Articles | Volume 14, issue 8
https://doi.org/10.5194/essd-14-3489-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-3489-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Fengyun-3D (FY-3D) global active fire product: principle, methodology and validation
Jie Chen
Innovation Center for FengYun Meteorological Satellite, National
Satellite Meteorological Center (National Center for Space Weather), China
Meteorological Administration, Beijing 100081, China
Key Laboratory of Radiometric Calibration and Validation for
Environmental Satellites, National Satellite Meteorological Center (National
Center for Space Weather), China Meteorological Administration, Beijing
100081, China
Qi Yao
College of Global Change and Earth System Science, Beijing Normal
University, Beijing 100091, China
Ziyue Chen
CORRESPONDING AUTHOR
College of Global Change and Earth System Science, Beijing Normal
University, Beijing 100091, China
Manchun Li
School of Geography and Ocean Sciences, Nanjing University, Nanjing 210008, China
Zhaozhan Hao
College of Land Science and Technology, China Agricultural
University, Beijing 100083, China
Cheng Liu
Innovation Center for FengYun Meteorological Satellite, National
Satellite Meteorological Center (National Center for Space Weather), China
Meteorological Administration, Beijing 100081, China
Key Laboratory of Radiometric Calibration and Validation for
Environmental Satellites, National Satellite Meteorological Center (National
Center for Space Weather), China Meteorological Administration, Beijing
100081, China
Wei Zheng
Innovation Center for FengYun Meteorological Satellite, National
Satellite Meteorological Center (National Center for Space Weather), China
Meteorological Administration, Beijing 100081, China
Key Laboratory of Radiometric Calibration and Validation for
Environmental Satellites, National Satellite Meteorological Center (National
Center for Space Weather), China Meteorological Administration, Beijing
100081, China
Miaoqing Xu
College of Global Change and Earth System Science, Beijing Normal
University, Beijing 100091, China
Xiao Chen
College of Global Change and Earth System Science, Beijing Normal
University, Beijing 100091, China
Jing Yang
College of Global Change and Earth System Science, Beijing Normal
University, Beijing 100091, China
Qiancheng Lv
College of Global Change and Earth System Science, Beijing Normal
University, Beijing 100091, China
Bingbo Gao
CORRESPONDING AUTHOR
College of Land Science and Technology, China Agricultural
University, Beijing 100083, China
Related authors
Yang Liu, Jie Chen, Yusheng Shi, Wei Zheng, Tianchan Shan, and Gang Wang
Earth Syst. Sci. Data, 16, 3495–3515, https://doi.org/10.5194/essd-16-3495-2024, https://doi.org/10.5194/essd-16-3495-2024, 2024
Short summary
Short summary
Open biomass burning has a significant impact on regional and global air quality. To enhance the quantification of global emissions from open biomass burning, we have developed the Global Emissions Inventory from Open Biomass Burning (GEIOBB) dataset, which provides a global daily-scale database at 1 km resolution of multiple pollutant emissions. This database aids global-scale environmental analysis of biomass burning.
Jie Chen, Qiancheng Lv, Shuang Wu, Yelu Zeng, Manchun Li, Ziyue Chen, Enze Zhou, Wei Zheng, Cheng Liu, Xiao Chen, Jing Yang, and Bingbo Gao
Earth Syst. Sci. Data, 15, 1911–1931, https://doi.org/10.5194/essd-15-1911-2023, https://doi.org/10.5194/essd-15-1911-2023, 2023
Short summary
Short summary
The Himawari-8 fire product is the mainstream fire product with the highest temporal resolution, yet it presents large uncertainties and is not suitable for reliable real-time fire monitoring in China. To address this issue, we proposed an adaptive hourly NSMC (National Satellite Meteorological Center) Himawari-8 fire product for China; the overall accuracy increased from 54 % (original Himawari product) to 80 %. This product can largely enhance real-time fire monitoring and relevant research.
