Articles | Volume 14, issue 6
Earth Syst. Sci. Data, 14, 2767–2784, 2022

Special issue: Arctic mixed-phase clouds as studied during the ACLOUD/PASCAL...

Earth Syst. Sci. Data, 14, 2767–2784, 2022
Data description paper
20 Jun 2022
Data description paper | 20 Jun 2022

A dataset of microphysical cloud parameters, retrieved from Fourier-transform infrared (FTIR) emission spectra measured in Arctic summer 2017

Philipp Richter et al.

Related authors

Retrieval of microphysical cloud parameters from EM-FTIR spectra measured in Arctic summer 2017
Philipp Richter, Mathias Palm, Christine Weinzierl, Hannes Griesche, Penny M. Rowe, and Justus Notholt
Atmos. Meas. Tech. Discuss.,,, 2020
Preprint withdrawn
Short summary

Related subject area

Data, Algorithms, and Models
The Fengyun-3D (FY-3D) global active fire product: principle, methodology and validation
Jie Chen, Qi Yao, Ziyue Chen, Manchun Li, Zhaozhan Hao, Cheng Liu, Wei Zheng, Miaoqing Xu, Xiao Chen, Jing Yang, Qiancheng Lv, and Bingbo Gao
Earth Syst. Sci. Data, 14, 3489–3508,,, 2022
Short summary
A high-resolution inland surface water body dataset for the tundra and boreal forests of North America
Yijie Sui, Min Feng, Chunling Wang, and Xin Li
Earth Syst. Sci. Data, 14, 3349–3363,,, 2022
Short summary
A Central Asia hydrologic monitoring dataset for food and water security applications in Afghanistan
Amy McNally, Jossy Jacob, Kristi Arsenault, Kimberly Slinski, Daniel P. Sarmiento, Andrew Hoell, Shahriar Pervez, James Rowland, Mike Budde, Sujay Kumar, Christa Peters-Lidard, and James P. Verdin
Earth Syst. Sci. Data, 14, 3115–3135,,, 2022
Short summary
HOTRUNZ: an open-access 1 km resolution monthly 1910–2019 time series of interpolated temperature and rainfall grids with associated uncertainty for New Zealand
Thomas R. Etherington, George L. W. Perry, and Janet M. Wilmshurst
Earth Syst. Sci. Data, 14, 2817–2832,,, 2022
Short summary
A global long-term (1981–2019) daily land surface radiation budget product from AVHRR satellite data using a residual convolutional neural network
Jianglei Xu, Shunlin Liang, and Bo Jiang
Earth Syst. Sci. Data, 14, 2315–2341,,, 2022
Short summary

Cited articles

Becker, E. and Notholt, J.: Intercomparison and validation of FTIR measurements with the Sun, the Moon and emission in the Arctic, J. Quant. Spectrosc. Ra., 65, 779–786,, 2000. a
Becker, E., Notholt, J., and Herber, A.: Tropospheric aerosol measurements in the Arctic by FTIR-emission and star photometer extinction spectroscopy, Geophys. Res. Lett., 26, 1711–1714,, 1999. a
Ceccherini, S. and Ridolfi, M.: Technical Note: Variance-covariance matrix and averaging kernels for the Levenberg-Marquardt solution of the retrieval of atmospheric vertical profiles, Atmos. Chem. Phys., 10, 3131–3139,, 2010. a, b
Clough, S. A., Shephard, M. W., Mlawer, E. J., Delamere, J. S., Iacono, M. J., Cady-Pereira, K., Boukabara, S., and Brown, P. D.: Atmospheric radiative transfer modeling: a summary of the AER codes, J. Quant. Spectros. Ra., 91, 233–244, 2005. a, b
Cox, C. J., Walden, V. P., Rowe, P. M., and Shupe, M. D.: Humidity trends imply increased sensitivity to clouds in a warming Arctic, Nat. Commun., 6, 10117,, 2015. a
Short summary
We present a dataset of cloud optical depths, effective radii and water paths from optically thin clouds observed in the Arctic around Svalbard. The data have been retrieved from infrared spectral radiance measured using a Fourier-transform infrared (FTIR) spectrometer. Besides a description of the measurements and retrieval technique, the data are put into context with results of corresponding measurements from microwave radiometer, lidar and cloud radar.