watelet
Earth Syst. Sci. Data, 8, 325–340, https://doi.org/10.5194/essd-8-325-2016, https://doi.org/10.5194/essd-8-325-2016, 2016
Short summary
Short summary
This paper describes the mapped climatologies that are part of the Global Ocean Data Analysis Project Version 2 (GLODAPv2). GLODAPv2 is a uniformly calibrated open ocean data product on inorganic carbon and carbon-relevant variables. Global mapped climatologies of the total dissolved inorganic carbon, total alkalinity, pH, saturation state of calcite and aragonite, anthropogenic carbon, preindustrial carbon content, inorganic macronutrients, oxygen, salinity, and temperature have been created.
R. Steinfeldt, J. Sültenfuß, M. Dengler, T. Fischer, and M. Rhein
Biogeosciences, 12, 7519–7533, https://doi.org/10.5194/bg-12-7519-2015, https://doi.org/10.5194/bg-12-7519-2015, 2015
Short summary
Short summary
The coastal upwelling systems, e.g. off Peru and Mauritania,
are key regions for the emissions of climate relevant trace gases
from the ocean into the atmosphere. Here, gases and nutrients are
transported into the ocean mixed layer from below. The upwelling velocities,
however, are too small to be measured directly.
We use the enhancement of helium-3 in upwelled
waters to quantify the vertical velocity,
which varies between 1.0 and 2.5 metres per day in the coastal regions.
R. H. R. Stanley, W. J. Jenkins, S. C. Doney, and D. E. Lott III
Biogeosciences, 12, 5199–5210, https://doi.org/10.5194/bg-12-5199-2015, https://doi.org/10.5194/bg-12-5199-2015, 2015
Short summary
Short summary
A long-standing enigma in oceanography is the process in which nutrients are supplied to the sunlit zone of the low nutrient regions of the ocean. In this work, we present one approach for quantifying the physical supply of nitrate to the euphotic zone in the Sargasso Sea through the use of gas tracers. We find that the nitrate supplied is more than enough to support the rates of net community production (balance of photosynthesis respiration) observed.
M. Ayache, J.-C. Dutay, P. Jean-Baptiste, K. Beranger, T. Arsouze, J. Beuvier, J. Palmieri, B. Le-vu, and W. Roether
Ocean Sci., 11, 323–342, https://doi.org/10.5194/os-11-323-2015, https://doi.org/10.5194/os-11-323-2015, 2015
Short summary
Short summary
The anthropogenic tritium invasion, and its decay product helium-3, was simulated for the first time in the Mediterranean Sea, using a high-resolution regional model (NEMO-MED12). The simulation covers the entire tritium (3H) transient generated by the atmospheric nuclear weapons tests performed in the 1950s and early 1960s and run until 2011. The model correctly simulates the main features of the thermohaline circulation in the Mediterranean Sea, with a realistic time compared to observations.
B. R. Carter, J. R. Toggweiler, R. M. Key, and J. L. Sarmiento
Biogeosciences, 11, 7349–7362, https://doi.org/10.5194/bg-11-7349-2014, https://doi.org/10.5194/bg-11-7349-2014, 2014
Short summary
Short summary
We examine and discuss the portion of ocean alkalinity that varies in response to carbonate cycling and riverine alkalinity inputs using a new tracer, Alk*. We use this tracer to quantify the controls on marine carbonate saturation: at depth, we find carbonate cycling to be a minor control relative to organic matter cycling and pressure changes. In well-equilibrated surface water, we find carbonate cycling to be less important than temperature changes and freshwater cycling.
P. Malanotte-Rizzoli, V. Artale, G. L. Borzelli-Eusebi, S. Brenner, A. Crise, M. Gacic, N. Kress, S. Marullo, M. Ribera d'Alcalà, S. Sofianos, T. Tanhua, A. Theocharis, M. Alvarez, Y. Ashkenazy, A. Bergamasco, V. Cardin, S. Carniel, G. Civitarese, F. D'Ortenzio, J. Font, E. Garcia-Ladona, J. M. Garcia-Lafuente, A. Gogou, M. Gregoire, D. Hainbucher, H. Kontoyannis, V. Kovacevic, E. Kraskapoulou, G. Kroskos, A. Incarbona, M. G. Mazzocchi, M. Orlic, E. Ozsoy, A. Pascual, P.-M. Poulain, W. Roether, A. Rubino, K. Schroeder, J. Siokou-Frangou, E. Souvermezoglou, M. Sprovieri, J. Tintoré, and G. Triantafyllou
Ocean Sci., 10, 281–322, https://doi.org/10.5194/os-10-281-2014, https://doi.org/10.5194/os-10-281-2014, 2014
D. C. E. Bakker, B. Pfeil, K. Smith, S. Hankin, A. Olsen, S. R. Alin, C. Cosca, S. Harasawa, A. Kozyr, Y. Nojiri, K. M. O'Brien, U. Schuster, M. Telszewski, B. Tilbrook, C. Wada, J. Akl, L. Barbero, N. R. Bates, J. Boutin, Y. Bozec, W.-J. Cai, R. D. Castle, F. P. Chavez, L. Chen, M. Chierici, K. Currie, H. J. W. de Baar, W. Evans, R. A. Feely, A. Fransson, Z. Gao, B. Hales, N. J. Hardman-Mountford, M. Hoppema, W.-J. Huang, C. W. Hunt, B. Huss, T. Ichikawa, T. Johannessen, E. M. Jones, S. D. Jones, S. Jutterström, V. Kitidis, A. Körtzinger, P. Landschützer, S. K. Lauvset, N. Lefèvre, A. B. Manke, J. T. Mathis, L. Merlivat, N. Metzl, A. Murata, T. Newberger, A. M. Omar, T. Ono, G.-H. Park, K. Paterson, D. Pierrot, A. F. Ríos, C. L. Sabine, S. Saito, J. Salisbury, V. V. S. S. Sarma, R. Schlitzer, R. Sieger, I. Skjelvan, T. Steinhoff, K. F. Sullivan, H. Sun, A. J. Sutton, T. Suzuki, C. Sweeney, T. Takahashi, J. Tjiputra, N. Tsurushima, S. M. A. C. van Heuven, D. Vandemark, P. Vlahos, D. W. R. Wallace, R. Wanninkhof, and A. J. Watson
Earth Syst. Sci. Data, 6, 69–90, https://doi.org/10.5194/essd-6-69-2014, https://doi.org/10.5194/essd-6-69-2014, 2014
A. Schneider, T. Tanhua, W. Roether, and R. Steinfeldt
Ocean Sci., 10, 1–16, https://doi.org/10.5194/os-10-1-2014, https://doi.org/10.5194/os-10-1-2014, 2014
W. Roether, P. Jean-Baptiste, E. Fourré, and J. Sültenfuß
Ocean Sci., 9, 837–854, https://doi.org/10.5194/os-9-837-2013, https://doi.org/10.5194/os-9-837-2013, 2013
A. Schmittner, N. Gruber, A. C. Mix, R. M. Key, A. Tagliabue, and T. K. Westberry
Biogeosciences, 10, 5793–5816, https://doi.org/10.5194/bg-10-5793-2013, https://doi.org/10.5194/bg-10-5793-2013, 2013
Y. Plancherel, K. B. Rodgers, R. M. Key, A. R. Jacobson, and J. L. Sarmiento
Biogeosciences, 10, 4801–4831, https://doi.org/10.5194/bg-10-4801-2013, https://doi.org/10.5194/bg-10-4801-2013, 2013
Related subject area
Oceanography – Chemical
An updated version of the global interior ocean biogeochemical data product, GLODAPv2.2020
ARIOS: a database for ocean acidification assessment in the Iberian upwelling system (1976–2018)
OceanSODA-ETHZ: A global gridded data set of the surface ocean carbonate system for seasonal to decadal studies of ocean acidification
A uniform pCO2 climatology combining open and coastal oceans
Dissolved inorganic nutrients in the western Mediterranean Sea (2004–2017)
A global monthly climatology of oceanic total dissolved inorganic carbon: a neural network approach
A 17-year dataset of surface water fugacity of CO2 along with calculated pH, aragonite saturation state and air–sea CO2 fluxes in the northern Caribbean Sea
