Review article 11 Dec 2013
Review article | 11 Dec 2013
Winter measurements of oceanic biogeochemical parameters in the Rockall Trough (2009–2012)
T. McGrath et al.
Related subject area
Oceanography – Chemical
An updated version of the global interior ocean biogeochemical data product, GLODAPv2.2020
ARIOS: a database for ocean acidification assessment in the Iberian upwelling system (1976–2018)
OceanSODA-ETHZ: A global gridded data set of the surface ocean carbonate system for seasonal to decadal studies of ocean acidification
A uniform pCO2 climatology combining open and coastal oceans
Dissolved inorganic nutrients in the western Mediterranean Sea (2004–2017)
A global monthly climatology of oceanic total dissolved inorganic carbon: a neural network approach
A 17-year dataset of surface water fugacity of CO2 along with calculated pH, aragonite saturation state and air–sea CO2 fluxes in the northern Caribbean Sea
Global database of ratios of particulate organic carbon to thorium-234 in the ocean: improving estimates of the biological carbon pump
Global certified-reference-material- or reference-material-scaled nutrient gridded dataset GND13
GLODAPv2.2019 – an update of GLODAPv2
A global monthly climatology of total alkalinity: a neural network approach
Environmental parameters of shallow water habitats in the SW Baltic Sea
A comprehensive global oceanic dataset of helium isotope and tritium measurements
Autonomous seawater pCO2 and pH time series from 40 surface buoys and the emergence of anthropogenic trends
A rare intercomparison of nutrient analysis at sea: lessons learned and recommendations to enhance comparability of open-ocean nutrient data
SURATLANT: a 1993–2017 surface sampling in the central part of the North Atlantic subpolar gyre
FerryBox data in the North Sea from 2002 to 2005
Seasonal carbonate chemistry variability in marine surface waters of the US Pacific Northwest
The Ocean Carbon States Database: a proof-of-concept application of cluster analysis in the ocean carbon cycle
An internally consistent dataset of δ13C-DIC in the North Atlantic Ocean – NAC13v1
A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT)
The Global Ocean Data Analysis Project version 2 (GLODAPv2) – an internally consistent data product for the world ocean
A new global interior ocean mapped climatology: the 1° × 1° GLODAP version 2
Stable carbon isotopes of dissolved inorganic carbon for a zonal transect across the subpolar North Atlantic Ocean in summer 2014
In situ measurement of the biogeochemical properties of Southern Ocean mesoscale eddies in the Southwest Indian Ocean, April 2014
A high-frequency atmospheric and seawater pCO2 data set from 14 open-ocean sites using a moored autonomous system
Measurements of total alkalinity and inorganic dissolved carbon in the Atlantic Ocean and adjacent Southern Ocean between 2008 and 2010
Measurements of the dissolved inorganic carbon system and associated biogeochemical parameters in the Canadian Arctic, 1974–2009
An update to the Surface Ocean CO2 Atlas (SOCAT version 2)
Repeat hydrography in the Mediterranean Sea, data from the Meteor cruise 84/3 in 2011
A uniform, quality controlled Surface Ocean CO2 Atlas (SOCAT)
Surface Ocean CO2 Atlas (SOCAT) gridded data products
Assessing the internal consistency of the CARINA data base in the Pacific sector of the Southern Ocean
CARINA TCO2 data in the Atlantic Ocean
CARINA data synthesis project: pH data scale unification and cruise adjustments
Nordic Seas dissolved oxygen data in CARINA
The CARINA data synthesis project: introduction and overview
The Irminger Sea and the Iceland Sea time series measurements of sea water carbon and nutrient chemistry 1983–2008
Assessing the internal consistency of the CARINA database in the Indian sector of the Southern Ocean
CARINA oxygen data in the Atlantic Ocean
Consistency of cruise data of the CARINA database in the Atlantic sector of the Southern Ocean
Are Olsen, Nico Lange, Robert M. Key, Toste Tanhua, Henry C. Bittig, Alex Kozyr, Marta Álvarez, Kumiko Azetsu-Scott, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Sara Jutterström, Camilla S. Landa, Siv K. Lauvset, Patrick Michaelis, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Anton Velo, Rik Wanninkhof, and Ryan J. Woosley
Earth Syst. Sci. Data, 12, 3653–3678, https://doi.org/10.5194/essd-12-3653-2020, https://doi.org/10.5194/essd-12-3653-2020, 2020
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by chemical analysis of water bottle samples at scientific cruises. GLODAPv2.2020 is the second update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality control, including systematic evaluation of measurement biases. This version contains data from 946 hydrographic cruises covering the world's oceans from 1972 to 2019.
Xosé Antonio Padin, Antón Velo, and Fiz F. Pérez
Earth Syst. Sci. Data, 12, 2647–2663, https://doi.org/10.5194/essd-12-2647-2020, https://doi.org/10.5194/essd-12-2647-2020, 2020
Short summary
Short summary
The ARIOS (Acidification in the Rias and the Iberian Continental Shelf) database holds biogeochemical information from 3357 oceanographic stations, giving 17 653 discrete samples. This unique collection is a starting point for evaluating ocean acidification in the Iberian upwelling system, characterized by intense biogeochemical interactions as an observation-based analysis, or for use as inputs in a coupled physical–biogeochemical model to disentangle these interactions at the ecosystem level.
