Articles | Volume 14, issue 4
https://doi.org/10.5194/essd-14-1677-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-1677-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Description of the China global Merged Surface Temperature version 2.0
Wenbin Sun
School of Atmospheric Sciences, Sun Yat-Sen University, Zhuhai, China
Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai, China
current address: Southern Laboratory of Ocean Science and Engineering (Guangdong Zhuhai), Zhuhai, China
Yang Yang
School of Atmospheric Sciences, Sun Yat-Sen University, Zhuhai, China
Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai, China
current address: Southern Laboratory of Ocean Science and Engineering (Guangdong Zhuhai), Zhuhai, China
Liya Chao
School of Atmospheric Sciences, Sun Yat-Sen University, Zhuhai, China
Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai, China
current address: Southern Laboratory of Ocean Science and Engineering (Guangdong Zhuhai), Zhuhai, China
Wenjie Dong
School of Atmospheric Sciences, Sun Yat-Sen University, Zhuhai, China
Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai, China
current address: Southern Laboratory of Ocean Science and Engineering (Guangdong Zhuhai), Zhuhai, China
Boyin Huang
National Centers of Environmental Information, NOAA, Asheville, North Carolina, USA
Phil Jones
Climate Research Unit, University of East Anglia, Norwich, UK
School of Atmospheric Sciences, Sun Yat-Sen University, Zhuhai, China
current address: Southern Laboratory of Ocean Science and Engineering (Guangdong Zhuhai), Zhuhai, China
Related authors
No articles found.
Sihao Wei, Qingxiang Li, Qiya Xu, Zichen Li, Hanyu Zhang, and Jiaxue Lin
Earth Syst. Sci. Data, 17, 4985–5005, https://doi.org/10.5194/essd-17-4985-2025, https://doi.org/10.5194/essd-17-4985-2025, 2025
Short summary
Short summary
This study introduces the update to the C-LSAT 2.1 station data and its gridded dataset (5° × 5°) for 1850–2024, into which nearly 3000 additional stations were merged. Building on this, high‑resolution (0.5° × 0.5°) land surface air temperature (C‑LSAT HRv1) and diurnal temperature range (C‑LDTR HRv1) datasets for 1901–2023 were produced via thin-plate spline interpolation of the climatology fields and adjusted inverse distance weighted interpolation of the anomaly fields.
Guiling Ye, Jeremy Cheuk-Hin Leung, Wenjie Dong, Jianjun Xu, Weijing Li, Weihong Qian, Hoiio Kong, and Banglin Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-126, https://doi.org/10.5194/essd-2025-126, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
The RGTracks-20C is the first publicly available reanalysis-based TC dataset spanning the whole 20th century and part of the 19th century. We use two independent TC tracking algorithms to detect information of all the TCs from NOAA’s Twentieth Century Reanalysis (20CRv3). By doing so, the RGTracks-20C fills the gaps of incomplete TC track records (TC intensity) in the historical TC observation data (e.g., IBTrACS), addressing the limitations of early-year observed TC data.
Wenjun Liang, Simon Frederick Barnard Tett, Lijuan Li, Coralia Cartis, Danya Xu, and Wenjie Dong
EGUsphere, https://doi.org/10.5194/egusphere-2024-3770, https://doi.org/10.5194/egusphere-2024-3770, 2025
Short summary
Short summary
Predicting climate accurately is challenging due to uncertainties in model parameters. This study introduced an automated approach to refine key parameters, focusing on processes like cloud formation and atmospheric circulation. Testing adjustments to 10 and 20 parameters improved the model’s accuracy and stability, reducing errors in long-term simulations. This faster, more reliable method enhances climate models, supporting better future predictions and aiding global decision-making.
Duofan Zheng, Shao-Yi Lee, Wenting Lin, Qi Ran, and Wenjie Dong
EGUsphere, https://doi.org/10.5194/egusphere-2024-2415, https://doi.org/10.5194/egusphere-2024-2415, 2024
Preprint archived
Short summary
Short summary
Three Asia-centric configurations of CAM-SE with different resolution were set up in Western Pacific region. A typhoon track algorithm was developed to extract the tracks of typhoons generated by the simulations. We found that the 0.25° regionally-refined configuration of CAM-SE could produce cost-efficient yet appropriate extreme typhoon statistics for the use of climate studies.
