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Abstract. A dataset of microphysical cloud parameters from optically thin clouds, retrieved from infrared spec-
tral radiances measured in summer 2017 in the Arctic, is presented. Measurements were performed using a mo-
bile Fourier-transform infrared (FTIR) spectrometer which was carried by RV Polarstern. The dataset contains
retrieved optical depths and effective radii of ice and liquid water, from which the liquid water path and ice water
path are calculated. The water paths and the effective radii retrieved from the FTIR measurements are compared
with derived quantities from a combined cloud radar, lidar and microwave radiometer measurement synergy re-
trieval, called Cloudnet. The purpose of this comparison is to benchmark the infrared retrieval data against the
established Cloudnet retrieval. For the liquid water path, the data correlate, showing a mean bias of 2.48 gm−2

and a root-mean-square error of 10.43 gm−2. It follows that the infrared retrieval is able to determine the liquid
water path. Although liquid water path retrievals from the Cloudnet retrieval data come with an uncertainty of at
least 20 gm−2, a root-mean-square error of 9.48 gm−2 for clouds with a liquid water path of at most 20 gm−2

is found. This indicates that the liquid water paths, especially of thin clouds, of the Cloudnet retrieval can be
determined with higher accuracy than expected. Apart from this, the dataset of microphysical cloud properties
presented here allows researchers to perform calculations of the cloud radiative effects when the Cloudnet data
from the campaign are not available, which was the case from 22 July 2017 until 19 August 2017. The dataset is
published at PANGAEA (https://doi.org/10.1594/PANGAEA.933829, Richter et al., 2021).

1 Introduction

Clouds play an important role in the radiation budget of the
earth. In the visible regime, clouds mainly reflect and pre-
vent solar radiation from reaching earth’s surface, whereas in
the thermal regime clouds prevent surface radiation from es-
caping to space and re-emit it back to earth, where it warms
the surface. In the Arctic, about 80 % of the liquid-water-
containing clouds have a liquid water path (LWP) below
100 gm−2 (Shupe and Intrieri, 2004); therefore observation
of clouds bearing low amounts of liquid water is crucial to
understand the effect of clouds on atmospheric radiation in

the Arctic. The change in the broadband surface longwave
radiative flux is largest up to a visible optical depth of be-
tween 6 and 10, corresponding to an LWP of approximately
40 gm−2, depending on the effective droplet radius (Turner
et al., 2007).

The observed warming in the Arctic is much greater than
the warming of the rest of the earth (Wendisch et al., 2019).
This phenomenon is called Arctic amplification. A large
number of processes are known to influence Arctic ampli-
fication, but the quantification of each process and its impor-
tance is difficult. The project ArctiC Amplification: Climate
Relevant Atmospheric and SurfaCe Processes, and Feedback
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Mechanisms (AC)3 (Wendisch et al., 2019) aims to close this
gap in knowledge by performing various campaigns, model
studies and long-term measurements in the Arctic. The mea-
surement campaign and the data presented in this paper are
part of (AC)3.

Usually microwave radiometers (MWRs) are used for
ground-based observations of liquid water clouds. MWRs
can detect liquid water paths above 100 gm−2; also they
have the ability to operate continuously 24 h a day, but
LWP retrievals from MWR measurements suffer a high un-
certainty in the LWP of at least 15 gm−2 (Löhnert and
Crewell, 2003). For more accurate observations of optically
thin clouds, Fourier-transform infrared (FTIR) spectrometers
can be used. Calibrated FTIR spectrometers are used for the
observation of trace gases in the absence of the sun or the
moon as a light source, done for example by Becker et al.
(1999) and Becker and Notholt (2000), as well as for the
observation of optically thin clouds, performed within the
scope of the network Atmospheric Radiation Measurement
(ARM) using the Atmospheric Emitted Radiance Interferom-
eter (AERI) (Knuteson et al., 2004a, b). Although the sensi-
tivity of the FTIR retrievals decreases from approximately
50 gm−2 (Turner et al., 2007), they can be used to supple-
ment existing cloud observation techniques. In addition, an
FTIR spectrometer can be used to determine the effective
radii of the cloud droplets and the phase of a cloud. An emis-
sion FTIR spectrometer was set up on the German research
vessel Polarstern to perform measurements in summer 2017
in the Arctic around Svalbard.

Lacking freely available physical retrieval algorithms at
the time of the measurement campaign, we decided to re-
trieve microphysical cloud parameters from spectral radi-
ances using the retrieval algorithm Total Cloud Water re-
trieval (TCWret). TCWret uses the radiative transfer model
LBLDIS (Turner, 2005), which includes the Line-By-Line
Radiative Transfer Model (LBLRTM; Clough et al., 2005)
and the DIScrete Ordinate Radiative Transfer (DISORT)
model (Stamnes et al., 1988). TCWret works on the spec-
tral radiances from 558.5 to 1163.4 cm−1, which are taken
from Turner (2005) and adapted to the present instrumental
setup. TCWret uses spectral windows where low absorption
of gases occurs and therefore the atmosphere is transparent
for emissions from clouds. It uses an optimal estimation ap-
proach (Rodgers, 2000) and retrieves the liquid water optical
depth τliq, the ice water optical depth τice, and their respective
effective radii rliq and rice. From this, the LWP and ice water
path (IWP) are calculated. The principle of this retrieval tech-
nique has been proven already for mixed-phase clouds by the
mixed-phase cloud property retrieval algorithm (MIXCRA)
by Turner (2005) and by the CLoud and Atmospheric Radi-
ation Retrieval Algorithm (CLARRA) by Rowe et al. (2019)
and for single-phase liquid clouds using the thermal infrared
spectral range (extended line-by-line atmospheric transmit-
tance and radiance algorithm (XTRA) by Rathke and Fis-
cher, 2000).

Table 1. Number of radiance measurements per cruise leg. Only
measurements for which there is a successful retrieval are consid-
ered.

Cruise leg Days with measurement Measurements

PS106.1 9 1746
PS106.2 17 1915
PS107 15 1903

Figure 1. Map of the measurement area. Red markers indicate mea-
surements during PS106.1 (24 May 2017 until 21 June 2017); green
markers indicate measurements during PS106.2 (23 June 2017 until
19 July 2017). Blue markers indicate measurements during PS107
(22 July 2017 until 19 August 2017). The black squares show the
ship’s track.

Section 2 describes the measurement area and gives an
overview of the measurement setup and procedure. In Sect. 3,
the ancillary data from radiosondes and a ceilometer are in-
troduced. Section 4 gives a brief description of the infrared
retrieval TCWret and shows the error estimation for this mea-
surement campaign. Section 5 presents the results of the mea-
surement campaign. After the description of data and code
availability, a summary and conclusion are provided.

2 Observations

2.1 Area of measurements

Measurements were performed around Svalbard from the
24 May 2017 until the 19 August 2017 within the scope
of the cruise legs PS106.1 (PASCAL), PS106.2 (SiPCA)
and PS107 (FRAM), performed by RV Polarstern. PS106.1
and PS106.2 are collectively referred to as PS106. The
cloud cover was observed by meteorologists of the German
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Figure 2. Sketch of IFS 55 Equinox. The blackbody SR-80 can be
removed; then atmospheric radiation is measured.

Table 2. Technical specifications of the FTIR spectrometer IFS 55
Equinox.

