Articles | Volume 12, issue 4
https://doi.org/10.5194/essd-12-2485-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-12-2485-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The PetroPhysical Property Database (P3) – a global compilation of lab-measured rock properties
Department of Geothermal Science and Technology, Institute of Applied
Geosciences, Technische Universität Darmstadt, Schnittspahnstr. 9, 64287 Darmstadt, Germany
Thomas Reinsch
GFZ German Research Centre for Geosciences, Telegrafenberg,
14473 Potsdam, Germany
present address: Fraunhofer IEG, Fraunhofer Research Institution for Energy Infrastructures and Geothermal Systems IEG, Lennershofstraße 140, 44801 Bochum, Germany
Judith Bott
GFZ German Research Centre for Geosciences, Telegrafenberg,
14473 Potsdam, Germany
Related authors
Matthis Frey, Claire Bossennec, Lukas Seib, Kristian Bär, Eva Schill, and Ingo Sass
Solid Earth, 13, 935–955, https://doi.org/10.5194/se-13-935-2022, https://doi.org/10.5194/se-13-935-2022, 2022
Short summary
Short summary
The crystalline basement is considered a ubiquitous and almost inexhaustible source of geothermal energy in the Upper Rhine Graben. Interdisciplinary investigations of relevant reservoir properties were carried out on analogous rocks in the Odenwald. The highest hydraulic conductivities are expected near large-scale fault zones. In addition, the combination of structural geological and geophysical methods allows a refined mapping of potentially permeable zones.
Rafael Schäffer, Kristian Bär, Sebastian Fischer, Johann-Gerhard Fritsche, and Ingo Sass
Earth Syst. Sci. Data, 13, 4847–4860, https://doi.org/10.5194/essd-13-4847-2021, https://doi.org/10.5194/essd-13-4847-2021, 2021
Short summary
Short summary
Knowledge of groundwater properties is relevant, e.g. for drinking-water supply, spas or geothermal energy. We compiled 1035 groundwater datasets from 560 springs or wells sampled since 1810, using mainly publications, supplemented by personal communication and our own measurements. The data can help address spatial–temporal variation in groundwater composition, uncertainties in groundwater property prediction, deep groundwater movement, or groundwater characteristics like temperature and age.
Sebastian Weinert, Kristian Bär, and Ingo Sass
Earth Syst. Sci. Data, 13, 1441–1459, https://doi.org/10.5194/essd-13-1441-2021, https://doi.org/10.5194/essd-13-1441-2021, 2021
Short summary
Short summary
Physical rock properties are a key element for resource exploration, the interpretation of results from geophysical methods or the parameterization of physical or geological models. Despite the need for physical rock properties, data are still very scarce and often not available for the area of interest. The database presented aims to provide easy access to physical rock properties measured at 224 locations in Bavaria, Hessen, Rhineland-Palatinate and Thuringia (Germany).
Leandra M. Weydt, Ángel Andrés Ramírez-Guzmán, Antonio Pola, Baptiste Lepillier, Juliane Kummerow, Giuseppe Mandrone, Cesare Comina, Paromita Deb, Gianluca Norini, Eduardo Gonzalez-Partida, Denis Ramón Avellán, José Luis Macías, Kristian Bär, and Ingo Sass
Earth Syst. Sci. Data, 13, 571–598, https://doi.org/10.5194/essd-13-571-2021, https://doi.org/10.5194/essd-13-571-2021, 2021
Short summary
Short summary
Petrophysical and mechanical rock properties are essential for reservoir characterization of the deep subsurface and are commonly used for the population of numerical models or the interpretation of geophysical data. The database presented here aims at providing easily accessible information on rock properties and chemical analyses complemented by extensive metadata (location, stratigraphy, petrography) covering volcanic, sedimentary, metamorphic and igneous rocks from Jurassic to Holocene age.
Leandra M. Weydt, Kristian Bär, Chiara Colombero, Cesare Comina, Paromita Deb, Baptiste Lepillier, Giuseppe Mandrone, Harald Milsch, Christopher A. Rochelle, Federico Vagnon, and Ingo Sass
Adv. Geosci., 45, 281–287, https://doi.org/10.5194/adgeo-45-281-2018, https://doi.org/10.5194/adgeo-45-281-2018, 2018
Short summary
Short summary
The here submitted paper represents the first results of a larger project named
GEMex. The objective of the project – a Mexican–European cooperation – is to explore the geothermal potential of deep unconventional systems like enhanced geothermal systems (EGS) and super-hot geothermal systems (SHGS). New exploitation approaches and technologies are being developed, allowing the use of geothermal resources under challenging technical demands.
Meike Hintze, Barbara Plasse, Kristian Bär, and Ingo Sass
Adv. Geosci., 45, 251–258, https://doi.org/10.5194/adgeo-45-251-2018, https://doi.org/10.5194/adgeo-45-251-2018, 2018
Short summary
Short summary
The presented study is conducted within the scope of the joint research project "Hessen 3D 2.0" (BMWI-FKZ: 0325944) and aims at assessing the hydrothermal potential of the Pechelbronn Group for direct heat use by means of an integrated 3-D structural-geothermal model that serves to locate potential exploration areas. The assessment is based on reservoir temperature, (net)thickness of the reservoir horizon as well as on petrophysical, thermal and hydraulic rock properties.
Claudia Finger, Marco P. Roth, Marco Dietl, Aileen Gotowik, Nina Engels, Rebecca M. Harrington, Brigitte Knapmeyer-Endrun, Klaus Reicherter, Thomas Oswald, Thomas Reinsch, and Erik H. Saenger
Earth Syst. Sci. Data, 15, 2655–2666, https://doi.org/10.5194/essd-15-2655-2023, https://doi.org/10.5194/essd-15-2655-2023, 2023
Short summary
Short summary
Passive seismic analyses are a key technology for geothermal projects. The Lower Rhine Embayment, at the western border of North Rhine-Westphalia in Germany, is a geologically complex region with high potential for geothermal exploitation. Here, we report on a passive seismic dataset recorded with 48 seismic stations and a total extent of 20 km. We demonstrate that the network design allows for the application of state-of-the-art seismological methods.
Matthis Frey, Claire Bossennec, Lukas Seib, Kristian Bär, Eva Schill, and Ingo Sass
Solid Earth, 13, 935–955, https://doi.org/10.5194/se-13-935-2022, https://doi.org/10.5194/se-13-935-2022, 2022
Short summary
Short summary
The crystalline basement is considered a ubiquitous and almost inexhaustible source of geothermal energy in the Upper Rhine Graben. Interdisciplinary investigations of relevant reservoir properties were carried out on analogous rocks in the Odenwald. The highest hydraulic conductivities are expected near large-scale fault zones. In addition, the combination of structural geological and geophysical methods allows a refined mapping of potentially permeable zones.
Martin Peter Lipus, Felix Schölderle, Thomas Reinsch, Christopher Wollin, Charlotte Krawczyk, Daniela Pfrang, and Kai Zosseder
Solid Earth, 13, 161–176, https://doi.org/10.5194/se-13-161-2022, https://doi.org/10.5194/se-13-161-2022, 2022
Short summary
Short summary
A fiber-optic cable was installed along a freely suspended rod in a deep geothermal well in Munich, Germany. A cold-water injection test was monitored with fiber-optic distributed acoustic and temperature sensing. During injection, we observe vibrational events in the lower part of the well. On the basis of a mechanical model, we conclude that the vibrational events are caused by thermal contraction of the rod. The results illustrate potential artifacts when analyzing downhole acoustic data.
Rafael Schäffer, Kristian Bär, Sebastian Fischer, Johann-Gerhard Fritsche, and Ingo Sass
Earth Syst. Sci. Data, 13, 4847–4860, https://doi.org/10.5194/essd-13-4847-2021, https://doi.org/10.5194/essd-13-4847-2021, 2021
Short summary
Short summary
Knowledge of groundwater properties is relevant, e.g. for drinking-water supply, spas or geothermal energy. We compiled 1035 groundwater datasets from 560 springs or wells sampled since 1810, using mainly publications, supplemented by personal communication and our own measurements. The data can help address spatial–temporal variation in groundwater composition, uncertainties in groundwater property prediction, deep groundwater movement, or groundwater characteristics like temperature and age.
Sebastian Weinert, Kristian Bär, and Ingo Sass
Earth Syst. Sci. Data, 13, 1441–1459, https://doi.org/10.5194/essd-13-1441-2021, https://doi.org/10.5194/essd-13-1441-2021, 2021
Short summary
Short summary
Physical rock properties are a key element for resource exploration, the interpretation of results from geophysical methods or the parameterization of physical or geological models. Despite the need for physical rock properties, data are still very scarce and often not available for the area of interest. The database presented aims to provide easy access to physical rock properties measured at 224 locations in Bavaria, Hessen, Rhineland-Palatinate and Thuringia (Germany).
Leandra M. Weydt, Ángel Andrés Ramírez-Guzmán, Antonio Pola, Baptiste Lepillier, Juliane Kummerow, Giuseppe Mandrone, Cesare Comina, Paromita Deb, Gianluca Norini, Eduardo Gonzalez-Partida, Denis Ramón Avellán, José Luis Macías, Kristian Bär, and Ingo Sass
Earth Syst. Sci. Data, 13, 571–598, https://doi.org/10.5194/essd-13-571-2021, https://doi.org/10.5194/essd-13-571-2021, 2021
Short summary
Short summary
Petrophysical and mechanical rock properties are essential for reservoir characterization of the deep subsurface and are commonly used for the population of numerical models or the interpretation of geophysical data. The database presented here aims at providing easily accessible information on rock properties and chemical analyses complemented by extensive metadata (location, stratigraphy, petrography) covering volcanic, sedimentary, metamorphic and igneous rocks from Jurassic to Holocene age.
Denis Anikiev, Adrian Lechel, Maria Laura Gomez Dacal, Judith Bott, Mauro Cacace, and Magdalena Scheck-Wenderoth
Adv. Geosci., 49, 225–234, https://doi.org/10.5194/adgeo-49-225-2019, https://doi.org/10.5194/adgeo-49-225-2019, 2019
Short summary
Short summary
We have developed a first Germany-wide 3D data-based density and temperature model integrating geoscientific observations and physical processes. The model can serve as a reference for local detailed studies dealing with temperature, pressure, stress, subsidence and sedimentation. Our results help to improve subsurface utilization concepts, reveal current geomechanical conditions crucial for hazard assessment and gather information on viable resources such groundwater and deep geothermal energy.
Nora Koltzer, Magdalena Scheck-Wenderoth, Mauro Cacace, Maximilian Frick, and Judith Bott
Adv. Geosci., 49, 197–206, https://doi.org/10.5194/adgeo-49-197-2019, https://doi.org/10.5194/adgeo-49-197-2019, 2019
Short summary
Short summary
In this study we investigate groundwater flow in the deep subsurface of the Upper Rhine Graben. We make use of a 3-D numerical model covering the entire Upper Rhine Graben. The deep hydrodynamics are characterized by fluid flow from the graben flanks towards its center and in the southern half of the graben from south to north. Moreover, local heterogeneities in the shallow flow field arise from the interaction between regional groundwater flow and the heterogeneous sedimentary configuration.
Ershad Gholamrezaie, Magdalena Scheck-Wenderoth, Judith Bott, Oliver Heidbach, and Manfred R. Strecker
Solid Earth, 10, 785–807, https://doi.org/10.5194/se-10-785-2019, https://doi.org/10.5194/se-10-785-2019, 2019
Short summary
Short summary
Based on geophysical data integration and 3-D gravity modeling, we show that significant density heterogeneities are expressed as two large high-density bodies in the crust below the Sea of Marmara. The location of these bodies correlates spatially with the bends of the main Marmara fault, indicating that rheological contrasts in the crust may influence the fault kinematics. Our findings may have implications for seismic hazard and risk assessments in the Marmara region.
Leandra M. Weydt, Kristian Bär, Chiara Colombero, Cesare Comina, Paromita Deb, Baptiste Lepillier, Giuseppe Mandrone, Harald Milsch, Christopher A. Rochelle, Federico Vagnon, and Ingo Sass
Adv. Geosci., 45, 281–287, https://doi.org/10.5194/adgeo-45-281-2018, https://doi.org/10.5194/adgeo-45-281-2018, 2018
Short summary
Short summary
The here submitted paper represents the first results of a larger project named
GEMex. The objective of the project – a Mexican–European cooperation – is to explore the geothermal potential of deep unconventional systems like enhanced geothermal systems (EGS) and super-hot geothermal systems (SHGS). New exploitation approaches and technologies are being developed, allowing the use of geothermal resources under challenging technical demands.
Meike Hintze, Barbara Plasse, Kristian Bär, and Ingo Sass
Adv. Geosci., 45, 251–258, https://doi.org/10.5194/adgeo-45-251-2018, https://doi.org/10.5194/adgeo-45-251-2018, 2018
Short summary
Short summary
The presented study is conducted within the scope of the joint research project "Hessen 3D 2.0" (BMWI-FKZ: 0325944) and aims at assessing the hydrothermal potential of the Pechelbronn Group for direct heat use by means of an integrated 3-D structural-geothermal model that serves to locate potential exploration areas. The assessment is based on reservoir temperature, (net)thickness of the reservoir horizon as well as on petrophysical, thermal and hydraulic rock properties.
Ershad Gholamrezaie, Magdalena Scheck-Wenderoth, Judith Sippel, and Manfred R. Strecker
Solid Earth, 9, 139–158, https://doi.org/10.5194/se-9-139-2018, https://doi.org/10.5194/se-9-139-2018, 2018
Short summary
Short summary
We examined the thermal gradient as an index of the thermal field in the Atlantic. While the thermal anomaly in the South Atlantic should be equilibrated, the thermal disturbance in the North Atlantic causes thermal effects in the present day. Characteristics of the lithosphere ultimately determine the thermal field. The thermal gradient nonlinearly decreases with depth and varies significantly both laterally and with time, which has implications for methods of thermal history reconstruction.
Judith Sippel, Christian Meeßen, Mauro Cacace, James Mechie, Stewart Fishwick, Christian Heine, Magdalena Scheck-Wenderoth, and Manfred R. Strecker
Solid Earth, 8, 45–81, https://doi.org/10.5194/se-8-45-2017, https://doi.org/10.5194/se-8-45-2017, 2017
Short summary
Short summary
The Kenya Rift is a zone along which the African continental plate is stretched as evidenced by strong earthquake and volcanic activity. We want to understand the controlling factors of past and future tectonic deformation; hence, we assess the structural and strength configuration of the rift system at the present-day. Data-driven 3-D numerical models show how the inherited composition of the crust and a thermal anomaly in the deep mantle interact to form localised zones of tectonic weakness.
P. Klitzke, J. I. Faleide, M. Scheck-Wenderoth, and J. Sippel
Solid Earth, 6, 153–172, https://doi.org/10.5194/se-6-153-2015, https://doi.org/10.5194/se-6-153-2015, 2015
Short summary
Short summary
We introduce a regional 3-D structural model of the Barents Sea and Kara Sea region which is the first to combine information on five sedimentary units and the crystalline crust as well as the configuration of the lithospheric mantle. By relating the shallow and deep structures for certain tectonic subdomains, we shed new light on possible causative basin-forming mechanisms that we discuss.
Related subject area
Data, Algorithms, and Models
Improved maps of surface water bodies, large dams, reservoirs, and lakes in China
The Fengyun-3D (FY-3D) global active fire product: principle, methodology and validation
A high-resolution inland surface water body dataset for the tundra and boreal forests of North America
A Central Asia hydrologic monitoring dataset for food and water security applications in Afghanistan
HOTRUNZ: an open-access 1 km resolution monthly 1910–2019 time series of interpolated temperature and rainfall grids with associated uncertainty for New Zealand
A dataset of microphysical cloud parameters, retrieved from Fourier-transform infrared (FTIR) emission spectra measured in Arctic summer 2017
A global long-term (1981–2019) daily land surface radiation budget product from AVHRR satellite data using a residual convolutional neural network
First SMOS Sea Surface Salinity dedicated products over the Baltic Sea
HomogWS-se: a century-long homogenized dataset of near-surface wind speed observations since 1925 rescued in Sweden
Mapping long-term and high-resolution global gridded photosynthetically active radiation using the ISCCP H-series cloud product and reanalysis data
Description of the China global Merged Surface Temperature version 2.0
TimeSpec4LULC: a global multispectral time series database for training LULC mapping models with machine learning
Hyperspectral reflectance spectra of floating matters derived from Hyperspectral Imager for the Coastal Ocean (HICO) observations
Multi-site, multi-crop measurements in the soil–vegetation–atmosphere continuum: a comprehensive dataset from two climatically contrasting regions in southwestern Germany for the period 2009–2018
Full-coverage 1 km daily ambient PM2.5 and O3 concentrations of China in 2005–2017 based on a multi-variable random forest model
Median bed-material sediment particle size across rivers in the contiguous US
A flux tower dataset tailored for land model evaluation
A Landsat-derived annual inland water clarity dataset of China between 1984 and 2018
A harmonized global land evaporation dataset from model-based products covering 1980–2017
Estimating population and urban areas at risk of coastal hazards, 1990–2015: how data choices matter
Landsat-based Irrigation Dataset (LANID): 30 m resolution maps of irrigation distribution, frequency, and change for the US, 1997–2017
GRQA: Global River Water Quality Archive
A 1 km global cropland dataset from 10 000 BCE to 2100 CE
A 1 km global dataset of historical (1979–2013) and future (2020–2100) Köppen–Geiger climate classification and bioclimatic variables
SeaFlux: harmonization of air–sea CO2 fluxes from surface pCO2 data products using a standardized approach
Nitrogen deposition in the UK at 1 km resolution from 1990 to 2017
ERA5-Land: a state-of-the-art global reanalysis dataset for land applications
An all-sky 1 km daily land surface air temperature product over mainland China for 2003–2019 from MODIS and ancillary data
100 years of lake evolution over the Qinghai–Tibet Plateau
The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019
Coastal complexity of the Antarctic continent
UAV-based very high resolution point cloud, digital surface model and orthomosaic of the Chã das Caldeiras lava fields (Fogo, Cabo Verde)
AQ-Bench: a benchmark dataset for machine learning on global air quality metrics
Bias-corrected and spatially disaggregated seasonal forecasts: a long-term reference forecast product for the water sector in semi-arid regions
The consolidated European synthesis of CH4 and N2O emissions for the European Union and United Kingdom: 1990–2017
The consolidated European synthesis of CO2 emissions and removals for the European Union and United Kingdom: 1990–2018
A new merged dataset for analyzing clouds, precipitation and atmospheric parameters based on ERA5 reanalysis data and the measurements of the Tropical Rainfall Measuring Mission (TRMM) precipitation radar and visible and infrared scanner
A new satellite-derived dataset for marine aquaculture areas in China's coastal region
Database of petrophysical properties of the Mid-German Crystalline Rise
Landsat-derived bathymetry of lakes on the Arctic Coastal Plain of northern Alaska
Merging ground-based sunshine duration observations with satellite cloud and aerosol retrievals to produce high-resolution long-term surface solar radiation over China
Hyperspectral-reflectance dataset of dry, wet and submerged marine litter
A climate service for ecologists: sharing pre-processed EURO-CORDEX regional climate scenario data using the eLTER Information System
Crowdsourced air traffic data from the OpenSky Network 2019–2020
A restructured and updated global soil respiration database (SRDB-V5)
The Berkeley Earth Land/Ocean Temperature Record
Dielectric database of organic Arctic soils (DDOAS)
Global Carbon Budget 2020
A global long-term (1981–2000) land surface temperature product for NOAA AVHRR
A coastally improved global dataset of wet tropospheric corrections for satellite altimetry
Xinxin Wang, Xiangming Xiao, Yuanwei Qin, Jinwei Dong, Jihua Wu, and Bo Li
Earth Syst. Sci. Data, 14, 3757–3771, https://doi.org/10.5194/essd-14-3757-2022, https://doi.org/10.5194/essd-14-3757-2022, 2022
Short summary
Short summary
We generated China’s surface water bodies, Large Dams, Reservoirs, and Lakes (China-LDRL) dataset by analyzing all available Landsat imagery in 2019 (19\,338 images) in Google Earth Engine. The dataset provides accurate information on the geographical locations and sizes of surface water bodies, large dams, reservoirs, and lakes in China. The China-LDRL dataset will contribute to the understanding of water security and water resources management in China.
Jie Chen, Qi Yao, Ziyue Chen, Manchun Li, Zhaozhan Hao, Cheng Liu, Wei Zheng, Miaoqing Xu, Xiao Chen, Jing Yang, Qiancheng Lv, and Bingbo Gao
Earth Syst. Sci. Data, 14, 3489–3508, https://doi.org/10.5194/essd-14-3489-2022, https://doi.org/10.5194/essd-14-3489-2022, 2022
Short summary
Short summary
The potential degradation of mainstream global fire products leads to large uncertainty in the effective monitoring of wildfires and their influence. To fill this gap, we produced a Fengyun-3D (FY-3D) global active fire product with a similar spatial and temporal resolution to MODIS fire products, aiming to serve as continuity and a replacement for MODIS fire products. The FY-3D fire product is an ideal tool for global fire monitoring and can be preferably employed for fire monitoring in China.
Yijie Sui, Min Feng, Chunling Wang, and Xin Li
Earth Syst. Sci. Data, 14, 3349–3363, https://doi.org/10.5194/essd-14-3349-2022, https://doi.org/10.5194/essd-14-3349-2022, 2022
Short summary
Short summary
High-latitude water bodies differ greatly in their morphological and topological characteristics related to their formation, type, and vulnerability. In this paper, we present a water body dataset for the North American high latitudes (WBD-NAHL). Nearly 6.5 million water bodies were identified, with approximately 6 million (~90 %) of them smaller than 0.1 km2.
Amy McNally, Jossy Jacob, Kristi Arsenault, Kimberly Slinski, Daniel P. Sarmiento, Andrew Hoell, Shahriar Pervez, James Rowland, Mike Budde, Sujay Kumar, Christa Peters-Lidard, and James P. Verdin
Earth Syst. Sci. Data, 14, 3115–3135, https://doi.org/10.5194/essd-14-3115-2022, https://doi.org/10.5194/essd-14-3115-2022, 2022
Short summary
Short summary
The Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System (FLDAS) global and Central Asia data streams described here generate routine estimates of snow, soil moisture, runoff, and other variables useful for tracking water availability. These data are hosted by NASA and USGS data portals for public use.
Thomas R. Etherington, George L. W. Perry, and Janet M. Wilmshurst
Earth Syst. Sci. Data, 14, 2817–2832, https://doi.org/10.5194/essd-14-2817-2022, https://doi.org/10.5194/essd-14-2817-2022, 2022
Short summary
Short summary
Long time series of temperature and rainfall grids are fundamental to understanding how these variables affects environmental or ecological patterns and processes. We present a History of Open Temperature and Rainfall with Uncertainty in New Zealand (HOTRUNZ) that is an open-access dataset that provides monthly 1 km resolution grids of rainfall and mean, minimum, and maximum daily temperatures with associated uncertainties for New Zealand from 1910 to 2019.
Philipp Richter, Mathias Palm, Christine Weinzierl, Hannes Griesche, Penny M. Rowe, and Justus Notholt
Earth Syst. Sci. Data, 14, 2767–2784, https://doi.org/10.5194/essd-14-2767-2022, https://doi.org/10.5194/essd-14-2767-2022, 2022
Short summary
Short summary
We present a dataset of cloud optical depths, effective radii and water paths from optically thin clouds observed in the Arctic around Svalbard. The data have been retrieved from infrared spectral radiance measured using a Fourier-transform infrared (FTIR) spectrometer. Besides a description of the measurements and retrieval technique, the data are put into context with results of corresponding measurements from microwave radiometer, lidar and cloud radar.
Jianglei Xu, Shunlin Liang, and Bo Jiang
Earth Syst. Sci. Data, 14, 2315–2341, https://doi.org/10.5194/essd-14-2315-2022, https://doi.org/10.5194/essd-14-2315-2022, 2022
Short summary
Short summary
Land surface all-wave net radiation (Rn) is a key parameter in many land processes. Current products have drawbacks of coarse resolutions, large uncertainty, and short time spans. A deep learning method was used to obtain global surface Rn. A long-term Rn product was generated from 1981 to 2019 using AVHRR data. The product has the highest accuracy and a reasonable spatiotemporal variation compared to three other products. Our product will play an important role in long-term climate change.
Verónica González-Gambau, Estrella Olmedo, Antonio Turiel, Cristina González-Haro, Aina García-Espriu, Justino Martínez, Pekka Alenius, Laura Tuomi, Rafael Catany, Manuel Arias, Carolina Gabarró, Nina Hoareau, Marta Umbert, Roberto Sabia, and Diego Fernández
Earth Syst. Sci. Data, 14, 2343–2368, https://doi.org/10.5194/essd-14-2343-2022, https://doi.org/10.5194/essd-14-2343-2022, 2022
Short summary
Short summary
We present the first Soil Moisture and Ocean Salinity Sea Surface Salinity (SSS) dedicated products over the Baltic Sea (ESA Baltic+ Salinity Dynamics). The Baltic+ L3 product covers 9 days in a 0.25° grid. The Baltic+ L4 is derived by merging L3 SSS with sea surface temperature information, giving a daily product in a 0.05° grid. The accuracy of L3 is 0.7–0.8 and 0.4 psu for the L4. Baltic+ products have shown to be useful, covering spatiotemporal data gaps and for validating numerical models.
Chunlüe Zhou, Cesar Azorin-Molina, Erik Engström, Lorenzo Minola, Lennart Wern, Sverker Hellström, Jessika Lönn, and Deliang Chen
Earth Syst. Sci. Data, 14, 2167–2177, https://doi.org/10.5194/essd-14-2167-2022, https://doi.org/10.5194/essd-14-2167-2022, 2022
Short summary
Short summary
To fill the key gap of short availability and inhomogeneity of wind speed (WS) in Sweden, we rescued the early paper records of WS since 1925 and built the first 10-member centennial homogenized WS dataset (HomogWS-se) for community use. An initial WS stilling and recovery before the 1990s was observed, and a strong link with North Atlantic Oscillation was found. HomogWS-se improves our knowledge of uncertainty and causes of historical WS changes.
Wenjun Tang, Jun Qin, Kun Yang, Yaozhi Jiang, and Weihao Pan
Earth Syst. Sci. Data, 14, 2007–2019, https://doi.org/10.5194/essd-14-2007-2022, https://doi.org/10.5194/essd-14-2007-2022, 2022
Short summary
Short summary
Photosynthetically active radiation (PAR) is a fundamental physiological variable for research in the ecological, agricultural, and global change fields. In this study, we produced a 35-year high-resolution global gridded PAR dataset. Compared with the well-known global satellite-based PAR product of the Earth's Radiant Energy System (CERES), our PAR product was found to be a more accurate dataset with higher resolution.
Wenbin Sun, Yang Yang, Liya Chao, Wenjie Dong, Boyin Huang, Phil Jones, and Qingxiang Li
Earth Syst. Sci. Data, 14, 1677–1693, https://doi.org/10.5194/essd-14-1677-2022, https://doi.org/10.5194/essd-14-1677-2022, 2022
Short summary
Short summary
The new China global Merged Surface Temperature CMST 2.0 is the updated version of CMST-Interim used in the IPCC's AR6. The updated dataset is described in this study, containing three versions: CMST2.0 – Nrec, CMST2.0 – Imax, and CMST2.0 – Imin. The reconstructed datasets significantly improve data coverage, especially in the high latitudes in the Northern Hemisphere, thus increasing the long-term trends at global, hemispheric, and regional scales since 1850.
Rohaifa Khaldi, Domingo Alcaraz-Segura, Emilio Guirado, Yassir Benhammou, Abdellatif El Afia, Francisco Herrera, and Siham Tabik
Earth Syst. Sci. Data, 14, 1377–1411, https://doi.org/10.5194/essd-14-1377-2022, https://doi.org/10.5194/essd-14-1377-2022, 2022
Short summary
Short summary
This dataset with millions of 22-year time series for seven spectral bands was built by merging Terra and Aqua satellite data and annotated for 29 LULC classes by spatial–temporal agreement across 15 global LULC products. The mean F1 score was 96 % at the coarsest classification level and 87 % at the finest one. The dataset is born to develop and evaluate machine learning models to perform global LULC mapping given the disagreement between current global LULC products.
Chuanmin Hu
Earth Syst. Sci. Data, 14, 1183–1192, https://doi.org/10.5194/essd-14-1183-2022, https://doi.org/10.5194/essd-14-1183-2022, 2022
Short summary
Short summary
Using data collected by the Hyperspectral Imager for the Coastal Ocean (HICO) between 2010–2014, hyperspectral reflectance of various floating matters in global oceans and lakes is derived for the spectral range of 400–800 nm. Such reflectance spectra are expected to provide spectral endmembers to differentiate and quantify the floating matters from existing multi-band satellite sensors and future hyperspectral satellite missions such as NASA’s PACE, SBG, and GLIMR missions.
Tobias K. D. Weber, Joachim Ingwersen, Petra Högy, Arne Poyda, Hans-Dieter Wizemann, Michael Scott Demyan, Kristina Bohm, Ravshan Eshonkulov, Sebastian Gayler, Pascal Kremer, Moritz Laub, Yvonne Funkiun Nkwain, Christian Troost, Irene Witte, Tim Reichenau, Thomas Berger, Georg Cadisch, Torsten Müller, Andreas Fangmeier, Volker Wulfmeyer, and Thilo Streck
Earth Syst. Sci. Data, 14, 1153–1181, https://doi.org/10.5194/essd-14-1153-2022, https://doi.org/10.5194/essd-14-1153-2022, 2022
Short summary
Short summary
Presented are measurement results from six agricultural fields operated by local farmers in southwestern Germany over 9 years. Six eddy-covariance stations measuring water, energy, and carbon fluxes between the vegetated soil surface and the atmosphere provided the backbone of the measurement sites and were supplemented by extensive soil and vegetation state monitoring. The dataset is ideal for testing process models characterizing fluxes at the vegetated soil surface and in the atmosphere.
Runmei Ma, Jie Ban, Qing Wang, Yayi Zhang, Yang Yang, Shenshen Li, Wenjiao Shi, Zhen Zhou, Jiawei Zang, and Tiantian Li
Earth Syst. Sci. Data, 14, 943–954, https://doi.org/10.5194/essd-14-943-2022, https://doi.org/10.5194/essd-14-943-2022, 2022
Short summary
Short summary
We constructed multi-variable random forest models based on 10-fold cross-validation and estimated daily PM2.5 and O3 concentration of China in 2005–2017 at a resolution of 1 km. The daily R2 values of PM2.5 and O3 were 0.85 and 0.77. The meteorological variables can significantly affect both PM2.5 and O3 modeling. During 2005–2017, PM2.5 exhibited an overall downward trend, while O3 experienced the opposite. The temporal trend of PM2.5 and O3 had spatial characteristics during the study period.
Guta Wakbulcho Abeshu, Hong-Yi Li, Zhenduo Zhu, Zeli Tan, and L. Ruby Leung
Earth Syst. Sci. Data, 14, 929–942, https://doi.org/10.5194/essd-14-929-2022, https://doi.org/10.5194/essd-14-929-2022, 2022
Short summary
Short summary
Existing riverbed sediment particle size data are sparsely available at individual sites. We develop a continuous map of median riverbed sediment particle size over the contiguous US corresponding to millions of river segments based on the existing observations and machine learning methods. This map is useful for research in large-scale river sediment using model- and data-driven approaches, teaching environmental and earth system sciences, planning and managing floodplain zones, etc.
Anna M. Ukkola, Gab Abramowitz, and Martin G. De Kauwe
Earth Syst. Sci. Data, 14, 449–461, https://doi.org/10.5194/essd-14-449-2022, https://doi.org/10.5194/essd-14-449-2022, 2022
Short summary
Short summary
Flux towers provide measurements of water, energy, and carbon fluxes. Flux tower data are invaluable in improving and evaluating land models but are not suited to modelling applications as published. Here we present flux tower data tailored for land modelling, encompassing 170 sites globally. Our dataset resolves several key limitations hindering the use of flux tower data in land modelling, including incomplete forcing variable, data format, and low data quality.
Hui Tao, Kaishan Song, Ge Liu, Qiang Wang, Zhidan Wen, Pierre-Andre Jacinthe, Xiaofeng Xu, Jia Du, Yingxin Shang, Sijia Li, Zongming Wang, Lili Lyu, Junbin Hou, Xiang Wang, Dong Liu, Kun Shi, Baohua Zhang, and Hongtao Duan
Earth Syst. Sci. Data, 14, 79–94, https://doi.org/10.5194/essd-14-79-2022, https://doi.org/10.5194/essd-14-79-2022, 2022
Short summary
Short summary
During 1984–2018, lakes in the Tibetan-Qinghai Plateau had the clearest water (mean 3.32 ± 0.38 m), while those in the northeastern region had the lowest Secchi disk depth (SDD) (mean 0.60 ± 0.09 m). Among the 10 814 lakes with > 10 years of SDD results, 55.4 % and 3.5 % experienced significantly increasing and decreasing trends of SDD, respectively. With the exception of Inner Mongolia–Xinjiang, more than half of lakes in all the other regions exhibited a significant trend of increasing SDD.
Jiao Lu, Guojie Wang, Tiexi Chen, Shijie Li, Daniel Fiifi Tawia Hagan, Giri Kattel, Jian Peng, Tong Jiang, and Buda Su
Earth Syst. Sci. Data, 13, 5879–5898, https://doi.org/10.5194/essd-13-5879-2021, https://doi.org/10.5194/essd-13-5879-2021, 2021
Short summary
Short summary
This study has combined three existing land evaporation (ET) products to obtain a single framework of a long-term (1980–2017) daily ET product at a spatial resolution of 0.25° to define the global proxy ET with lower uncertainties. The merged product is the best at capturing dynamics over different locations and times among all data sets. The merged product performed well over a range of vegetation cover scenarios and also captured the trend of land evaporation over different areas well.
Kytt MacManus, Deborah Balk, Hasim Engin, Gordon McGranahan, and Rya Inman
Earth Syst. Sci. Data, 13, 5747–5801, https://doi.org/10.5194/essd-13-5747-2021, https://doi.org/10.5194/essd-13-5747-2021, 2021
Short summary
Short summary
New estimates of population and land area by settlement types within low-elevation coastal zones (LECZs) based on four sources of population data, four sources of settlement data and four sources of elevation data for the years 1990, 2000 and 2015. The paper describes the sensitivity of these estimates and discusses the fitness of use guiding user decisions. Data choices impact the number of people estimated within LECZs, but across all sources the LECZs are predominantly urban and growing.
Yanhua Xie, Holly K. Gibbs, and Tyler J. Lark
Earth Syst. Sci. Data, 13, 5689–5710, https://doi.org/10.5194/essd-13-5689-2021, https://doi.org/10.5194/essd-13-5689-2021, 2021
Short summary
Short summary
We created 30 m resolution annual irrigation maps covering the conterminous US for the period of 1997–2017, together with derivative products and ground reference data. The products have several improvements over other data, including field-level details of change and frequency, an annual time step, a collection of ~ 10 000 ground reference locations for the eastern US, and improved mapping accuracy of over 90 %, especially in the east compared to others of 50 % to 80 %.
Holger Virro, Giuseppe Amatulli, Alexander Kmoch, Longzhu Shen, and Evelyn Uuemaa
Earth Syst. Sci. Data, 13, 5483–5507, https://doi.org/10.5194/essd-13-5483-2021, https://doi.org/10.5194/essd-13-5483-2021, 2021
Short summary
Short summary
Water quality modeling is essential for understanding and mitigating water quality deterioration in river networks due to agricultural and industrial pollution. Improving the availability and usability of open data is vital to support global water quality modeling efforts. The GRQA extends the spatial and temporal coverage of previously available water quality data and provides a reproducible workflow for combining multi-source water quality datasets.
Bowen Cao, Le Yu, Xuecao Li, Min Chen, Xia Li, Pengyu Hao, and Peng Gong
Earth Syst. Sci. Data, 13, 5403–5421, https://doi.org/10.5194/essd-13-5403-2021, https://doi.org/10.5194/essd-13-5403-2021, 2021
Short summary
Short summary
In the study, the first 1 km global cropland proportion dataset for 10 000 BCE–2100 CE was produced through the harmonization and downscaling framework. The mapping result coincides well with widely used datasets at present. With improved spatial resolution, our maps can better capture the cropland distribution details and spatial heterogeneity. The dataset will be valuable for long-term simulations and precise analyses. The framework can be extended to specific regions or other land use types.
Diyang Cui, Shunlin Liang, Dongdong Wang, and Zheng Liu
Earth Syst. Sci. Data, 13, 5087–5114, https://doi.org/10.5194/essd-13-5087-2021, https://doi.org/10.5194/essd-13-5087-2021, 2021
Short summary
Short summary
Large portions of the Earth's surface are expected to experience changes in climatic conditions. The rearrangement of climate distributions can lead to serious impacts on ecological and social systems. Major climate zones are distributed in a predictable pattern and are largely defined following the Köppen climate classification. This creates an urgent need to compile a series of Köppen climate classification maps with finer spatial and temporal resolutions and improved accuracy.
Amanda R. Fay, Luke Gregor, Peter Landschützer, Galen A. McKinley, Nicolas Gruber, Marion Gehlen, Yosuke Iida, Goulven G. Laruelle, Christian Rödenbeck, Alizée Roobaert, and Jiye Zeng
Earth Syst. Sci. Data, 13, 4693–4710, https://doi.org/10.5194/essd-13-4693-2021, https://doi.org/10.5194/essd-13-4693-2021, 2021
Short summary
Short summary
The movement of carbon dioxide from the atmosphere to the ocean is estimated using surface ocean carbon (pCO2) measurements and an equation including variables such as temperature and wind speed; the choices of these variables lead to uncertainties. We introduce the SeaFlux ensemble which provides carbon flux maps calculated in a consistent manner, thus reducing uncertainty by using common choices for wind speed and a set definition of "global" coverage.
Samuel J. Tomlinson, Edward J. Carnell, Anthony J. Dore, and Ulrike Dragosits
Earth Syst. Sci. Data, 13, 4677–4692, https://doi.org/10.5194/essd-13-4677-2021, https://doi.org/10.5194/essd-13-4677-2021, 2021
Short summary
Short summary
Nitrogen (N) may impact the environment in many ways, and estimation of its deposition to the terrestrial surface is of interest. N deposition data have not been generated at a high resolution (1 km × 1 km) over a long time series in the UK before now. This study concludes that N deposition has reduced by ~ 40 % from 1990. The impact of these results allows analysis of environmental impacts at a high spatial and temporal resolution, using a consistent methodology and consistent set of input data.
Joaquín Muñoz-Sabater, Emanuel Dutra, Anna Agustí-Panareda, Clément Albergel, Gabriele Arduini, Gianpaolo Balsamo, Souhail Boussetta, Margarita Choulga, Shaun Harrigan, Hans Hersbach, Brecht Martens, Diego G. Miralles, María Piles, Nemesio J. Rodríguez-Fernández, Ervin Zsoter, Carlo Buontempo, and Jean-Noël Thépaut
Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, https://doi.org/10.5194/essd-13-4349-2021, 2021
Short summary
Short summary
The creation of ERA5-Land responds to a growing number of applications requiring global land datasets at a resolution higher than traditionally reached. ERA5-Land provides operational, global, and hourly key variables of the water and energy cycles over land surfaces, at 9 km resolution, from 1981 until the present. This work provides evidence of an overall improvement of the water cycle compared to previous reanalyses, whereas the energy cycle variables perform as well as those of ERA5.
Yan Chen, Shunlin Liang, Han Ma, Bing Li, Tao He, and Qian Wang
Earth Syst. Sci. Data, 13, 4241–4261, https://doi.org/10.5194/essd-13-4241-2021, https://doi.org/10.5194/essd-13-4241-2021, 2021
Short summary
Short summary
This study used remotely sensed and assimilated data to estimate all-sky land surface air temperature (Ta) using a machine learning method, and developed an all-sky 1 km daily mean land Ta product for 2003–2019 over mainland China. Validation results demonstrated that this dataset has achieved satisfactory accuracy and high spatial resolution simultaneously, which fills the current dataset gap in this field and plays an important role in studies of climate change and the hydrological cycle.
Guoqing Zhang, Youhua Ran, Wei Wan, Wei Luo, Wenfeng Chen, Fenglin Xu, and Xin Li
Earth Syst. Sci. Data, 13, 3951–3966, https://doi.org/10.5194/essd-13-3951-2021, https://doi.org/10.5194/essd-13-3951-2021, 2021
Short summary
Short summary
Lakes can be effective indicators of climate change, especially over the Qinghai–Tibet Plateau. Here, we provide the most comprehensive lake mapping covering the past 100 years. The new features of this data set are (1) its temporal length, providing the longest period of lake observations from maps, (2) the data set provides a state-of-the-art lake inventory for the Landsat era (from the 1970s to 2020), and (3) it provides the densest lake observations for lakes with areas larger than 1 km2.
Jie Yang and Xin Huang
Earth Syst. Sci. Data, 13, 3907–3925, https://doi.org/10.5194/essd-13-3907-2021, https://doi.org/10.5194/essd-13-3907-2021, 2021
Short summary
Short summary
We produce the 30 m annual China land cover dataset (CLCD), with an accuracy reaching 79.31 %. Trends and patterns of land cover changes during 1985 and 2019 were revealed, such as expansion of impervious surface (+148.71 %) and water (+18.39 %), decrease in cropland (−4.85 %) and increase in forest (+4.34 %). The CLCD generally reflected the rapid urbanization and a series of ecological projects in China and revealed the anthropogenic implications on LC under the condition of climate change.
Richard Porter-Smith, John McKinlay, Alexander D. Fraser, and Robert A. Massom
Earth Syst. Sci. Data, 13, 3103–3114, https://doi.org/10.5194/essd-13-3103-2021, https://doi.org/10.5194/essd-13-3103-2021, 2021
Short summary
Short summary
This study quantifies the characteristic complexity
signaturesaround the Antarctic outer coastal margin, giving a multiscale estimate of the magnitude and direction of undulation or complexity at each point location along the entire coastline. It has numerous applications for both geophysical and biological studies and will contribute to Antarctic research requiring quantitative information about this important interface.
Gonçalo Vieira, Carla Mora, Pedro Pina, Ricardo Ramalho, and Rui Fernandes
Earth Syst. Sci. Data, 13, 3179–3201, https://doi.org/10.5194/essd-13-3179-2021, https://doi.org/10.5194/essd-13-3179-2021, 2021
Short summary
Short summary
Fogo in Cabo Verde is one of the most active ocean island volcanoes on Earth, posing important hazards to local populations and at a regional level. The last eruption occurred from November 2014 to February 2015. A survey of the Chã das Caldeiras area was conducted using a fixed-wing unmanned aerial vehicle. A point cloud, digital surface model and orthomosaic with 10 and 25 cm resolutions are provided, together with the full aerial survey projects and datasets.
Clara Betancourt, Timo Stomberg, Ribana Roscher, Martin G. Schultz, and Scarlet Stadtler
Earth Syst. Sci. Data, 13, 3013–3033, https://doi.org/10.5194/essd-13-3013-2021, https://doi.org/10.5194/essd-13-3013-2021, 2021
Short summary
Short summary
With the AQ-Bench dataset, we contribute to shared data usage and machine learning methods in the field of environmental science. The AQ-Bench dataset contains air quality data and metadata from more than 5500 air quality observation stations all over the world. The dataset offers a low-threshold entrance to machine learning on a real-world environmental dataset. AQ-Bench thus provides a blueprint for environmental benchmark datasets.
Christof Lorenz, Tanja C. Portele, Patrick Laux, and Harald Kunstmann
Earth Syst. Sci. Data, 13, 2701–2722, https://doi.org/10.5194/essd-13-2701-2021, https://doi.org/10.5194/essd-13-2701-2021, 2021
Short summary
Short summary
Semi-arid regions depend on the freshwater resources from the rainy seasons as they are crucial for ensuring security for drinking water, food and electricity. Thus, forecasting the conditions for the next season is crucial for proactive water management. We hence present a seasonal forecast product for four semi-arid domains in Iran, Brazil, Sudan/Ethiopia and Ecuador/Peru. It provides a benchmark for seasonal forecasts and, finally, a crucial contribution for improved disaster preparedness.
Ana Maria Roxana Petrescu, Chunjing Qiu, Philippe Ciais, Rona L. Thompson, Philippe Peylin, Matthew J. McGrath, Efisio Solazzo, Greet Janssens-Maenhout, Francesco N. Tubiello, Peter Bergamaschi, Dominik Brunner, Glen P. Peters, Lena Höglund-Isaksson, Pierre Regnier, Ronny Lauerwald, David Bastviken, Aki Tsuruta, Wilfried Winiwarter, Prabir K. Patra, Matthias Kuhnert, Gabriel D. Oreggioni, Monica Crippa, Marielle Saunois, Lucia Perugini, Tiina Markkanen, Tuula Aalto, Christine D. Groot Zwaaftink, Hanqin Tian, Yuanzhi Yao, Chris Wilson, Giulia Conchedda, Dirk Günther, Adrian Leip, Pete Smith, Jean-Matthieu Haussaire, Antti Leppänen, Alistair J. Manning, Joe McNorton, Patrick Brockmann, and Albertus Johannes Dolman
Earth Syst. Sci. Data, 13, 2307–2362, https://doi.org/10.5194/essd-13-2307-2021, https://doi.org/10.5194/essd-13-2307-2021, 2021
Short summary
Short summary
This study is topical and provides a state-of-the-art scientific overview of data availability from bottom-up and top-down CH4 and N2O emissions in the EU27 and UK. The data integrate recent emission inventories with process-based model data and regional/global inversions for the European domain, aiming at reconciling them with official country-level UNFCCC national GHG inventories in support to policy and to facilitate real-time verification procedures.
Ana Maria Roxana Petrescu, Matthew J. McGrath, Robbie M. Andrew, Philippe Peylin, Glen P. Peters, Philippe Ciais, Gregoire Broquet, Francesco N. Tubiello, Christoph Gerbig, Julia Pongratz, Greet Janssens-Maenhout, Giacomo Grassi, Gert-Jan Nabuurs, Pierre Regnier, Ronny Lauerwald, Matthias Kuhnert, Juraj Balkovič, Mart-Jan Schelhaas, Hugo A. C. Denier van der
Gon, Efisio Solazzo, Chunjing Qiu, Roberto Pilli, Igor B. Konovalov, Richard A. Houghton, Dirk Günther, Lucia Perugini, Monica Crippa, Raphael Ganzenmüller, Ingrid T. Luijkx, Pete Smith, Saqr Munassar, Rona L. Thompson, Giulia Conchedda, Guillaume Monteil, Marko Scholze, Ute Karstens, Patrick Brockmann, and Albertus Johannes Dolman
Earth Syst. Sci. Data, 13, 2363–2406, https://doi.org/10.5194/essd-13-2363-2021, https://doi.org/10.5194/essd-13-2363-2021, 2021
Short summary
Short summary
This study is topical and provides a state-of-the-art scientific overview of data availability from bottom-up and top-down CO2 fossil emissions and CO2 land fluxes in the EU27+UK. The data integrate recent emission inventories with ecosystem data, land carbon models and regional/global inversions for the European domain, aiming at reconciling CO2 estimates with official country-level UNFCCC national GHG inventories in support to policy and facilitating real-time verification procedures.
Lilu Sun and Yunfei Fu
Earth Syst. Sci. Data, 13, 2293–2306, https://doi.org/10.5194/essd-13-2293-2021, https://doi.org/10.5194/essd-13-2293-2021, 2021
Short summary
Short summary
Multi-source dataset use is hampered by use of different spatial and temporal resolutions. We merged Tropical Rainfall Measuring Mission precipitation radar and visible and infrared scanner measurements with ERA5 reanalysis. The statistical results indicate this process has no unacceptable influence on the original data. The merged dataset can help in studying characteristics of and changes in cloud and precipitation systems and provides an opportunity for data analysis and model simulations.
Yongyong Fu, Jinsong Deng, Hongquan Wang, Alexis Comber, Wu Yang, Wenqiang Wu, Shixue You, Yi Lin, and Ke Wang
Earth Syst. Sci. Data, 13, 1829–1842, https://doi.org/10.5194/essd-13-1829-2021, https://doi.org/10.5194/essd-13-1829-2021, 2021
Short summary
Short summary
Marine aquaculture areas in a region up to 30 km from the coast in China were mapped for the first time. It was found to cover a total area of ~1100 km2, of which more than 85 % is marine plant culture areas, with 87 % found in four coastal provinces. The results confirm the applicability and effectiveness of deep learning when applied to GF-1 data at the national scale, identifying the detailed spatial distributions and supporting the sustainable management of coastal resources in China.
Sebastian Weinert, Kristian Bär, and Ingo Sass
Earth Syst. Sci. Data, 13, 1441–1459, https://doi.org/10.5194/essd-13-1441-2021, https://doi.org/10.5194/essd-13-1441-2021, 2021
Short summary
Short summary
Physical rock properties are a key element for resource exploration, the interpretation of results from geophysical methods or the parameterization of physical or geological models. Despite the need for physical rock properties, data are still very scarce and often not available for the area of interest. The database presented aims to provide easy access to physical rock properties measured at 224 locations in Bavaria, Hessen, Rhineland-Palatinate and Thuringia (Germany).
Claire E. Simpson, Christopher D. Arp, Yongwei Sheng, Mark L. Carroll, Benjamin M. Jones, and Laurence C. Smith
Earth Syst. Sci. Data, 13, 1135–1150, https://doi.org/10.5194/essd-13-1135-2021, https://doi.org/10.5194/essd-13-1135-2021, 2021
Short summary
Short summary
Sonar depth point measurements collected at 17 lakes on the Arctic Coastal Plain of Alaska are used to train and validate models to map lake bathymetry. These models predict depth from remotely sensed lake color and are able to explain 58.5–97.6 % of depth variability. To calculate water volumes, we integrate this modeled bathymetry with lake surface area. Knowledge of Alaskan lake bathymetries and volumes is crucial to better understanding water storage, energy balance, and ecological habitat.
Fei Feng and Kaicun Wang
Earth Syst. Sci. Data, 13, 907–922, https://doi.org/10.5194/essd-13-907-2021, https://doi.org/10.5194/essd-13-907-2021, 2021
Els Knaeps, Sindy Sterckx, Gert Strackx, Johan Mijnendonckx, Mehrdad Moshtaghi, Shungudzemwoyo P. Garaba, and Dieter Meire
Earth Syst. Sci. Data, 13, 713–730, https://doi.org/10.5194/essd-13-713-2021, https://doi.org/10.5194/essd-13-713-2021, 2021
Short summary
Short summary
This paper describes a dataset consisting of 47 hyperspectral-reflectance measurements of plastic litter samples. The plastic litter samples include virgin and real samples. They were measured in dry conditions, and a selection of the samples were also measured in wet conditions and submerged in a water tank. The dataset can be used to better understand the effect of water absorption on the plastics and develop algorithms to detect and characterize marine plastics.
Susannah Rennie, Klaus Goergen, Christoph Wohner, Sander Apweiler, Johannes Peterseil, and John Watkins
Earth Syst. Sci. Data, 13, 631–644, https://doi.org/10.5194/essd-13-631-2021, https://doi.org/10.5194/essd-13-631-2021, 2021
Short summary
Short summary
This paper describes a pan-European climate service data product intended for ecological researchers. Access to regional climate scenario data will save ecologists time, and, for many, it will allow them to work with data resources that they will not previously have used due to a lack of knowledge and skills to access them. Providing easy access to climate scenario data in this way enhances long-term ecological research, for example in general regional climate change or impact assessments.
Martin Strohmeier, Xavier Olive, Jannis Lübbe, Matthias Schäfer, and Vincent Lenders
Earth Syst. Sci. Data, 13, 357–366, https://doi.org/10.5194/essd-13-357-2021, https://doi.org/10.5194/essd-13-357-2021, 2021
Short summary
Short summary
Flight data have been used widely for research by academic researchers and (supra)national institutions. Example domains range from epidemiology (e.g. examining the spread of COVID-19 via air travel) to economics (e.g. use as proxy for immediate forecasting of the state of a country's economy) and Earth sciences (climatology in particular). Until now, accurate flight data have been available only in small pieces from closed, proprietary sources. This work changes this with a crowdsourced effort.
Jinshi Jian, Rodrigo Vargas, Kristina Anderson-Teixeira, Emma Stell, Valentine Herrmann, Mercedes Horn, Nazar Kholod, Jason Manzon, Rebecca Marchesi, Darlin Paredes, and Ben Bond-Lamberty
Earth Syst. Sci. Data, 13, 255–267, https://doi.org/10.5194/essd-13-255-2021, https://doi.org/10.5194/essd-13-255-2021, 2021
Short summary
Short summary
Field soil-to-atmosphere CO2 flux (soil respiration, Rs) observations were compiled into a global database (SRDB) a decade ago. Here, we restructured and updated the database to the fifth version, SRDB-V5, with data published through 2017 included. SRDB-V5 aims to be a data framework for the scientific community to share seasonal to annual field Rs measurements, and it provides opportunities for the scientific community to better understand the spatial and temporal variability of Rs.
Robert A. Rohde and Zeke Hausfather
Earth Syst. Sci. Data, 12, 3469–3479, https://doi.org/10.5194/essd-12-3469-2020, https://doi.org/10.5194/essd-12-3469-2020, 2020
Short summary
Short summary
A global land and ocean temperature record was created by combining the Berkeley Earth monthly land temperature field with a newly interpolated version of the HadSST3 ocean dataset. The resulting dataset covers the period from 1850 to present.
This paper describes the methods used to create that combination and compares the results to other estimates of global temperature and the associated recent climate change, giving similar results.
Igor Savin, Valery Mironov, Konstantin Muzalevskiy, Sergey Fomin, Andrey Karavayskiy, Zdenek Ruzicka, and Yuriy Lukin
Earth Syst. Sci. Data, 12, 3481–3487, https://doi.org/10.5194/essd-12-3481-2020, https://doi.org/10.5194/essd-12-3481-2020, 2020
Short summary
Short summary
This article presents a dielectric database of organic Arctic soils. This database was created based on dielectric measurements of seven samples of organic soils collected in various parts of the Arctic tundra. The created database can serve not only as a source of experimental data for the development of new soil dielectric models for the Arctic tundra but also as a source of training data for artificial intelligence satellite algorithms of soil moisture retrievals based on neural networks.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone Alin, Luiz E. O. C. Aragão, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp, Selma Bultan, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Wiley Evans, Liesbeth Florentie, Piers M. Forster, Thomas Gasser, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Luke Gregor, Nicolas Gruber, Ian Harris, Kerstin Hartung, Vanessa Haverd, Richard A. Houghton, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Koji Kadono, Etsushi Kato, Vassilis Kitidis, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Gregg Marland, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Adam J. P. Smith, Adrienne J. Sutton, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Guido van der Werf, Nicolas Vuichard, Anthony P. Walker, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Xu Yue, and Sönke Zaehle
Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, https://doi.org/10.5194/essd-12-3269-2020, 2020
Short summary
Short summary
The Global Carbon Budget 2020 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Jin Ma, Ji Zhou, Frank-Michael Göttsche, Shunlin Liang, Shaofei Wang, and Mingsong Li
Earth Syst. Sci. Data, 12, 3247–3268, https://doi.org/10.5194/essd-12-3247-2020, https://doi.org/10.5194/essd-12-3247-2020, 2020
Short summary
Short summary
Land surface temperature is an important parameter in the research of climate change and many land surface processes. This article describes the development and testing of an algorithm for generating a consistent global long-term land surface temperature product from 20 years of NOAA AVHRR radiance data. The preliminary validation results indicate good accuracy of this new long-term product, which has been designed to simplify applications and support the scientific research community.
Clara Lázaro, Maria Joana Fernandes, Telmo Vieira, and Eliana Vieira
Earth Syst. Sci. Data, 12, 3205–3228, https://doi.org/10.5194/essd-12-3205-2020, https://doi.org/10.5194/essd-12-3205-2020, 2020
Short summary
Short summary
In satellite altimetry (SA), the wet tropospheric correction (WTC) accounts for the path delay induced mainly by atmospheric water vapour. In coastal regions, the accuracy of the WTC determined by the on-board radiometer deteriorates. The GPD+ methodology, developed by the University of Porto in the remit of ESA-funded projects, computes improved WTCs for SA. Global enhanced products are generated for all past and operational altimetric missions, forming a relevant dataset for coastal altimetry.
Cited articles
Achtziger-Zupančič, P., Loew, S., and Mariethoz, G.: A new global data
base to improve predictions of permeability distribution in crystalline
rocks at site scale, J. Geophys. Res.-Sol. Ea., 122, 3513–3539,
https://doi.org/10.1002/2017JB014106, 2017.
Adelinet, M., Fortin, J., Schubnel, A., and Guéguen, Y.: Deformation
modes in an Icelandic basalt: From brittle failure to localized deformation
bands, J. Volcanol. Geoth. Res., 255, 15–25,
https://doi.org/10.1016/j.jvolgeores.2013.01.011, 2013.
Alam, M. M., Fabricius, I. L., and Prasad, M.: Permeability prediction in
chalks, AAPG Bull., 95, 1991–2014, https://doi.org/10.1306/03011110172, 2011.
Altherr, R., Holl, A., Hegner, E., Langer, C., and Kreuzer, H.:
High-potassium, calc-alkaline I-type plutonism in the European Variscides:
northern Vosges (France) and northern Schwarzwald (Germany), Lithos, 50,
51–73, https://doi.org/10.1016/S0024-4937(99)00052-3, 2000.
Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-Minute Global Relief Model:
Procedures, Data Sources and Analysis, NOAA Technical Memorandum NESDIS
NGDC-24, National Geophysical Data Center, NOAA,
https://doi.org/10.7289/V5C8276M, 2009.
Aretz, A.: Aufschlussanalogstudie zur geothermischen
Reservoircharakterisierung des Permokarbons im nördlichen
Oberrheingraben, PhD Thesis, TU Darmstadt, available at:
http://nbn-resolving.de/urn:nbn:de:tuda-tuprints-52485 (last access: 14 August 2020), 2015.
Aretz, A., Bär, K., Götz, A. E., and Sass, I.: Outcrop analogue study of
Permocarboniferous geothermal sandstone reservoir formations (northern Upper
Rhine Graben, Germany): Impact of mineral content, depositional environment
and diagenesis on petrophysical properties, Int. J. Earth Sci. (Geol.
Rundsch.), 135, 1431–1452, https://doi.org/10.1007/s00531-015-1263-2,
2015.
Ashwal, L. D., Morgan, P., Kelley, S. A., and Percival, J. A.: Heat
production in an Archean crustal profile and implications for heat flow and
mobilization of heat-producing elements, Earth Planet. Sc.
Lett., 85, 439–450, https://doi.org/10.1016/0012-821X(87)90139-7, 1987.
Aswathanarayana, U.: Principles of Nuclear Geology, Balkema Rotterdam, ISBN
90-619-1572-4, available at:
https://inis.iaea.org/search/search.aspx?orig_q=RN:19076043 (last access: 14 August 2020), 1986.
Atal, B. S., Bhalla, N. S., Lall, Y., Mahadevan, T. M., and Udas, G. R.:
Padioactive Elemental Distribution in the Granjlite Terrains and Dearwar
Schist Belis of Peninsular India, in:
Archaean Geochemistry, 1, 205–220, edited by: Windley, B. F. and Naqvi, S. M., Elsevier,
https://doi.org/10.1016/S0166-2635(08)70099-9, 1978.
Attoh, K.: Contrasting Metamorphic Record of Heat Production Anomalies in
the Penokean Orogen of Northern Michigan, J. Geol., 108,
353–361, https://doi.org/10.1086/314406, 2000.
Australian Government – Geoscience Australia: Rock Properties Explorer
Version 2.0.5, available at: http://www.ga.gov.au/explorer-web/rock-properties.html, last
access: 26 February 2020.
Babaie, H. A., Ghazi, A. M., Babaei, A., Tour, T. E., and Hassanipak, A. A.:
Geochemistry of arc volcanic rocks of the Zagros Crush Zone, Neyriz, Iran,
J. Asian Earth Sci., 19, 61–76,
https://doi.org/10.1016/S1367-9120(00)00012-2, 2001.
Baker, J. A., Menzies, M. A., Thirlwall, M. F., and MacPherson, C. G.:
Petrogenesis of Quaternary Intraplate Volcanism, Sana'a, Yemen: Implications
for Plume-Lithosphere Interaction and Polybaric Melt Hybridization, J. Petrol., 38, 1359–1390, https://doi.org/10.1093/petroj/38.10.1359, 1997.
Balakrishna, S. and Ramana, Y. V.: Integrated Studies of the Elastic
Properties of Some Indian Rocks, in: Geophysical Monograph 12: The Crust and Upper Mantle of the Pacific
Area, edited by: Knopoff, L., Drake, C. L., and Heart, P. J., American Geophysical Union, 12, 489–500,
https://doi.org/10.1029/GM012p0489, 1968.
Ballard, S., Pollack, H. N., and Skinner, N. J.: Terrestrial heat flow in
Botswana and Namibia, J. Geophys. Res.-Sol. Ea., 92,
6291–6300, https://doi.org/10.1029/JB092iB07p06291, 1987.
Bär, K. M.: 3D-Modellierung des tiefengeothermischen Potenzials des
nördlichen Oberrheingrabens und Untersuchung der geothermischen
Eigenschaften des Rotliegend, Diplomathesis, TU Darmstadt, 2008.
Bär, K. M.: Untersuchung der tiefengeothermischen Potenziale von Hessen,
PhD Thesis, TU Darmstadt, available at:
http://nbn-resolving.de/urn:nbn:de:tuda-tuprints-30671 (last access: 14 August 2020), 2012.
Bär, K. and Mielke, P.: Stratigraphic classification table
(Stratigraphy): P3 - Stratigraphy. V. 1.0. GFZ Data
Services. Potsdam. https://doi.org/10.5880/GFZ.4.8.2019.P3.s, 2019.
Bär, K., Reinsch, T., Sippel, S., Strom, A., Mielke, P., and Sass, I.: P3 – International PetroPhysical Property Database, Proceedings, 42nd Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, 13–15 February 2017.
Bär, K., Mielke, P., and Knorz, K.: Petrographic classification table
(Petrography): P3 – Petrography, V. 1.0, GFZ Data Services,
Potsdam, https://doi.org/10.5880/GFZ.4.8.2019.P3.p, 2019a.
Bär, K., Reinsch, T., and Bott, J.: P3 –
PetroPhysical Property Database, V. 1.0, GFZ Data Services, Potsdam,
https://doi.org/10.5880/GFZ.4.8.2019.P3, 2019b.
Barrett, D. L. and Aumento, F.: The Mid-Atlantic Ridge near 45 N. XI.
Seismic velocity, density, and layering of the crust, Can. J.
Earth Sci., 7, 1117–1124, https://doi.org/10.1139/e70-105, 1970.
Bates, R. L. and Jackson, J. A.: Glossary of geology, Third Edition, American
Geological Institute, Alexandria, Virginia, USA, 1987.
Bauluz, B., Mayayo, M. J., Fernandez-Nieto, C., and Lopez, J. M.:
Geochemistry of Precambrian and Paleozoic siliciclastic rocks from the
Iberian Range (NE Spain): implications for source-area weathering, sorting,
provenance, and tectonic setting, Chem. Geol., 168, 135–150,
https://doi.org/10.1016/S0009-2541(00)00192-3, 2000.
Bea, F. and Montero, P.: Behavior of accessory phases and redistribution of
Zr, REE, Y, Th, and U during metamorphism and partial melting of metapelites
in the lower crust: an example from the Kinzigite Formation of
Ivrea-Verbano, NW Italy, Geochim. Cosmochim. Ac., 63, 1133–1153,
https://doi.org/10.1016/S0016-7037(98)00292-0, 1999.
Bemmlott, J.: Untersuchung der geothermischen Gesteinskennwerte von
Kulmgrauwacke (Oberharz) und Tanner Grauwacke (Nordhessen), Masterthesis, TU
Darmstadt, 2014.
Best, M. G. and Christiansen, E. H.: Igneous Petrology, Blackwell Science,
https://doi.org/10.1017/S0016756802216507, 2002.
Betten, I.: 3D-Laserscanning, DFN-Modellierung und Aufschlussaufnahme im
Rotliegend des östlichen Saar-Nahe-Beckens, Masterthesis, TU Darmstadt,
2015.
Bhatia, M. R. and Crook, K. A.: Trace element characteristics of graywackes
and tectonic setting discrimination of sedimentary basins, Contrib.
Mineral. Petr., 92, 181–193, https://doi.org/10.1007/BF00375292, 1986.
Biewer, H.: Bestimmung der Temperaturabhängigkeit der
Wärmekapazität und Wärmeleitfähigkeit von Karbonatgesteinen
der Schwäbischen und Fränkischen Alb, Bachelorthesis, TU Darmstadt,
2014.
Biewer, H.: Vergleich von Eigenschaften petrothermaler Reservoirgesteine des
Gonghe-Beckens und Tromm-Granits/Weschnitz-Plutons, Masterthesis, TU
Darmstadt, 2017.
Birch, A. F. and Clark, H.: The thermal conductivity of rocks and its
dependence upon temperature and composition, Am. J. Sci.,
238, 529–558. https://doi.org/10.2475/ajs.238.8.529, 1940.
Birch, F.: Handbook of physical constants, in: Birch, F., Schairer, J. F., and Spicer,
H. C., Geological Society of America, https://doi.org/10.1130/SPE36,
1942.
Blackwell, D. D. and Richards, M. C.: Geothermal Map of North America:
American Association of Petroleum Geologists. Tulsa, Oklahoma, scale, 1,
available at:
https://www.smu.edu/-/media/Site/Dedman/Academics/Programs/Geothermal-Lab/Graphics/Geothermal_MapNA_7x10in.gif?la=en (last access: 14 August 2020), 2004.
Brady, R. J., Ducea, M. N., Kidder, S. B., and Saleeby, J. B.: The
distribution of radiogenic heat production as a function of depth in the
Sierra Nevada Batholith, California, Lithos, 86, 229–244,
https://doi.org/10.1016/j.lithos.2005.06.003, 2006.
Brandt, W., Hanschke, T., and Kaiser, H.: Zum Stand der Nutzung der
oberflächennahen Geothermie in Norddeutschland, Proceedings, 8.
Geothermische Fachtagung, Landau/Pfalz, Germany, 10–12 November 2004.
Brehme, M., Blöcher, G., Cacace, M., Kamah, Y., Sauter, M., and
Zimmermann, G.: Permeability distribution in the Lahendong geothermal field:
A blind fault captured by thermal–hydraulic simulation, Environ. Earth
Sci., 75, 1088, https://doi.org/10.1007/s12665-016-5878-9, 2016a.
Brehme, M., Deon, F., Haase, C., Wiegand, B., Kamah, Y., Sauter, M., and
Regenspurg, S.: Fault controlled geochemical properties in Lahendong
geothermal reservoir Indonesia, Grundwasser, 21, 29–41,
https://doi.org/10.1007/s00767-015-0313-9, 2016b.
Brettreich, F.: Thermophysical and hydraulic rock properties of greywackes
and andesites of the Taupo Volcanic Zone in New Zealand, Masterthesis, TU
Darmstadt, 2016.
Bridgman, P. W.: The thermal conductivity and compressibility of several
rocks under high pressures, Am. J. Sci., 5–7, 81–102,
https://doi.org/10.2475/ajs.s5-7.38.81, 1924.
Brigaud, F., Vasseur, G., and Caillet, G.: Thermal state in the north Viking
Graben (North Sea) determined from oil exploration well data, Geophysics,
57, 69–88, https://doi.org/10.1190/1.1443190, 1992.
BritGeothermal: BritGeothermal, available at: http://www.britgeothermal.org/, last access: 26 February 2020.
Brown, G. C., Cassidy, J., Locke, C. A., Plant, J. A., and Simpson, P. R.:
Caledonian plutonism in Britain: A summary, J. Geophys. Res.-Sol. Ea., 86, 10502–10514, https://doi.org/10.1029/JB086iB11p10502, 1981.
Bullard, E. C.: Heat Flow in South Africa, P. Roy. Soc. A-Math. Phy., 173,
474–502, https://doi.org/10.1098/rspa.1939.0159, 1939.
Bultitude, R. J., Johnson, R. W., and Chappell, B. W.: Andesites of Bagana
volcano, Papua New Guinea: chemical stratigraphy, and a reference andesite
composition, BMR J. Aust. Geol. Geophys., 3, 281–295, 1978.
Buntebarth, G.: Geothermie, Springer, Berlin Heidelberg,
https://doi.org/10.1007/978-3-662-00910-9, 1980.
Carroll, R. D.: The determination of the acoustic parameters of volcanic
rocks from compressional wave velocity measurements, Int. J. Rock Mech. Min., 6, 557–579,
https://doi.org/10.1016/0148-9062(69)90022-9, 1969.
Cebriá, J. M., López-Ruiz, J., Doblas, M., Oyarzun, R., Hertogen, J.,
and Benito, R.: Geochemistry of the Quaternary alkali basalts of Garrotxa
(NE Volcanic Province, Spain): a case of double enrichment of the mantle
lithosphere, J. Volcanol. Geoth. Res., 102, 217–235,
https://doi.org/10.1016/S0377-0273(00)00189-X, 2000.
Cermak, V. and Rybach, L.: Thermal properties, in: Zahlenwerte
und Funktionen aus Naturwissenschaft und Technik: Neue Serie [Numerical
Data and Functional Relationships in Science and Technology: New Series], c.
Landolt-Börnstein – Group V Geophysics, edited by: Angenheister, G.,
Cermák, V., Hellwege, K.-H., and Landolt, H., 310–314, Springer, Berlin, 1982.
Ceryan, S.: New Chemical Weathering Indices for Estimating the Mechanical
Properties of Rocks: A Case Study from the Kürtün Granodiorite, NE
Turkey, Turk. J. Earth Sci., 17, 187–207,
2008.
Ceryan, S., Tudes, S., and Ceryan, N.: Influence of weathering on the
engineering properties of Harsit granitic rocks (NE Turkey), B.
Eng. Geol. Environ., 67, 97–104,
https://doi.org/10.1007/s10064-007-0115-0, 2008.
Chamberlin, D. and Boyce, R.: Sequel: a structured English query language,
Proceedings of the1974 ACM SIGFIDET(now SIGMOD) Workshop on Data
Description, Access and Control, New York, 149–264, 1974.
Chapman, D. S. and Pollack, H. N.: Heat flow and heat production in Zambia:
Evidence for lithospheric thinning in central Africa, Tectonophysics, 41,
79–100, https://doi.org/10.1016/0040-1951(77)90181-0, 1977.
Chappell, B. W.: Aluminium saturation in I- and S-type granites and the
characterization of fractionated haplogranites, Lithos, 46, 535–551,
https://doi.org/10.1016/S0024-4937(98)00086-3, 1999.
Chopra, N., Ray, L., Satyanarayanan, M., and Elangovan, R.: Evaluate best-mixing
model for estimating thermal conductivity from mineralogy: A case study for
the granitoids of the Bundelkhand craton, central India, Geothermics, 75,
1–14, https://doi.org/10.1016/j.geothermics.2018.03.011, 2018.
Chung, S.-L.: Trace Element and Isotope Characteristics of Cenozoic Basalts
around the Tanlu Fault with Implications for the Eastern Plate Boundary
between North and South China, J. Geol., 107, 301–312,
https://doi.org/10.1086/314348, 1999.
Chung, S.-L., Jahn, B.-M., Chen, S.-J., Lee, T., and Chen, C.-H.: Miocene
basalts in northwestern Taiwan: Evidence for EM-type mantle sources in the
continental lithosphere, Geochim. Cosmochim. Ac., 59, 549–555,
https://doi.org/10.1016/0016-7037(94)00360-X, 1995.
Chung, S.-L., Wang, K.-L., Crawford, A. J., Kamenetsky, V. S., Chen, C.-H.,
Lan, C.-Y., and Chen, C.-H.: High-Mg potassic rocks from Taiwan: implications
for the genesis of orogenic potassic lavas, Lithos, 59, 153–170,
https://doi.org/10.1016/S0024-4937(01)00067-6, 2001.
Clark, S. P.: Heat flow at Grass Valley, California, Transactions, American
Geophysical Union, 38, 239, https://doi.org/10.1029/tr038i002p00239, 1957.
Clark, S. P.: Heat Flow in the Austrian Alps, Geophys. J.
Int., 6, 54–63, https://doi.org/10.1111/j.1365-246X.1961.tb02961.x, 1961.
Clark, S. P.: Handbook of physical constants (Bd. 97), Geol. Soc.
Am., https://doi.org/10.1130/MEM97, 1966.
Clauser, C.: Strukturelle, Advektive und Paläoklimatische Einflüsse
auf den Wärmetransport in der Kristallinen Oberkruste am Beispiel der
Kola-Halbinsel. DFG Projekt-Nr.: Cl 121/4–2; Zwischenbericht für den
Zeitraum 1. 1. 1998–31. 12. 2001, available at:
https://www.eonerc.rwth-aachen.de/go/id/dmwf/file/48298 (last access: 14 August 2020), 2001.
Clauser, C. and Huenges, E.: Thermal Conductivity of Rocks and Minerals,
American Geophysical Union, 105 pp., https://doi.org/10.1029/RF003p0105,
1995a.
Clauser, C. and Huenges, E.: Thermal Conductivity of Rocks and Minerals –
Rock Physics and Phase Relations, A Handbook of Physical Constants, AGU
Reference Shelf, 3, 105–126, American Geophysical Union, Washington, 1995b.
Cocherie, A.: Interaction manteau-croûte: son rôle dans la
genèse d'associations plutoniques calo-alcalines, contraintes
géochimiques (éléments en traces et isotopes du strontium et de
l'oxygène), PhD dissertation, CNRS-BRGM, 1984.
Cocherie, A., Rossi, P., Fouillac, A. M., and Vidal, P.: Crust and mantle
contributions to granite genesis - An example from the Variscan batholith of
Corsica, France, studied by trace-element and Nd-isotope systematics,
Chemical Geology, 115, 173–211, https://doi.org/10.1016/0009-2541(94)90186-4, 1994.
Codd, E. F.: A Relational Model of Data for Large Shared Data Banks,
Communications of the ACM, 13, 377–387,
https://doi.org/10.1145/362384.362685, 1970.
Cohen, K. M., Finney, S. C., Gibbard, P. L., and Fan, J.-X.: The ICS
International Chronostratigraphic Chart, Episodes, 36, 199–204, 2013.
Condie, K. C.: Chemical composition and evolution of the upper continental
crust: Contrasting results from surface samples and shales, Chem.
Geol., 104, 1–37, https://doi.org/10.1016/0009-2541(93)90140-E, 1993.
Coster, H. P.: The Electrical Conductivity of Rocks at High Temperatures,
Geophysical Supplements to the Monthly Notices of the Royal Astronomical
Society, 5, 193–199, https://doi.org/10.1111/j.1365-246X.1948.tb02935.x, 1948.
Côté, J. and Konrad, J.-M.: Thermal conductivity of base-course
materials, Can. Geotech. J., 42, 61–78, https://doi.org/10.1139/t04-081,
2005.
Crecraft, H. R., Nash, W. P., and Evans, S. H.: Late Cenozoic volcanism at
Twin Peaks, Utah: Geology and petrology, J. Geophys. Res.-Sol. Ea., 86, 10303–10320. https://doi.org/10.1029/JB086iB11p10303, 1981.
Creutzburg, H.: Bestimmung thermischer Stoffwerte von Salzgesteinen und
Nebengesteinen, Kali und Steinsalz, 5, 170–172, 1965.
CrowdFlower: Data Scientist Report, available at:
https://visit.figure-eight.com/rs/416-ZBE-142/images/CrowdFlower_DataScienceReport_2016.pdf (last access: 26 February 2020), 2016.
Dahmani, A. and Sawyer, E. W.: Variabilité géochimique des
métapélites dans l'auréole métamorphique d'Oulmès (Maroc
central), Bulletin de l'Institut scientifique, section Sciences de la Terre,
2001, 7–20,
2001.
Damm, K.-W., Pichowiak, S., Harmon, R. S., Todt, W., Kelley, S., Omarini, R.,
and Niemeyer, H.: Pre-Mesozoic evolution of the central Andes The basement
revisited, Geol. S. Am. S., 241, 101–126,
https://doi.org/10.1130/SPE241-p101, 1990.
Descamps, F., Tshibangu, J.-P., da Silva, N., and Regnard, S.: A Database to
Manage Rock Mechanical Properties and Assess Formation Abrasiveness for
Drilling, Conference paper: International Symposium of the International
Society for Rock Mechanics, Eurock 2013, Wroclaw, Poland,
https://doi.org/10.1201/b15683-39, 2013.
Devaraju, A., Klump, J., Cox, S. J. D., and Golodoniuc, P.: Representing and
publishing physical sample descriptions, Comput. Geosci., 96,
1–10, https://doi.org/10.1016/j.cageo.2016.07.018, 2016.
Dickson, B. L. and Scott, K. M.: Interpretation of aerial gamma-ray
surveys-adding the geochemical factors, Geoscience Australia, 17, 187–200, 1997.
Diment, W. H.: Thermal conductivity of serpentinite from Mayaguez, Puerto
Rico, and other localities. National Academy of Sciences, National Research
Council Publication, 1188, 92–106, 1964.
Dodge, F. C., Calk, L. C., and Kistler, R. W.: Lower Crustal Xenoliths,
Chinese Peak Lava Flow, Central Sierra Nevada, J. Petrol., 27,
1277–1304, https://doi.org/10.1093/petrology/27.6.1277, 1986.
Dongmo, C. L.: Outcrop Analogue Study of Geothermal Properties of the
Southesk-Cairn Carbonate Complex in the Alberta Basin, Canada, Masterthesis,
TU Darmstadt, 2016.
Ducea, M. N. and Saleeby, J. B.: The age and origin of a thick mafic –
ultramafic keel from beneath the Sierra Nevada batholith, Contrib.
Mineral. Petr., 133, 169–185, https://doi.org/10.1007/s004100050445, 1998.
Dupré, B. and Echeverría, L. M.: Pb isotopes of Gorgona Island
(Colombia): isotopic variations correlated with magma type, Earth
Planet. Sc. Lett., 67, 186–190, https://doi.org/10.1016/0012-821X(84)90113-4,
1984.
Eberhard, M.: Erdwärmesondenfeld Aarau. Heizen und Kühlen eines
grossen Bürogebäudes mit teilweise wärmeisolierten
Erdwärmesonden, Bundesamt für Energie, Schlussbericht Oktober, 1–18,
2005.
El Dakak, W.: Influence of Temporal Variation of Water Saturation on Shallow
Geothermal Systems Using Numerical Modeling, Masterthesis, TU Darmstadt,
2015.
Enge, H. D., Buckley, S. J., Rotevatn, A., and Howell, J. A.: From outcrop to
reservoir simulation model: workflow and procedures, Geosphere, 3, 469–490,
https://doi.org/10.1130/GES00099.1, 2007.
Ensor, C. R.: The determination of thermal conductivity and its
temperature-variation for medium conductors, P. Phys.
Soc., 43, 581–591, https://doi.org/10.1088/0959-5309/43/5/314, 1931.
Esteban, L., Pimienta, L., Sarout, J., Piane, C. D., Haffen, S., Geraud, Y.,
and Timms, N. E.: Study cases of thermal conductivity prediction from P-wave
velocity and porosity, Geothermics, 53, 255–269,
https://doi.org/10.1016/j.geothermics.2014.06.003, 2015.
Ewart, A., Bryan, W. B., and Gill, J. B.: Mineralogy and Geochemistry of the
Younger Volcanic Islands of Tonga, S.W. Pacific, J. Petrol., 14,
429–465, https://doi.org/10.1093/petrology/14.3.429, 1973.
Ewart, A., Brothers, R. N., and Mateen, A.: An outline of the geology and
geochemistry, and the possible petrogenetic evolution of the volcanic rocks
of the Tonga-Kermadec-New Zealand island arc, J. Volcanol. Geoth. Res., 2, 205–250, https://doi.org/10.1016/0377-0273(77)90001-4, 1977.
Fachinformationssystem (FIS) Geophysik: Geophysics Information System, available at: http://www.fis-geophysik.de, last
access: 19 October 2019.
Faridfar, N.: Untersuchung und Bewertung der geothermischen Eigenschaften
der Gesteine der Noerdlichen Pyllitzone, Vordertaunus, Bachelorthesis, TU
Darmstadt, Goethe Universität Frankfurt am Main, 2010.
Farmer, G. L.: Continental Basaltic Rocks, in: Treatise on Geochemistry, edited by: Holland, H. D. and
Turekian, K. K., Elsevier-Pergamon, 85–121
https://doi.org/10.1016/B0-08-043751-6/03019-x, 2003.
Farmer, G. L., Glazner, A. F., and Manley, C. R.: Did lithospheric
delamination trigger late Cenozoic potassic volcanism in the southern Sierra
Nevada, California?, Geol. Soc. Am. B., 114, 754–768,
https://doi.org/10.1130/0016-7606(2002)114<0754:DLDTLC>2.0.CO;2,
2002.
Farquharson, J. I., Heap, M. J., and Baud, P.: Strain-induced permeability
increase in volcanic rock, Geophys. Res. Lett., 43, 11603–11610,
https://doi.org/10.1002/2016GL071540, 2016.
Farquharson, J. I., Baud, P., and Heap, M. J.: Inelastic compaction and permeability evolution in volcanic rock, Solid Earth, 8, 561–581, https://doi.org/10.5194/se-8-561-2017, 2017.
Fisher, R. V. and Smith, G. A.: Volcanism, tectonics and sedimentation, 1-5.
Sedimentation in volcanic settings, Society for Sedimentary Geology, Special
Publication No. 45, https://doi.org/10.2110/pec.91.45, 1991.
Förster, A. and Förster, H.-J.: Crustal composition and mantle heat
flow: Implications from surface heat flow and radiogenic heat production in
the Variscan Erzgebirge (Germany), J. Geophys. Res.-Sol.
Ea., 105, 27917–27938. https://doi.org/10.1029/2000JB900279, 2000.
Fountain, D. M., Salisbury, M. H., and Furlong, K. P.: Heat production and
thermal conductivity of rocks from the Pikwitonei–Sachigo continental cross
section, central Manitoba: implications for the thermal structure of Archean
crust, Can. J. Earth Sci., 24, 1583–1594,
https://doi.org/10.1139/e87-154, 1987.
Fourcade, S. and Allegre, C. J.: Trace element behaviour in granite genesis.
The calc-alkaline plutonic association from the Querigut Complex (Pyrenees,
France), Contrib. Mineral. Petr., 76, 177–195,
https://doi.org/10.1007/BF00371958, 1981.
Fowler, C. M., Stead, D., Pandit, B. I., Janser, B. W., Nisbet, E. G., and
Nover, G.: A database of physical properties of rocks from the Trans-Hudson
Orogen, Canada, Can. J. Earth Sci., 42, 555–572,
https://doi.org/10.1139/e05-006, 2005.
Francois, D. and Lemmet, M.: Evolution of Mg/Fe Ratios in Late Variscan
Plutonic Rocks from the External Crystalline Massifs of the Alps (France,
Italy, Switzerland), J. Petrol., 40, 1151–1185,
https://doi.org/10.1093/petroj/40.7.1151, 1999.
Franzson, H., Guðfinnsson, G. H., Helgadóttir, H. M., and Frolova,
J.: Porosity, density and chemical composition relationships in altered
Icelandic hyaloclastites, in: Water-Rock
Interaction, edited by: Birkle and Torres-Alvarado, 199–202, CRC Press, London, ISBN 978-0-415-60426-0, 2010.
Franzson, H., Gudfinnsson, G. H., Frolova, J., Helgadóttir, H. M.,
Pauly, B., Mortensen, A. K., and Jakobsson, S. P.: Icelandic Hyaloclastite
Tuffs – Petrophysical properties, alteration and geochemical mobility, Tech.
rep., ISOR – Icelandic Geosurvey, Reykjavik, Iceland, 2011.
Fridleifson, G. O. and Vilmundardottir, E. G.: Reservoir Parameters
TCP-Project A Thin-section Study of the Öskjuhlid Samples. Progress
Report, ORKUSTOFNUN National Energy Authority Project No. 720 105, 1998.
Fuchs, S., Balling, N., and Förster, A.: Calculation of thermal
conductivity, thermal diffusivity and specific heat capacity of sedimentary
rocks using petrophyscial well logs, Geophys. J. Int., 203, 1977–2000,
2015.
Fuji-ta, K., Katsura, T., and Tainosho, Y.: Electrical conductivity
measurement of granulite under mid- to lower crustal pressure-temperature
conditions, Geophys. J. Int., 157, 79–86,
https://doi.org/10.1111/j.1365-246X.2004.02165.x, 2004.
Fuji-ta, K., Katsura, T., Matsuzaki, T., Ichiki, M., and Kobayashi, T.:
Electrical conductivity measurement of gneiss under mid- to lower crustal
P–T conditions, Tectonophysics, 434, 93–101,
https://doi.org/10.1016/j.tecto.2007.02.004, 2007.
Fuji-ta, K., Katsura, T., Ichiki, M., Matsuzaki, T., and Kobayashi, T.:
Variations in electrical conductivity of rocks above metamorphic conditions,
Tectonophysics, 504, 116–121, https://doi.org/10.1016/j.tecto.2011.03.008, 2011.
Galán, G., Pin, C., and Duthou, J.-L.: Sr-Nd isotopic record of
multi-stage interactions between mantle-derived magmas and crustal
components in a collision context – The ultramafic-granitoid association
from Vivero (Hercynian belt, NW Spain),
Chem. Geol., 131, 67–91, https://doi.org/10.1016/0009-2541(96)00027-7, 1996.
Gangadharam, E. V. and Aswathanarayana, U.: Trace elements in the
kimberlites of Andhra Pradesh, India, Trans. Amer. Geophy., 50, 341, 1969.
Gao, S., Luo, T.-C., Zhang, B.-R., Zhang, H.-F., Han, Y.-w., Zhao, Z.-D., and
Hu, Y.-K.: Chemical composition of the continental crust as revealed by
studies in East China, Geochim. Cosmochim. Ac., 62, 1959–1975,
https://doi.org/10.1016/S0016-7037(98)00121-5, 1998.
Garcia-Gutierrez, A. and Contreras, E.: Measurement of Thermal Conductivity and
Diffusivity of Drill Core Samples from the Los Humeros Geothermal Field,
Mexico, by a Line-Source Technique, GRC
Transactions, Davis, California, 31, available at: https://www.geothermal-library.org/index.php?mode=pubs&action=view&record=1025278 (last access: 14 August 2020), 2007.
Gard, M., Hasterok, D., and Halpin, J. A.: Global whole-rock geochemical database compilation, Earth Syst. Sci. Data, 11, 1553–1566, https://doi.org/10.5194/essd-11-1553-2019, 2019.
Gärtner, D.: Comparison of geothermal properties of the carbonatic
aquifer systems in the Western Canada Sedimentary Basin and the South German
Molasse Basin, Masterthesis, TU Darmstadt, 2017.
Gaunt, H. E., Sammonds, P. R., and Meredith, R. P.: Pathways for degassing
during the lava dome eruption of Mount St. Helens 2004–2008, Geology, 42,
947–950, https://doi.org/10.1130/G35940.1, 2014.
Gegenhuber, N. and Schoen, J.: New approaches for the relationship between
compressional wave velocity and thermal conductivity, J. Appl. Geophys., 76,
50–55, 2012.
Gehlin, S.: Thermal response test method development and evaluation,
Luleå University of Technology, Luleå tekniska universitet,
available at: http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-18433 (last access: 14 August 2020),
2002.
Gehlin, S. E. and Hellstrom, G.: Comparison of Four Models for Thermal
Response Test Evaluation, ASHRAE Transactions-American Society of Heating
Refrigerating Airconditioning Engin, 109, 131–142, 2003.
Geist, O.: Geothermische und gesteinsmechanische Untersuchung an
ausgewaehlten Standorten der Fraenkischen Alb. Bachelorthesis, TU Darmstadt,
2011.
GeORG-Projektteam: Geopotenziale des tieferen Untergrundes im
Oberrheingraben, Fachlich-Technischer Abschlussbericht des INTERREG-Projekts
GeORG, Teil 1, Landesamt für Geologie, Rohstoffe und Bergbau, available
at: http://www.geopotenziale.org/products/fta?lang=1 (last access: 14 August 2020), 2013.
Ghazi, A. M. and Hassanipak, A. A.: Geochemistry of subalkaline and alkaline
extrusives from the Kermanshah ophiolite, Zagros Suture Zone, Western Iran:
implications for Tethyan plate tectonics, J. Asian Earth Sci.,
17, 319–332, https://doi.org/10.1016/S0743-9547(98)00070-1, 1999.
Gill, J.: Orogenic Andesites and Plate Tectonics (Bd. 16), Springer, Berlin
Heidelberg, https://doi.org/10.1007/978-3-642-68012-0, 1981.
Gill, J. and Whelan, P.: Early rifting of an oceanic island arc (Fiji)
produced shoshonitic to tholeiitic basalts, J. Geophys. Res.-Sol. Ea., 94, 4561–4578, https://doi.org/10.1029/JB094iB04p04561, 1989.
Gillespie, M. R. and Styles, M. T.: Classification of igneous rocks, BGS Rock
Classification Scheme, Volume 1, British Geological Survey, Research Report
Number RR 99-06, Nottingham, UK, 1999.
Glover, P. W.: Electrical conductivity of rock samples subjected to high
temperatures and pressures. Ph.D. dissertation, University of East Anglia,
available at: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.236438 (last access: 14 August 2020),
1989.
Glover, P. W. and Vine, F. J.: Electrical conductivity of carbonbearing
granulite at raised temperatures and pressures, Nature, 360, 723–726,
https://doi.org/10.1038/360723a0, 1992.
Glover, P. W. and Vine, F. J.: Electrical conductivity of the continental
crust, Geophys. Res. Lett., 21, 2357–2360, https://doi.org/10.1029/94GL01015,
1994.
Glover, P. W. and Vine, F. J.: Beyond KTB – electrical conductivity of the
deep continental crust, Surv. Geophys., 16, 5–36,
https://doi.org/10.1007/BF00682710, 1995.
Grecksch, G., Ortiz, A., and Schellschmidt, R.: HDR project Soultz –
thermophysical study of GPK2 and GPK3 granite samples, ZIP Vorhaben
“Hot-Dry-Rock-Project Soultz – Hydrogeothermische Modellierung des
HDR-Wärmetauschers” (Förderkennzeichen: 0327109B), “Hot Dry Rock
Energy” (EC contract ENK5-CT-2000-00301), 2003.
Grunert, S.: Der Elbsandstein: Vorkommen, Verwendung, Eigenschaften Elbe
Sandstone: deposits, use, properties, Geologica Saxonia, 52/53, 3–22, 2007.
Gu, Y.: Calculations of the optimized design for an existing multifunctional
building with borehole heat exchangers, Masterthesis, TU Darmstadt, 2010.
Gu, Y., Rühaak, W., Bär, K., and Sass, I.: Using seismic data to
estimate the spatial distribution of rock thermal conductivity at reservoir
scale, Geothermics, 66, 61–72,
https://doi.org/10.1016/j.geothermics.2016.11.007, 2017.
Gudmundsson, A., Franzson, H., and Fridleifson, G. O.: ForOafrceOistuOlar
Sofnun syna AfangaskYrsla urn sarnvinnuverk Hitaveitu Reykjavfkur, Hitaveitu
SuOurnesja og Orkustofnunar, Tech. rep., ORKUSTOFNUN, Reykjavik, Iceland, 1995.
Gühne, S.: Petrographie und Petrophysik des Rotliegend der
Forschungsbohrung Messel GA2, Bachelorthesis, TU Darmstadt, 2016.
Guillot, S. and Fort, P. L.: Geochemical constraints on the bimodal origin
of High Himalayan leucogranites, Lithos, 35, 221–234,
https://doi.org/10.1016/0024-4937(94)00052-4, 1995.
Guillou-Frottier, L., Mareschal, J.-C., Jaupart, C., