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Abstract. Global surface temperature observational datasets are the basis of global warming studies. In the
context of increasing global warming and frequent extreme events, it is essential to improve the coverage and
reduce the uncertainty in global surface temperature datasets. The China global Merged Surface Temperature
Interim version (CMST-Interim) is updated to CMST 2.0 in this study. The previous CMST datasets were created
by merging the China global Land Surface Air Temperature (C-LSAT) with sea surface temperature (SST) data
from the Extended Reconstructed Sea Surface Temperature version 5 (ERSSTv5). The CMST 2.0 contains three
variants: CMST 2.0−Nrec (without reconstruction), CMST 2.0− Imax, and CMST 2.0− Imin (according to
their reconstruction area of the air temperature over the sea ice surface in the Arctic region). The reconstructed
datasets significantly improve data coverage, whereas CMST 2.0− Imax and CMST 2.0− Imin have improved
coverage in the Northern Hemisphere, up to more than 95 %, and thus increased the long-term trends at global,
hemispheric, and regional scales from 1850 to 2020. Compared to CMST-Interim, CMST 2.0− Imax and CMST
2.0− Imin show a high spatial coverage extended to the high latitudes and are more consistent with a reference of
multi-dataset averages in the polar regions. The CMST 2.0 datasets presented here are publicly available at the
website of figshare, https://doi.org/10.6084/m9.figshare.16929427.v4 (Sun and Li, 2021a), and the CLSAT2.0
datasets can be downloaded at https://doi.org/10.6084/m9.figshare.16968334.v4 (Sun and Li, 2021b). Both are
also available at http://www.gwpu.net (last access: January 2022).

1 Introduction

Global surface temperature (GST) is a key meteorological
factor in characterizing climate change and has been widely
used for climate change detection and assessment (IPCC,
2013, 2021). GST consists of global land surface air temper-
ature (LSAT), which is the 2 m air temperature observed by
land weather stations, and sea surface temperature (SST) ob-
served by ships, buoys, and Argos. However, there are large
uncertainties in the temperature data observed by weather
stations, ships, buoys, and Argos in long-term observations,
including uncertainties due to uneven spatial and temporal

distribution of sampling (Jones et al., 1997; Brohan et al.,
2006) and uncertainties due to stations, environment, and
instrumentation changes (Parker et al., 1994; Parker, 2006;
Trewin, 2012; Kent et al., 2017; Menne et al., 2018; Xu et
al., 2018). Nevertheless, several countries and research teams
have applied different homogenization methods to generate
a series of representative homogenized global land–sea sur-
face temperature gridded datasets, including the Met Office
Hadley Centre/Climatic Research Unit global surface tem-
perature dataset (HadCRUT) (Morice et al., 2012), Goddard
Institute for Space Studies Surface Temperature (GISTEMP)

Published by Copernicus Publications.

https://doi.org/10.6084/m9.figshare.16929427.v4
https://doi.org/10.6084/m9.figshare.16968334.v4
http://www.gwpu.net


1678 W. Sun et al.: Description of the China global Merged Surface Temperature version 2.0

(Hansen et al., 2010; Lenssen et al., 2019), the NOAA’s
NOAA Global Temperature (NOAAGlobalTemp) (Vose et
al., 2012; Zhang et al., 2019; Huang et al., 2020), and Berke-
ley Earth (BE) (Rohde et al., 2013a; Rohde and Hausfather,
2020), which serve as benchmark data for monitoring and
detecting GST changes and related studies.

However, there are still uncertainties in these datasets, in-
cluding those due to insufficient coverage, especially at high
altitudes and in the polar regions (Wang et al., 2018). The
Arctic has high climate sensitivity (Lu and Cai, 2009, 2010;
Yamanouchi, 2011; Dai et al., 2019; Xiao et al., 2020; La-
tonin et al., 2021); the absence of data for this region would
lead to a cold bias in the estimated global mean surface tem-
perature (GMST). How to account for this deficiency is an
issue that must be addressed to optimize and improve the ob-
servations. Since IPCC AR5 (2013), all the above datasets
have been updated and reconstructed in the data default re-
gion (IPCC, 2021). For example, Cowtan and Way (2014)
used kriging and hybrid methods to fill in the HadCRUT4
data gap areas, extending the data to polar regions. GIS-
STEMP v4 utilized spatial interpolation methods to fill in
the default data within the appropriate distances (1200 km)
(Lenssen et al., 2019). The NOAA’s National Centers for En-
vironmental Information (NCEI) used spatial smoothing and
empirical orthogonal remote correlations (EOTs) to recon-
struct the data default areas, generating 100-member Global
Historical Climatology Network-Monthly (GHCN) ensem-
ble data and 1000-member Extended Reconstructed Sea
Surface Temperature (ERSST) ensemble data, respectively,
which were combined into the NOAAglobalTemp-Interim
dataset (Vose et al., 2021). The HadCRUT team infilled Had-
CRUT5 using the Gaussian process method (Morice et al.,
2021). Kadow et al. (2020) used artificial intelligence (AI) in
combination with numerical climate model data to fill the ob-
servation gaps in HadCRUT4. Berkeley Earth used kriging-
based spatial interpolation to fill in the terrestrial default data
(Rohde et al., 2013a, b; Rohde and Hausfather, 2020). In-
terpolation and reconstruction for high latitudes reduce the
error in the estimate of GMST. Compared to 0.61 (0.55–
0.67) ◦C in IPCC AR5, GST warming estimated with re-
constructed datasets in AR6 from 1850–1800 to 1986–2005
is 0.69 (0.54–0.79) ◦C, which increased by 0.08 (−0.01 to
0.12) ◦C (IPCC, 2021).

China global Merged Surface Temperature (China-MST
or CMST) is a new global surface temperature dataset de-
veloped by the team at Sun Yat-sen University, which was
generated by merging China global Land Surface Air Tem-
perature (China-LSAT or C-LAST) (Xu et al., 2018; Yun et
al., 2019; Li et al., 2020, 2021) as the terrestrial component
and ERSSTv5 (Extended Reconstructed Sea Surface Tem-
perature version 5) (Huang et al., 2017) as the ocean com-
ponent. It is generally consistent with other global datasets
in terms of GST trends and uncertainty levels since 1880
(Li et al., 2020). Both the CMST and C-LSAT datasets have
a resolution of 5◦× 5◦ in the latitude and longitude direc-