Bowen Niu, Quanlong Feng, Bingwen Qiu, Shuai Su, Xinmin Zhang, Rongji Cui, Xinhong Zhang, Fanli Sun, Wenhui Yan, Siyuan Zhao, Hanyu Shi, Cong Ou, Xiaolu Yan, Jianhua Gong, Gaofei Yin, Jianxi Huang, Jiantao Liu, Bingbo Gao, Xiaochuang Yao, Jianyu Yang, and Dehai Zhu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-538, https://doi.org/10.5194/essd-2024-538, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
We have proposed a novel framework to generate the firstly publicly released 10-m global PCGs map in 2020 derived from Sentinel-2. Results show that the global PCGs area is approximately 14,259.85 km² in 2020, mainly distributed between 30° N and 40° N. China, not only has the largest area of PCGs in Asia but also ranks first worldwide, with a PCGs area of 8,224.90 km², making up 57.67 % of the global and 83.29 % of the Asia. The overall accuracy of our Global-PCG-10 is satisfactory of 92.08 %.
Yang Liu, Jie Chen, Yusheng Shi, Wei Zheng, Tianchan Shan, and Gang Wang
Earth Syst. Sci. Data, 16, 3495–3515, https://doi.org/10.5194/essd-16-3495-2024, https://doi.org/10.5194/essd-16-3495-2024, 2024
Short summary
Short summary
Open biomass burning has a significant impact on regional and global air quality. To enhance the quantification of global emissions from open biomass burning, we have developed the Global Emissions Inventory from Open Biomass Burning (GEIOBB) dataset, which provides a global daily-scale database at 1 km resolution of multiple pollutant emissions. This database aids global-scale environmental analysis of biomass burning.
Miaoqing Xu, Jing Yang, Manchun Li, Xiao Chen, Qiancheng Lv, Qi Yao, Bingbo Gao, and Ziyue Chen
Atmos. Chem. Phys., 23, 14065–14076, https://doi.org/10.5194/acp-23-14065-2023, https://doi.org/10.5194/acp-23-14065-2023, 2023
Short summary
Short summary
Although the temporal-scale effects on PM2.5–meteorology associations have been discussed, no quantitative evidence has proved this before. Based on rare 3 h meteorology data, we revealed that the dominant meteorological factor for PM2.5 concentrations across China extracted at the 3 h and 24 h scales presented large variations. This research suggests that data sources of different temporal scales should be comprehensively considered for better attribution and prevention of airborne pollution.
Jie Chen, Qiancheng Lv, Shuang Wu, Yelu Zeng, Manchun Li, Ziyue Chen, Enze Zhou, Wei Zheng, Cheng Liu, Xiao Chen, Jing Yang, and Bingbo Gao
Earth Syst. Sci. Data, 15, 1911–1931, https://doi.org/10.5194/essd-15-1911-2023, https://doi.org/10.5194/essd-15-1911-2023, 2023
Short summary
Short summary
The Himawari-8 fire product is the mainstream fire product with the highest temporal resolution, yet it presents large uncertainties and is not suitable for reliable real-time fire monitoring in China. To address this issue, we proposed an adaptive hourly NSMC (National Satellite Meteorological Center) Himawari-8 fire product for China; the overall accuracy increased from 54 % (original Himawari product) to 80 %. This product can largely enhance real-time fire monitoring and relevant research.
Ruiyuan Li, Miaoqing Xu, Manchun Li, Ziyue Chen, Na Zhao, Bingbo Gao, and Qi Yao
Atmos. Chem. Phys., 21, 15631–15646, https://doi.org/10.5194/acp-21-15631-2021, https://doi.org/10.5194/acp-21-15631-2021, 2021
Short summary
Short summary
We employed ground observations of ozone and satellite products of HCHO and NO2 to investigate spatiotemporal variations of ozone formation regimes across China. Two different models were employed for determining the crucial thresholds that separate three ozone formation regimes, including NOx-limited, VOC-limited, and transitional regimes. The close output from two different models provides a reliable reference for better understanding ozone formation regimes.