Zengyun Hu, Xi Chen, Deliang Chen, Zhuo Zhang, Qiming Zhou, and Qingxiang Li
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-82, https://doi.org/10.5194/gmd-2024-82, 2024
Preprint withdrawn
Short summary
Short summary
ERC firstly unified the evaluating, ranking, and clustering by a simple mathematic equation based on Euclidean Distance. It provides new system to solve the evaluating, ranking, and clustering tasks in SDGs. In fact, ERC system can be applied in any scientific domain.
Boyang Jiao, Yucheng Su, Qingxiang Li, Veronica Manara, and Martin Wild
Earth Syst. Sci. Data, 15, 4519–4535, https://doi.org/10.5194/essd-15-4519-2023, https://doi.org/10.5194/essd-15-4519-2023, 2023
Short summary
Short summary
This paper develops an observational integrated and homogenized global-terrestrial (except for Antarctica) SSRIH station. This is interpolated into a 5° × 5° SSRIH grid and reconstructed into a long-term (1955–2018) global land (except for Antarctica) 5° × 2.5° SSR anomaly dataset (SSRIH20CR) by an improved partial convolutional neural network deep-learning method. SSRIH20CR yields trends of −1.276 W m−2 per decade over the dimming period and 0.697 W m−2 per decade over the brightening period.
Gilles Delaygue, Stefan Brönnimann, and Philip D. Jones
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2022-33, https://doi.org/10.5194/wcd-2022-33, 2022
Revised manuscript not accepted
Short summary
Short summary
We test whether any association between solar activity and meteorological conditions in the north Atlantic – European sector could be detected. We find associations consistent with those found by previous studies, with a slightly better statistical significance, and with less methodological biases which have impaired previous studies. Our study should help strengthen the recognition of meteorological impacts of solar activity.
Peng Si, Qingxiang Li, and Phil Jones
Earth Syst. Sci. Data, 13, 2211–2226, https://doi.org/10.5194/essd-13-2211-2021, https://doi.org/10.5194/essd-13-2211-2021, 2021
Short summary
Short summary
This paper documents the various procedures necessary to construct a homogenized daily maximum and minimum temperature series starting in 1887 for Tianjin. The newly constructed temperature series provides a set of new baseline data for the field of extreme climate change at the century-long scale and a reference for construction of other long-term reliable daily time series in the region.
Cited articles
Brohan, P., Kennedy, J. J., Harris, I., Tett, S. F. B., and Jones, P. D.:
Uncertainty estimates in regional and global observed temperature changes: A
new data set from 1850, J. Geophys. Res.-Atmos., 111, D12106, https://doi.org/10.1029/2005JD006548,
2006.
Cheng, J., Li, Q., Chao, L., Maity, S., Huang, B., and Jones, P.:
Development of High Resolution and Homogenized Gridded Land Surface Air
Temperature Data: A Case Study Over Pan-East Asia, Front.
Environ. Sci., 8, 588570, https://doi.org/10.3389/fenvs.2020.588570, 2020.
Cowtan, K. and Way, R. G.: Coverage bias in the HadCRUT4 temperature series
and its impact on recent temperature trends, Q. J. Roy.
Meteor. Soc., 140, 1935–1944, 2014.
Dai, A., Luo, D., Song, M., and Liu, J.: Arctic amplification is caused by
sea-ice loss under increasing CO2, Nat. Commun., 10, 121, https://doi.org/10.1038/s41467-018-07954-9, 2019.
Freeman, E., Woodruff, S. D., Worley, S. J., Lubker, S. J., Kent, E. C.,
Angel, W. E., Berry, D. I., Brohan, P., Eastman, R., Gates, L., Gloeden, W.,
Ji, Z., Lawrimore, J., Rayner, N. A., Rosenhagen, G., and Smith, S. R.:
ICOADS Release 3.0: a major update to the historical marine climate record,
Int. J. Climatol., 37, 2211–2232, 2017.