Luke Gregor and Nicolas Gruber
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-300, https://doi.org/10.5194/essd-2020-300, 2020
Revised manuscript accepted for ESSD
Short summary
Short summary
Ocean acidification (OA) has altered the ocean’s carbonate chemistry, with consequences for marine life. Yet, no observation-based data set exists that permits to study changes in OA. We fill this gap with a global data set of relevant surface ocean parameters over the period 1985–2018. This data set, OceanSODA-ETHZ, was created by using satellite and other data to extrapolate ship-based measurements of carbon dioxide and total alkalinity from which parameters for OA were computed.
Peter Landschützer, Goulven G. Laruelle, Alizee Roobaert, and Pierre Regnier
Earth Syst. Sci. Data, 12, 2537–2553, https://doi.org/10.5194/essd-12-2537-2020, https://doi.org/10.5194/essd-12-2537-2020, 2020
Short summary
Short summary
In recent years, multiple estimates of the global air–sea CO2 flux emerged from upscaling shipboard pCO2 measurements. They are however limited to the open-ocean domain and do not consider the coastal ocean, i.e. a significant marine sink for CO2. We build towards an integrated pCO2 product that combines both the open-ocean and coastal-ocean domain and focus on the evaluation of the common overlap area of these products and how well the aquatic continuum is represented in the new climatology.
Malek Belgacem, Jacopo Chiggiato, Mireno Borghini, Bruno Pavoni, Gabriella Cerrati, Francesco Acri, Stefano Cozzi, Alberto Ribotti, Marta Álvarez, Siv K. Lauvset, and Katrin Schroeder
Earth Syst. Sci. Data, 12, 1985–2011, https://doi.org/10.5194/essd-12-1985-2020, https://doi.org/10.5194/essd-12-1985-2020, 2020
Short summary
Short summary
Long-term time series are a fundamental prerequisite to understanding and detecting climate shifts and trends. In marginal seas, such as the Mediterranean Sea, there are still monitoring gaps. An extensive dataset of dissolved inorganic nutrient profiles were collected between 2004 and 2017 in the western Mediterranean Sea to provide to the scientific community a publicly available, long-term, quality-controlled, internally consistent new database.
Daniel Broullón, Fiz F. Pérez, Antón Velo, Mario Hoppema, Are Olsen, Taro Takahashi, Robert M. Key, Toste Tanhua, J. Magdalena Santana-Casiano, and Alex Kozyr
Earth Syst. Sci. Data, 12, 1725–1743, https://doi.org/10.5194/essd-12-1725-2020, https://doi.org/10.5194/essd-12-1725-2020, 2020
Short summary
Short summary
This work offers a vision of the global ocean regarding the carbon cycle and the implications of ocean acidification through a climatology of a changing variable in the context of climate change: total dissolved inorganic carbon. The climatology was designed through artificial intelligence techniques to represent the mean state of the present ocean. It is very useful to introduce in models to evaluate the state of the ocean from different perspectives.
Rik Wanninkhof, Denis Pierrot, Kevin Sullivan, Leticia Barbero, and Joaquin Triñanes
Earth Syst. Sci. Data, 12, 1489–1509, https://doi.org/10.5194/essd-12-1489-2020, https://doi.org/10.5194/essd-12-1489-2020, 2020
Short summary
Short summary
This paper describes a 17-year dataset of over a million data points of automated partial pressure of CO2 (pCO2) measurements on large luxury cruise ships of Royal Caribbean Cruise Lines (RCCL). These data are used to provide trends of ocean acidification and air–sea CO2 fluxes. The effort was possible through a unique continuing industry (RCCL), academic (University of Miami) and governmental (NOAA) partnership.
Viena Puigcorbé, Pere Masqué, and Frédéric A. C. Le Moigne
Earth Syst. Sci. Data, 12, 1267–1285, https://doi.org/10.5194/essd-12-1267-2020, https://doi.org/10.5194/essd-12-1267-2020, 2020
Short summary
Short summary
The biological carbon pump is a mechanism by which the oceans capture atmospheric carbon dioxide thanks to microscopic marine algae. Quantifying its strength and efficiency is crucial to understand the global carbon budget and be able to forecast its trends. The radioactive pair 234Th : 238U has been extensively used for that purpose. This is a global compilation of carbon-to-234Th ratios (needed to convert the 234Th fluxes to carbon fluxes) that will contribute to improve our modeling efforts.
Michio Aoyama
Earth Syst. Sci. Data, 12, 487–499, https://doi.org/10.5194/essd-12-487-2020, https://doi.org/10.5194/essd-12-487-2020, 2020
Short summary
Short summary
A global nutrient gridded dataset that might be the basis for studies of more accurate spatial distributions of nutrients and their changes in the global ocean was created. This is an SI-traceable dataset of nitrate, phosphate, and silicate concentrations based on certified reference materials or reference materials (CRMs/RMs) of seawater nutrient concentration measurements used during many cruises by the author.