Global database of ratios of particulate organic carbon to thorium-234 in the ocean: improving estimates of the biological carbon pump
Global certified-reference-material- or reference-material-scaled nutrient gridded dataset GND13
GLODAPv2.2019 – an update of GLODAPv2
A global monthly climatology of total alkalinity: a neural network approach
Environmental parameters of shallow water habitats in the SW Baltic Sea
Autonomous seawater pCO2 and pH time series from 40 surface buoys and the emergence of anthropogenic trends
A rare intercomparison of nutrient analysis at sea: lessons learned and recommendations to enhance comparability of open-ocean nutrient data
SURATLANT: a 1993–2017 surface sampling in the central part of the North Atlantic subpolar gyre
FerryBox data in the North Sea from 2002 to 2005
Seasonal carbonate chemistry variability in marine surface waters of the US Pacific Northwest
The Ocean Carbon States Database: a proof-of-concept application of cluster analysis in the ocean carbon cycle
An internally consistent dataset of δ13C-DIC in the North Atlantic Ocean – NAC13v1
A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT)
The Global Ocean Data Analysis Project version 2 (GLODAPv2) – an internally consistent data product for the world ocean
A new global interior ocean mapped climatology: the 1° × 1° GLODAP version 2
Stable carbon isotopes of dissolved inorganic carbon for a zonal transect across the subpolar North Atlantic Ocean in summer 2014
In situ measurement of the biogeochemical properties of Southern Ocean mesoscale eddies in the Southwest Indian Ocean, April 2014
A high-frequency atmospheric and seawater pCO2 data set from 14 open-ocean sites using a moored autonomous system
Measurements of total alkalinity and inorganic dissolved carbon in the Atlantic Ocean and adjacent Southern Ocean between 2008 and 2010
Measurements of the dissolved inorganic carbon system and associated biogeochemical parameters in the Canadian Arctic, 1974–2009
An update to the Surface Ocean CO2 Atlas (SOCAT version 2)
Winter measurements of oceanic biogeochemical parameters in the Rockall Trough (2009–2012)
Repeat hydrography in the Mediterranean Sea, data from the Meteor cruise 84/3 in 2011
A uniform, quality controlled Surface Ocean CO2 Atlas (SOCAT)
Surface Ocean CO2 Atlas (SOCAT) gridded data products
Assessing the internal consistency of the CARINA data base in the Pacific sector of the Southern Ocean
CARINA TCO2 data in the Atlantic Ocean
CARINA data synthesis project: pH data scale unification and cruise adjustments
Nordic Seas dissolved oxygen data in CARINA
The CARINA data synthesis project: introduction and overview
The Irminger Sea and the Iceland Sea time series measurements of sea water carbon and nutrient chemistry 1983–2008
Assessing the internal consistency of the CARINA database in the Indian sector of the Southern Ocean
CARINA oxygen data in the Atlantic Ocean
Consistency of cruise data of the CARINA database in the Atlantic sector of the Southern Ocean
Are Olsen, Nico Lange, Robert M. Key, Toste Tanhua, Henry C. Bittig, Alex Kozyr, Marta Álvarez, Kumiko Azetsu-Scott, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Sara Jutterström, Camilla S. Landa, Siv K. Lauvset, Patrick Michaelis, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Anton Velo, Rik Wanninkhof, and Ryan J. Woosley
Earth Syst. Sci. Data, 12, 3653–3678, https://doi.org/10.5194/essd-12-3653-2020, https://doi.org/10.5194/essd-12-3653-2020, 2020
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by chemical analysis of water bottle samples at scientific cruises. GLODAPv2.2020 is the second update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality control, including systematic evaluation of measurement biases. This version contains data from 946 hydrographic cruises covering the world's oceans from 1972 to 2019.
Xosé Antonio Padin, Antón Velo, and Fiz F. Pérez
Earth Syst. Sci. Data, 12, 2647–2663, https://doi.org/10.5194/essd-12-2647-2020, https://doi.org/10.5194/essd-12-2647-2020, 2020
Short summary
Short summary
The ARIOS (Acidification in the Rias and the Iberian Continental Shelf) database holds biogeochemical information from 3357 oceanographic stations, giving 17 653 discrete samples. This unique collection is a starting point for evaluating ocean acidification in the Iberian upwelling system, characterized by intense biogeochemical interactions as an observation-based analysis, or for use as inputs in a coupled physical–biogeochemical model to disentangle these interactions at the ecosystem level.
Luke Gregor and Nicolas Gruber
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-300, https://doi.org/10.5194/essd-2020-300, 2020
Revised manuscript accepted for ESSD
Short summary
Short summary
Ocean acidification (OA) has altered the ocean’s carbonate chemistry, with consequences for marine life. Yet, no observation-based data set exists that permits to study changes in OA. We fill this gap with a global data set of relevant surface ocean parameters over the period 1985–2018. This data set, OceanSODA-ETHZ, was created by using satellite and other data to extrapolate ship-based measurements of carbon dioxide and total alkalinity from which parameters for OA were computed.
Peter Landschützer, Goulven G. Laruelle, Alizee Roobaert, and Pierre Regnier
Earth Syst. Sci. Data, 12, 2537–2553, https://doi.org/10.5194/essd-12-2537-2020, https://doi.org/10.5194/essd-12-2537-2020, 2020
Short summary
Short summary
In recent years, multiple estimates of the global air–sea CO2 flux emerged from upscaling shipboard pCO2 measurements. They are however limited to the open-ocean domain and do not consider the coastal ocean, i.e. a significant marine sink for CO2. We build towards an integrated pCO2 product that combines both the open-ocean and coastal-ocean domain and focus on the evaluation of the common overlap area of these products and how well the aquatic continuum is represented in the new climatology.
Malek Belgacem, Jacopo Chiggiato, Mireno Borghini, Bruno Pavoni, Gabriella Cerrati, Francesco Acri, Stefano Cozzi, Alberto Ribotti, Marta Álvarez, Siv K. Lauvset, and Katrin Schroeder
Earth Syst. Sci. Data, 12, 1985–2011, https://doi.org/10.5194/essd-12-1985-2020, https://doi.org/10.5194/essd-12-1985-2020, 2020
Short summary
Short summary
Long-term time series are a fundamental prerequisite to understanding and detecting climate shifts and trends. In marginal seas, such as the Mediterranean Sea, there are still monitoring gaps. An extensive dataset of dissolved inorganic nutrient profiles were collected between 2004 and 2017 in the western Mediterranean Sea to provide to the scientific community a publicly available, long-term, quality-controlled, internally consistent new database.