Goosse, H., Kay, J. E., Armour, K. C., Bodas-Salcedo, A., Chepfer, H.,
Docquier, D., Jonko, A., Kushner, P. J., Lecomte, O., Massonnet, F., Park,
H.-S., Pithan, F., Svensson, G., and Vancoppenolle, M.: Quantifying climate
feedbacks in polar regions, Nat. Commun., 9, 1919, https://doi.org/10.1038/s41467-018-04173-0, 2018.
Gulev, S. K., Thorne, P. W., Ahn, J., Dentener, F. J., Domingues, C. M.,
Gerland, S., Gong, D., Kaufman, D. S., C, H., and Nnamchi, J. Q. J. A.:
Changing State of the Climate System, in: Climate Change 2021: The Physical
Science Basis. Contribution of Working Group I to the Sixth Assessment
Report of the Intergovernmental Panel on Climate Change, edited by: MassonDelmotte, V., Zhai,
P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb,
L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock,
T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B.,
Cambridge University Press, in press, 2021.
Hansen, J., Ruedy, R., Sato, M., and Lo, K.: Global surface temperature change, Rev. Geophys., 48, RG4004, https://doi.org/10.1029/2010RG000345, 2010.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay,
P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
global reanalysis, Q. J. Roy. Meteor. Soc.,
146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Huang, B., Thorne, P. W., Smith, T. M., Liu, W., Lawrimore, J., Banzon, V.
F., Zhang, H.-M., Peterson, T. C., and Menne, M.: Further Exploring and
Quantifying Uncertainties for Extended Reconstructed Sea Surface Temperature
(ERSST) Version 4 (v4), J. Climate, 29, 3119–3142, 2016.
Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore,
J. H., Menne, M. J., Smith, T. M., Vose, R. S., and Zhang, H.-M.: Extended
Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades,
Validations, and Intercomparisons, J. Climate, 30, 8179–8205, 2017.
Huang, B., Menne, M. J., Boyer, T., Freeman, E., Gleason, B. E., Lawrimore,
J. H., Liu, C., Rennie, J. J., Schreck, C. J., Sun, F., Vose, R., Williams,
C. N., Yin, X., and Zhang, H.-M.: Uncertainty Estimates for Sea Surface
Temperature and Land Surface Air Temperature in NOAAGlobalTemp Version 5,
J. Climate, 33, 1351–1379, 2020.
IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp., 2013.
IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the SixthAssessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, in press, 2021.
Jones, P. D., Osborn, T. J., and Briffa, K. R.: Estimating Sampling Errors
in Large-Scale Temperature Averages, J. Climate, 10, 2548–2568,
1997.
Kadow, C., Hall, D. M., and Ulbrich, U.: Artificial intelligence
reconstructs missing climate information, Nat. Geosci., 13, 408–413,
2020.
Kent, E. C., Kennedy, J. J., Smith, T. M., Hirahara, S., Huang, B., Kaplan,
A., Parker, D. E., Atkinson, C. P., Berry, D. I., and Carella, G.: A call
for new approaches to quantifying biases in observations of sea surface
temperature, B. Am. Meteorol. Soc., 98, 1601–1616,
2017.
Latonin, M. M., Bashmachnikov, I. L., Bobylev, L. P., and Davy, R.:
Multi-model ensemble mean of global climate models fails to reproduce early
twentieth century Arctic warming, Polar Sci., 30, 100677, https://doi.org/10.1016/j.polar.2021.100677, 2021.
Lenssen, N. J. L., Schmidt, G. A., Hansen, J. E., Menne, M. J., Persin, A.,
Ruedy, R., and Zyss, D.: Improvements in the GISTEMP Uncertainty Model,
J. Geophys. Res.-Atmos., 124, 6307–6326, 2019.
Li, Q., Sun, W., Huang, B., Dong, W., Wang, X., Zhai, P., and Jones, P.:
Consistency of global warming trends strengthened since 1880s, Sci.