Are Olsen, Nico Lange, Robert M. Key, Toste Tanhua, Marta Álvarez, Susan Becker, Henry C. Bittig, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Steve D. Jones, Sara Jutterström, Maren K. Karlsen, Alex Kozyr, Siv K. Lauvset, Claire Lo Monaco, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Maciej Telszewski, Bronte Tilbrook, Anton Velo, and Rik Wanninkhof
Earth Syst. Sci. Data, 11, 1437–1461, https://doi.org/10.5194/essd-11-1437-2019, https://doi.org/10.5194/essd-11-1437-2019, 2019
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by chemical analysis of water bottle samples at scientific cruises. GLODAPv2.2019 is the first update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality control, including systematic evaluation of measurement biases. This version contains data from 840 hydrographic cruises covering the world's oceans from 1972 to 2017.
Daniel Broullón, Fiz F. Pérez, Antón Velo, Mario Hoppema, Are Olsen, Taro Takahashi, Robert M. Key, Toste Tanhua, Melchor González-Dávila, Emil Jeansson, Alex Kozyr, and Steven M. A. C. van Heuven
Earth Syst. Sci. Data, 11, 1109–1127, https://doi.org/10.5194/essd-11-1109-2019, https://doi.org/10.5194/essd-11-1109-2019, 2019
Short summary
Short summary
In this work, we are contributing to the knowledge of the consequences of climate change in the ocean. We have focused on a variable related to this process: total alkalinity. We have designed a monthly climatology of total alkalinity using artificial intelligence techniques, that is, a representation of the average capacity of the ocean in the last decades to decelerate the consequences of climate change. The climatology is especially useful to infer the evolution of the ocean through models.
Markus Franz, Christian Lieberum, Gesche Bock, and Rolf Karez
Earth Syst. Sci. Data, 11, 947–957, https://doi.org/10.5194/essd-11-947-2019, https://doi.org/10.5194/essd-11-947-2019, 2019
Short summary
Short summary
The water parameters in coastal zones are highly variable, making predictions about its dynamics difficult. However, in situ measurements performed in these habitats are still scarce. Therefore we designed a monitoring study to record the environmental conditions in shallow waters by using data loggers and the collection of water samples. The data reveal great variabilities of water parameters and could be used to support experimental and modeling approaches.
William J. Jenkins, Scott C. Doney, Michaela Fendrock, Rana Fine, Toshitaka Gamo, Philippe Jean-Baptiste, Robert Key, Birgit Klein, John E. Lupton, Robert Newton, Monika Rhein, Wolfgang Roether, Yuji Sano, Reiner Schlitzer, Peter Schlosser, and Jim Swift
Earth Syst. Sci. Data, 11, 441–454, https://doi.org/10.5194/essd-11-441-2019, https://doi.org/10.5194/essd-11-441-2019, 2019
Short summary
Short summary
This paper describes an assembled dataset containing measurements of certain trace substances in the ocean, their distributions, and evolution with time. These substances, called tracers, result from a combination of natural and artificial processes, and their distribution and evolution provide important clues about ocean circulation, mixing, and ventilation. In addition, they give information about the global hydrologic cycle and volcanic and hydrothermal processes.
Adrienne J. Sutton, Richard A. Feely, Stacy Maenner-Jones, Sylvia Musielwicz, John Osborne, Colin Dietrich, Natalie Monacci, Jessica Cross, Randy Bott, Alex Kozyr, Andreas J. Andersson, Nicholas R. Bates, Wei-Jun Cai, Meghan F. Cronin, Eric H. De Carlo, Burke Hales, Stephan D. Howden, Charity M. Lee, Derek P. Manzello, Michael J. McPhaden, Melissa Meléndez, John B. Mickett, Jan A. Newton, Scott E. Noakes, Jae Hoon Noh, Solveig R. Olafsdottir, Joseph E. Salisbury, Uwe Send, Thomas W. Trull, Douglas C. Vandemark, and Robert A. Weller
Earth Syst. Sci. Data, 11, 421–439, https://doi.org/10.5194/essd-11-421-2019, https://doi.org/10.5194/essd-11-421-2019, 2019
Short summary
Short summary
Long-term observations are critical records for distinguishing natural cycles from climate change. We present a data set of 40 surface ocean CO2 and pH time series that suggests the time length necessary to detect a trend in seawater CO2 due to uptake of atmospheric CO2 varies from 8 years in the least variable ocean regions to 41 years in the most variable coastal regions. This data set provides a tool to evaluate natural cycles of ocean CO2, with long-term trends emerging as records lengthen.
Triona McGrath, Margot Cronin, Elizabeth Kerrigan, Douglas Wallace, Clynton Gregory, Claire Normandeau, and Evin McGovern
Earth Syst. Sci. Data, 11, 355–374, https://doi.org/10.5194/essd-11-355-2019, https://doi.org/10.5194/essd-11-355-2019, 2019
Short summary
Short summary
We report results from an intercomparison exercise on the analysis of nutrients at sea. Two independent teams (Marine Institute, Ireland and Dalhousie University Canada) carried out an analysis of a GO-SHIP hydrographic section. The cruise provided a unique opportunity to assess the likely comparability of nutrient data collected following GO-SHIP protocols. Datasets were high quality and compared well but highlighted a number of issues relevant to the comparability of global nutrient data.