Beam splitter Potassium bromide (KBr)
Detector Mercury–cadmium–tellurium (HgCdT)
Temperature of detector Cooled with liquid nitrogen (77 K)
Optical path difference 3 cm
Spectral resolution 0.3 cm−1

Diameter of entrance aperture 3.5 cm

Weather Service, who reported a cloud coverage of 7 or 8 ok-
tas for approximately 75 % of the time. For further descrip-
tions refer to Macke and Flores (2018) and Schewe (2018).
Figure 1 shows the positions of the measurement sites and
the ship.

2.2 Measurement setup

Measurements of the atmospheric radiances are performed
with a mobile FTIR spectrometer (IFS 55 Equinox by Bruker
Optics GmbH) in emission mode (measures atmospheric ra-
diation without an external light source), which will from
now on be referred to as EM-FTIR. The instrument was lo-
cated in an air-conditioned and insulated container on the
A-Deck of RV Polarstern. The roof of the container has
two openings. The EM-FTIR was located below one open-
ing. Both openings can be closed in case of precipitation.
The interferometer inside the FTIR spectrometer has a mov-
able mirror that gives a maximum optical path difference
of 3 cm, which results in a maximum spectral resolution of

Figure 3. Smoothed spectral emissivity of the blackbody radiator.

1ν̄ = 0.3cm−1. To prevent damage from the hygroscopic
substance of the beam splitter (potassium bromide), the spec-
trometer is permanently purged with dry air. Further speci-
fications are described in Table 2. A blackbody (SR-80 by
CI Systems) is placed manually on the EM-FTIR opening at
regular intervals to perform a radiometric calibration.

2.3 Radiometric calibration and emissivity of the
blackbody radiation

To obtain the spectral radiance Latm, a radiometric calibra-
tion of the EM-FTIR is necessary. For this, the blackbody
radiator SR-80 is used. Its temperature can be set from −10
to 125 ◦C. The homogeneity of the radiator surface is bet-
ter than ±0.05 K. The emissivity of the coating is shown
in Fig. 3. The mean emissivity of the blackbody radiator is
ε = 0.976. An emissivity below 1 means that the radiation
of the blackbody is a mixture of the Planck radiation at TBB
and the temperature of the container, which is assumed to be
Planck radiation at Tlab. The radiation by the EM-FTIR is the
sum of the radiation of the radiator plus a term which takes
into account the temperature of the environment:

B = εB(TBB)+ (1− ε)B(Tlab), (1)

with the temperature of the blackbody TBB and the tempera-
ture of the laboratory Tlab weighted by the blackbody emis-
sivity ε (Revercomb et al., 1988).

The radiometric calibration of the spectrometer is per-
formed using

Latm = εBν̄(Tamb)+ ε
Bν̄(Thot)−Bν̄(Tamb)

F(Ihot− Iamb)

·F(Iatm− Iamb)+ (1− ε)Bν̄(Tlab). (2)

B(Tamb), B(Thot) and B(Tlab) are the Planck functions at
high temperature (Thot, set to 100 ◦C), surface air tempera-
ture (Tamb) and the temperature of the laboratory (Tlab) re-
spectively. Ihot, Iamb and Iatm are the interferograms of the

https://doi.org/10.5194/essd-14-2767-2022 Earth Syst. Sci. Data, 14, 2767–2784, 2022



2770 P. Richter et al.: A dataset of microphysical cloud parameters

hot blackbody, blackbody at ambient temperature and atmo-
spheric measurement respectively. F is the operator for the
Fourier transform. In contrast to the procedure described in
Revercomb et al. (1988), here the difference in the interfero-
grams is calculated before applying the Fourier transform.

The following cycle is applied for the radiometric cali-
bration: blackbody at Thot, atmospheric radiation, blackbody
at Tamb, atmospheric radiation, blackbody at Thot and so
on. Each measurement cycle of the blackbodies took about
10 min to obtain one blackbody interferogram Ihot or Iamb.
The duration of the atmospheric measurements was approxi-
mately 15 min. The measurement time and schedule are cho-
sen based on the time it took the blackbody to reach the de-
sired temperature.

2.4 OCEANET measurements and Cloudnet synergistic
retrieval

Retrievals of microphysical cloud parameters are com-
pared with results of the synergistic retrieval Cloudnet. The
OCEANET-Atmosphere observatory of the Leibniz Insti-
tute for Tropospheric Research (TROPOS) in Leipzig (Ger-
many) performed continuous measurements during PS106.1
and PS106.2 (Griesche et al., 2020f). Its container houses
a multi-wavelength Raman polarization lidar PollyXT and
a microwave radiometer Humidity and Temperature Profiler
(HATPRO), which were complemented during PS106 by
a vertically pointing motion-stabilized 35 GHz cloud radar
Mira-35. The OCEANET measurements provide profiles of
aerosol and cloud properties and column-integrated liquid
water and water vapor content. To retrieve products like
liquid water content (LWC) and ice water content (IWC),
the instrument synergistic approach Cloudnet (Illingworth
et al., 2007) was applied to these observations. The retrieved
Cloudnet dataset during PS106 has been made available via
PANGAEA (see Table 7). As atmospheric input, radiosondes
launched from RV Polarstern were used. If no radiosonde
was available, radiosondes from Ny-Ålesund (if the ship was
near Svalbard) or model data from the Global Data Assimi-
lation System model (GDAS1) were used. A short summary
of the Cloudnet retrieval is given in Appendix A. For a de-
tailed description please refer to Griesche et al. (2020f) and
the publications cited there.

3 Atmospheric profiles and cloud height information

Auxiliary data obtained in the ship cruise itself were used to
construct the atmospheric setup used in the retrieval. These
include temperature and humidity profiles as well as cloud
ceiling measurements.

3.1 Cloud ceiling

Information about the cloud ceiling was obtained using a
Vaisala CL51 ceilometer operated by the German Weather

Service. The maximum cloud detection altitude is 13 km with
a vertical resolution of 10 m. The uncertainty in the retrieved
ceiling is ±1 % but at least ±5 m. The temporal resolution
of the results is 60 s. Although only data of the cloud base
height are given, it was decided to use these data instead of
the Cloudnet height profile because the ceilometer data were
available during the entire cruise, whereas the Cloudnet mea-
surements were only available for PS106. Without changing
the input data, a consistent dataset for the retrieval should
be created. However, there is a mean bias between the cloud
base height stated by Cloudnet and the ceilometer of−639 m
(median bias of−47 m), which means on average the Cloud-
net cloud base height is larger than the ceiling given by the
ceilometer, and a root-mean-square error of 1870 m. Data of
the ceilometer are available at Schmithüsen (2017a, b, c).

3.2 Radiosounding

Radiosondes were launched four times per day (00:00, 06:00,
12:00, 18:00 UTC) during PS106 and twice per day (06:00
and 12:00 UTC) during PS107 (Schmithüsen, 2017d, e, f).
Data were measured using an RS92 radiosonde by Vaisala.
Data of the air pressure, temperature, relative humidity, wind
speed and wind direction were recorded. Accuracies are
0.5 K for temperature measurements, 5 % for relative humid-
ity and 1 hPa for air pressure. Only atmospheric pressure,
temperature and humidity were used here. Atmospheric pro-
files between two radiosonde launches are acquired by linear
interpolation. If a radiosonde stopped measurements before
reaching 30 km, data were extended using the ERA5 reanal-
ysis (Hersbach et al., 2018).