tions. Compared with other datasets, the station coverage of
C-LSAT has been significantly improved, especially for Asia
(Xu et al., 2018), and more ISTI (the International Surface
Temperature Initiative) station data have been added in C-
LSAT 2.0 (Li et al., 2021; Thorne et al., 2011). In addition, C-
LSAT adopted a homogenization scheme for temperature se-
ries that is different from datasets such as the Global Histori-
cal Climatology Network version 4 (GHCNm v4) (Menne et
al., 2018; Li et al., 2022). Further, Sun et al. (2021) trained
EOTs’ modes with “state-of-the-art” ERA5 reanalysis data
to extract the spatial distribution of LSAT. They then used
a similar low- and high-frequency reconstruction method of
Huang et al. (2020) with different parameter schemes, com-
bined with the observation constraint method, to fill the data
default region of C-LSAT2.0 and released the new recon-
structed dataset C-LSAT2.0 ensemble and the global surface
temperature dataset CMST-Interim. Compared with the orig-
inal CMST, CMST-Interim significantly improves the cov-
erage of GST, and the GST warming estimated by CMST-
Interim is more significant, with the warming trend since the
1900s increasing from 0.085±0.004 to 0.089±0.004 ◦C per
decade. In the current CMST-Interim (Sun et al., 2021) and
its earlier version (Yun et al., 2019), we still fully adopted
the setting from ERSSTv5, which treats the sea ice region in
the Arctic as the sea surface temperature below the sea ice
and assigns a default value (−1.8 ◦C), which makes it still
a gap in the polar region. In contrast, polar regions are sus-
ceptible to climate forcing, with the Arctic warming more
than twice the global average in recent decades (Goosse et
al., 2018). The lack of data from CMST-Interim in polar re-
gions may result in a slight underestimation of its estimated
global warming trend. Furthermore, CMST-Interim does not
systematically assess the reconstruction uncertainty in LSAT,
resulting in an incomplete estimate of global surface tem-
perature uncertainty (Li et al., 2021). Although the C-LSAT
2.0 ensemble satisfied the criterion of the recently released
the Sixth Assessment Report of the IPCC, the CMST-Interim
does not appear in the core assessment GMST series due to
its insufficient data coverage in the Arctic region (Gulev et
al., 2021).

To address the above issue and improve coverage of
CMST in the Arctic, we further reconstruct and supple-
ment the Arctic data default region in the dataset using a
combination of statistical interpolation and high- and low-
frequency reconstruction to develop the reconstructed CMST
2.0 dataset and assess its uncertainty. Section 2 introduces the
update of terrestrial and oceanic datasets, Sect. 3 presents the
reconstruction and uncertainty analysis of CMST 2.0, Sect. 4
introduces the composition of C-LSAT2.0 and CMST 2.0,
Sect. 5 analyzes the GMST series of CMST 2.0, Sect. 6 is
the comparison of the CMST 2.0 dataset with other datasets,
Sect. 7 provides the data availability, and Sect. 8 is the sum-
mary and outlook.
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Figure 1. Comparison of C-LSAT 1.3 and C-LSAT 2.0 site counts
from 1900 to 2017.

2 Updates of the land and ocean datasets

2.1 Data sources and initial processing for C-LSAT2.0

The initial version of the C-LSAT dataset was C-LSAT1.0.
The C-LSAT1.0 site dataset collected and integrated
14 LSAT datasets, including three global data sources
(CRUTEM4, GHCN-V3, and BEST), three regional data
sources, and eight national in situ data sources (Xu et al.,
2018). The current latest version is C-LSAT 2.0 (Li et al.,
2021; Sun et al., 2021).

C-LSAT 2.0 used in this study is an update of C-LSAT 1.3.
Compared to C-LSAT 1.3 from 1900 to 2017, version 2.0 is
extended to 1850–2020, and there is a significant increase
in the amount of in situ data for the period 2013–2017
(Fig. 1), with the increased in situ data from CLIMAT from
the WMO’s Global Telecommunication System (GTS) and
Global Surface Daily Summary (GSOD) (https://www.ncei.
noaa.gov/data/global-summary-of-the-day/archive/; last ac-
cess: November 2021). It is homogenized using the same
method as Xu et al. (2018). In addition, we have updated the
data in C-LSAT2.0 for 2013–2019, which adds the number
of in situ data in Africa, North America, and other regions in
this study. The C-LSAT 2.0 dataset includes three tempera-
ture elements – monthly mean temperature, maximum tem-
perature, and minimum temperature – and its time range for
the three elements is January 1850–December 2020.

2.2 Sea surface temperature

CMST 1.0 (Yun et al., 2019) and CMST-Interim (Sun et al.,
2021) use ERSSTv5 as the ocean component (Huang et al.,
2017). ERSSTv5 starts from 1854, and we extend ERSSTv5
(1854–present) to 1850 using 1850–1853 SST anomalies
(relative to 1961–1990 average) from ICOADS Release 3.0
(Freeman et al., 2017) and integrated into a global SST
anomaly dataset for January 1850–December 2020. In the in-
tegrated SST dataset above, the SST is still set to a constant
value of −1.8 ◦C for areas with > 90 % sea ice coverage as
ERSSTv5. In addition, some areas in the high latitudes of

the Southern Hemisphere (non-sea ice) are marked as miss-
ing values due to the lack of observations.

2.3 Sea ice surface air temperature

The common air temperature observation for the Arctic re-
gion is the International Arctic Buoy Program (IABP) (http:
//research.jisao.washington.edu/data_sets/iabppoles/; last ac-
cess: October 2021), which contains oceanographic and me-
teorological observations for the Pacific Arctic, but it only
has sea ice data from 1979 to the present, while the cli-
mate state of CMST is 1961–1990; the time length of IABP
does not help us to estimate and reconstruct the temperature
anomaly of the Arctic region in the CMST dataset, so we
use the adjusted inverse distance weighted (AIDW; Cheng
et al., 2020) extrapolation (site data) and EOT interpolation
(gridding) methods to fill the default grid of the polar region
(Cowtan and Way, 2014; Lenssen et al., 2019; Rohde and
Hausfather, 2020; Vose et al., 2021).