Gilles Reverdin, Nicolas Metzl, Solveig Olafsdottir, Virginie Racapé, Taro Takahashi, Marion Benetti, Hedinn Valdimarsson, Alice Benoit-Cattin, Magnus Danielsen, Jonathan Fin, Aicha Naamar, Denis Pierrot, Kevin Sullivan, Francis Bringas, and Gustavo Goni
Earth Syst. Sci. Data, 10, 1901–1924, https://doi.org/10.5194/essd-10-1901-2018, https://doi.org/10.5194/essd-10-1901-2018, 2018
Short summary
Short summary
This paper presents the SURATLANT data set (SURveillance ATLANTique), consisting of individual data of temperature, salinity, parameters of the carbonate system, nutrients, and water stable isotopes (δ18O and δD) collected mostly from ships of opportunity since 1993 along transects between Iceland and Newfoundland. These data are used to quantify the seasonal cycle and can be used to investigate long-term tendencies in the surface ocean, including of pCO2 and pH.
Wilhelm Petersen, Susanne Reinke, Gisbert Breitbach, Michail Petschatnikov, Henning Wehde, and Henrike Thomas
Earth Syst. Sci. Data, 10, 1729–1734, https://doi.org/10.5194/essd-10-1729-2018, https://doi.org/10.5194/essd-10-1729-2018, 2018
Short summary
Short summary
From 2002 to 2005 a FerryBox system was installed aboard two different ferries traveling between Cuxhaven (Germany) and Harwich (UK) on a daily basis. The FerryBox system is an automated flow-through monitoring system for measuring oceanographic and biogeochemical parameters installed on ships of opportunity. The data set provides the parameters water temperature, salinity, dissolved oxygen and chlorophyll a fluorescence.
Andrea J. Fassbender, Simone R. Alin, Richard A. Feely, Adrienne J. Sutton, Jan A. Newton, Christopher Krembs, Julia Bos, Mya Keyzers, Allan Devol, Wendi Ruef, and Greg Pelletier
Earth Syst. Sci. Data, 10, 1367–1401, https://doi.org/10.5194/essd-10-1367-2018, https://doi.org/10.5194/essd-10-1367-2018, 2018
Short summary
Short summary
Ocean acidification (OA) is difficult to identify in coastal marine waters due to the magnitude of natural variability and lack of historical baseline information. To provide regional context for ongoing research, adaptation, and management efforts, we have collated high-quality publicly available data to characterize seasonal cycles of OA-relevant parameters in the Pacific Northwest marine surface waters. Large nonstationary chemical gradients from the open ocean into the Salish Sea are found.
Rebecca Latto and Anastasia Romanou
Earth Syst. Sci. Data, 10, 609–626, https://doi.org/10.5194/essd-10-609-2018, https://doi.org/10.5194/essd-10-609-2018, 2018
Short summary
Short summary
It is crucial to study the ocean’s role in the global carbon cycle in order to understand and predict the increasing concentrations of CO2 in the atmosphere, which is regarded as one of the main drivers of global warming. By analyzing the relationship between surface ocean CO2 and temperature, we seek to understand the pathways by which the ocean controls carbon fluctuations in the atmosphere. We employ cluster analysis as a tool for revealing patterns in where and when this relationship occurs.
Meike Becker, Nils Andersen, Helmut Erlenkeuser, Matthew P. Humphreys, Toste Tanhua, and Arne Körtzinger
Earth Syst. Sci. Data, 8, 559–570, https://doi.org/10.5194/essd-8-559-2016, https://doi.org/10.5194/essd-8-559-2016, 2016
Short summary
Short summary
The stable carbon isotope composition of dissolved inorganic carbon (δ13C-DIC) can be used to quantify fluxes within the marine carbon system such as the exchange between ocean and atmosphere or the amount of anthropogenic carbon in the water column. In this study, an internally consistent δ13C-DIC dataset for the North Atlantic is presented. The data have undergone a secondary quality control during which systematic biases between the respective cruises have been quantified and adjusted.
Dorothee C. E. Bakker, Benjamin Pfeil, Camilla S. Landa, Nicolas Metzl, Kevin M. O'Brien, Are Olsen, Karl Smith, Cathy Cosca, Sumiko Harasawa, Stephen D. Jones, Shin-ichiro Nakaoka, Yukihiro Nojiri, Ute Schuster, Tobias Steinhoff, Colm Sweeney, Taro Takahashi, Bronte Tilbrook, Chisato Wada, Rik Wanninkhof, Simone R. Alin, Carlos F. Balestrini, Leticia Barbero, Nicholas R. Bates, Alejandro A. Bianchi, Frédéric Bonou, Jacqueline Boutin, Yann Bozec, Eugene F. Burger, Wei-Jun Cai, Robert D. Castle, Liqi Chen, Melissa Chierici, Kim Currie, Wiley Evans, Charles Featherstone, Richard A. Feely, Agneta Fransson, Catherine Goyet, Naomi Greenwood, Luke Gregor, Steven Hankin, Nick J. Hardman-Mountford, Jérôme Harlay, Judith Hauck, Mario Hoppema, Matthew P. Humphreys, Christopher W. Hunt, Betty Huss, J. Severino P. Ibánhez, Truls Johannessen, Ralph Keeling, Vassilis Kitidis, Arne Körtzinger, Alex Kozyr, Evangelia Krasakopoulou, Akira Kuwata, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Claire Lo Monaco, Ansley Manke, Jeremy T. Mathis, Liliane Merlivat, Frank J. Millero, Pedro M. S. Monteiro, David R. Munro, Akihiko Murata, Timothy Newberger, Abdirahman M. Omar, Tsuneo Ono, Kristina Paterson, David Pearce, Denis Pierrot, Lisa L. Robbins, Shu Saito, Joe Salisbury, Reiner Schlitzer, Bernd Schneider, Roland Schweitzer, Rainer Sieger, Ingunn Skjelvan, Kevin F. Sullivan, Stewart C. Sutherland, Adrienne J. Sutton, Kazuaki Tadokoro, Maciej Telszewski, Matthias Tuma, Steven M. A. C. van Heuven, Doug Vandemark, Brian Ward, Andrew J. Watson, and Suqing Xu
Earth Syst. Sci. Data, 8, 383–413, https://doi.org/10.5194/essd-8-383-2016, https://doi.org/10.5194/essd-8-383-2016, 2016
Short summary
Short summary
Version 3 of the Surface Ocean CO2 Atlas (www.socat.info) has 14.5 million CO2 (carbon dioxide) values for the years 1957 to 2014 covering the global oceans and coastal seas. Version 3 is an update to version 2 with a longer record and 44 % more CO2 values. The CO2 measurements have been made on ships, fixed moorings and drifting buoys. SOCAT enables quantification of the ocean carbon sink and ocean acidification, as well as model evaluation, thus informing climate negotiations.