Daniel Broullón, Fiz F. Pérez, Antón Velo, Mario Hoppema, Are Olsen, Taro Takahashi, Robert M. Key, Toste Tanhua, J. Magdalena Santana-Casiano, and Alex Kozyr
Earth Syst. Sci. Data, 12, 1725–1743, https://doi.org/10.5194/essd-12-1725-2020, https://doi.org/10.5194/essd-12-1725-2020, 2020
Short summary
Short summary
This work offers a vision of the global ocean regarding the carbon cycle and the implications of ocean acidification through a climatology of a changing variable in the context of climate change: total dissolved inorganic carbon. The climatology was designed through artificial intelligence techniques to represent the mean state of the present ocean. It is very useful to introduce in models to evaluate the state of the ocean from different perspectives.
Rik Wanninkhof, Denis Pierrot, Kevin Sullivan, Leticia Barbero, and Joaquin Triñanes
Earth Syst. Sci. Data, 12, 1489–1509, https://doi.org/10.5194/essd-12-1489-2020, https://doi.org/10.5194/essd-12-1489-2020, 2020
Short summary
Short summary
This paper describes a 17-year dataset of over a million data points of automated partial pressure of CO2 (pCO2) measurements on large luxury cruise ships of Royal Caribbean Cruise Lines (RCCL). These data are used to provide trends of ocean acidification and air–sea CO2 fluxes. The effort was possible through a unique continuing industry (RCCL), academic (University of Miami) and governmental (NOAA) partnership.
Viena Puigcorbé, Pere Masqué, and Frédéric A. C. Le Moigne
Earth Syst. Sci. Data, 12, 1267–1285, https://doi.org/10.5194/essd-12-1267-2020, https://doi.org/10.5194/essd-12-1267-2020, 2020
Short summary
Short summary
The biological carbon pump is a mechanism by which the oceans capture atmospheric carbon dioxide thanks to microscopic marine algae. Quantifying its strength and efficiency is crucial to understand the global carbon budget and be able to forecast its trends. The radioactive pair 234Th : 238U has been extensively used for that purpose. This is a global compilation of carbon-to-234Th ratios (needed to convert the 234Th fluxes to carbon fluxes) that will contribute to improve our modeling efforts.
Michio Aoyama
Earth Syst. Sci. Data, 12, 487–499, https://doi.org/10.5194/essd-12-487-2020, https://doi.org/10.5194/essd-12-487-2020, 2020
Short summary
Short summary
A global nutrient gridded dataset that might be the basis for studies of more accurate spatial distributions of nutrients and their changes in the global ocean was created. This is an SI-traceable dataset of nitrate, phosphate, and silicate concentrations based on certified reference materials or reference materials (CRMs/RMs) of seawater nutrient concentration measurements used during many cruises by the author.
Are Olsen, Nico Lange, Robert M. Key, Toste Tanhua, Marta Álvarez, Susan Becker, Henry C. Bittig, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Steve D. Jones, Sara Jutterström, Maren K. Karlsen, Alex Kozyr, Siv K. Lauvset, Claire Lo Monaco, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Maciej Telszewski, Bronte Tilbrook, Anton Velo, and Rik Wanninkhof
Earth Syst. Sci. Data, 11, 1437–1461, https://doi.org/10.5194/essd-11-1437-2019, https://doi.org/10.5194/essd-11-1437-2019, 2019
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by chemical analysis of water bottle samples at scientific cruises. GLODAPv2.2019 is the first update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality control, including systematic evaluation of measurement biases. This version contains data from 840 hydrographic cruises covering the world's oceans from 1972 to 2017.
Daniel Broullón, Fiz F. Pérez, Antón Velo, Mario Hoppema, Are Olsen, Taro Takahashi, Robert M. Key, Toste Tanhua, Melchor González-Dávila, Emil Jeansson, Alex Kozyr, and Steven M. A. C. van Heuven
Earth Syst. Sci. Data, 11, 1109–1127, https://doi.org/10.5194/essd-11-1109-2019, https://doi.org/10.5194/essd-11-1109-2019, 2019
Short summary
Short summary
In this work, we are contributing to the knowledge of the consequences of climate change in the ocean. We have focused on a variable related to this process: total alkalinity. We have designed a monthly climatology of total alkalinity using artificial intelligence techniques, that is, a representation of the average capacity of the ocean in the last decades to decelerate the consequences of climate change. The climatology is especially useful to infer the evolution of the ocean through models.
Markus Franz, Christian Lieberum, Gesche Bock, and Rolf Karez
Earth Syst. Sci. Data, 11, 947–957, https://doi.org/10.5194/essd-11-947-2019, https://doi.org/10.5194/essd-11-947-2019, 2019
Short summary
Short summary
The water parameters in coastal zones are highly variable, making predictions about its dynamics difficult. However, in situ measurements performed in these habitats are still scarce. Therefore we designed a monitoring study to record the environmental conditions in shallow waters by using data loggers and the collection of water samples. The data reveal great variabilities of water parameters and could be used to support experimental and modeling approaches.
Adrienne J. Sutton, Richard A. Feely, Stacy Maenner-Jones, Sylvia Musielwicz, John Osborne, Colin Dietrich, Natalie Monacci, Jessica Cross, Randy Bott, Alex Kozyr, Andreas J. Andersson, Nicholas R. Bates, Wei-Jun Cai, Meghan F. Cronin, Eric H. De Carlo, Burke Hales, Stephan D. Howden, Charity M. Lee, Derek P. Manzello, Michael J. McPhaden, Melissa Meléndez, John B. Mickett, Jan A. Newton, Scott E. Noakes, Jae Hoon Noh, Solveig R. Olafsdottir, Joseph E. Salisbury, Uwe Send, Thomas W. Trull, Douglas C. Vandemark, and Robert A. Weller
Earth Syst. Sci. Data, 11, 421–439, https://doi.org/10.5194/essd-11-421-2019, https://doi.org/10.5194/essd-11-421-2019, 2019
Short summary
Short summary
Long-term observations are critical records for distinguishing natural cycles from climate change. We present a data set of 40 surface ocean CO2 and pH time series that suggests the time length necessary to detect a trend in seawater CO2 due to uptake of atmospheric CO2 varies from 8 years in the least variable ocean regions to 41 years in the most variable coastal regions. This data set provides a tool to evaluate natural cycles of ocean CO2, with long-term trends emerging as records lengthen.
Triona McGrath, Margot Cronin, Elizabeth Kerrigan, Douglas Wallace, Clynton Gregory, Claire Normandeau, and Evin McGovern
Earth Syst. Sci. Data, 11, 355–374, https://doi.org/10.5194/essd-11-355-2019, https://doi.org/10.5194/essd-11-355-2019, 2019
Short summary
Short summary
We report results from an intercomparison exercise on the analysis of nutrients at sea. Two independent teams (Marine Institute, Ireland and Dalhousie University Canada) carried out an analysis of a GO-SHIP hydrographic section. The cruise provided a unique opportunity to assess the likely comparability of nutrient data collected following GO-SHIP protocols. Datasets were high quality and compared well but highlighted a number of issues relevant to the comparability of global nutrient data.