4 Total Cloud Water retrieval (TCWret)

Total Cloud Water retrieval (TCWret) is a retrieval algorithm
for microphysical cloud parameters from FTIR spectra. It
is inspired by MIXCRA (Turner, 2005) and XTRA (Rathke
and Fischer, 2000) and uses an optimal estimation approach
(Rodgers, 2000) to invert the measured spectral radiances for
retrieving microphysical cloud parameters. For a complete
description of the retrieval, please refer to Appendix B.

4.1 Radiative transfer models

Two radiative transfer models are used in TCWret: the
LBLRTM (Clough et al., 2005) and DISORT (Stamnes et al.,
1988). DISORT is called by LBLDIS (Turner, 2005) to cal-
culate spectral radiances.

The LBLRTM calculates the optical depth for gaseous ab-
sorbers and the water vapor continuum. Either the profiles of
H2O, CO2, O3, CO, CH4 and N2O can be set by the user,
or a predefined atmosphere is used. A subarctic summer at-
mosphere, implemented in the LBLRTM, has been used for
all gases except H2O, which has been read from radiosonde
measurements.
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DISORT calculates the monochromatic radiative transfer
through a vertically inhomogeneous plane-parallel medium
including scattering, absorption and emission. It provides the
spectral radiances using single-scatter parameters.

Several databases are included in LBLDIS (Turner, 2014).
These databases contain extinction cross sections, absorption
cross sections, scattering cross sections, single-scattering
albedo, the asymmetry factor and phase functions for differ-
ent wavenumbers and effective radii. Refractive indices for
liquid water droplets and ice crystals are taken from Down-
ing and Williams (1975) and Warren (1984) respectively.
Temperature-dependent refractive indices for liquid water are
from Zasetsky et al. (2005). However, it is important to note
that they have large uncertainties from 1000 to 1300 cm−1

(Rowe et al., 2013). Scattering properties for more complex
ice particle shapes like aggregates, bullet rosettes, droxtals,
hollow columns, solid columns, plates and spheroids were
calculated by Yang et al. (2001) using a combination of
finite-difference time domain (FDTD), geometric optics and
Mie theory.

For all liquid droplets and ice crystals, the droplet size dis-
tributions follow a gamma size distribution. The gamma size
distributions were chosen in a way that they fit to the data
during the First International Satellite Cloud Climatology
Project (ISCCP) Regional Experiment (FIRE) Arctic Cloud
Experiment (ACE). For further details, please refer to Turner
et al. (2003).

4.2 Products of TCWret

Direct retrieval products are τliq, τice, rliq and rice. From these
parameters the water paths are calculated:

LWP=
2
3
· rliq · τliq · %liq , (3)

IWP=
N ·V0(rice) · τice

αice
· %ice , (4)

with the volumetric mass densities of liquid water %liq =

1000kgm−3 and ice water %ice = 917kgm−3, the particle
number density N , and the extinction coefficient αice = βice ·

N . The total volume of an ice crystal V0(rice) and the extinc-
tion cross section of an ice droplet βice, both integrated over
the gamma size distribution, are read from the databases of
single-scattering parameters. The formula for the liquid wa-
ter path works for spherical droplets only, while the formula
for the ice water path is valid for ice crystals of any shape
(Turner, 2005). The covariance matrix Sr of the optimal esti-
mation procedure is used to determine the errors.

4.3 Covariance matrix and averaging kernels

Retrieval errors are calculated from the variance–covariance
matrix Sr of the retrieval. It is calculated by

Sr = TrSyTTr . (5)

The index r denotes quantities of the final iteration. T is a
transfer matrix, and Sy is the variance–covariance matrix of
the measurement. The retrieval uses a Levenberg–Marquardt
algorithm; therefore the variance–covariance matrix and the
transfer matrix T are calculated iteratively, as described by
Ceccherini and Ridolfi (2010). Another important quantity
to characterize the retrieval quality is the averaging kernel
matrix A. The averaging kernel matrix contains the deriva-
tives of the retrieved quantities with respect to the true state
vector:

A=
∂xr

∂xt
, (6)

where xr means the retrieved parameters and xt denotes the
unknown true parameters. In TCWret, the averaging kernel
matrix is a 4× 4 matrix. The top two rows belong to τliq and
τice; the bottom two rows belong to rliq and rice. On the di-
agonal elements one finds the derivatives of each element in
the retrieved state vector with respect to its corresponding el-
ement in the true state vector. Off-diagonal elements give the
degree of correlation between the entries of the state vector:

A=


Aτliq Aτliq,τice Aτliq,rliq Aτliq,rice

Aτice,τliq Aτice Aτice,rliq Aτice,rice

Arliq,τliq Arliq,τice Arliq Arliq,rice

Arice,τliq Arice,τice Arliq,rice Arice

 . (7)

Here Av,w stands for the mutual dependence of the parame-
ters v and w, where v is the parameter in xr and w is the pa-
rameter in xt. The trace of the averaging kernel matrix gives
the degrees of freedom of the signal, which can be interpreted
as the number of individually retrievable parameters from the
measurement (Rodgers, 2000). The averaging kernel matrix
sets the retrieval and the a priori into context:

xr = xa+A(xt− xa). (8)

From this relationship it can be seen that in the optimal case
the averaging kernel matrix is the unit matrix. Smaller entries
mean a stronger influence by the a priori. Averaging kernels
in TCWret are calculated via

A= TrKr . (9)

The matrix Kr is the Jacobian matrix of the retrieved parame-
ters (Ceccherini and Ridolfi, 2010). Uncertainties in the LWP
and IWP are calculated from error propagation:

σY =±

√√√√∑
i

(
∂Y

∂mi
σmi

)2

, (10)
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Table 3. Results of the test case retrievals. |r| is the correlation co-
efficient of each quantity. Mean bias is the mean difference between
the retrieval and the true size of the parameter. RMSE is the root-
mean-square error of the difference between the retrieval and true
parameter. For τliq,ice and rliq,ice, ERR(OE) is the standard devia-
tion calculated from the posterior covariance matrix of the optimal
estimation, stated in Eq. (5). For the other quantities, ERR(OE) is
calculated by error propagation. Maximum of quantity in test cases
specifies the maximum value that can be used for this quantity in
the test cases. A total number of 253 test cases are included in these
calculations.

Quantity |r| Mean RMSE ERR- Maximum
bias (OE) of quantity

in test cases

τliq (1) 0.86 −0.1 0.5 0.3 5.45
τice (1) 0.78 0.2 0.6 0.3 4.45
τcw = τliq+ τice (1) 0.99 0.1 0.2 0.7 5.94
fice (1) 0.70 0.1 0.3 0.6 1.0
rliq (µm) 0.59 −2.4 4.1 2.9 22.00
rice (µm) 0.65 3.0 10.0 2.4 70.00
LWP (g m−2) 0.68 −1.9 6.3 2.3 46.90
IWP (gm−2) 0.82 1.9 10.0 5.1 107.39

Table 4. Mean partial derivatives, used for estimating the parameter
errors 1m.

Quantity m ∂m
∂T

∂m
∂q

∂m
∂L

τliq 0.03 0.02 −0.01
τice 0.12 −0.01 −0.02
rliq −0.58 0.14 −1.97
rice 1.38 0.62 −7.01
LWP −0.27 0.15 −0.47
IWP 2.43 0.14 −1.41

where Y is either the LWP or the IWP; ∂Y
∂m

is the partial
derivative of Y with respect to an atmospheric parameter
m=

{
τliq,τice, rliq, rice

}
; and σmi is the variance of the ith

parameter mi , as stated in Sr.