Kang Yang, Aleah Sommers, Lauren C. Andrews, Laurence C. Smith, Xin Lu, Xavier Fettweis, and Manchun Li
The Cryosphere, 14, 3349–3365, https://doi.org/10.5194/tc-14-3349-2020, https://doi.org/10.5194/tc-14-3349-2020, 2020
Short summary
Short summary
This study compares hourly supraglacial moulin discharge simulations from three surface meltwater routing models. Results show that these models are superior to simply using regional climate model runoff without routing, but different routing models, different-spatial-resolution DEMs, and parameterized seasonal evolution of supraglacial stream and river networks induce significant variability in diurnal moulin discharges and corresponding subglacial effective pressures.
Cited articles
Abram, N. J., Henley, B. J., and Sen Gupta, A.: Connections of climate change
and variability to large and extreme forest fires in southeast
Australia, Commun. Earth Environ., 2, 8, https://doi.org/10.1038/s43247-020-00065-8, 2021.
Alisjahbana, A. S. and Busch, J. M.: Forestry, Forest Fires, and Climate
Change in Indonesia, Bull. Indones. Econ. Stud., 53, 111–136, https://doi.org/10.1080/00074918.2017.1365404, 2017.
Andela, N., Morton, D. C., Giglio, L., Paugam, R., Chen, Y., Hantson, S., van der Werf, G. R., and Randerson, J. T.: The Global Fire Atlas of individual fire size, duration, speed and direction, Earth Syst. Sci. Data, 11, 529–552, https://doi.org/10.5194/essd-11-529-2019, 2019.
Barnes, B. B., Cannizzaro, J. P., English, D. C., and Hu, C.: Validation of
VIIRS and MODIS reflectance data in coastal and oceanic waters: An
assessment of methods, Remote Sens. Environ., 220, 110–123, https://doi.org/10.1016/j.rse.2018.10.034, 2019.
Boles, S. H. and Verbyla, D. L.: Comparison of three AVHRR-based fire
detection algorithms for interior Alaska, Remote Sens. Environ., 72, 1–16,
https://doi.org/10.1016/S0034-4257(99)00079-6, 2000.
Cerda, I., Lloret, F., Ruiz, J. E., and Vandermeer, J. H.: Tree mortality
following ENSO-associated fires and drought in lowland rain forests of
Eastern Nicaragua, Forest Ecol. Manage., 265, 248–257, https://doi.org/10.1016/j.foreco.2011.10.034, 2012.
Chen, J., Yao, Q., Chen, Z., Li, M., Hao, Z., Liu, C., Zheng, W., Xu, M., Chen, X., Yang, J., Lv, Q., and Gao, B.: FY-3D Global Active Fire Product, figshare [data set], https://doi.org/10.6084/M9.FIGSHARE.20102210, 2022.
Cochrane, M.: Fire science for rainforests, Nature, 421, 913–919, https://doi.org/10.1038/nature01437, 2003.
Doelling, D. R., Wu, A., Xiong, X., Scarino, B. R., Bhatt, R., Haney, C. O.,
Morstad, D., and Gopalan, A.: The radiometric stability and scaling of
collection 6 Terra-and Aqua-MODIS VIS, NIR, and SWIR spectral bands, IEEE
T. Geosci. Remote, 53, 4520–4535, https://doi.org/10.1109/TGRS.2015.2400928, 2015.
Dozier, J.: A method for satellite identification of surface temperature
fields of subpixel resolution, Remote Sens. Environ., 74, 33–38, https://doi.org/10.1016/0034-4257(81)90021-3, 1981.
Fang, H., Wei, S., and Liang, S.: Validation of MODIS and CYCLOPES LAI
products using global field measurement data, Remote Sens. Environ., 119,
43–54, https://doi.org/10.1016/j.rse.2011.12.006, 2012.
Fensholt, R. and Proud, S. R.: Evaluation of earth observation based global
long term vegetation trends – Comparing GIMMS and MODIS global NDVI time
series, Remote Sens. Environ., 119, 131–147, https://doi.org/10.1016/j.rse.2011.12.015, 2012.
Flannigan, M. D. and Haar, T. H.: Forest fire monitoring using NOAA satellite
AVHRR, Can. J. Forest Res., 16, 975–982, https://doi.org/10.1139/x86-171, 1986.
Fu, Y. Y., Li, R., Wang, X. W., Bergeron, Y., Valeria, O., Chavardès, R. D., Wang, Y. P., and Hu J. H.: Fire Detection and Fire Radiative Power in Forests and Low-Biomass Lands in Northeast Asia: MODIS versus VIIRS Fire Products, Remote
Sens., 12, 2870, https://doi.org/10.3390/rs12182870, 2020.
Giglio, L., Boschetti, L., Roy, D. P., Humber, M. L., and Justice, C. O.: The
Collection 6 MODIS burned area mapping algorithm and product, Remote Sens.
Environ., 217, 72–85, https://doi.org/10.1016/j.rse.2018.08.005, 2018.
Guo, J., Zhang, X., Cao, C., Che, H., Liu, H., Gupta, P., Zhang, H., Xu, M.,
and Li, X.: Monitoring haze episodes over the Yellow Sea by combining
multisensor measurements, Int. J. Remote Sens., 31, 4743–4755, https://doi.org/10.1080/01431161.2010.485213, 2010.
Guo, L., Ma, Y., Tigabu, M., Guo, X., Zheng, W., and Guo, F.: Emission of
atmospheric pollutants during forest fire in boreal region of China,
Environ. Pollut., 264, 114709, https://doi.org/10.1016/j.envpol.2020.114709, 2020.
Hall, J. V., Zhang, R., Schroeder, W., Huang, C., and Giglio, L.: Validation
of GOES-16 ABI and MSG SEVIRI active fire products, Int. J. Appl. Earth Obs., 83, 101928, https://doi.org/10.1016/j.jag.2019.101928,
2019.
Huff, A. K., Kondragunta, S., Zhang, H., and Hoff, R. M.: Monitoring the
impacts of wildfires on forest ecosystems and public health in the exo-urban
environment using high-resolution satellite aerosol products from the
visible infrared imaging radio-meter suite (VIIRS), Environ. Health
Insights, 9s2, EHI.S19590, https://doi.org/10.4137/ehi.s19590,
2015.
Jacobson, M. Z.: Effects of biomass burning on climate, accounting for heat
and moisture fluxes, black and brown carbon, and cloud absorption effects,
J. Geophys. Res.-Atmos., 119, 2014JD021861, https://doi.org/10.1002/2014JD021861, 2014.
Jethva, H., Torres, O., and Field, R.D.: Connecting Crop Productivity,
Residue Fires, and Air Quality over Northern India, Sci. Rep., 9, 16594,
https://doi.org/10.1038/s41598-019-52799-x, 2019.
Johnston, F. H., Henderson, S. B., Chen, Y., Randerson, J. T., Marlier, M.,
DeFries, R. S., Kinney, P., Bowman, D. M., and Brauer, M.: Estimated global
mortality attributable to smoke from landscape fires, Environ. Health
Perspect., 120, 695–701, https://doi.org/10.1289/ehp.1104422, 2012.
Kaufman, Y. J., Kleidman, R. G., and King, M. D.: SCAR-B fires in the tropics:
properties and remote sensing from EOS-MODIS, J. Geophys. Res.-Atmos.,
103, 31955–31968, https://doi.org/10.1029/98JD02460, 1998.
Kaufman, Y. J., Setzer, A., and Justice, C.: Remote Sensing of Biomass
Burning in the Tropics, Fire in the Tropical Biota, 84, 371–399, https://doi.org/10.1007/978-3-642-75395-4_16, 1990.
Keegan, K. M., Albert, M. R., McConnell, J. R., and Baker, I.: Climate change
and forest fires synergistically drive widespread melt events of the
Greenland Ice Sheet, P. Natl. Acad. Sci. USA, 111, 7964–7967,
https://doi.org/10.1073/pnas.1405397111, 2014.
Keeley, J. E., Bond, W. J., Bradstock, R. A., Pausas, J. G., and Rundel, P. W.:
Fire in Mediterranean ecosystems: Ecology, evolution and management,
Cambridge University Press, Cambridge, United Kingdom, https://doi.org/10.1017/CBO9781139033091, 2011.
Kelly, L. T., Giljohann, K. M., Duane, A., Aquilué, N., Archibald, S., and
Batllori, E.: Fire and biodiversity in the Anthropocene, Science, 370,
eabb0355, https://doi.org/10.1126/science.abb0355, 2020.
Li, F., Zhang, X., Kondragunta, S., and Lu, X.: An evaluation of advanced
baseline imager fire radiative power based wildfire emissions using carbon
monoxide observed by the Tropospheric Monitoring Instrument across the
conterminous United States, Environ. Res. Lett., 15, 094049, https://doi.org/10.1088/1748-9326/ab9d3a, 2020.
Li, J., Bo, Y., and Xie, S.: Estimating emissions from crop residue open
burning in China based on statistics and MODIS fire products, J. Environ.
Sci., 44, 158–170, https://doi.org/10.1016/j.jes.2015.08.024,
2016.
Lin, Z., Chen, F., Li, B., Yu, B., Shirazi, Z., Wu, Q., and Wu, W.:
FengYun-3C VIRR Active Fire Monitoring: Algorithm Description and Initial
Assessment Using MODIS and Landsat Data, IEEE T. Geosci. Remote,
55, 6420–6430, https://doi.org/10.1109/TGRS.2017.2728103, 2017.
Liu, T., Marlier, M. E., DeFries, R. S., Westervelt, D. M., Xia, K. R., Fiore,
A. M., Mickley, L. J., Cusworth, D. H., and Milly, G.: Seasonal impact of
regional outdoor biomass burning on air pollution in three Indian cities:
Delhi, Bengaluru, and Pune, Atmos. Environ, 172, 83–92, https://doi.org/10.1016/j.atmosenv.2017.10.024, 2018.
Liu, Y., Hill, M. J., Zhang, X., Wang, Z., Richardson, A. D., Hufkens, K.,
Filippa, G., Baldocchi, D. D., Ma, S., and Verfaillie, J.: Using data from
Landsat, MODIS, VIIRS and PhenoCams to monitor the phenology of California
oak/grass savanna and open grassland across spatial scales, Agr. Forest
Meteorol., 237, 311–325, https://doi.org/10.1016/j.agrformet.2017.02.026, 2017.
Lyapustin, A., Wang, Y., Xiong, X., Meister, G., Platnick, S., Levy, R., Franz, B., Korkin, S., Hilker, T., Tucker, J., Hall, F., Sellers, P., Wu, A., and Angal, A.: Scientific impact of MODIS C5 calibration degradation and C6+ improvements, Atmos. Meas. Tech., 7, 4353–4365, https://doi.org/10.5194/amt-7-4353-2014, 2014.
Marlier, M. E., DeFries, R. S., Kim, P. S., Koplitz, S. N., Jacob, D. J.,
Mickley, L. J., and Myers, S. S.: Fire emissions and regional air quality
impacts from fires in oil palm, timber, and logging concessions in
Indonesia, Environ. Res. Lett, 10, 085005, https://doi.org/10.1088/1748-9326/10/8/085005, 2015.
Matson, M. and Schneider, S. R.: Fire Detection Using the NOAA-Series Satellite, NOAA Technical Report NESDIS 7, https://repository.library.noaa.gov/view/noaa/19318 (last access: 10 January 2021), 1984.
Mohajane, M., Costache, R., Karimi, F., Pham, Q.B., Essahlaoui, A., Nguyen,
H., Laneve, G., and Oudija, F.: Application of remote sensing and machine
learning algorithms for forest fire mapping in a Mediterranean area, Ecol.
Indic., 129, 107869, https://doi.org/10.1016/j.ecolind.2021.107869, 2021.
Moritz, M. A., Parisien, M. A., Batllori, E., Krawchuk, M. A., Van Dorn, J.,
Ganz, D. J., and Hayhoe, K.: Climate change and disruptions to global fire
activity, Ecosphere, 3, 1–22, https://doi.org/10.1890/ES11-00345.1, 2012.
NASA FIRMS: MODIS fire products MYD14A1 V6.1 2019, NASA FIRMS [data set],
https://firms.modaps.eosdis.nasa.gov/map/, last access 10
January 2021.
NSMC: FY-3D fire products 2018–2019, NSMC [data set], http://satellite.nsmc.org.cn/portalsite/default.aspx, last access 10
January 2021.
Oliveira, M., Delerue-Matos, C., Pereira, M. C., and Morais,
S.: Environmental Particulate Matter Levels during 2017 Large Forest Fires
and Megafires in the Center Region of Portugal: A Public Health Concern?,
Int. J. Env. Res. Pub. He., 17, 1032, https://doi.org/10.3390/ijerph17031032, 2020.
Sayer, A., Hsu, N., Bettenhausen, C., Jeong, M. J., and Meister, G.: Effect
of MODIS Terra radiometric calibration improvements on Collection 6 Deep
Blue aerosol products: Validation and Terra/Aqua consistency, J. Geophys.
Res.-Atmos., 120, 12157–12174, https://doi.org/10.1002/2015JD023878, 2015.
Schroeder, W., Oliva, P., and Giglio, L.: The New VIIRS 375 m active fire
detection data product: Algorithm description and initial assessment, Remote
Sens. Environ., 143, 85–96, https://doi.org/10.1016/j.rse.2013.12.008, 2014.
Sharma, A., Wang, J., and Lennartson, E. M.: Intercomparison of MODIS and
VIIRS Fire Products in Khanty-Mansiysk Russia: Implications for
Characterizing Gas Flaring from Space, Atmosphere, 8, 95, https://doi.org/10.3390/atmos8060095, 2017.
Stephenson, C., Handmer, J., and Betts, R.: Estimating the economic, social
and environmental impacts of wildfires in Australia, Environ. Hazards, 12,
93–111, https://doi.org/10.1080/17477891.2012.703490, 2013.
Tian, F., Fensholt, R., Verbesselt, J., Grogan, K., Horion, S., and Wang,
Y.: Evaluating temporal consistency of long-term global NDVI datasets for
trend analysis, Remote Sens. Environ., 163, 326–340, https://doi.org/10.1016/j.rse.2015.03.031, 2015.
Twohy, C. H., Toohey, D. W., Levin, E. J., DeMott, P. J., Rainwater, B.,
Garofalo, L. A., Pothier, M. A., Farmer, D. K., Kreidenweis, S. M., and Pokhrel,
R. P.: Biomass Burning Smoke and Its Influence on Clouds Over the Western US,
Geophys. Res. Lett., 48, e2021GL094224, https://doi.org/10.1029/2021GL094224, 2021.
Volkova, L., Roxburgh, S. H., Surawski, N. C., Meyer, C. P., and Weston, C. J.:
Improving reporting of national greenhouse gas emissions from forest fires
for emission reduction benefits: An example from Australia, Environ. Sci.
Policy, 94, 49–62, https://doi.org/10.1016/j.envsci.2018.12.023, 2019.
Wang, D., Guo, J., Chen, A., Bian, L., Ding, M., Liu, L., Lv, Y., Li, J.,
Guo, X., and Han, Y.: Temperature inversion and clouds over the Arctic Ocean
observed by the 5th Chinese National Arctic Research Expedition, J. Geophys.
Res.-Atmos., 125, e2019JD032136, https://doi.org/10.1029/2019JD032136, 2020.
Wang, D., Morton, D., Masek, J., Wu, A., Nagol, J., Xiong, X., Levy, R.,
Vermote, E., and Wolfe, R.: Impact of sensor degradation on the MODIS NDVI
time series, Remote Sens. Environ., 119, 55–61, https://doi.org/10.1016/j.rse.2011.12.001, 2012.
Wickramasinghe, C., Wallace, L., Reinke, K., and Jones, S.: Intercomparison
of Himawari-8 AHI-FSA with MODIS and VIIRS active fire products, Int. J.
Digit. Earth, 13, 457–473, https://doi.org/10.1080/17538947.2018.1527402, 2018.
Wintle, B. A., Legge, S., and Woinarski, J.: After the Megafires: What Next
for Australian Wildlife?, Trends Ecol. Evol., 35, 753–757, https://doi.org/10.1016/j.tree.2020.06.009, 2020.
Xie, Y., Zhang, Y., Xiong, X., Qu, J. J., and Che, H.: Validation of MODIS
aerosol optical depth product over China using CARSNET measurements, Atmos.
Environ., 45, 5970–5978, https://doi.org/10.1016/j.atmosenv.2011.08.002, 2011.
Xiong, X., Angal, A., Twedt, K. A., Chen, H., Link, D., Geng, X., Aldoretta,
E., and Mu, Q.: MODIS reflective solar bands on-orbit calibration and
performance, IEEE T. Geosci. Remote, 57, 6355–6371, https://doi.org/10.1109/TGRS.2019.2905792, 2019.
Xu, W., Wooster, M. J., Kaneko, T., He, J., Zhang, T., and Fisher, D.: Major
advances in geostationary fire radiative power (FRP) retrieval over Asia and
Australia stemming from use of Himarawi-8 AHI, Remote Sens. Environ., 193,
138–149, https://doi.org/10.1016/j.rse.2017.02.024, 2017.
Ying, L. X., Shen, Z. H., Yang, M. Z., and Piao, S. L.: Wildfire Detection Probability of MODIS Fire Products under the Constraint of Environmental Factors: A Study Based on Confirmed Ground Wildfire Records, Remote Sens., 11, 3031, https://doi.org/10.3390/rs11243031, 2019.
Yuchi, W., Yao, J., Kathleen, E. M., Roland, S., Radenko, P., Didier, D.,
Michael, D. M., and Sarah, B. H.: Blending forest fire smoke forecasts with
observed data can improve their utility for public health applications,
Atmos. Environ., 145, 308–317, https://doi.org/10.1016/j.atmosenv.2016.09.049, 2016.
Zhang, Z., Feng, Z., Zhang, H., Zhao, J., Yu, S., and Du, W.: Spatial
distribution of grassland fires at the regional scale based on the MODIS
active fire products. Int. J. Wildland Fire, 26, 209–218, https://doi.org/10.1071/WF16026, 2017.
Short summary
The potential degradation of mainstream global fire products leads to large uncertainty in the effective monitoring of wildfires and their influence. To fill this gap, we produced a Fengyun-3D (FY-3D) global active fire product with a similar spatial and temporal resolution to MODIS fire products, aiming to serve as continuity and a replacement for MODIS fire products. The FY-3D fire product is an ideal tool for global fire monitoring and can be preferably employed for fire monitoring in China.
The potential degradation of mainstream global fire products leads to large uncertainty in the...
Altmetrics
Final-revised paper
Preprint