Gilles Reverdin, Nicolas Metzl, Solveig Olafsdottir, Virginie Racapé, Taro Takahashi, Marion Benetti, Hedinn Valdimarsson, Alice Benoit-Cattin, Magnus Danielsen, Jonathan Fin, Aicha Naamar, Denis Pierrot, Kevin Sullivan, Francis Bringas, and Gustavo Goni
Earth Syst. Sci. Data, 10, 1901–1924, https://doi.org/10.5194/essd-10-1901-2018, https://doi.org/10.5194/essd-10-1901-2018, 2018
Short summary
Short summary
This paper presents the SURATLANT data set (SURveillance ATLANTique), consisting of individual data of temperature, salinity, parameters of the carbonate system, nutrients, and water stable isotopes (δ18O and δD) collected mostly from ships of opportunity since 1993 along transects between Iceland and Newfoundland. These data are used to quantify the seasonal cycle and can be used to investigate long-term tendencies in the surface ocean, including of pCO2 and pH.
Wilhelm Petersen, Susanne Reinke, Gisbert Breitbach, Michail Petschatnikov, Henning Wehde, and Henrike Thomas
Earth Syst. Sci. Data, 10, 1729–1734, https://doi.org/10.5194/essd-10-1729-2018, https://doi.org/10.5194/essd-10-1729-2018, 2018
Short summary
Short summary
From 2002 to 2005 a FerryBox system was installed aboard two different ferries traveling between Cuxhaven (Germany) and Harwich (UK) on a daily basis. The FerryBox system is an automated flow-through monitoring system for measuring oceanographic and biogeochemical parameters installed on ships of opportunity. The data set provides the parameters water temperature, salinity, dissolved oxygen and chlorophyll a fluorescence.
Andrea J. Fassbender, Simone R. Alin, Richard A. Feely, Adrienne J. Sutton, Jan A. Newton, Christopher Krembs, Julia Bos, Mya Keyzers, Allan Devol, Wendi Ruef, and Greg Pelletier
Earth Syst. Sci. Data, 10, 1367–1401, https://doi.org/10.5194/essd-10-1367-2018, https://doi.org/10.5194/essd-10-1367-2018, 2018
Short summary
Short summary
Ocean acidification (OA) is difficult to identify in coastal marine waters due to the magnitude of natural variability and lack of historical baseline information. To provide regional context for ongoing research, adaptation, and management efforts, we have collated high-quality publicly available data to characterize seasonal cycles of OA-relevant parameters in the Pacific Northwest marine surface waters. Large nonstationary chemical gradients from the open ocean into the Salish Sea are found.
Rebecca Latto and Anastasia Romanou
Earth Syst. Sci. Data, 10, 609–626, https://doi.org/10.5194/essd-10-609-2018, https://doi.org/10.5194/essd-10-609-2018, 2018
Short summary
Short summary
It is crucial to study the ocean’s role in the global carbon cycle in order to understand and predict the increasing concentrations of CO2 in the atmosphere, which is regarded as one of the main drivers of global warming. By analyzing the relationship between surface ocean CO2 and temperature, we seek to understand the pathways by which the ocean controls carbon fluctuations in the atmosphere. We employ cluster analysis as a tool for revealing patterns in where and when this relationship occurs.
Meike Becker, Nils Andersen, Helmut Erlenkeuser, Matthew P. Humphreys, Toste Tanhua, and Arne Körtzinger
Earth Syst. Sci. Data, 8, 559–570, https://doi.org/10.5194/essd-8-559-2016, https://doi.org/10.5194/essd-8-559-2016, 2016
Short summary
Short summary
The stable carbon isotope composition of dissolved inorganic carbon (δ13C-DIC) can be used to quantify fluxes within the marine carbon system such as the exchange between ocean and atmosphere or the amount of anthropogenic carbon in the water column. In this study, an internally consistent δ13C-DIC dataset for the North Atlantic is presented. The data have undergone a secondary quality control during which systematic biases between the respective cruises have been quantified and adjusted.
Dorothee C. E. Bakker, Benjamin Pfeil, Camilla S. Landa, Nicolas Metzl, Kevin M. O'Brien, Are Olsen, Karl Smith, Cathy Cosca, Sumiko Harasawa, Stephen D. Jones, Shin-ichiro Nakaoka, Yukihiro Nojiri, Ute Schuster, Tobias Steinhoff, Colm Sweeney, Taro Takahashi, Bronte Tilbrook, Chisato Wada, Rik Wanninkhof, Simone R. Alin, Carlos F. Balestrini, Leticia Barbero, Nicholas R. Bates, Alejandro A. Bianchi, Frédéric Bonou, Jacqueline Boutin, Yann Bozec, Eugene F. Burger, Wei-Jun Cai, Robert D. Castle, Liqi Chen, Melissa Chierici, Kim Currie, Wiley Evans, Charles Featherstone, Richard A. Feely, Agneta Fransson, Catherine Goyet, Naomi Greenwood, Luke Gregor, Steven Hankin, Nick J. Hardman-Mountford, Jérôme Harlay, Judith Hauck, Mario Hoppema, Matthew P. Humphreys, Christopher W. Hunt, Betty Huss, J. Severino P. Ibánhez, Truls Johannessen, Ralph Keeling, Vassilis Kitidis, Arne Körtzinger, Alex Kozyr, Evangelia Krasakopoulou, Akira Kuwata, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Claire Lo Monaco, Ansley Manke, Jeremy T. Mathis, Liliane Merlivat, Frank J. Millero, Pedro M. S. Monteiro, David R. Munro, Akihiko Murata, Timothy Newberger, Abdirahman M. Omar, Tsuneo Ono, Kristina Paterson, David Pearce, Denis Pierrot, Lisa L. Robbins, Shu Saito, Joe Salisbury, Reiner Schlitzer, Bernd Schneider, Roland Schweitzer, Rainer Sieger, Ingunn Skjelvan, Kevin F. Sullivan, Stewart C. Sutherland, Adrienne J. Sutton, Kazuaki Tadokoro, Maciej Telszewski, Matthias Tuma, Steven M. A. C. van Heuven, Doug Vandemark, Brian Ward, Andrew J. Watson, and Suqing Xu
Earth Syst. Sci. Data, 8, 383–413, https://doi.org/10.5194/essd-8-383-2016, https://doi.org/10.5194/essd-8-383-2016, 2016
Short summary
Short summary
Version 3 of the Surface Ocean CO2 Atlas (www.socat.info) has 14.5 million CO2 (carbon dioxide) values for the years 1957 to 2014 covering the global oceans and coastal seas. Version 3 is an update to version 2 with a longer record and 44 % more CO2 values. The CO2 measurements have been made on ships, fixed moorings and drifting buoys. SOCAT enables quantification of the ocean carbon sink and ocean acidification, as well as model evaluation, thus informing climate negotiations.
Are Olsen, Robert M. Key, Steven van Heuven, Siv K. Lauvset, Anton Velo, Xiaohua Lin, Carsten Schirnick, Alex Kozyr, Toste Tanhua, Mario Hoppema, Sara Jutterström, Reiner Steinfeldt, Emil Jeansson, Masao Ishii, Fiz F. Pérez, and Toru Suzuki
Earth Syst. Sci. Data, 8, 297–323, https://doi.org/10.5194/essd-8-297-2016, https://doi.org/10.5194/essd-8-297-2016, 2016
Short summary
Short summary
The GLODAPv2 data product collects data from more than 700 hydrographic cruises into a global and internally calibrated product. It provides access to the data from almost all ocean carbon cruises carried out since the 1970s and is a unique resource for marine science, in particular regarding the ocean carbon cycle. GLODAPv2 will form the foundation for future routine synthesis of hydrographic data of the same sort.