4.4 Performance of TCWret applying to simulated data

In addition to the uncertainties indicated by the optimal es-
timation procedure, TCWret was applied to simulated data
(Cox et al., 2016). The description of the test cases and
the evaluation can be found in the Appendix C. Results are
shown in Table 3. When applied to the simulated data, it
could be shown that TCWret can determine all variables en-
tered in the table. Results calculated by TCWret are compa-
rable to the true cloud parameters from the simulated data.

4.5 Errors in atmospheric profile and calibration

Besides the uncertainties from the optimal estimation algo-
rithm, uncertainties from atmospheric profile data and the
calibration cycle increase the total uncertainty in the data.

Figure 4. Total error as sum of device error and interpolation error.

4.5.1 Partial derivatives for non-retrieved quantities

To estimate the uncertainty which comes from the cloud tem-
perature, humidity profile and spectral calibration, the test
cases from Cox et al. (2016) have been adjusted to incorpo-
rate uncertainties in cloud temperature, humidity and radi-
ance. Three datasets are created, each of them with one of
the following adjustments:

– increase cloud temperature by 1K

– increase atmospheric humidity by 10%

– increase radiance by 2mW(m2 sr cm−1)−1.

With these datasets the partial derivatives are calculated,
which are necessary to determine the errors due to cloud
temperature, humidity and spectral calibration and propagate
them into the retrieved cloud parameters by application of

1m=±

√(
∂m

∂T
1T

)2

+

(
∂m

∂q
1q

)2

+

(
∂m

∂L
1L

)2

, (11)

with the cloud temperature T ; the relative humidity q; the
radiance L; and their errors 1T , 1q and 1L. To separate
the influence of the parameter errors from the retrieval per-
formance, the results of these three datasets are compared
to the retrieval results mentioned in Sect. 4.4 instead of the
true cloud parameters. Mean partial derivatives are then cal-
culated as follows:

1. Retrieve the cloud parameters for each dataset.

2. Calculate the difference between the cloud parame-
ters of the adjusted dataset and the undisturbed dataset
(which has been already used in Sect. 4.3).

3. Calculate the difference quotients, which will act as par-
tial derivatives in Eq. (11).

The partial derivatives are shown in Table 4.
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4.5.2 Temperature and humidity

Device errors in the radiosonde are 1T = 0.5K and 1q =
5%. Additionally, the error introduced with the linear inter-
polation of the temperature and relative humidity is estimated
by comparing the interpolated profiles to atmospheric pro-
files from ERA5. The interpolation error follows from the
comparison between the linear interpolation between two ra-
diosonde measurements and the ERA5 atmosphere at the po-
sition of the measurements. We query the ERA5 atmosphere
for each hour. Then we calculate the atmospheric profiles
from the radiosondes once per hour by linear interpolation.
From this we calculate the difference, average over 1 d and
calculate the standard deviation. Figure 4 gives the total error
as device error and interpolation error, as an example for the
period from 11 June 2017 to 30 June 2017.

4.5.3 Calibration error

The accuracy of the blackbody temperature and emissivity
are 1TBB =±0.05 K and 1ε =±0.02. The propagation of
these errors into the radiance is

1L=

√(
∂Latm

∂ε
· 0.02

)2

+

(
∂Latm

∂TBB
· 0.05K

)2

. (12)

To estimate ∂Latm
∂ε

, a spectrum is calibrated with an emissivity
of ε′ and ε′+h. The partial derivative is calculated by ∂Latm

∂ε
=

L(ε′+h)−L(ε′)
h

withL(ε′) being the radiance under the emissiv-
ity ε′ and h as the step size for the numerical calculation of
the partial derivative. From ε′ = 0.975 and h= 0.02 follows
∂Latm
∂ε
·0.02=−0.98mW(m2 sr cm−1)−1. The second partial

derivative ∂Latm
∂TBB

is estimated using Eq. (2). The emissivity is
set to 1. The measured radiance of the hot blackbody is larger
than the radiance of the atmosphere (F(Ihot)> F(Iatm)), and
therefore the quotient

F(Iatm− Iamb)
F(Ihot− Iamb)

< 1. (13)

From the measurements it follows that Lhot is about 5 times
larger than Lamb; therefore the inequation (Eq. 13) is set as
F (Ihat−Iamb)
F (Ihot−Iamb) = 0.2. Equation (2) thus can be written as

Latm = Bν̄(Tamb)+ 0.2 ·Bν̄(Thot)−Bν̄(Tamb). (14)

With TBB = Thot = 100 ◦C and Tamb = 0 ◦C, ∂Latm
∂TBB
· 0.05=

0.10mW(m2 sr cm−1)−1 is an average for the spectral in-
terval between 500 and 2000 cm−1. This gives 1L=

0.98mW(m2 sr cm−1)−1.

4.5.4 Resulting parameter error

Finally, from the calculations in this section, the resulting
uncertainties are as follows:

Figure 5. Distribution of retrieved optical depths for liquid wa-
ter (a) and ice water (b). The bin width is set to the sum of the
root-mean-square error from Table 3 and the errors discussed in
Sect. 4.5.

Table 5. Key features of the dataset.

Key feature Size

Retrievals performed 5564
Accepted retrievals 4590
Mixed-phase clouds (0.1< fice < 0.9) 2158
Single-phase liquid (fice < 0.1) 2899
Single-phase ice (fice > 0.9) 507
Minimum observed precipitable water vapor (PWV) 0.67cm
Maximum observed precipitable water vapor (PWV) 1.62cm

– 1T = 2.0K, as the sum of the device error (0.5K) and
the interpolation error (1.5K).

– 1q = 17.5%, as the sum of the device error (5.0%) and
the interpolation error (12.5%).

– 1L= 0.98mW(m2 sr cm−1)−1.

Applying these uncertainties to Eq. (11), the uncertainties
for each parameter are 1τliq = 0.4, 1τice = 0.3, 1rliq =
3.3µm, 1rice = 13.1µm, 1LWP= 2.8gm−2 and 1IWP=
5.6gm−2. These values will be added to the retrieval errors
in the next section.
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Figure 6. Distribution of the retrieved LWP (a) and IWP (b). The
bin width is set to the sum of the root-mean-square error from Ta-
ble 3 and the errors discussed in Sect. 4.5.

Figure 7. Distribution of retrieved effective radii for liquid water
droplets (a) and ice crystals (b). The bin width is set to the sum of
the root-mean-square error from Table 3 and the errors discussed in
Sect. 4.5. In each instance, only cases are considered in which the
phase fractions are above 0.1 (liquid water fraction for rliq and ice
water fraction for rice). This results in 4111 of 4590 cases for rliq
(89.6%) and 2153 of 4590 cases for rice (46.9%).