3 CMST 2.0 reconstruction and uncertainty analysis

3.1 CMST and its brief reconstruction history

CMST 1.0 consists of C-LSAT 1.3 (1900–2017) as the terres-
trial component and ERSSTv5 as the ocean component. The
latest version without reconstruction is CMST 2.0−Nrec in
this study, which is composed of C-LSAT2.0 and ERSSTv5.
Compared to CMST 1.0 from 1900–2017, CMST 2.0−Nrec
has been updated and expanded to 1850–2020. The orig-
inal reconstructed version of CMST is the China global
Merged Surface Temperature reconstruction dataset CMST-
Interim, which is a merge of the reconstructed C-LSAT2.0
and ERSSTv5, where the reconstructed C-LSAT2.0 is an en-
semble reconstruction dataset upgraded from C-LSAT2.0 (Li
et al., 2021) with 756 ensemble members identified based
on EOT and smoothing (Sun et al., 2021). Considering that
there are many missing data due to sea ice coverage at high
latitudes in the Northern Hemisphere in CMST, the AIDW
extrapolation method is proposed to infill the missing data at
some key sites; then the EOT interpolation method is used
to reconstruct all the grid boxes over the sea-ice-covered re-
gion in this paper. Considering the effect of interannual vari-
ability in sea ice in the Arctic, 65–90◦ N and 80–90◦ N are
taken as the assumed land components for ensemble recon-
struction with C-LSAT 2.0, respectively, using the maximum
sea ice area and minimum sea ice area for the entire period
when satellite observations are available as a reference; then
the ERSSTv5 ensemble reconstruction dataset is merged to
generate CMST 2.0− Imax and CMST 2.0− Imin datasets.
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3.2 Reconstruction of terrestrial and marine
components

3.2.1 Reconstruction of the terrestrial component

We follow the reconstruction method of CMST-Interim (Sun
et al., 2021) and divide the C-LSAT 2.0 dataset into two
parts, high- and low-frequency (HF and LF) components,
for reconstruction, then sum them to obtain the reconstructed
LSAT data (Fig. 2). The low-frequency component is a run-
ning average over time and space to characterize the large-
scale features of LSAT anomalies in time and space. First, a
25◦× 25◦ spatial running average is performed, and then the
annual average of LSAT anomalies is calculated for at least
2 months of the year. Then, a 15-year median filter is used
for the annual average LSAT, followed by a 15◦× 25◦ spa-
tial sliding average for latitude and longitude, respectively, as
well as a nine-point binomial spatial filter and a three-point
binomial temporal filter to fill in the default data. Finally, a
15◦× 25◦ spatial running average is applied to latitude and
longitude, respectively, to smooth the spatial distribution of
the LSAT. The high-frequency component is the difference
between the original data and the low-frequency compo-
nent, characterizing the local variation in LSAT. We train the
EOTs’ modes using the ERA5 reanalysis dataset (Hersbach
et al., 2020) (https://cds.climate.copernicus.eu/; last access:
July 2020) and localize it. Afterward, the EOTs’ modes are
used to fit the high-frequency data to obtain a full-coverage
reconstruction of the high-frequency component (Sun et al.,
2021). The reconstructed land temperature data can be ob-
tained by summing the low-frequency and high-frequency
components, and finally, the reconstructed data are observa-
tionally constrained to remove the low-quality reconstructed
data.

Reconstruction greatly improves the coverage of C-
LSAT2.0. Figure 3 shows the comparison of land coverage
before and after reconstruction. The land coverage of the re-
constructed C-LSAT2.0 increases from the original 4.6 % in
1850 to 29 %, and the land coverage remains above 60 %
after 1913 and reaches the maximum land cover of about
80 % in 1961, which last until 1990, after which it slightly
decreases and remains at about 78 %. After 2012 there is a
decreasing trend to about 70 %, where the land cover in 2019
is the lowest value of 66 % for the period 2012–2020; this is
related to the lower number of sites in the year.

3.2.2 Reconstruction of the ocean component

We use ERSSTv5 as the basis, which is a full-coverage,
monthly reconstructed SST dataset based on observations
from ships, buoys, and Argo (Huang et al., 2017). We fill
the data during 1850–1853 with SST anomaly observed by
ICOADS Release 3.0 (Freeman et al., 2017) to form a com-
plete monthly SST anomaly dataset from 1850–2020 and
then reconstruct it using the EOTs of Huang et al. (2017)
to reduce the missing data.

Figure 2. Schematic diagram of the LSAT reconstruction process.

Figure 3. Coverage comparison of the terrestrial component before
and after reconstruction.

3.3 Reconstruction of Arctic ice surface temperature

In CMST-Interim, when the Arctic is covered by sea ice,
ERSSTv5 sets SST in the region with > 90 % sea ice cov-
erage to a constant value (−1.8 ◦C), making surface temper-
ature (ST) of CMST-Interim in the polar region the default
value. It is worth noting that the Arctic is extremely sensitive
to changes in climate forcing (polar amplification effect), so
missing data in the polar regions in CMST-Interim may lead
to an underestimation of the global warming trend (IPCC,
2021).
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In order to solve this problem and improve the coverage
of CMST in the Arctic, we improve the ST reconstruction
method in the Arctic by expressing the ST of the Arctic in
terms of the air temperature of the ice surface (considering
the similar physical properties of ice and land, the sea ice
is considered to be land). The month with the largest extent
of Arctic sea ice is March, and the month with the small-
est extent is September. According to the National Snow and
Ice Data Center, during 1980–2020, the year with the largest
sea ice extent in March is 1983, and the year with the small-
est sea ice extent in September is 2012, so we designed two
experiments: (1) CMST 2.0− Imax uses 2 m air tempera-
ture to represent the temperature within the 65–90◦ N region
to simulate the ST of the Arctic sea-ice-covered region in
March 1983, which is the maximum sea ice extent. (2) CMST
2.0− Imin uses 2 m air temperature to represent the temper-
ature within the 80–90◦ N region to represent the ST in the
Arctic sea-ice-covered region at the time of September 2012,
which is the minimum sea ice extent (Fig. 4).

3.3.1 Maximum sea ice extent reconstruction CMST
2.0− Imax

Due to the scarcity of observations in the Arctic and the fact
that most observations were available after the 1980s, the ob-
servation period is very short. The data do not cover the en-
tire period of 1961–1990, which is the climatology of our
dataset. Therefore the observations cannot be added to the
C-LSAT 2.0 dataset. Due to this fact, we use the AIDW to in-
terpolate the data at lower latitudes to the Arctic (65–90◦ N)
and then perform the high- and low-frequency reconstruction
method based on the interpolated dataset. It is worth noting
that we included the region of 65–90◦ N when training EOTs
using the ERA5 reanalysis dataset. We selected the first 55
modes of the EOTs with three polar modes (the center point
at the Arctic poles), for a total of 58 modes for reconstruct-
ing the high-frequency components (Fig. 4). After that, the
reconstructed C-LSAT is merged with ERSSTv5, where the
merged ERSSTv5 covers only the region south of 65◦ N.

3.3.2 Minimum sea ice extent reconstruction CMST
2.0− Imin

The reconstruction method of the terrestrial component in
CMST 2.0− Imin is consistent with CMST 2.0− Imax, ex-
cept that the merged process with ERSSTv5, in CMST
2.0− Imin, the merged ERSSTv5 coverage is south of 80◦ N.
It is worth noting that the sea ice coverage range is 80–90◦ N,
and the region of 65–80◦ N fills in SST in CMST 2.0− Imin.
However there are some grids in the region of 65–80◦ N that
are default values (caused by sea ice coverage) in ERSSTv5,
so we use the AIDW method to fill these default grids.