Siv K. Lauvset, Robert M. Key, Are Olsen, Steven van Heuven, Anton Velo, Xiaohua Lin, Carsten Schirnick, Alex Kozyr, Toste Tanhua, Mario Hoppema, Sara Jutterström, Reiner Steinfeldt, Emil Jeansson, Masao Ishii, Fiz F. Perez, Toru Suzuki, and Sylvain Watelet
Earth Syst. Sci. Data, 8, 325–340, https://doi.org/10.5194/essd-8-325-2016, https://doi.org/10.5194/essd-8-325-2016, 2016
Short summary
Short summary
This paper describes the mapped climatologies that are part of the Global Ocean Data Analysis Project Version 2 (GLODAPv2). GLODAPv2 is a uniformly calibrated open ocean data product on inorganic carbon and carbon-relevant variables. Global mapped climatologies of the total dissolved inorganic carbon, total alkalinity, pH, saturation state of calcite and aragonite, anthropogenic carbon, preindustrial carbon content, inorganic macronutrients, oxygen, salinity, and temperature have been created.
Matthew P. Humphreys, Florence M. Greatrix, Eithne Tynan, Eric P. Achterberg, Alex M. Griffiths, Claudia H. Fry, Rebecca Garley, Alison McDonald, and Adrian J. Boyce
Earth Syst. Sci. Data, 8, 221–233, https://doi.org/10.5194/essd-8-221-2016, https://doi.org/10.5194/essd-8-221-2016, 2016
Short summary
Short summary
This paper reports the stable isotope composition of dissolved inorganic carbon in seawater for a transect from west to east across the North Atlantic Ocean. The results can be used to study oceanic uptake of anthropogenic carbon dioxide, and also to investigate the natural biological carbon pump. We also provide stable DIC isotope results for two batches of Dickson seawater CRMs to enable intercomparisons with other studies.
S. de Villiers, K. Siswana, and K. Vena
Earth Syst. Sci. Data, 7, 415–422, https://doi.org/10.5194/essd-7-415-2015, https://doi.org/10.5194/essd-7-415-2015, 2015
Short summary
Short summary
A "young" warm-core eddy and an "older" warm-core eddy further south were surveyed in the Southern Ocean to study differences in their heat, salt and nutrient characteristics. Results show that warm eddies that migrate from the polar front further south lose heat but gain dissolved silicate and exhibit much higher levels of chlorophyll-a. This demonstrates important heat and nutrient exchange processes associated with eddy transport in the ocean.
A. J. Sutton, C. L. Sabine, S. Maenner-Jones, N. Lawrence-Slavas, C. Meinig, R. A. Feely, J. T. Mathis, S. Musielewicz, R. Bott, P. D. McLain, H. J. Fought, and A. Kozyr
Earth Syst. Sci. Data, 6, 353–366, https://doi.org/10.5194/essd-6-353-2014, https://doi.org/10.5194/essd-6-353-2014, 2014
Short summary
Short summary
In an effort to track ocean change, sustained ocean observations are becoming increasingly important. Advancements in the ocean carbon observation network over the last decade have dramatically improved our ability to understand how rising atmospheric CO2 and climate change affect the chemistry of the oceans and their marine ecosystems. Here we describe one of those advancements, the MAPCO2 system, and the climate-quality data produced from 14 ocean CO2 observatories.
U. Schuster, A. J. Watson, D. C. E. Bakker, A. M. de Boer, E. M. Jones, G. A. Lee, O. Legge, A. Louwerse, J. Riley, and S. Scally
Earth Syst. Sci. Data, 6, 175–183, https://doi.org/10.5194/essd-6-175-2014, https://doi.org/10.5194/essd-6-175-2014, 2014
K. E. Giesbrecht, L. A. Miller, M. Davelaar, S. Zimmermann, E. Carmack, W. K. Johnson, R. W. Macdonald, F. McLaughlin, A. Mucci, W. J. Williams, C. S. Wong, and M. Yamamoto-Kawai
Earth Syst. Sci. Data, 6, 91–104, https://doi.org/10.5194/essd-6-91-2014, https://doi.org/10.5194/essd-6-91-2014, 2014
D. C. E. Bakker, B. Pfeil, K. Smith, S. Hankin, A. Olsen, S. R. Alin, C. Cosca, S. Harasawa, A. Kozyr, Y. Nojiri, K. M. O'Brien, U. Schuster, M. Telszewski, B. Tilbrook, C. Wada, J. Akl, L. Barbero, N. R. Bates, J. Boutin, Y. Bozec, W.-J. Cai, R. D. Castle, F. P. Chavez, L. Chen, M. Chierici, K. Currie, H. J. W. de Baar, W. Evans, R. A. Feely, A. Fransson, Z. Gao, B. Hales, N. J. Hardman-Mountford, M. Hoppema, W.-J. Huang, C. W. Hunt, B. Huss, T. Ichikawa, T. Johannessen, E. M. Jones, S. D. Jones, S. Jutterström, V. Kitidis, A. Körtzinger, P. Landschützer, S. K. Lauvset, N. Lefèvre, A. B. Manke, J. T. Mathis, L. Merlivat, N. Metzl, A. Murata, T. Newberger, A. M. Omar, T. Ono, G.-H. Park, K. Paterson, D. Pierrot, A. F. Ríos, C. L. Sabine, S. Saito, J. Salisbury, V. V. S. S. Sarma, R. Schlitzer, R. Sieger, I. Skjelvan, T. Steinhoff, K. F. Sullivan, H. Sun, A. J. Sutton, T. Suzuki, C. Sweeney, T. Takahashi, J. Tjiputra, N. Tsurushima, S. M. A. C. van Heuven, D. Vandemark, P. Vlahos, D. W. R. Wallace, R. Wanninkhof, and A. J. Watson
Earth Syst. Sci. Data, 6, 69–90, https://doi.org/10.5194/essd-6-69-2014, https://doi.org/10.5194/essd-6-69-2014, 2014
T. McGrath, C. Kivimäe, E. McGovern, R. R. Cave, and E. Joyce
Earth Syst. Sci. Data, 5, 375–383, https://doi.org/10.5194/essd-5-375-2013, https://doi.org/10.5194/essd-5-375-2013, 2013
T. Tanhua, D. Hainbucher, V. Cardin, M. Álvarez, G. Civitarese, A. P. McNichol, and R. M. Key
Earth Syst. Sci. Data, 5, 289–294, https://doi.org/10.5194/essd-5-289-2013, https://doi.org/10.5194/essd-5-289-2013, 2013