5 Results

5.1 Cloud parameters from infrared radiance
measurements during PS106 and PS107

During the measurement campaign, most of the observed op-
tical depth is due to liquid water instead of ice crystals. His-
tograms of all retrieved optical depths are shown in Fig. 5. In
66.4% of the measurements, ice was observed in the clouds,
whereas in 92.4% of the measurements liquid water was
present. Mean optical depths are τliq = 2.6 and τice = 0.8.
Similarly to the optical depth, most of the observed cloud
water is liquid water (Fig. 6). Here the means are LWP=
17.7gm−2 and IWP= 9.9gm−2. Interquartile ranges for
the LWP and IWP are IQRLWP = 18.9gm−2 and IQRIWP =

11.5gm−2. Whereas the range of the LWP matches the LWP
from the test cases, the IWP is near the lower threshold of the
retrievable water path.

The distributions of the effective radii are shown in Fig. 7.
For rliq only cases with fice < 0.9 are used, and for rice
only cases with fice > 0.1 are used. On average, ice crys-
tals (rice = 22.3µm) are larger than liquid droplets (rliq =
10.9µm). Ice crystals show a wider range of retrieved effec-
tive radii than liquid droplets, expressed by an interquartile
range of IQRice = 17.9µm compared to IQRliq = 5.9µm.

5.2 Averaging kernels and posterior correlation matrices

For all measurements, the mean of the averaging kernels and
degrees of freedom are calculated:

A=


0.77 0.48 −0.17 −0.02
0.19 0.45 0.25 −0.01
−0.04 0.14 0.74 0.05
−0.03 −0.1 0.29 0.3

 , (15)

tr(A)= 2.25. (16)

This mean averaging kernel matrix contains both single-
phase clouds and mixed-phase clouds. Since only two pa-
rameters are determined in the single-phase cases, they per-
turb the mean number of degrees of freedom for all measure-
ments. As seen in the statistics, there are fewer cases with
ice-containing clouds. This lowers the entries on the diago-
nals for τice and rice as they are 0 in all-liquid clouds. There-
fore, the mean averaging kernel was also calculated for all
mixed-phase clouds:

Amixed-phase =


0.62 0.22 −0.35 −0.03
0.32 0.7 0.47 −0.04
−0.08 0.16 0.66 0.1
−0.14 −0.07 0.17 0.59

 (17)

tr(Amixed-phase)= 2.57 (18)

The number of degrees of freedom in this case is 2.57. The
entries for the effective radii are of the same size as those for
the optical depth.
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Figure 8. Histogram of the precipitable water vapor during the
measurements of atmospheric radiances.

Figure 9. Percentage of retrievals for each ice particle shape. Most
particles are modeled as droxtals (37%), solid columns (35%),
plates (22%) and bullet rosettes (4%).

The posterior correlation matrix R gives the correlations of
one retrieved parameter to another. For mixed-phase clouds,
R is as follows:

Rmixed-phase =


1.00 0.50 −0.07 −0.40
0.50 1.00 0.02 −0.23
−0.07 0.02 1.00 0.13
−0.41 −0.23 0.13 1.00

 . (19)

The largest correlation appears between τliq and τice (|r| =
0.50), which points to a difficult phase determination. Apart
from the correlation of the optical depths, the comparatively
high correlation between rice and τliq is striking, which sug-
gests that both parameters cannot be determined completely
independently of each other.

5.3 Precipitable water vapor

A crucial spectral region for the determination of the cloud
phase is the spectral window in the far infrared between 500
and 600 cm−1 (Rathke et al., 2002). This spectral region is
sensitive to the concentration of water vapor in the atmo-
sphere. The amount of water vapor is expressed by the pre-
cipitable water vapor PWV, which has been calculated from

the radiosonde measurements. The far-infrared spectral re-
gion becomes nearly opaque to infrared radiation for PWV
> 1cm (Cox et al., 2015). During the measurement campaign
the PWV was greater than 1cm in 62% of the cases. There-
fore, the datasets for PWV greater than 1cm are not removed
from the analysis. Statistics of PWV are shown in Fig. 8.

5.4 Comparison to Cloudnet

To compare results from TCWret and Cloudnet, a combined
dataset of TCWret results is created in the following way.
Since the shapes of the ice crystals are not known, the re-
trievals were carried out for all ice crystal shapes. However,
this procedure leads to up to eight results per measurement,
so a selection was made. The aim of the following selection
is that all ice crystals with rice < 30µm are modeled as drox-
tals, while larger ice crystals are modeled as plates, bullet
rosettes or solid columns. This choice is motivated by Yang
et al. (2007). The accepted result is then determined as fol-
lows:

1. If rice for plates, bullet rosettes and solid columns or for
droxtals is less than 30µm, the result using ice crystals
as droxtals is accepted.

2. If rice for droxtals is greater than 10µm, the result that
uses plates, bullet rosettes or solid columns is accepted.
To choose one of the datasets, a random number is
drawn which selects plates in 35%, bullet rosettes in
15% and solid columns in 50% of cases.

3. If none of the conditions apply, the data for which the
degrees of freedom of the outcome are highest are ac-
cepted.

The first condition ensures that all small ice particles are clas-
sified as droxtals, while the second ensures that all larger par-
ticles are classified as plates, solid columns or bullet rosettes.
Stricter thresholds would more often result in only the last
condition applying, which should be avoided as much as pos-
sible.

As an additional constraint, we only allow results where
rliq < rice. This is motivated by the following: the results of
rliq and rice show that rliq is usually smaller than rice. This
applies to both TCWret and Cloudnet. Therefore, cases with
rliq > rice are likely cases with a too small rice and a too large
rliq. For the comparison between TCWret and Cloudnet, re-
sults from both datasets were averaged over a time period
of 2 min. This has been done because the underlying mea-
surement systems have different temporal resolutions; also
both measurement systems were at different locations on the
ship. Cloudnet results do not contain optical depths but water
paths and droplet radii; therefore we will compare the LWP
and IWP, rliq and rice. Correlation coefficients, mean biases
and root-mean-square errors are shown in Table 6.
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Table 6. Results of the comparison between TCWret and Cloudnet. Mean bias and root-mean-square error refer to the difference in both
datasets.

Quantity |r| Mean bias Root-mean-square error

LWP 0.65 2.5gm−2 10.4gm−2

LWP < 20gm−2 0.52 4.0gm−2 9.5gm−2

LWP (PWV< 1cm) 0.73 1.1gm−2 8.3gm−2

LWP < 20gm−2 (PWV< 1cm) 0.72 2.6gm−2 5.9gm−2

IWP 0.41 1.5gm−2 16.8gm−2

rliq 0.68 4.4µm 5.3µm
rliq (maximum) 0.69 3.1µm 4.2µm

Figure 10. The IWP of TCWret versus the IWP from Cloudnet.

5.4.1 Ice water path and ice effective radius

Although TCWret can determine rice from the simulated
spectra, no correlation can be found between the TCWret and
Cloudnet data. From the error considerations in previous sec-
tions it was shown that the RMSE for the simulated spectra is
already 10.0µm. Taking into account uncertainties in the at-
mospheric data and the calibration, an additional uncertainty
term of 13.1µm is obtained, so rice is already subject to high
uncertainties. According to the posterior correlation matrix,
rice correlates with τliq, so there is no completely indepen-
dent result of rice. A better determination of rice could be
achieved by a better a priori xa, but the problem remains that
according to the averaging kernel matrix, only 2.57 degrees
of freedom exist in the measurements.

Figure 10 shows the results for the IWP. Although a cor-
relation can be found, there is large spread between the
datasets. The difference between TCWret and Cloudnet is
(1.5±16.8)gm−2. The IWP is calculated according to Eq. (4)
from τice and rice, where rice influences the IWP of the
TCWret dataset. Furthermore, the IWP during the measure-

ment campaign is 9.9gm−2, very low and within the RMSE
of TCWret when retrieving the simulated spectra. The IWP
is therefore at the lower limit of what can be determined with
TCWret and is considered less reliable.

5.4.2 Liquid water path and effective droplet radius

Results of the liquid water path from TCWret and Cloudnet
are correlated. The difference is (2.5±10.4)gm−2 with no re-
striction to the maximum water path. From this we conclude
that the LWP from the TCWret dataset is reliable. As men-
tioned earlier, a large PWV value interferes with the retrieval,
as the water vapor has a larger influence on the microwin-
dows. Therefore, we additionally remove all cases from the
analysis where the PWV is larger than 1cm. This reduces
the mean bias to 1.1gm−2 and the RMSE to 8.3gm−2. The
results with PWV < 1cm are shown in Fig. 11, left panel.

Since the LWP of TCWret correlates with that of the
Cloudnet product and since the RMSE of the LWP is far
below the uncertainty in the LWP of the Cloudnet prod-
uct, we reduced the maximum LWP to investigate whether
a correlation can also be observed for clouds with an LWP<
20gm−2. With a real uncertainty of ±20gm−2 the correla-
tion is expected to disappear.

Results for very thin clouds and PWV< 1cm are shown in
Fig. 11 (right side). Again, results are correlated. The RMSE
for these clouds is 5.9gm−2 with a mean bias of 2.6gm−2.
Without any restrictions on the PWV, there is an RMSE of
9.5gm−2 and a mean bias of 4.0gm−2. From the compari-
son with TCWret, it can be concluded that during this mea-
surement campaign, Cloudnet’s results for thin clouds with
LWP < 20gm−2 are also reliable despite the stated error of
20.40gm−2.

It should be noted that Cloudnet and TCWret use the atmo-
spheric profiles from the radiosonde measurements carried
out on RV Polarstern. Apart from that, however, both the
measuring instruments and the retrievals are different. Fur-
thermore, TCWret does not use information from Cloudnet
as a priori. Since TCWret has also shown comparable agree-
ment with the LWP of the simulated spectra in the test cases
(mean bias is −1.6gm−2; RMSE is 6.3gm−2), it is to be
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Figure 11. Liquid water path of TCWret versus Cloudnet for PWV< 1cm. Left scatterplot (a) contains all measurements, whereas the right
plot (b) only shows clouds with LWP < 20gm−2.

Figure 12. The rliq of TCWret versus rliq of Cloudnet averaged over the entire cloud (a) and maximum value of the cloud from Cloudnet (b).

expected that TCWret and thus also Cloudnet have indepen-
dently determined the LWP correctly.

Figure 12 shows the results for rliq. The left panel shows
the results where rliq of Cloudnet is averaged over the entire
cloud. The right panel shows the maximum rliq of the cloud
in the Cloudnet data. Only results from TCWret are consid-
ered if fice < 0.9. As in the LWP, a correlation between the
data can be observed. Overall, there is an overestimation of
the rliq of TCWret by 4.4µm on average. If only consider-
ing the maximum rliq in Cloudnet, the mean bias decreases
to 3.1µm. The same applies to the RMSE, which decreases
from 5.3 to 4.2 µm. These results indicate that rliq in TCWret
does not take into account the entire cloud, which is to be
expected since the rliq in Cloudnet is determined using the
altitude-resolved radar reflectivity, while TCWret uses the ra-
diance of the clouds measured on the ground. However, the

observed correlation allows a correction of rliq in TCWret as
a function of rliq itself.

6 Code availability

The retrieval algorithm TCWret is available
at https://doi.org/10.5281/ZENODO.4621127
(Richter, 2021a) with external subroutines at
https://doi.org/10.5281/ZENODO.4618142 (Richter,
2021b) and https://doi.org/10.5281/ZENODO.4618106
(Richter, 2021c). Jupyter notebooks to perform
the comparisons to Cloudnet are available at
https://doi.org/10.5281/zenodo.6647314 (Richter, 2022).
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Table 7. Datasets used in this publication.

Description DOI Citation

Microphysical cloud parameters from TCWret https://doi.org/10.1594/PANGAEA.933829 Richter et al. (2021)
OCEANET-ATMOSPHERE microwave radiometer HATPRO during PS106 https://doi.org/10.1594/PANGAEA.919359 Griesche et al. (2020a)
Cloudnet IWC during PS106 https://doi.org/10.1594/PANGAEA.919452 Griesche et al. (2020b)
Cloudnet rice during PS106 https://doi.org/10.1594/PANGAEA.919386 Griesche et al. (2020c)
Cloudnet LWC during PS106 https://doi.org/10.1594/PANGAEA.919383 Griesche et al. (2020d)
Cloudnet rliq during PS106 https://doi.org/10.1594/PANGAEA.919399 Griesche et al. (2020e)
Ceilometer CL51 raw data measured during Polarstern cruise PS106.1 https://doi.org/10.1594/PANGAEA.883320 Schmithüsen (2017a)
Ceilometer CL51 raw data measured during Polarstern cruise PS106.2 https://doi.org/10.1594/PANGAEA.883322 Schmithüsen (2017b)
Ceilometer CL51 raw data measured during Polarstern cruise PS107 https://doi.org/10.1594/PANGAEA.883323 Schmithüsen (2017c)
Upper-air soundings during Polarstern cruise PS106.1 (ARK-XXXI/1.1) https://doi.org/10.1594/PANGAEA.882736 Schmithüsen (2017d)
Upper-air soundings during Polarstern cruise PS106.2 (ARK-XXXI/1.2) https://doi.org/10.1594/PANGAEA.882743 Schmithüsen (2017e)
Upper-air soundings during Polarstern cruise PS107 (ARK-XXXI/2) https://doi.org/10.1594/PANGAEA.882789 Schmithüsen (2017f)

7 Data availability

For accessibility of the datasets used and shown, see Table 7.

8 Summary and conclusion

A dataset of microphysical cloud parameters of optically thin
clouds is presented. The measurements were carried out on
the ship RV Polarstern in summer 2017 in the Arctic Ocean
around Svalbard and in the Fram Strait.

Measurements were performed using a mobile FTIR spec-
trometer, operated in emission mode (EM-FTIR). A cali-
bration of the EM-FTIR was performed with a blackbody
radiator, whose temperature was alternately set to 100 ◦C
and ambient temperature. The spectrometer was operated
in an air-conditioned container. Radiances between 500 and
2000 cm−1 were recorded.

The retrieval of cloud parameters is performed using the
Total Cloud Water retrieval (TCWret) algorithm. TCWret
uses the optimal estimation method to invert atmospheric ra-
diances. The radiative transfer model used is LBLDIS, which
utilizes optical depths of atmospheric trace gases calculated
with the LBLRTM and then calculates the spectral radiances
using DISORT. Single-scattering parameters for clouds are
read from pre-calculated databases. Retrieval products are
the optical depths of water and ice and the corresponding ef-
fective radii. From these products, the liquid water path and
ice water path are calculated. TCWret also uses profiles of
air pressure, humidity and temperature from measurements
with Vaisala RS92 radiosondes and information about cloud
height from measurements of the ceilometer CL51, which is
on board RV Polarstern.