Bull., 65, 1709–1712, 2020.
Li, Q., Sun, W., Yun, X., Huang, B., Dong, W., Wang, X. L., Zhai, P., and
Jones, P.: An updated evaluation of the global mean land surface air
temperature and surface temperature trends based on CLSAT and CMST, Clim.
Dynam., 56, 635–650, 2021.
Li, Q., Sheng, B., Huang, J., Li, C., Song, Z., Chao, L., Sun, W., Yang, Y.,
Jiao, B., Guo, Z., Liao, L., Li, X., Sun, C., Li, W., Huang, B., Dong, W.,
and Jones, P.: Different climate response persistence causes warming trend
unevenness at continental scales, Nat. Clim. Change, 12, 343–349,
https://doi.org/10.1038/s41558-022-01313-9, 2022.
Lu, J. and Cai, M.: Seasonality of polar surface warming amplification in
climate simulations, Geophys. Res. Lett., 36, L16704, https://doi.org/10.1029/2009GL040133, 2009.
Lu, J. and Cai, M.: Quantifying contributions to polar warming amplification
in an idealized coupled general circulation model, Clim. Dynam., 34,
669–687, 2010.
Menne, M. J., Williams, C. N., Gleason, B. E., Rennie, J. J., and Lawrimore,
J. H.: The global historical climatology network monthly temperature
dataset, version 4, J. Climate, 31, 9835–9854, 2018.
Morice, C. P., Kennedy, J. J., Rayner, N. A., and Jones, P. D.: Quantifying
uncertainties in global and regional temperature change using an ensemble of
observational estimates: The HadCRUT4 data set, J. Geophys. Res.-Atmos., 1, 1–13, 2012.
Morice, C. P., Kennedy, J. J., Rayner, N. A., Winn, J. P., Hogan, E.,
Killick, R. E., Dunn, R. J. H., Osborn, T. J., Jones, P. D., and Simpson, I.
R.: An updated assessment of near-surface temperature change from 1850: the
HadCRUT5 dataset, J. Geophys. Res.-Atmos., 126, e2019JD032361, https://doi.org/10.1029/2019JD032361,
2021.
Parker, D. E.: A demonstration that large-scale warming is not urban,
J. Climate, 19, 2882–2895, 2006.
Parker, D. E., Jones, P. D., Folland, C. K., and Bevan, A.: Interdecadal
changes of surface temperature since the late nineteenth century, J. Geophys. Res.-Atmos., 99, 14373–14399, 1994.
Rohde, R., Muller, R., Jacobsen, R., Perlmutter, S., Rosenfeld, A., Wurtele,
J., Curry, J., Wickham, C., and Mosher, S.: Berkeley earth temperature
averaging process, Geoinfor. Geostatist.: An Overview, 1, 1–13,
2013a.
Rohde, R., Muller, R. A., Jacobsen, R., Muller, E., Perlmutter, S.,
Rosenfeld, A., Wurtele, J., Groom, D., and Wickham, C.: A New Estimate of
the Average Earth Surface Land Temperature Spanning 1753 to 2011, Geoinfor.
Geostat.: An Overview, 1, 1–7, 2013b.
Rohde, R. A. and Hausfather, Z.: The Berkeley Earth Land/Ocean Temperature Record, Earth Syst. Sci. Data, 12, 3469–3479, https://doi.org/10.5194/essd-12-3469-2020, 2020.
Sun, W. and Li, Q.: China global Merged surface temperature 2.0 during
1850–2020, figshare [data set], https://doi.org/10.6084/m9.figshare.16929427.v4, 2021a.
Sun, W. and Li, Q.: China global Land Surface Air Temperature 2.0 during
1850–2020, figshare [data set], https://doi.org/10.6084/m9.figshare.16968334.v4, 2021b.
Sun, W., Li, Q., Huang, B., Cheng, J., Song, Z., Li, H., Dong, W., Zhai, P.,
and Jones, P.: The Assessment of Global Surface Temperature Change from
1850s: The C-LSAT2.0 Ensemble and the CMST-Interim Datasets, Adv.
Atmos. Sci., 38, 875–888, 2021.
Thorne, P. W., Willett, K. M., Allan, R. J., Bojinski, S., Christy, J. R.,
Fox, N., Gilbert, S., Jolliffe, I., Kennedy, J. J., Kent, E., Tank, A. K.,
Lawrimore, J., Parker, D. E., Rayner, N., Simmons, A., Song, L., Stott, P.
A., and Trewin, B.: Guiding the Creation of A Comprehensive Surface
Temperature Resource for Twenty-First-Century Climate Science, B. Am. Meteorol. Soc., 92, ES40–ES47, https://doi.org/10.1175/2011bams3124.1,
2011.
Trewin, B. C.: Techniques involved in developing the Australian Climate
Observations Reference Network – Surface Air Temperature (ACORN-SAT)
dataset, CAWCR Technical Report 49, Centre for Australian weather and Climate Research, Technical Report 49, Melbourne, 2012.
Vose, R. S., Arndt, D., Banzon, V. F., Easterling, D. R., Gleason, B.,
Huang, B., Kearns, E., Lawrimore, J. H., Menne, M. J., and Peterson, T. C.:
NOAA's merged land–ocean surface temperature analysis, B.
Am. Meteorol. Soc., 93, 1677–1685, 2012.
Vose, R. S., Huang, B., Yin, X., Arndt, D., Easterling, D. R., Lawrimore, J.
H., Menne, M. J., Sanchez Lugo, A., and Zhang, H. M.: Implementing Full
Spatial Coverage in NOAA's Global Temperature Analysis, Geophys. Res.
Lett., 48, e2020GL090873, https://doi.org/10.1029/2020GL090873, 2021.
Wang, J., Xu, C., Hu, M., Li, Q., Yan, Z., and Jones, P.: Global land
surface air temperature dynamics since 1880, Int. J.
Climatol., 38, e466–e474, https://doi.org/10.1002/joc.5384, 2018.
Xiao, H., Zhang, F., Miao, L., Liang, X. S., Wu, K., and Liu, R.: Long-term
trends in Arctic surface temperature and potential causality over the last
100 years, Clim. Dynam., 55, 1443–1456, 2020.
Xu, W., Li, Q., Jones, P., Wang, X. L., Trewin, B., Yang, S., Zhu, C., Zhai,
P., Wang, J., Vincent, L., Dai, A., Gao, Y., and Ding, Y.: A new integrated
and homogenized global monthly land surface air temperature dataset for the
period since 1900, Clim. Dynam., 50, 2513–2536, 2018.
Yamanouchi, T.: Early 20th century warming in the Arctic: A review, Polar
Sci., 5, 53–71, 2011.
Yun, X., Huang, B., Cheng, J., Xu, W., Qiao, S., and Li, Q.: A new merge of global surface temperature datasets since the start of the 20th century, Earth Syst. Sci. Data, 11, 1629–1643, https://doi.org/10.5194/essd-11-1629-2019, 2019.
Zhang, H. M., Lawrimore, J., Huang, B., Menne, M. J., Yin, X.,
Sánchez-Lugo, A., Gleason, B. E., Vose, R., Arndt, D., and Rennie, J.
J.: Updated temperature data give a sharper view of climate trends, Eos,
100, 1961–2018, 2019.
Short summary
The new China global Merged Surface Temperature CMST 2.0 is the updated version of CMST-Interim used in the IPCC's AR6. The updated dataset is described in this study, containing three versions: CMST2.0 – Nrec, CMST2.0 – Imax, and CMST2.0 – Imin. The reconstructed datasets significantly improve data coverage, especially in the high latitudes in the Northern Hemisphere, thus increasing the long-term trends at global, hemispheric, and regional scales since 1850.
The new China global Merged Surface Temperature CMST 2.0 is the updated version of CMST-Interim...
Altmetrics
Final-revised paper
Preprint