Are Olsen, Robert M. Key, Steven van Heuven, Siv K. Lauvset, Anton Velo, Xiaohua Lin, Carsten Schirnick, Alex Kozyr, Toste Tanhua, Mario Hoppema, Sara Jutterström, Reiner Steinfeldt, Emil Jeansson, Masao Ishii, Fiz F. Pérez, and Toru Suzuki
Earth Syst. Sci. Data, 8, 297–323, https://doi.org/10.5194/essd-8-297-2016, https://doi.org/10.5194/essd-8-297-2016, 2016
Short summary
Short summary
The GLODAPv2 data product collects data from more than 700 hydrographic cruises into a global and internally calibrated product. It provides access to the data from almost all ocean carbon cruises carried out since the 1970s and is a unique resource for marine science, in particular regarding the ocean carbon cycle. GLODAPv2 will form the foundation for future routine synthesis of hydrographic data of the same sort.
Siv K. Lauvset, Robert M. Key, Are Olsen, Steven van Heuven, Anton Velo, Xiaohua Lin, Carsten Schirnick, Alex Kozyr, Toste Tanhua, Mario Hoppema, Sara Jutterström, Reiner Steinfeldt, Emil Jeansson, Masao Ishii, Fiz F. Perez, Toru Suzuki, and Sylvain Watelet
Earth Syst. Sci. Data, 8, 325–340, https://doi.org/10.5194/essd-8-325-2016, https://doi.org/10.5194/essd-8-325-2016, 2016
Short summary
Short summary
This paper describes the mapped climatologies that are part of the Global Ocean Data Analysis Project Version 2 (GLODAPv2). GLODAPv2 is a uniformly calibrated open ocean data product on inorganic carbon and carbon-relevant variables. Global mapped climatologies of the total dissolved inorganic carbon, total alkalinity, pH, saturation state of calcite and aragonite, anthropogenic carbon, preindustrial carbon content, inorganic macronutrients, oxygen, salinity, and temperature have been created.
Matthew P. Humphreys, Florence M. Greatrix, Eithne Tynan, Eric P. Achterberg, Alex M. Griffiths, Claudia H. Fry, Rebecca Garley, Alison McDonald, and Adrian J. Boyce
Earth Syst. Sci. Data, 8, 221–233, https://doi.org/10.5194/essd-8-221-2016, https://doi.org/10.5194/essd-8-221-2016, 2016
Short summary
Short summary
This paper reports the stable isotope composition of dissolved inorganic carbon in seawater for a transect from west to east across the North Atlantic Ocean. The results can be used to study oceanic uptake of anthropogenic carbon dioxide, and also to investigate the natural biological carbon pump. We also provide stable DIC isotope results for two batches of Dickson seawater CRMs to enable intercomparisons with other studies.
S. de Villiers, K. Siswana, and K. Vena
Earth Syst. Sci. Data, 7, 415–422, https://doi.org/10.5194/essd-7-415-2015, https://doi.org/10.5194/essd-7-415-2015, 2015
Short summary
Short summary
A "young" warm-core eddy and an "older" warm-core eddy further south were surveyed in the Southern Ocean to study differences in their heat, salt and nutrient characteristics. Results show that warm eddies that migrate from the polar front further south lose heat but gain dissolved silicate and exhibit much higher levels of chlorophyll-a. This demonstrates important heat and nutrient exchange processes associated with eddy transport in the ocean.
A. J. Sutton, C. L. Sabine, S. Maenner-Jones, N. Lawrence-Slavas, C. Meinig, R. A. Feely, J. T. Mathis, S. Musielewicz, R. Bott, P. D. McLain, H. J. Fought, and A. Kozyr
Earth Syst. Sci. Data, 6, 353–366, https://doi.org/10.5194/essd-6-353-2014, https://doi.org/10.5194/essd-6-353-2014, 2014
Short summary
Short summary
In an effort to track ocean change, sustained ocean observations are becoming increasingly important. Advancements in the ocean carbon observation network over the last decade have dramatically improved our ability to understand how rising atmospheric CO2 and climate change affect the chemistry of the oceans and their marine ecosystems. Here we describe one of those advancements, the MAPCO2 system, and the climate-quality data produced from 14 ocean CO2 observatories.
U. Schuster, A. J. Watson, D. C. E. Bakker, A. M. de Boer, E. M. Jones, G. A. Lee, O. Legge, A. Louwerse, J. Riley, and S. Scally
Earth Syst. Sci. Data, 6, 175–183, https://doi.org/10.5194/essd-6-175-2014, https://doi.org/10.5194/essd-6-175-2014, 2014
K. E. Giesbrecht, L. A. Miller, M. Davelaar, S. Zimmermann, E. Carmack, W. K. Johnson, R. W. Macdonald, F. McLaughlin, A. Mucci, W. J. Williams, C. S. Wong, and M. Yamamoto-Kawai
Earth Syst. Sci. Data, 6, 91–104, https://doi.org/10.5194/essd-6-91-2014, https://doi.org/10.5194/essd-6-91-2014, 2014
D. C. E. Bakker, B. Pfeil, K. Smith, S. Hankin, A. Olsen, S. R. Alin, C. Cosca, S. Harasawa, A. Kozyr, Y. Nojiri, K. M. O'Brien, U. Schuster, M. Telszewski, B. Tilbrook, C. Wada, J. Akl, L. Barbero, N. R. Bates, J. Boutin, Y. Bozec, W.-J. Cai, R. D. Castle, F. P. Chavez, L. Chen, M. Chierici, K. Currie, H. J. W. de Baar, W. Evans, R. A. Feely, A. Fransson, Z. Gao, B. Hales, N. J. Hardman-Mountford, M. Hoppema, W.-J. Huang, C. W. Hunt, B. Huss, T. Ichikawa, T. Johannessen, E. M. Jones, S. D. Jones, S. Jutterström, V. Kitidis, A. Körtzinger, P. Landschützer, S. K. Lauvset, N. Lefèvre, A. B. Manke, J. T. Mathis, L. Merlivat, N. Metzl, A. Murata, T. Newberger, A. M. Omar, T. Ono, G.-H. Park, K. Paterson, D. Pierrot, A. F. Ríos, C. L. Sabine, S. Saito, J. Salisbury, V. V. S. S. Sarma, R. Schlitzer, R. Sieger, I. Skjelvan, T. Steinhoff, K. F. Sullivan, H. Sun, A. J. Sutton, T. Suzuki, C. Sweeney, T. Takahashi, J. Tjiputra, N. Tsurushima, S. M. A. C. van Heuven, D. Vandemark, P. Vlahos, D. W. R. Wallace, R. Wanninkhof, and A. J. Watson
Earth Syst. Sci. Data, 6, 69–90, https://doi.org/10.5194/essd-6-69-2014, https://doi.org/10.5194/essd-6-69-2014, 2014
T. Tanhua, D. Hainbucher, V. Cardin, M. Álvarez, G. Civitarese, A. P. McNichol, and R. M. Key
Earth Syst. Sci. Data, 5, 289–294, https://doi.org/10.5194/essd-5-289-2013, https://doi.org/10.5194/essd-5-289-2013, 2013
B. Pfeil, A. Olsen, D. C. E. Bakker, S. Hankin, H. Koyuk, A. Kozyr, J. Malczyk, A. Manke, N. Metzl, C. L. Sabine, J. Akl, S. R. Alin, N. Bates, R. G. J. Bellerby, A. Borges, J. Boutin, P. J. Brown, W.-J. Cai, F. P. Chavez, A. Chen, C. Cosca, A. J. Fassbender, R. A. Feely, M. González-Dávila, C. Goyet, B. Hales, N. Hardman-Mountford, C. Heinze, M. Hood, M. Hoppema, C. W. Hunt, D. Hydes, M. Ishii, T. Johannessen, S. D. Jones, R. M. Key, A. Körtzinger, P. Landschützer, S. K. Lauvset, N. Lefèvre, A. Lenton, A. Lourantou, L. Merlivat, T. Midorikawa, L. Mintrop, C. Miyazaki, A. Murata, A. Nakadate, Y. Nakano, S. Nakaoka, Y. Nojiri, A. M. Omar, X. A. Padin, G.-H. Park, K. Paterson, F. F. Perez, D. Pierrot, A. Poisson, A. F. Ríos, J. M. Santana-Casiano, J. Salisbury, V. V. S. S. Sarma, R. Schlitzer, B. Schneider, U. Schuster, R. Sieger, I. Skjelvan, T. Steinhoff, T. Suzuki, T. Takahashi, K. Tedesco, M. Telszewski, H. Thomas, B. Tilbrook, J. Tjiputra, D. Vandemark, T. Veness, R. Wanninkhof, A. J. Watson, R. Weiss, C. S. Wong, and H. Yoshikawa-Inoue
Earth Syst. Sci. Data, 5, 125–143, https://doi.org/10.5194/essd-5-125-2013, https://doi.org/10.5194/essd-5-125-2013, 2013
C. L. Sabine, S. Hankin, H. Koyuk, D. C. E. Bakker, B. Pfeil, A. Olsen, N. Metzl, A. Kozyr, A. Fassbender, A. Manke, J. Malczyk, J. Akl, S. R. Alin, R. G. J. Bellerby, A. Borges, J. Boutin, P. J. Brown, W.-J. Cai, F. P. Chavez, A. Chen, C. Cosca, R. A. Feely, M. González-Dávila, C. Goyet, N. Hardman-Mountford, C. Heinze, M. Hoppema, C. W. Hunt, D. Hydes, M. Ishii, T. Johannessen, R. M. Key, A. Körtzinger, P. Landschützer, S. K. Lauvset, N. Lefèvre, A. Lenton, A. Lourantou, L. Merlivat, T. Midorikawa, L. Mintrop, C. Miyazaki, A. Murata, A. Nakadate, Y. Nakano, S. Nakaoka, Y. Nojiri, A. M. Omar, X. A. Padin, G.-H. Park, K. Paterson, F. F. Perez, D. Pierrot, A. Poisson, A. F. Ríos, J. Salisbury, J. M. Santana-Casiano, V. V. S. S. Sarma, R. Schlitzer, B. Schneider, U. Schuster, R. Sieger, I. Skjelvan, T. Steinhoff, T. Suzuki, T. Takahashi, K. Tedesco, M. Telszewski, H. Thomas, B. Tilbrook, D. Vandemark, T. Veness, A. J. Watson, R. Weiss, C. S. Wong, and H. Yoshikawa-Inoue
Earth Syst. Sci. Data, 5, 145–153, https://doi.org/10.5194/essd-5-145-2013, https://doi.org/10.5194/essd-5-145-2013, 2013
C. L. Sabine, M. Hoppema, R. M. Key, B. Tilbrook, S. van Heuven, C. Lo Monaco, N. Metzl, M. Ishii, A. Murata, and S. Musielewicz
Earth Syst. Sci. Data, 2, 195–204, https://doi.org/10.5194/essd-2-195-2010, https://doi.org/10.5194/essd-2-195-2010, 2010
D. Pierrot, P. Brown, S. Van Heuven, T. Tanhua, U. Schuster, R. Wanninkhof, and R. M. Key
Earth Syst. Sci. Data, 2, 177–187, https://doi.org/10.5194/essd-2-177-2010, https://doi.org/10.5194/essd-2-177-2010, 2010
A. Velo, F. F. Pérez, X. Lin, R. M. Key, T. Tanhua, M. de la Paz, A. Olsen, S. van Heuven, S. Jutterström, and A. F. Ríos
Earth Syst. Sci. Data, 2, 133–155, https://doi.org/10.5194/essd-2-133-2010, https://doi.org/10.5194/essd-2-133-2010, 2010
E. Falck and A. Olsen
Earth Syst. Sci. Data, 2, 123–131, https://doi.org/10.5194/essd-2-123-2010, https://doi.org/10.5194/essd-2-123-2010, 2010
R. M. Key, T. Tanhua, A. Olsen, M. Hoppema, S. Jutterström, C. Schirnick, S. van Heuven, A. Kozyr, X. Lin, A. Velo, D. W. R. Wallace, and L. Mintrop
Earth Syst. Sci. Data, 2, 105–121, https://doi.org/10.5194/essd-2-105-2010, https://doi.org/10.5194/essd-2-105-2010, 2010
J. Olafsson, S. R. Olafsdottir, A. Benoit-Cattin, and T. Takahashi
Earth Syst. Sci. Data, 2, 99–104, https://doi.org/10.5194/essd-2-99-2010, https://doi.org/10.5194/essd-2-99-2010, 2010
C. Lo Monaco, M. Álvarez, R. M. Key, X. Lin, T. Tanhua, B. Tilbrook, D. C. E. Bakker, S. van Heuven, M. Hoppema, N. Metzl, A. F. Ríos, C. L. Sabine, and A. Velo
Earth Syst. Sci. Data, 2, 51–70, https://doi.org/10.5194/essd-2-51-2010, https://doi.org/10.5194/essd-2-51-2010, 2010
I. Stendardo, N. Gruber, and A. Körtzinger
Earth Syst. Sci. Data, 1, 87–100, https://doi.org/10.5194/essd-1-87-2009, https://doi.org/10.5194/essd-1-87-2009, 2009
M. Hoppema, A. Velo, S. van Heuven, T. Tanhua, R. M. Key, X. Lin, D. C. E. Bakker, F. F. Perez, A. F. Ríos, C. Lo Monaco, C. L. Sabine, M. Álvarez, and R. G. J. Bellerby
Earth Syst. Sci. Data, 1, 63–75, https://doi.org/10.5194/essd-1-63-2009, https://doi.org/10.5194/essd-1-63-2009, 2009
Cited articles
Babulak, S. W. and Gildenberg, L.: Automated determination of silicate and carbonates in detergents, J. Am. Oil Chem. Soc., 5, 296–299, 1973.
Boltz, D. F. and Mellon, M. G.: Spectrophotometric determination of phosphate as molydophosphoric acid, Anal. Chem., 20, 749–751, 1948.
Cofino, W. P. and Wells, D. E.: Design and Evaluation of the QUASIMEME Inter-Laboratory Performance Studies: A test case for robust statistics, Mar. Pollut. Bull., 29, 149–158, 1994.
Dickson, A. G.: An exact definition of total alkalinity and a procedure for the estimation of alkalinity and total inorganic carbon from titration data, Deep-Sea Res. Pt. I, 28, 609–623, 1981.
Dickson, A. G.: Determination of dissolved oxygen in sea water by Winkler titration, WOCE Operations Manual. Part 3.1.3 Operations & Methods, WHP Office Report WHPO 91-1, 1995.
Dickson, A. G., Afghan, J. D., and Anderson, G. C.: Reference materials for oceanic CO2 analysis: a method for the certification of total alkalinity, Mar. Chem., 80, 185–197, 2003.
Dickson, A. G., Sabine, C. L., and Christian, J. R.: Guide to best practices for ocean CO2 measurements, PICES Special Publication, 3, 1–191, 2007.
EPA: Method of chemical analysis of water and wastes. Off Technological Transfer, Environmental Protection Agencym Washington D.C., 1974.
Furuya, K. and Harada, K.: An Automated Precise Winkler Titration for Determining Dissolved Oxygen on Board Ship, J. Oceanogr., 51, 375–383, 1995.
Grasshoff, K., Ehrhardt, M., Kremling, K., and Almgren, T.: Methods of seawater analysis, 3rd Edn., Wiley-VCH, 1999.
Greenberg, A. E., Jenkins, D., and Connors, J. J.: Standard Methods for the Examination of Water and Wastewater, APHA-AWWA-WPCF, 1980.
ISO 13395: Determination of nitrite nitrogen and nitrate nitrogen and the sum of both by flow analysis (CFA) and spectrometric detection, 1996.
ISO 15681-2: Determination of ortho phosphate and total phosphorus conents by flow analysis, Part 2: Method by continuous flow analysis (CFA), 2003.
ISO 16264: Determination of soluble silicals by CFA and photometric detection, 2002.
Johnson, K. M., Sieburth, J. M., Williams, P. J. L., and Brändström, L.: Coulometric total carbon dioxide analysis for marine studies: Automation and calibration, Mar. Chem., 21, 117–133, 1987.
Johnson, K. M., Wills, K. D., Butler, D. B., Johnson, W. K., and Wong, C. S.: Coulometric total carbon dioxide analysis for marine studies: maximizing the performance of an automated gas extraction system and coulometric detector, Mar. Chem., 44, 167–187, 1993.
Key, R. M., Kozyr, A., Sabine, C. L., Lee, K., Wanninkhof, R., Bullister, J. L., Feely, R. A., Millero, F. J., Mordy, C., and Peng, T. H.: A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP), Global Biogeochem. Cy., 18, GB4031, https://doi.org/10.1029/2004GB002247, 2004.
Key, R. M., Tanhua, T., Olsen, A., Hoppema, M., Jutterström, S., Schirnick, C., van Heuven, S., Kozyr, A., Lin, X., Velo, A., Wallace, D. W. R., and Mintrop, L.: The CARINA data synthesis project: introduction and overview, Earth Syst. Sci. Data, 2, 105–121, https://doi.org/10.5194/essd-2-105-2010, 2010.
Knapp, G. P., Stalcup, M. C., and Stanley, R. J.: Dissolved oxygen measurements in sea water at the Woods Hole Oceanographic Institution, WHOI Technical Report, WHOI-89-23, 14 pp., 1989.
McGrath, T., Kivimae, C., Tanhua, T., Cave, R. R., and McGovern, E.: Inorganic carbon and pH levels in the Rockall Trough 1991–2010, Deep-Sea Res. Pt. I, 68, 79–91, 2012a.
McGrath, T., Nolan, G., and McGovern, E.: Chemical characteristics of water masses in the Rockall Trough, Deep-Sea Res. Pt. I, 61, 57–73, 2012b.
Mintrop, L., Pérez, F. F., Gonzalez-Dávila, M., Santana-Casiano, J. M., and Körtzinger, A.: Alkalinity determination by potentiometry: intercalibration using three different methods, Cienc. Mar., 26, 23–37, 2000.
Navone, R.: Proposed method for nitrate in potable waters, American Journal Water Work Association, 56, 781–783, 1964.
O'Dowd, C., Cave, R., McGovern, E., Ward, B., Kivimae, C., McGrath, T., Stengel, D., and Westbrook, G.: Impacts of Increased Atmospheric CO2 on Ocean Chemistry and Ecosystems, Marine Research Sub-Programme (NDP 2007–2013) Series, Marine Institute, ISSN: 2009–3195, 2011.
Smith, J. D. and Milne, P. J.: Spectrophotometric determination of silicate in natural waters by formation of α-molybdosilicic acid and reduction with tin(IV)-ascorbic acid-oxalic mixture, Anal. Chim. Acta, 123, 263–270, 1981.
Tanhua, T.: Matlab Toolbox to Perform Secondary Quality Control (2nd QC) on Hydrographic Data. ORNL/CDIAC-158, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, https://doi.org/10.3334/CDIAC/otg.CDIAC_158, 2010.
Walinga, I., van Vark, W., Houba, V. J. G., van der Lee, J. J.: Plant analysis procedure, Part 7, Department of Soil Science and Plant Nutrition, Wageningen Agricultural University, 197–200, 1989.