During the measurement campaign, a dataset with 5564 re-
trievals was created. A comparison to the simultaneously per-
formed retrievals of the Cloudnet network on the Polarstern
shows the following:

– The LWPs of both datasets are correlated. From this it
is concluded that the retrieved LWP from TCWret is re-
liable. In addition, it could be shown using the TCWret

dataset that during this measurement campaign the mea-
surement data of thin clouds (LWP < 20gm−2) of the
Cloudnet retrieval are also reliable despite the given er-
ror of 20gm−2.

– As well as for the LWP, a correlation for rliq is observed.
However, there is an increasing bias with increasing rliq.
This can be corrected using the results from Cloudnet.

– Only a low correlation can be found for the IWP, and
rice does not correlate. Therefore the IWP is considered
to be less reliable than the liquid water products.

Despite the difficulty in determining the IWP and rice, this
presented dataset is useful for downward cloud radiative flux
calculations. Since TCWret determines the cloud parameters
from the spectral radiance, the calculated cloud parameters
are those that match the observed radiance. This is also true
if the IWP and rice are affected by errors.

In summary, the dataset of cloud parameters and water
paths from TCWret provides a helpful complement to the
results of the LWP from Cloudnet but at the same time ben-
efits from its rliq. Due to the consistent calculation of cloud
parameters over the entire cruise, the results from TCWret
additionally provide information about clouds during PS107,
where only EM-FTIR measurements are available.

Appendix A: Brief description of the Cloudnet
synergistic retrieval

The LWP is determined using the HATPRO MWR, which
uses two frequency bands between 22.24 and 31.4 GHz and
between 51.0 and 58.0 GHz. A statistical retrieval has been
set up using radiosonde data from Ny-Ålesund, consistent
with the procedure described in Löhnert and Crewell (2003)
and leading to an RMSE of 22.4gm−2. If a data point was
classified as pure liquid, the effective radius of the cloud
droplets was determined from the radar reflectivity and the
LWP according to the retrieval of Frisch et al. (2002). The
IWC was determined according to Hogan et al. (2006) via
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an empirical formula from temperature and radar reflectiv-
ity. The IWP was determined by vertical integration of the
IWC. The calculation of the IWP was carried out specifi-
cally for this study. The determination of rice is carried out
analogously to the IWC from the radar reflectivity and the
temperature by an empirical formula (Griesche et al., 2020f).

Appendix B: Description of TCWret

B1 Working principle of TCWret

TCWret retrieves optical depths of liquid water and ice water
and the effective radii of liquid water droplets and ice crystals
from infrared spectral radiances. The retrieval of microphys-
ical cloud parameters is a nonlinear problem, so an iterative
algorithm is needed:

xn+1 = xn+ sn . (B1)

Here xn and xn+1 are the state vectors containing cloud pa-
rameters of the nth and (n+ 1)th steps and sn is the modifi-
cation of the cloud parameters during the nth iteration. The
state vector contains the optical depths and effective radii:

xn =


τliq,n
τice,n
rliq,n
rice,n

 . (B2)

The governing equation to determine sn is(
KT
n Sy
−1Kn+S−1

a +µ
2S−1

a

)
sn

=KT
n S−1

y

[
y−F (xn)

]
+S−1

a · (xa− xn) . (B3)

The quantities in the equation are the Jacobian matrix K=(
∂F (xi )j
∂xi

)
, the inverse of the variance–covariance matrix S−1

y ,
the a priori xa of the cloud parameters and the inverse co-
variance matrix of the a priori S−1

a , the measured spectral
radiances y, the calculated spectral radiances F (xn), and the
Levenberg–Marquardt term µ2

·S−1
a .

The aim of the iterations is to minimize the cost function
ξ2(x).

ξ2(xn)=
[
y−F (xn)

]T S−1
y

[
y−F (xn)

]
+ [xa− xn]T S−1

a [xa− xn] (B4)

Convergence is reached if the change in the cost function is
below a given threshold, here set to 0.1%:

ξ2(xn+1)− ξ2(xn)
ξ2(xn+1)

< 0.001. (B5)

However, convergence in the sense of the cost function does
not necessarily mean that the fitted and measured spec-
tra match. For example, the step size parameter of the

Table B1. Microwindows used in TCWret to retrieve the micro-
physical cloud parameters of this dataset.

Interval (cm−1)

558.5–562.0
571.0–574.0
785.9–790.7
809.5–813.5
815.3–824.4
828.3–834.6
842.8–848.1
860.1–864.0
872.2–877.5
891.9–895.8
898.2–905.4
929.6–939.7
959.9–964.3
985.0–991.5
1092.2–1098.1
1113.3–1116.6
1124.4–1132.6
1142.2–1148.0
1155.2–1163.4

Levenberg–Marquardt method could be so large that the cost
function changes little. Then the convergence criterion is ful-
filled, but the fit does not agree with the measurement. To
identify these cases, a reduced-χ2 test is performed. This test
is used to calculate the distance between calculated and mea-
sured radiance, taking into account the variance of the spec-
trum σ 2. It is defined as

χ2
reduced =

1
DOF

·

N∑
m=1

y(ν̄m)−F (x, ν̄m)
σ 2 , (B6)

with DOF equal to the number of data points minus the num-
ber of parameters. The microwindow is denoted as ν̄m. As
empirical values, we assume that all retrievals with ξ2

reduced <

1.0 converged correctly. Results with τliq+ τice > 6 are ex-
cluded.

As we do not necessarily have prior information about the
optical depths and effective radii, we decided to set the co-
variance of the a priori to large values. This ensures that the
chosen a priori does not constrain the retrieval too strongly.
Initial values and the a priori are set to equal values: xa =

(0.25,0.25, log(5.0), log(20.0)). The logarithm was chosen
so that all entries of xa have similar sizes. The variance–
covariance matrix of the a priori is set to

S−1
a =


0.04 0 0 0

0 0.04 0 0
0 0 0.047 0
0 0 0 0.047

 . (B7)

The values in xa and S−1
a are chosen empirically. Since ini-

tially no information about the cloud parameters is available,
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xa and S−1
a should not restrict the retrieval too much. There-

fore, the variances in S−1
a are set to large values.

Variances in S−1
y are calculated from the spectral region

between 1925 and 2000 cm−1, where no signal from the at-
mosphere is expected. The variance–covariance matrix is as-
sumed to be diagonal: Sy = σ 2I. It is assumed to be the vari-
ance of the scene. To retrieve cloud parameters, only radiance
from spectral intervals given in Table B1 is used. The vari-
ances of Sy propagated into the covariance matrix Sr of the
result by applying a transfer matrix T. In each step T is cal-
culated taking into account the current step size parameter µ
by{

T0 = 0
Ti+1 =Gi +

(
I−GiKi −MiS−1

a

)
Ti ,

(B8)

with 0 as the zero matrix and I as the identity matrix. Mi is
the inverse of the term in the parentheses on the left side of
Eq. (B3), and Gi =MiKT

i S−1
y . Diagonal elements of Sr are

the variances of the final cloud parameters.