B. Pfeil, A. Olsen, D. C. E. Bakker, S. Hankin, H. Koyuk, A. Kozyr, J. Malczyk, A. Manke, N. Metzl, C. L. Sabine, J. Akl, S. R. Alin, N. Bates, R. G. J. Bellerby, A. Borges, J. Boutin, P. J. Brown, W.-J. Cai, F. P. Chavez, A. Chen, C. Cosca, A. J. Fassbender, R. A. Feely, M. González-Dávila, C. Goyet, B. Hales, N. Hardman-Mountford, C. Heinze, M. Hood, M. Hoppema, C. W. Hunt, D. Hydes, M. Ishii, T. Johannessen, S. D. Jones, R. M. Key, A. Körtzinger, P. Landschützer, S. K. Lauvset, N. Lefèvre, A. Lenton, A. Lourantou, L. Merlivat, T. Midorikawa, L. Mintrop, C. Miyazaki, A. Murata, A. Nakadate, Y. Nakano, S. Nakaoka, Y. Nojiri, A. M. Omar, X. A. Padin, G.-H. Park, K. Paterson, F. F. Perez, D. Pierrot, A. Poisson, A. F. Ríos, J. M. Santana-Casiano, J. Salisbury, V. V. S. S. Sarma, R. Schlitzer, B. Schneider, U. Schuster, R. Sieger, I. Skjelvan, T. Steinhoff, T. Suzuki, T. Takahashi, K. Tedesco, M. Telszewski, H. Thomas, B. Tilbrook, J. Tjiputra, D. Vandemark, T. Veness, R. Wanninkhof, A. J. Watson, R. Weiss, C. S. Wong, and H. Yoshikawa-Inoue
Earth Syst. Sci. Data, 5, 125–143, https://doi.org/10.5194/essd-5-125-2013, https://doi.org/10.5194/essd-5-125-2013, 2013
C. L. Sabine, S. Hankin, H. Koyuk, D. C. E. Bakker, B. Pfeil, A. Olsen, N. Metzl, A. Kozyr, A. Fassbender, A. Manke, J. Malczyk, J. Akl, S. R. Alin, R. G. J. Bellerby, A. Borges, J. Boutin, P. J. Brown, W.-J. Cai, F. P. Chavez, A. Chen, C. Cosca, R. A. Feely, M. González-Dávila, C. Goyet, N. Hardman-Mountford, C. Heinze, M. Hoppema, C. W. Hunt, D. Hydes, M. Ishii, T. Johannessen, R. M. Key, A. Körtzinger, P. Landschützer, S. K. Lauvset, N. Lefèvre, A. Lenton, A. Lourantou, L. Merlivat, T. Midorikawa, L. Mintrop, C. Miyazaki, A. Murata, A. Nakadate, Y. Nakano, S. Nakaoka, Y. Nojiri, A. M. Omar, X. A. Padin, G.-H. Park, K. Paterson, F. F. Perez, D. Pierrot, A. Poisson, A. F. Ríos, J. Salisbury, J. M. Santana-Casiano, V. V. S. S. Sarma, R. Schlitzer, B. Schneider, U. Schuster, R. Sieger, I. Skjelvan, T. Steinhoff, T. Suzuki, T. Takahashi, K. Tedesco, M. Telszewski, H. Thomas, B. Tilbrook, D. Vandemark, T. Veness, A. J. Watson, R. Weiss, C. S. Wong, and H. Yoshikawa-Inoue
Earth Syst. Sci. Data, 5, 145–153, https://doi.org/10.5194/essd-5-145-2013, https://doi.org/10.5194/essd-5-145-2013, 2013
C. L. Sabine, M. Hoppema, R. M. Key, B. Tilbrook, S. van Heuven, C. Lo Monaco, N. Metzl, M. Ishii, A. Murata, and S. Musielewicz
Earth Syst. Sci. Data, 2, 195–204, https://doi.org/10.5194/essd-2-195-2010, https://doi.org/10.5194/essd-2-195-2010, 2010
D. Pierrot, P. Brown, S. Van Heuven, T. Tanhua, U. Schuster, R. Wanninkhof, and R. M. Key
Earth Syst. Sci. Data, 2, 177–187, https://doi.org/10.5194/essd-2-177-2010, https://doi.org/10.5194/essd-2-177-2010, 2010
A. Velo, F. F. Pérez, X. Lin, R. M. Key, T. Tanhua, M. de la Paz, A. Olsen, S. van Heuven, S. Jutterström, and A. F. Ríos
Earth Syst. Sci. Data, 2, 133–155, https://doi.org/10.5194/essd-2-133-2010, https://doi.org/10.5194/essd-2-133-2010, 2010
E. Falck and A. Olsen
Earth Syst. Sci. Data, 2, 123–131, https://doi.org/10.5194/essd-2-123-2010, https://doi.org/10.5194/essd-2-123-2010, 2010
R. M. Key, T. Tanhua, A. Olsen, M. Hoppema, S. Jutterström, C. Schirnick, S. van Heuven, A. Kozyr, X. Lin, A. Velo, D. W. R. Wallace, and L. Mintrop
Earth Syst. Sci. Data, 2, 105–121, https://doi.org/10.5194/essd-2-105-2010, https://doi.org/10.5194/essd-2-105-2010, 2010
J. Olafsson, S. R. Olafsdottir, A. Benoit-Cattin, and T. Takahashi
Earth Syst. Sci. Data, 2, 99–104, https://doi.org/10.5194/essd-2-99-2010, https://doi.org/10.5194/essd-2-99-2010, 2010
C. Lo Monaco, M. Álvarez, R. M. Key, X. Lin, T. Tanhua, B. Tilbrook, D. C. E. Bakker, S. van Heuven, M. Hoppema, N. Metzl, A. F. Ríos, C. L. Sabine, and A. Velo
Earth Syst. Sci. Data, 2, 51–70, https://doi.org/10.5194/essd-2-51-2010, https://doi.org/10.5194/essd-2-51-2010, 2010
I. Stendardo, N. Gruber, and A. Körtzinger
Earth Syst. Sci. Data, 1, 87–100, https://doi.org/10.5194/essd-1-87-2009, https://doi.org/10.5194/essd-1-87-2009, 2009
M. Hoppema, A. Velo, S. van Heuven, T. Tanhua, R. M. Key, X. Lin, D. C. E. Bakker, F. F. Perez, A. F. Ríos, C. Lo Monaco, C. L. Sabine, M. Álvarez, and R. G. J. Bellerby
Earth Syst. Sci. Data, 1, 63–75, https://doi.org/10.5194/essd-1-63-2009, https://doi.org/10.5194/essd-1-63-2009, 2009
Cited articles
Aldrich, L. T. and Nier, A. O.: The occurrence of 3He in natural
sources of helium, Phys. Rev., 74, 1590–1594, 1948.
Bainbridge, A. E., Sandoval, P., and Suess, H. E.: Natural tritium
measurements by ethane counting, Science, 134, 552–553, 1961.
Bainbridge, A. E., Östlund, H. G., Craig, H., Broecker, W. S., and
Spencer, D. W.: GEOSECS Atlantic, Pacific, and Indian Ocean Expeditions:
Shore-based data and graphics, GEOSECS ATLAS, National Science Foundation,
Washington, D.C., USA, 1987.
Bayer, R., Schlosser, P., Bonisch, G., Rupp, H., Zaucker, F., and Zimmek, G.:
Performance and blank components of a mass spectrometric system for routine
measurement of helium isotopes and tritium by 3He ingrowth method,
Sitzungberichte der Heidelberger Akademie der Wissenschaften,
Mathematisch-naturwissenschaftliche Klasse, 5, 241–279, 1989.
Bianchi, D., Sarmiento, J. L., Gnanadesikan, A., Key, R. M., Schlosser, P.,
and Newton, R.: Low helium flux from the mantle inferred from simulations of
oceanic helium isotope data, Earth Planet. Sc. Lett., 297, 379–386, 2010.
Broecker, W. S., Sutherland, S. C., and Smethie, W. M.: Oceanic radiocarbon:
separation of the natural and bomb components, Global Biogeochem. Cy., 9,
263–288, 1995.
Brown, K., Dingley, K. H., and Turteltaub, K. W.: Accelerator mass
spectrometry for biomedical research, Method. Enzymol., 402, 423–443, 2005.
Cameron, J. F.: Radioactive dating and methods of low-level counting,
Proceedings of “Radioactive Dating and Methods of Low-Level Counting”,
International Atomic Energy Agency, Monaco, 2–10 March 1967, 543–574, 1967.
Chiarappa-Zucca, M. L., Dingley, K. H., Roberts, M. L., Velsko, C. A., and
Love, A. H.: Sample preparation for quantification of tritium by acclerator
mass spectrometry, Anal. Chem., 74, 6285–6290, 2002.
Clarke, W. B.: Search for 3He and 4He in Arata-Style
Palladium Cathods I: a negative result, Fusion Sci. Technol., 40, 147–151,
https://doi.org/10.13182/FST01-A189, 2001.
Clarke, W. B. and Kugler, G.: Dissolved helium in groundwater: a possible
method for uranium and thorium prospecting, Econ. Geol., 68, 243–251, 1973.
Clarke, W. B. and Oliver, B. M.: Response to “Comments on `Search for
3He and 4He in Arata-style palladium cathodes I: a
negative result' and `Search for 3He and 4He in
Arata-style palladium cathodes II: evidence for tritium production”', Fusion
Sci. Technol., 43, 135–136, 2003.
Clarke, W. B., Beg, M. A., and Craig, H.: Excess 3He in the sea:
evidence for terrestrial primordial helium, Earth Planet. Sc. Lett., 6,
213–220, 1969.
Clarke, W. B., Beg, M. A., and Craig, H.: Excess Helium 3 at the North
Pacific GEOSECS station, J. Geophys. Res., 75, 7676–7678, 1970.
Clarke, W. B., Jenkins, W. J., and Top, Z.: Determination of tritium by
spectrometric measurement of 3He, Int. J. Appl. Radiat. Is., 27,
515–525, 1976.
Clarke, W. B., Oliver, B. M., McKubre, M. C. H., Tanzella, F. L., and
Tripodi, P.: Search for 3He and 4He in Arata-Style
Palladium Cathodes II: Evidence of tritium production, Fusion Sci. Technol.,
40, 152–167, https://doi.org/10.13182/FST01-A190, 2001.
Cornog, R. and Libby, W. F.: Production of radioactive hydrogen by neutron
bombardment of boron and nitrogen, Phys. Rev., 59, p. 1046, 1941.
Craig, H. and Clarke, W. B.: Oceanic 3He: contribution from
cosmogenic tritium, Earth Planet. Sc. Lett., 9, 45–48, 1970.
Craig, H., Clarke, W. B., and Beg, M. A.: Excess 3He in deep water
on the East Pacific Rise, Earth Planet. Sc. Lett., 26, 125–132, 1975.
Currie, L. A., Libby, W. F., and Wolfgang, R. L.: Tritium production by high
energy protons, Phys. Rev., 101, 1557–1563, 1956.
Doney, S. C. and Jenkins, W. J.: Ventilation of the deep western boundary
current and abyssal Western North Atlantic: Estimates from tritium and
3He distributions, J. Phys. Oceanogr., 24, 638-659, 1994.
Doney, S. C., Glover, D. M., and Jenkins, W. J.: A model function of the
global bomb-tritium distribution in precipitation, 1960–1986, J. Geophys.
Res., 97, 5481–5492, 1992.
Dorsey, H. G. and Peterson, W. H.: Tritium in the Arctic Ocean and East
Greenland Current, Earth Planet. Sc. Lett., 32, 342–350, 1976.
Dreisigacker, E. and Roether, W.: Tritium and 90Sr in North
Atlantic surface water, Earth Planet. Sc. Lett., 38, 301–312, 1978.
Fine, R. A. and Östlund, H. G.: Source function for tritium transport
models in the Pacific, Geophys. Res. Lett., 4, 461–464, 1977.
Fine, R. A., Reid, J. L., and Östlund, H. G.: Circulation of tritium in
the Pacific Ocean, J. Phys. Oceanogr., 11, 3–14, 1981.
Fine, R. A., Peterson, W. H., and Östlund, H. G.: The penetration of
tritium into the tropical Pacific, J. Phys. Oceanogr., 17, 553–564, 1987.
Fuchs, G., Roether, W., and Schlosser, P.: Excess 3He in the ocean
surface layer, J. Geophys. Res., 92, 6559–6568, 1987.
German, C. R., Casciotti, K. L., Dutay, J.-C., Heimburger, L. E., Jenkins, W.
J., Measures, C., Mills, R. A., Obata, H., Schlitzer, R., Tagliabue, A.,
Turner, D. R., and Whitby, H.: Hydrothermal impacts on trace element and
isotope ocean biogeochemistry, Philos. T. Roy. Soc. A, 374, 20130035,
https://doi.org/10.1098/rsta.2016.0035, 2016.
Glagola, B. G., Phillips, G. W., Marlow, K. W., Myers, L. T., and Omohundro,
R. J.: Low level tritium detection using accelerator mass spectrometry, Nucl.
Instrum. Meth. B, 5, 221–225, 1984.
Grosse, A. V., Johnston, W. M., Wolfgang, R. L., and Libby, W. F.: Tritium in
nature, Science, 113, 1–2, 1951.
Holzer, M., DeVries, T., Bianchi, D., Newton, R., Schlosser, P., and
Winckler, G.: Objective estimates of mantle 3He in the ocean and
implications for constraining the deep ocean circulation, Earth Planet. Sc.
Lett., 458, 305–314, 2017.
Israel, G. W.: Messung des Tritium-Jahresganges im Regen 1960–1961 nach
Isotopenanreicherung im Trnnrohr, Z. Naturforschg., 17a, 925–929, 1962.
Jenkins, W. J.: Tritium-helium dating in the Sargasso Sea: a measurement of
oxygen utilization rates, Science, 196, 291–292, 1977.
Jenkins, W. J.: 3H and 3He in the Beta Triangle:
Observations of gyre ventilation and oxygen utilization rates, J. Phys.
Oceanogr., 17, 763–783, 1987.
Jenkins, W. J.: Nitrate flux into the euphotic zone near Bermuda, Nature,
331, 521–523, 1988.
Jenkins, W. J.: Studying Thermocline Ventilation and Circulation Using
Tritium and 3He, J. Geophys. Res., 103, 15817–15831, 1998.
Jenkins, W. J. and Clarke, W. B.: The distribution of 3He in the
western Atlantic Ocean, Deep-Sea Res., 23, 481–494, 1976.
Jenkins, W. J. and Doney, S. C.: The Subtropical Nutrient Spiral, Global
Biogeochem. Cy., 17, 1110, https://doi.org/10.1029/2003GB002085, 2003.
Jenkins, W. J. and Rhines, P. B.: Tritium in the deep North Atlantic Ocean,
Nature, 286, 877–880, 1980.
Jenkins, W. J. and Smethie, W. M.: Transient tracers track ocean climate
signals, Oceanus, 39, 29–32, 1996.
Jenkins, W. J., Edmond, J. M., and Corliss, J. B.: Excess 3He and
4He in Galapagos submarine hydrothermal waters, Nature, 272,
156–158, 1978.
Jenkins, W. J., Lott, D. E., Pratt, M. W., and Boudreau, R. D.: Anthropogenic
tritium in South Atlantic bottom water, Nature, 305, 45–46, 1983.
Jenkins, W. J., Lott, D. E. I., German, C. R., Cahill, K. L., Goudreau, J.,
and Longworth, B. E.: The deep distributions of helium isotopes, radiocarbon,
and noble gases along the U.S. GEOTRACES East Pacific zonal transect (GP16),
Mar. Chem., 201, 167–182, 2018a.
Jenkins, W. J., Doney, S. C., Fendrock, M. A., Fine, R. A., Gamo, T.,
Jean-Baptiste, P., Key, R. M., Klein, B., Lupton, J. E., Rhein, M., Roether,
W., Sano, Y., Schlitzer, R., Schlosser, P., Swift, J. H.: A comprehensive
global oceanic dataset of discrete measurements of helium isotope and tritium
during the hydrographic cruises on various ships from 1952-10-21 to
2016-01-22 (NCEI Accession 0176626). Version 2.2. NOAA National Centers for
Environmental Information, Dataset, https://doi.org/10.25921/c1sn-9631, 2018b.
Kaufman, S. and Libby, W. F.: The natural distribution of tritium, Phys.
Rev., 93, 1337–1344, 1954.
Kurz, M. D. and Jenkins, W. J.: The distribution of helium in oceanic basalt
glasses, Earth Planet. Sc. Lett., 53, 41–54, 1981.
Kurz, M. D., Jenkins, W. J., and Hart, S. R.: Helium isotopic systematics of
oceanic islands and mantle heterogeneity, Nature, 297, 43–47, 1982.
Libby, W. F.: Atmospheric helium three and radiocarbon from cosmic radiation,
Phys. Rev., 59, 671–672, 1946.
Lott, D. E.: Improvements in noble gas separation methodology: a nude
cryogenic trap, Geochem. Geophy. Geosy., 2, 2001GC000202,
https://doi.org/10.1029/2001GC000202, 2001.
Lott, D. E. and Jenkins, W. J.: An automated cryogenic charcoal trap system
for helium isotope mass spectrometry, Rev. Sci. Instrum., 55, 1982–1988,
1984.
Lott, D. E. and Jenkins, W. J.: Advances in the analysis and shipboard
processing of tritium and helium samples, International WOCE Newsletter, 30,
27–30, 1998.
Ludin, A., Weppernig, R., Bönisch, G., and Schlosser, P.: Mass
spectrometric measurement of helium isotopes and tritium, Technical Report
No. 98.6, 41 pp., Lamont-Doherty Earth Observatory, Columbia University, New
York, USA, 1998.
Lupton, J. E. and Craig, H.: Excess He-3 in oceanic basalts: evidence for
terrestrial primordial helium, Earth Planet. Sc. Lett., 26, 133–139, 1975.
Lupton, J. E. and Jenkins, W. J.: Evolution of the South Pacific helium plume
over the past 3 decades, Geochem. Geophy. Geosy., 18, 1810–1823, 2017.
Mamyrin, B. A.: Time-of-flight mass spectrometry (concepts, achievements and
prospects), Int. J. Mass Spectrom., 206, 251–266, 2001.
Michel, R. L.: Tritium inventories of the world oceans and their
implications, Nature, 263, 103–106, 1976.
Michel, R. L. and Suess, H. E.: Bomb tritium in the Pacific Ocean, J.
Geophys. Res., 80, 4139–4152, 1975.
Momoshima, N., Nakamura, Y., and Takashima, Y.: Vial Effect And Background
Subtraction Method In Low-Level Tritium Measurement By Liquid
Scintillation-Counter, Int. J. Appl. Radiat. Is., 34, 1623–1626, 1983.
Östlund, H. G.: The residence time of the freshwater component in the
Arctic Ocean, J. Geophys. Res., 87, 2035–2043, 1982.
Östlund, H. G. and Werner, E.: The electrolytic enrichment of tritium and
deuterium for natural tritium measurements, International Atomic Energy
Agency, Vienna, Austria, 95 pp., 1962.
Östlund, H. G., Dorsey, H. G., and Rooth, C. G.: GEOSECS North Atlantic
Radiocarbon and Tritium Results, Earth Planet. Sc. Lett., 23, 69–86, 1974.
Resing, J. A., Sedwick, P. N., German, C. R., Jenkins, W. J., Moffett, J. W.,
Sohst, B. M., and Tagliabue, A.: Basin-Scale transport of hydrothermal
dissolved metals across the South Pacific Ocean, Nature, 523, 203–206, 2015.
Rhein, M., Dengler, M., Sultenfuss, J., Hummels, R., Huttle-Kabus, S., and
Bourles, B.: Upwelling and associated heat flux in the equatorial Atlantic
inferred from helium isotope disequilibrium, J. Geophys. Res.-Oceans, 115,
C08021, https://doi.org/10.1029/2009JC005772, 2010.
Roberts, M. L., Hamme, R. W., Dingley, K. H., Chiarappa-Zucca, M. L., and
Love, A. H.: A compact tritium AMS system, Nucl. Instrum. Meth. B, 172,
262–267, 2000.
Roether, W., Well, R., Putzka, A., and Ruth, C.: Component separation of
oceanic helium, J. Geophys. Res., 103, 27931–27946, 1998.
Roether, W., Vogt, M., Vogel, S., and Sültenfuß, J.: Combined sample
collection and gas extraction for the measurement of helium isotopes and neon
in natural waters, Deep-Sea Res. Pt. I, 76, 27–34, 2013.
Roshan, S., Wu, J., and Jenkins, W. J.: Long-range transport of hydrothermal
dissolved Zn in the tropical South Pacific, Mar. Chem., 183, 25–32, 2016.
Sarmiento, J. L.: A simulation of bomb tritium entry into the Atlantic Ocean,
J. Phys. Oceanogr., 13, 1924–1939, 1983.
Schlitzer, R.: Quantifying He fluxes from the mantle using multi-tracer data
assimilation, Philos. T. Roy. Soc. A, 374, 0000-0002-3740-6499,
https://doi.org/10.1098/rsta.2015.0288, 2016.
Stanley, R. H. R., Jenkins, W. J., Doney, S. C., and Lott III, D. E.: The
3He flux gauge in the Sargasso Sea: a determination of physical
nutrient fluxes to the euphotic zone at the Bermuda Atlantic Time-series
Site, Biogeosciences, 12, 5199–5210,
https://doi.org/10.5194/bg-12-5199-2015, 2015.
Top, Z. and Clarke, W. B.: Helium, neon, and tritium in the Black Sea, J.
Mar. Res., 41, 1–17, 1983.
Torgersen, T. and Clarke, W. B.: Helium accumulation in groundwater, 1: an
evaluation of sources and the continental flux of crustal He-4 in the Great
Artesian Basin, Australia, Geochim. Cosmochim. Ac., 49, 1211–1218, 1985.
Weiss, R. F.: Piggyback sampler for dissolved gas studies on sealed water
samples, Deep-Sea Res., 15, 695–699, 1968.
Weiss, W. M. and Roether, W.: The rates of tritium input to the world oceans,
Earth Planet. Sc. Lett., 49, 435–446, 1980.
Weiss, W. M., Roether, W., and Dreisigacker, E.: Tritium in the North
Atlantic: inventory, input and transfer to the deep water, in: The Behavior
of tritium in the Environment, International Atomic Energy Agency, Vienna,
Austria, 1979.
Young, C. and Lupton, J. E.: An ultratight fluid sampling system using
cold-welded copper tubing., EOS Transactions AGU, 64, p. 735, 1983.
Short summary
This paper describes an assembled dataset containing measurements of certain trace substances in the ocean, their distributions, and evolution with time. These substances, called tracers, result from a combination of natural and artificial processes, and their distribution and evolution provide important clues about ocean circulation, mixing, and ventilation. In addition, they give information about the global hydrologic cycle and volcanic and hydrothermal processes.
This paper describes an assembled dataset containing measurements of certain trace substances in...