Figure 5 shows the coverage comparison of CMST
2.0−Nrec (without any land and ice air temperature recon-
struction), CMST-Interim, CMST 2.0− Imax, and CMST
2.0− Imin. Overall, there is a significant improvement in
the coverage of the reconstructed datasets compared to the
original dataset, CMST 2.0−Nrec. Globally, the coverage
of CMST 2.0− Imax and CMST 2.0− Imin reconstructed
for Arctic sea ice is consistently higher than CMST-Interim.
CMST 2.0− Imax and CMST 2.0− Imin have the high-
est global coverage, with > 80 % coverage after 1899. The
global coverage of CMST-Interim reached more than 80 %
after 1957. The comparative results for Northern Hemi-
sphere coverage are primarily consistent with the global,
with CMST 2.0− Imax and CMST 2.0− Imin having the
greatest coverage, both reaching more than 90 % after the
1880s and CMST-Interim reaching 80 % coverage in 1901,
but consistently below 90 %. In terms of global and Northern
Hemisphere coverage, there are differences between CMST
2.0− Imax, CMST 2.0− Imin, and CMST-Interim, but the
differences are not significant. However, the coverage of
CMST 2.0− Imax and CMST 2.0− Imin differed signifi-
cantly from CMST-Interim at high latitudes in the North-
ern Hemisphere, where the coverage of CMST-Interim has
been below 70 % due to the existence of sea ice, while CMST
2.0− Imax and CMST 2.0− Imin reach full coverage at high
latitudes in the Northern Hemisphere after 1983. There is no
difference in the coverage of the three reconstructed datasets
in other regions (Southern Hemisphere, Southern Hemi-
sphere mid-high and low latitudes) except for the Northern
Hemisphere and Northern Hemisphere high latitudes. The
coverage of the reconstructed dataset in the Southern Hemi-
sphere has improved considerably, with maximum coverage
of about 80 %. The coverage of the reconstructed dataset in
the high latitudes of the Southern Hemisphere is relatively
small, consistently below 50 %, due to the scarcity of obser-
vations in Antarctica.

3.4 Estimation of uncertainty in the reconstructed
CMST 2.0

Uncertainties in the reconstructed CMST 2.0 include both
land and ocean uncertainties. The ocean uncertainty is the un-
certainty in ERSSTv5. The land uncertainty is based on the
reconstructed C-LSAT2.0 ensemble, which is divided into
two parts: parameter uncertainty and reconstruction uncer-
tainty. Since we reconstruct the temperature of the polar sea
ice region in the way that we reconstruct the LSAT, we cal-
culate the uncertainty in the 65–90◦ N (Imax) and 80–90◦ N
(Imin) regions of CMST 2.0− Imax and CMST 2.0− Imin
following the method of calculating the land uncertainty.

3.4.1 Parameter uncertainty in C-LSAT2.0 ensemble

In the reconstruction process, we choose different parame-
ters to generate 756-member ensembles (Table 1), which are
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Figure 4. Reconstruction process of Arctic sea ice ST (left); comparison of maximum sea ice extent (sea ice extent in March 1983, shaded
in dark blue) and minimum sea ice extent (sea ice extent in September 2012, shaded in light blue) distribution (right).

Figure 5. Coverage comparison of CMST 2.0−Nrec, CMST-Interim, CMST 2.0− Imax, and CMST 2.0− Imin.
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different for different combinations, so the parameter uncer-
tainty represents the difference in parameter combinations.
According to Huang et al. (2020), the parameter uncertainty
(Up) is the regional average LSAT uncertainty, as follows:

U2
p (t)=

1
M

M∑
m=1
[A

g
m (t)−Ag(t)]2 (1)

Ag =
1
M

M∑
m=1

A
g
m (t) , (2)

where M is the total ensemble members (m= 1,2, . . .,M), in
this paper M = 756; A

g
m represents global LSAT of the mth

ensemble member; Ag is the average of all ensembles; and t

represents temporal variations.
Parameter uncertainties for the reconstructed C-LSAT2.0

ensemble, reconstructed C-LSAT2.0+ Imax (65–90◦ N), and
reconstructed C-LSAT2.0+ Imin (80–90◦ N) show similar
variations. The parameter uncertainties decrease over time,
as does its interannual variability. The parameter uncertain-
ties stabilize below 0.05 during 1876–2016 (Fig. 7). How-
ever, the parameter uncertainties are higher in 2018–2020
compared to the previous years. This is due to the lower cov-
erage in this period compared to the last years, which is more
sensitive to the parameter settings.

3.4.2 Reconstruction uncertainty in C-LSAT2.0
ensembles

In the reconstruction process, we smooth the observations
when calculating the low-frequency component to filter out
the short-term and local signals to obtain the large-scale
characteristics of the LSAT anomaly, after which the high-
frequency component is used to fit the local distribution of
LSAT using the EOTs’ spatial modes and the available ob-
servations. Our purpose of using EOTs is to obtain the spa-
tial distribution of the LSAT anomaly, filter out the errors
in the observations, and thus estimate the distribution of the
LSAT anomaly from limited observations. However, the spa-
tial pattern of EOTs also smoothes out the local temperature
and ignores some local information, thus deviating from the
observations. Therefore, according to Huang et al. (2016),
we define the residual between the ideal observations and the
reconstructed values using EOTs as the reconstruction uncer-
tainty:

U2
r (t)=

1
M

M∑
m=1
[R

g
m (t)−D(t)]2, (3)

where D(t) represents the ideal observation, and R
g
m (t) is

the reconstructed data obtained using the high- and low-
frequency reconstruction method based on D(t).

The reconstruction uncertainty represents the differences
between the ideal observations and the reconstructions. We
choose two full-coverage CMIP6 models to represent the

ideal observations to assess the deviation of the reconstructed
values from the original values, which is due to missing in-
formation caused by the smoothing of local temperatures by
EOTs. The C-LSAT 2.0 ensemble dataset covers the period
1850–2020, while the CMIP6 model historical experimental
data are only available up to 2014, so we use model data from
the SSP370 scenario (taking into account minor differences
in the short term for any scenarios) to complement those of
2015–2020.

The two models we selected are BCC-CSM2-MR and
GFDL-ESM4. BCC-CSM2-MR is a new version of the cli-
mate system model developed by the National Climate Cen-
ter of China with improved parameterization and physical
parameterization results. GFDL-ESM4 is an Earth system
model developed by the GFDL model of the NOAA’s Geo-
physical Fluid Dynamics Laboratory. Both models have a
resolution of 1.125◦× 1.125◦, and we descale both to 5◦× 5◦

to calculate the temperature anomaly (1961–1990 clima-
tology), after which the data from both models are recon-
structed according to the high- and low-frequency recon-
struction method.

Figure 6 shows the reconstruction uncertainties calcu-
lated using BCC-CSM2-MR and GFDL-ESM4. In general,
the reconstruction uncertainties are relatively stable and
do not increase over time. The reconstruction uncertain-
ties in reconstructed C-LSAT2.0+ Imax and reconstructed
C-LSAT2.0+ Imin are larger than that of reconstructed C-
LSAT2.0, and the interannual variation is also larger. The in-
terannual variability in the uncertainty in BCC-CSM2-MR
is slightly smaller than that of GFDL-ESM4. In the follow-
ing, we choose BCC-CSM2-MR as the reconstruction uncer-
tainty to discuss the uncertainty in the terrestrial component.

3.4.3 Total uncertainty in LSAT

The total uncertainty in the C-LSAT2.0 ensemble is the sum
of the parameter uncertainty and the reconstruction uncer-
tainty:

U2
l = U2

p +U2
r . (4)

Figure 7 shows the comparison of parameter uncertainty,
reconstruction uncertainty, and total uncertainty in three
C-LSAT2.0 ensemble datasets. The parameter uncertain-
ties in the reconstructed C-LSAT2.0 ensemble, recon-
structed C-LSAT2.0+ Imax (65–90◦ N), and reconstructed
C-LSAT2.0+ Imin (80–90◦ N) are much larger than the re-
construction uncertainties before 1950, when the parameter
uncertainties mainly determine the magnitude of total un-
certainties. The difference between the parameter uncertain-
ties and the reconstruction uncertainties from 1950 to 2016
becomes small, and both determine the total uncertainties.
The total uncertainties increase after 2017 due to the in-
crease in parameter uncertainties (Fig. 7a). The uncertainties
in reconstructed C-LSAT2.0+ Imax and C-LSAT2.0+ Imin
vary similarly (Fig. 7b and c). The parameter uncertainties
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Table 1. Parameter settings used for reconstruction scenarios and the operational option.

Parameter Operational options Alternative options

Minimum number of months of valid
data in a year used to calculate the an-
nual anomalies for LSAT

2 months 1, 2, 3 months

LF filter periods 15 years 10, 15, 20 years
Minimum number of years for LF filter 2 years 1, 2, 3 years
EOTs’ training periods and spatial
scales

1979–2018, Lx = 4000, 3000, 2500, 1979–2018, Lx = 3000, 2000, 1500, Ly = 1500;

Ly = 2500 1979–2018, Lx = 5000, 4000, 3500, Ly = 3500;
Lx = 4000, 3000, 2500, Ly = 2500;
1979–2008, Lx = 4000, 3000, 2500, Ly = 2500;
1989–2018, Lx = 4000, 3000, 2500, Ly = 2500;
even year, Lx = 4000, 3000, 2500, Ly = 2500;
odd year, Lx = 4000, 3000, 2500, Ly = 2500;

EOTs’ acceptance criterion 0.2 0.10, 0.15, 0.20, 0.25

Figure 6. Reconstruction uncertainty in the reconstructed C-LSAT2.0 ensemble, reconstructed C-LSAT2.0+ Imax (65–90◦ N), and recon-
structed C-LSAT2.0+ Imin (80–90◦ N) calculated using BCC-CSM2-MR and GFDL-ESM4.

in reconstructed C-LSAT2.0− Imax and C-LSAT2.0− Imin
are larger than the reconstruction uncertainties before 1880,
when the total uncertainties are dependent on parameter un-
certainties. During 1880–1950, the magnitude of and vari-
ation in the parameter uncertainties and the reconstruction
uncertainties are similar. After 1950, the parameter uncer-
tainties decrease to less than the reconstruction uncertain-
ties, during which reconstruction uncertainties determine the
magnitude of and variation in the total uncertainties.

3.4.4 Uncertainty in global surface temperature

The uncertainty in the global surface temperature consists of
two components, the ocean component and the land com-
ponent, and we calculate the total global temperature uncer-
tainty as the sum of the two, based on the sea-to-land ratio,
with the following formula:

U2
g = a×U2

l + b×U2
s , (5)

where Ug represents the total uncertainty in GMST; Ul rep-
resents the uncertainty in global averaged LSAT, here cho-
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Figure 7. Parameter uncertainty, reconstruction uncertainty, and total uncertainty in three reconstructed C-LSAT2.0 ensembles.

sen from the reconstructed C-LSAT2.0; Us represents the
uncertainty in global averaged ocean component, here cho-
sen from the ERSSTv5 (since the uncertainty in ERSSTv5
is only calculated up to 1854, our uncertainty in GST for-
ward also only covers up to 1854); a and b are constants,
which are the proportion of land and ocean area to the globe,
respectively, but since the uncertainty in the reconstructed
Arctic region in CMST 2.0− Imax and CMST 2.0− Imin is
calculated according to the land uncertainty, a = 0.32 and
b = 0.689 in CMST 2.0− Imax, and a = 0.30 and b = 0.70
in CMST 2.0− Imin.

Figure 8 shows uncertainties in the GMST, land compo-
nent, and ocean component for CMST-Interim (a), CMST
2.0− Imax (b), and CMST 2.0− Imin (c). The variation
in GMST uncertainty is similar for the three datasets, but
the interannual variation in GMST uncertainty for CMST
2.0− Imax and CMST 2.0− Imin is larger than CMST-
Interim, especially after 1994, when both the magnitude
and interannual variation in GMST uncertainty for CMST
2.0− Imax and CMST 2.0− Imin are significantly greater
than CMST-Interim (Fig. 8d). Uncertainties in the ocean
and land components have generally declined, and thus the
uncertainty in GMST has also reduced (Fig. 8a–c). Before
1870, the uncertainties in land and ocean component are sim-
ilar, but the interannual variability in the land uncertainty is
greater than that of the ocean. During 1871–1986, the un-
certainty in the ocean component is larger than the uncer-
tainty in the land component, and the uncertainty in GMST

depended mainly on the uncertainty in the ocean component,
and the interannual variability was consistent with the ocean
component. There are two peaks in global uncertainty during
this period, in the late 1910s and early 1940s, consistent with
ocean uncertainty. The peaks in ocean uncertainty are asso-
ciated with the two world wars, and the uncertainty is larger
due to the smaller observation coverage of the SST during
the war period (Huang et al., 2020). Between 1986 and 2003,
the uncertainty in GST was determined by both the land and
ocean components. After 2003, the magnitude of uncertainty
in the ocean component is smaller than that of the land com-
ponent, and the land component determines the magnitude of
the uncertainty in GST, and the interannual variation is also
consistent with the land component.

4 Composition of C-LSAT2.0 and CMST 2.0

The C-LSAT2.0 datasets consist of two datasets, C-LSAT2.0
and reconstructed C-LSAT2.0, while each dataset includes
three temperature-related elements, including monthly aver-
age, maximum, and minimum temperatures.

The CMST 2.0 datasets consist of three versions: CMST
2.0−Nrec, CMST 2.0− Imax, and CMST 2.0− Imin (Ta-
ble 2).

CMST 2.0−Nrec is the observation-based homogenized
gridded dataset, consisting of C-LSAT2.0 and ERSSTv5,
where the uncertainty in C-LSAT2.0 is not estimated, and the
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Figure 8. Uncertainties in GMST (Ug), LSAT (Ul), and SST (Us) for CMST-Interim (a), CMST 2.0− Imax (b), and CMST 2.0− Imin (c)
and their comparison of Ug (d).

uncertainty in ERSSTv5 consists of parameter uncertainty
and reconstruction uncertainty.

CMST 2.0− Imax is based on the CMST-Interim gridded
dataset with the addition of Arctic reconstruction (65–90◦ N),
including reconstructed C-LSAT2.0 with the addition of Arc-
tic reconstruction (65–90◦ N) and ERSSTv5 with 90◦ S–65◦

N. Its uncertainties include the terrestrial uncertainty and the
oceanic uncertainty, where the terrestrial uncertainty is the
uncertainty in the reconstructed C-LSAT2.0 and of the recon-
structed surface air temperature (SAT) over the ice surface,
including the parameter uncertainty and the reconstruction
uncertainty, and the oceanic uncertainty is derived from the
uncertainty in ERSSTv5 (Huang et al., 2017).

Similarly, CMST 2.0− Imin is the gridded data, which
modify the reconstructed Arctic region based on CMST
2.0− Imin. The modification part is to reduce the recon-
structed Arctic region of C-LSAT2.0 to 80–90◦ N and expand
the merged ERSSTv5 to 90◦ S–80◦ N area.

5 The GMST series of CMST 2.0 datasets

Comparing the GMST series of CMST 2.0 datasets and
CMST-Interim shows that the variability in GMST in the
reconstructed datasets is generally consistent with CMST
2.0−Nrec (Fig. 9). We also compare the GMST series for
the four datasets calculated by the two methods, which is
similar for the three reconstructed datasets (CMST-Interim,

CMST 2.0− Imax, and CMST 2.0− Imin) and differs
slightly for the unreconstructed dataset CMST 2.0−Nrec
(Fig. 9a and b). The warming of CMST−Nrec in Fig. 9b
is significantly lower than that in Fig. 9a, which is related
to the lower land coverage. The LSAT coverage of CMST
2.0−Nrec is low in previous decades and is below 18 %
before 1900 (Fig. 3), so the GMST series is susceptible to
the influence of ocean temperature, making the GMST se-
ries high; The LSAT coverage of CMST 2.0−Nrec has in-
creased in recent decades, with terrestrial coverage above
70 % (Fig. 3), but the coverage is low at high latitudes, in
South America, and Africa, where the absence of LSAT, es-
pecially at high latitudes and in the Arctic, makes the GMST
series low. It can be seen that the warming rate of CMST
2.0−Nrec calculated using latitude weighting will be signif-
icantly lower, so we are using the sea–land ratio method to
calculate the warming trend when comparing each dataset in
the following.

In Fig. 9a, the CMST-Interim, CMST 2.0− Imax,
and CMST 2.0− Imin GMST series are lower than
CMST−Nrec before the 1880s, which is mainly due to
the lower coverage of observations in this period, making
the interannual variability in the GMST series in CMST
2.0−Nrec larger, while the reconstructed datasets filled
in part of the default grids, resulting in higher coverage
and thus lower interannual variability in GMST series.
The reconstructed datasets show high agreement with the
CMST−Nrec temperature series and its interannual vari-

Earth Syst. Sci. Data, 14, 1677–1693, 2022 https://doi.org/10.5194/essd-14-1677-2022



W. Sun et al.: Description of the China global Merged Surface Temperature version 2.0 1687

Table 2. Composition of CMST 2.0 datasets and CMST-Interim.

Versions Time span LSAT SST

Datasets Uncertainty Datasets Uncertainty

CMST 2.0−Nrec 1850-2020 C-LSAT2.0 – ERSSTv5 Parameter
uncertainty +

reconstruction
uncertainty

CMST-Interim 1850–2020 Reconstructed C-
LSAT2.0

Parameter uncertainty
+ reconstruction
uncertainty

ERSSTv5

CMST 2.0− Imax 1850–2020 Reconstructed C-
LSAT2.0 added Arctic
reconstruction (65–
90◦ N)

ERSSTv5 (90◦ S–65◦ N)

CMST 2.0− Imin 1850–2020 Reconstructed C-
LSAT2.0 added Arctic
reconstruction (80–
90◦ N)

ERSSTv5 (90◦ S–80◦ N)

Figure 9. Comparison of GMST anomaly series (relative to 1961–
1990 average) for CMST 2.0 datasets and CMST-Interim using two
methods: (a) calculated based on the weighted average of global
mean LSAT and SST series according to the sea–land ratio, (b) cal-
culated based on latitudinal weighting.

ability as the coverage of the observations increased after the
1880s. While the GMST series of CMST 2.0− Imax is sig-
nificantly higher than the other three datasets after the 2000s
because CMST 2.0− Imax reconstructs the Arctic region,
and the polar amplification effect of the Arctic significantly

increases the GMST series, the GMST series of CMST-
Interim and CMST 2.0− Imin are essentially the same as
CMST−Nrec, but CMST 2.0− Imin is slightly higher than
CMST-Interim because CMST 2.0− Imin fills the 80–90◦ N
region with ice surface temperatures, while CMST-Interim
uses SST. The GMST series of CMST 2.0− Imax and CMST
2.0− Imin are higher than CMST-Interim after 2000, indi-
cating that the influence of polar temperature on global tem-
perature also increases with global warming. In summary,
the warming trends of the reconstructed datasets for 1850–
2020 are all higher than CMST 2.0−Nrec (0.05± 0.003 ◦C
per decade, with CMST 2.0− Imax having the most sig-
nificant warming trend (0.054± 0.003 ◦C per decade) and
CMSR2.0− Imin the second-largest (0.053± 0.003 ◦C per
decade) (Table 4). The warming trend estimated by CMST-
Interim is 0.051± 0.003 ◦C per decade, which is slightly
larger than CMST−Nrec, mainly due to the lower tem-
perature series before the 1880s, excluding this period,
and the warming trend from 1880 to 2020 estimated by
CMST-Interim (0.073± 0.003 ◦C per decade) is consistent
with CMST−Nrec (0.073±0.004 ◦C per decade) (Table 4),
while the warming trends of CMST 2.0− Imax and CMST
2.0− Imin are higher than the previous two datasets, 0.076±
0.004 ◦C per decade and 0.074± 0.003 ◦C per decade (Ta-
ble 4), respectively, due to the polar amplification effect.

6 Comparison of CMST 2.0 − Imax and CMST
2.0 − Imin with other datasets

Figure 10 shows the GMST series of CMST 2.0 compared
with the other datasets (Table 3). The GMST series of the
seven datasets (CMST 2.0 includes two variants of Imax and
Imin) are generally consistent. The GMST series of CMST
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Table 3. General information of input datasets.

Period of record Land component SST component Resolution Interpolation, reconstruction, and
uncertainty evaluation

China – MST2.0 1850–2020 China – LSAT2.0 ERSSTv5 5◦× 5◦ Spatial smoothing and EOTs,
observational constraint, ensemble
uncertainties

HadCRUT5 1850–2020 CRUTEM5 HadSST4 5◦× 5◦ Gaussian process method, observa-
tional constraint, ensemble uncer-
tainties

NOAAGlobal-Interim 1850–2020 GHCNv4 ERSSTv5 5◦× 5◦ Spatial smoothing and EOTs, en-
semble uncertainties

GISTEMP v4 1880–2020 GHCNv4 ERSSTv5 2◦× 2◦ Spatial interpolation methods over
reasonable distances, ensemble un-
certainties

Berkeley Earth 1850–2020 Berkeley HadSST4 1◦× 1◦ Kriging-based spatial interpolation
with constant distance parameters
at all latitudes

Cowtan and Way 1850–2020 CRUTEM4 HadSST3 5◦× 5◦ Kriging-based method with con-
stant distance parameters at all lati-
tudes

Figure 10. Comparison of GMST anomaly series (relative to 1961–
1990 average) for different datasets. The GMST anomaly series cal-
culated based on the weighted average of global mean LSAT and
SST series according to the sea–land ratio. The average of Imax
and Imin is the average of GMST series of CMST 2.0− Imax and
CMST 2.0− Imin.

2.0− Imax and CMST 2.0− Imin are similar to the other
five datasets, indicating that their estimated Arctic temper-
ature variation is consistent with the other datasets, and can
accurately reflect the impact of the Arctic amplification effect
on GST. Due to sparse observations, the variability between
datasets is high until the 1880s, as is the interannual vari-
ability between datasets. After the 1900s, the GMST series
of CMST 2.0− Imax and CMST 2.0− Imin are generally
lower than other datasets. In the 1910s–1970s, the Cowtan–
Way dataset is consistently higher than other datasets. In the

1930s–1950s, HadCRUT5 is higher than the other datasets
but similar to Cowtan–Way. After the 2000s, the CMST
2.0 datasets are generally lower than other datasets, with
CMST 2.0− Imax being closer to the NOAAglobalTemp-
Interim GMST series. For the period 1850–2020, the warm-
ing trend of CMST 2.0−Nrec is the lowest (0.05±0.003 ◦C
per decade), and the highest (0.062± 0.003 ◦C per decade)
warming trend is Berkeley in the seven datasets. The warm-
ing trend of CMST-Interim is consistent with HadCRUT5,
both at 0.051± 0.003 ◦C per decade. The warming trend of
CMST 2.0− Imax is the same as NOAAglobalTemp-Interim
(0.054± 0.003 ◦C per decade). Between 1880 and 2020,
CMST 2.0−Nrec (0.073±0.004 ◦C per decade) is in agree-
ment with CMST-Interim (0.073± 0.003 ◦C per decade),
CMST 2.0− Imax is consistent with NOAAglobalTemp-
Interim (0.076±0.004 ◦C per decade), and CMST 2.0− Imin
(0.075± 0.003 ◦C per decade) is consistent with Cowtan–
Way (0.074± 0.003 ◦C per decade) (Table 4). We also cal-
culate the warming trends of different datasets for different
periods – 1900–2020, 1951–2020, 1979–2020, and 1998–
2020 – and found that the warming rate becomes faster
over time for most of the datasets; especially the increas-
ing warming trend for 1998–2020 is much larger than the
other periods, indicating that the global warming rate is ac-
celerating. The maximum warming trend of 0.228±0.029 ◦C
per decade (GISTEMP v4) during 1998–2020 increased
by 0.037± 0.017 ◦C per decade compared to the warming
trend during 1979–2020. The largest increasing warming
trend is NOAAglobalTemp-Interim, with a warming trend of
0.037±0.017 ◦C per decade for 1998–2020, which is 0.04 ◦C
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per decade higher than the warming trend during 1979–
2020, followed by CMST 2.0− Imax, CMST 2.0− Imin, and
Berkeley Earth. CMST 2.0−Nrec and CMST-Interim have
relatively small increases in the warming trend. The rela-
tively large increases in warming trend estimated in most
datasets with reconstructed Arctic temperatures, compared to
those without (CMST 2.0−Nrec and CMST-Interim), illus-
trate the impact of polar amplification on global warming and
reflect the importance of reconstructing Arctic default data.

Figure 11 compares the distribution of warming trends for
different datasets for 1880–2020. The distribution of warm-
ing trends is relatively consistent among the nine datasets,
except for the Antarctic, with a zone of high warming val-
ues in central Asia, Europe, and northeastern North America.
There are large differences among the datasets in the Antarc-
tic region due to the sparse observations. CMST-Interim,
CMSR2.0− Imax, and CMST 2.0− Imin have fewer LSATs
in the Antarctic due to the sparse observations and obser-
vational constraints. Except for CMST 2.0−Nrec, the es-
timated warming trends of the other eight datasets clearly
increase with latitude in the Northern Hemisphere region.
Most datasets assess a significantly higher warming trend
in the Arctic (60–90◦ N) than in the lower latitudes. Ex-
cept for the CMST 2.0−Nrec and CMST-Interim datasets,
in which Arctic temperature is not available, the magnitude
of the estimated Arctic warming trend for 1880–2020 is sim-
ilar (Fig. 12). Still, the warming trends near the poles dif-
fer significantly, with more significant warming trends esti-
mated by HadCRUT5 and GISTEMP v4. CMST 2.0− Imax,
CMST 2.0− Imin, Cowtan–Way, and Berkeley Earth have
similar warming trends, while NOAAglobalTemp-Interim
has the smallest warming estimate near the poles. CMST
2.0− Imax, HadCRUT5, and GISTEMP v4 all show a high
warming trend in the high latitudes of North America and
the northwestern Arctic Ocean, but CMST 2.0− Imax has
a relatively small range of highs. Cowtan–Way and Berke-
ley Earth are similar to the former three datasets but have
smaller ranges and magnitudes. Meanwhile, each dataset also
has a range of warming highs in the southeastern Arctic
Ocean; NOAAglobalTemp-Interim estimates the most ex-
tensive range of warming; and CMST 2.0− Imax, CMST
2.0-Min, HadCRUT5, and GISTEMP v4 estimate similar
ranges of warming. In addition, all datasets, including CMST
2.0−Nrec and CMST-Interim, have low warming trend near
Scandinavia. The analysis of the warming trends in the Arc-
tic shows that the magnitude and spatial distribution of the
warming trends estimated based on CMST 2.0− Imax and
CMST− Imin are more consistent with the other datasets.
Therefore, they are reasonable for the spatial interpolation
reconstruction of temperature anomalies in the Arctic.
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Figure 11. Distribution of warming trends estimated from different datasets during 1880–2020.

Figure 12. Differences in warming trends estimated by six other datasets (including CMST 2.0− Imin) and CMST 2.0− Imax.

7 Data availability

The C-LSAT2.0 datasets are currently publicly avail-
able at the website of figshare under the DOI
https://doi.org/10.6084/m9.figshare.16968334.v4 (Sun
and Li, 2021b), which contains monthly mean, maximum,
and minimum temperature before and after reconstruction
during 1850–2020.

The CMST 2.0 datasets can be downloaded at
https://doi.org/10.6084/m9.figshare.16929427.v4 (Sun
and Li, 2021a), which contains CMST 2.0−Nrec, CMST-
Interim, CMST 2.0− Imax, and CMST 2.0− Imin datasets.

These datasets are also available freely at http://www.
gwpu.net (last access: January 2022).
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8 Summary and prospects

This paper describes the composition and construction pro-
cess of the latest versions of the C-LSAT 2.0 and CMST 2.0
ensemble datasets. The C-LSAT 2.0 datasets consist of the C-
LSAT 2.0 gridded dataset and the reconstructed C-LSAT 2.0
dataset, including three meteorological elements: monthly
average, maximum, and minimum temperatures. The CMST
2.0 datasets consist of the CMST 2.0−Nrec gridded dataset
and two reconstructed datasets (including CMST 2.0− Imax
and CMST 2.0− Imin). The CMST 2.0 datasets contain the
monthly average temperature anomaly. The resolution of
all datasets is 5◦× 5◦, and the time range is 1850–2020.
The reconstructed C-LSAT 2.0 dataset, reconstructed accord-
ing to the high- and low-frequency reconstruction method
in Sun et al. (2021), is merged with ERSSTv5 to gener-
ate the global surface temperature ensemble dataset CMST-
Interim. CMST 2.0− Imax and CMST 2.0− Imin are based
on CMST-Interim, combining AIDW and high- and low-
frequency reconstruction methods for temperature recon-
struction in the Arctic. Compared with the unreconstructed
dataset CMST 2.0−Nrec, the coverage of the reconstructed
datasets is greatly improved. These two datasets have greatly
improved coverage in the Northern Hemisphere due to the
reconstruction in the Arctic. Compared to 60 %–70 % for
CMST 2.0−Nrec before 1910, the coverage of CMST-
Interim has improved to 75 %–85 %, and CMST 2.0− Imax
and CMST 2.0− Imin are both above 80 %. The coverage
of CMST 2.0− Imax and CMST 2.0− Imin in the Northern
Hemisphere is 80 %–99 %, and CMST-Interim is 65 %–87 %.
There was no difference in coverage between the three recon-
structed datasets in the Southern Hemisphere.

We then systematically evaluate the uncertainty in the re-
constructed datasets. The results of the uncertainty assess-
ment of the reconstructed C-LSAT2.0 show that the magni-
tude of the reconstruction uncertainty is generally smaller
than that of the parameter uncertainty, and the parameter
uncertainty mainly determines the total uncertainty in the
LSAT. The uncertainty in the reconstructed LSAT is simi-
lar to previous estimates (Li et al., 2020; Sun et al., 2021).
The uncertainty in reconstructed C-LSAT2.0+ Imax and re-
constructed C-LSAT2.0+ Imin is relatively consistent with
the uncertainty variation in reconstructed C-LSAT2.0, but the
interannual variation is larger, and the increasing trend of pa-
rameter uncertainty in reconstructed C-LSAT2.0+ Imax and
reconstructed C-LSAT2.0+ Imin is significantly higher than
that of reconstructed C-LSAT2.0 after 2017. The uncertainty
analysis of CMST 2.0 shows that the uncertainty in GST de-
pends mainly on the oceanic component before 1986, is de-
termined by both oceanic and terrestrial components during
1986–2003, and depends on the magnitude of the terrestrial
component after 2003.

Results comparing the GMST series of the three CMST
2.0 datasets and CMST-Interim show that the reconstructed
datasets improve the estimation of global warming trends

while increasing data coverage, especially for the datasets
that include the Arctic region in the reconstructed area. Com-
pared with 0.05±0.003 ◦C per decade and 0.073±0.004 ◦C
per decade for CMST 2.0−Nrec, CMST 2.0− Imax and
CMST 2.0− Imin estimated warming trends of 0.054±0.003
and 0.053± 0.003 ◦C per decade for 1850–2020, and 1880–
2020 is 0.076±0.004 and 0.075±0.003 ◦C per decade, with a
very significant increase. Compared with the five datasets in
IPCC AR6, it can be found that the datasets considering the
reconstruction of Arctic sea ice temperature can more accu-
rately reflect the effect of polar amplification on global tem-
perature. The GMST series and warming trends estimated by
CMST 2.0− Imax and CMST 2.0− Imin are more consis-
tent with these five datasets. Both have similar estimates of
the spatial distribution and magnitude of warming trends in
the Arctic as the other datasets.

The current CMST 2.0 dataset for the Arctic is a recon-
struction of the sea ice surface temperature in a defined re-
gion (65–90◦ N or 80–90◦ N) with 2 m air temperature. Al-
though the influence of Arctic temperature on global temper-
ature is considered, and the change in GMST series is esti-
mated relatively accurately, it still cannot reflect the impact
of sea ice dynamics on global temperature very accurately.
Therefore, our future work will gradually consider the dy-
namics of sea ice as much as possible in the reconstruction
process in order to more accurately estimate and analyze the
amplification effect of the Arctic and its impact on GMST.

Last but not least, due to the limited observations, it is very
difficult to fully reconstruct the SATs over the Antarctic and
the surrounding SSTs during the earlier periods (for exam-
ple, prior to the 1950s), which means the CMST 2.0 is still
not “full-coverage”. This will need to be better addressed by
continuing to supplement data sources and technically refine
methods in future studies.
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