Appendix C: Retrieval performance on simulated
spectra

A set of simulated test cases containing spectral radiances
of artificial clouds with known cloud parameters, created by
Cox et al. (2016), will be used to test the ability of TCWret
to retrieve τliq, τice, rliq and rice. Additionally, the derived
quantities LWP and IWP are discussed. This dataset con-
tains several representative cases of Arctic clouds. Clouds
are set to be vertically homogeneous, topped by a layer
of liquid water or with thin boundaries. Ice crystal shapes
are mostly set to be spheres, but some cases were calcu-
lated with hollow columns, solid columns, bullet rosettes or
plates. All spectra are convoluted with a sinc function to the
resolution of the IFS 55 Equinox (0.3cm−1) and perturbed
by a Gaussian-distributed noise of 1mW(m2 sr cm−1)−1: we
modified the spectral radiance at each wavenumber by draw-
ing a random number from a normal distribution with the
true spectral radiance as the mean of the distribution and
1mW(m2 sr cm−1)−1 as its standard deviation. This value
has been chosen because it is near the observed standard de-
viation of the real spectra from the measurement campaign
of 0.82mW(m2 sr cm−1)−1. Ice crystals are chosen to be
spheres; thus only the test cases which are calculated with
spherical ice crystals are used here. The influence of the cho-
sen ice particle form will be addressed later.

Table 3 gives the correlation coefficients, mean biases
and standard deviations between the retrieved cloud param-
eters of the test cases and the true cloud parameters. Addi-
tionally, the standard deviations calculated via the variance–
covariance matrix are given. TCWret is able to determine op-
tical depths and effective radii of the simulated spectra.

Of all direct retrieval products, the optical depths τliq and
τice have the highest agreement with the true cloud parame-

ters. For the liquid phase, the difference from the true optical
depths is (−0.1±0.5). For the optical depth of the ice phase,
the difference is larger with (0.2±0.6). Since τliq and τice in-
clude both optical depths and phase, the optical depth of the
condensed water τcw = τliq+ τice as well as the fraction of
ice in the optical depth fice = τice ·τ

−1
cw are calculated. Here it

becomes clear that the optical depth can be determined accu-
rately (|r| = 0.99, mean bias and RMSE (0.1± 0.2)). It then
also follows that the deviations of τliq and τice come from the
phase determination. The deviation for the phase is (0.1±0.3)
with a correlation coefficient of |r| = 0.70.

When considering the effective radii, only results of rliq
were used where fice is less than 0.9. For rice only results
with fice > 0.1 are considered. The mean difference in the
retrieval from the true parameters and the root-mean-square
error are (−2.4± 4.1) for rliq and (3.0± 10.0) for rice.

To estimate the influence of the a priori on the calculated
result, the averaging kernel matrix is used. The mean averag-
ing kernel matrix over all retrievals is

A=


0.87 0.09 −0.15 −0.09
0.11 0.90 0.19 0.03
−0.04 0.07 0.50 0.05
−0.16 0.05 0.03 0.42

 . (C1)

From Eq. (8) it can be seen that the diagonal elements show
for each parameter how strongly the retrieved parameter is
influenced by the a priori. Whereas the diagonal elements of
the optical depths are near 1, indicating independence from
the a priori, results for rliq and rice show a larger influence
from the a priori. From the trace of the averaging kernels
follow 2.69 degrees of freedom of the signal.

The water paths are calculated from the optical depths and
effective radii; therefore both quantities are influenced by the
phase determination, as seen before in τliq,ice and rliq,ice. The
difference from the test cases is (−1.6± 6.3) for the LWP
and (1.9± 10.0) for the IWP. However, the RMSE for the
LWP is less than the minimum RMSE observed for the LWP
from microwave radiometer of at least 15gm−2 (Löhnert and
Crewell, 2003).

Standard deviations given by the variance–covariance
matrix of the retrieval are shown in Table 3 and named
ERR(OE). ERR(OE) is below RMSE for τliq,ice, rliq,ice, the
LWP and the IWP. This might be due to uncertainties from
the forward model – which are neglected here – propagated
into the retrievals or due to the assumption of a diagonal vari-
ance matrix Sy . To compensate for these effects, the uncer-
tainties from the posterior covariance matrix are scaled by
RMSE /ERR(OE) with the RMSE from Table 3 for the dis-
cussion in Sect. 5.

C1 Mean bias and RMSE of effective radii

In the previous section, the results for rliq and rice were only
considered for a certain range of fice. Thus, liquid drops were
only included in the consideration if the ice content was not
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Table C1. Determination of rliq depending on the cloud phase.

Maximum |r| Mean RMSE Data points
fice bias

0.1 0.97 0.6µm 2.1µm 19
0.3 0.90 −0.2µm 2.3µm 38
0.5 0.79 −1.0µm 2.7µm 87
0.7 0.70 −1.6µm 3.2µm 151
0.9 0.59 −2.4µm 4.1µm 192

Table C2. Determination of rice depending on the cloud phase.

Maximum |r| Mean RMSE Data points
fliq bias

0.1 0.61 −5.0µm 12.0µm 31
0.3 0.59 −0.3µm 12.0µm 80
0.5 0.67 1.3µm 10.2µm 141
0.7 0.65 2.6µm 10.2µm 180
0.9 0.65 2.9µm 10.1µm 193

higher than 90%. For ice crystals, the limit was at least 10%
ice content. In the following, these limits are shifted so that
the results go in the direction of a single-phase retrieval for
liquid water and ice.

Table C1 shows the results for liquid water. The entries
at the top describe cases with a higher proportion of liquid
water than the cases at the bottom, which allow a higher pro-
portion of ice. They are cumulative, which means that each
record also contains the data of the record above it. From
the test cases it follows that the fewer ice crystals present,
the lower the RMSE. Also, the absolute mean bias decreases
with lower ice content up to an ice content between 10% and
30%. These results indicate that the presence of ice crystals
lead to an underestimation of rliq by TCWret.

Table C2 show the results for ice crystals. Here we intro-
duced fliq, which is defined as fliq = 1−fice, to create a table
consistent with Table C1. Here one can see that the RMSE
of rice is almost independent of the water content. However,
there is a dependence of the mean bias on water content.
While removing clouds with very high water content leads to
a decrease in absolute mean bias, the absolute value of mean
bias increases for clouds with high ice content, so TCWret
underestimates rice of the simulated spectra.

Appendix D: Influence of trace gas concentrations
on the retrieval

In the LBLRTM, a standard atmosphere was used for gases
except water vapor. Therefore, the concentration of CO2
is set to 330ppm, although the real concentration in sum-
mer 2017 is about 410ppm. To investigate the influence
of an incorrect trace gas concentration, retrievals from the
11 June 2016 have been performed with both atmospheric

concentrations of CO2. Differences are calculated for the
cloud parameters τliq, τice, rliq and rice and shown in Fig. D1.
For all parameters, correlation coefficients between |r| =
0.98 and |r| = 1.00 can be observed. The maximum mean
bias is observed for rliq (0.1µm), and the maximum RMSE
is observed for rice (1.3µm). From this it can be concluded
that the influence of the trace gas concentration is negligible
compared to the other uncertainties.

Figure D1. Histograms of differences for CO2 concentrations of
410 and 330ppm for τliq, τice, rliq and rice.

Appendix E: Ice crystal shapes in the netCDF file

Table E1 refers to each key in the field ice_shape in the
netCDF file and the corresponding ice crystal shape.

Table E1. Ice crystal shapes in the netCDF file and the correspond-
ing number.

Key Shape

0 Aggregates
1 Droxtals
2 Solid columns
3 Hollow columns
4 Spheroids
5 Plates
6 Bullet rosettes
7 Spheres
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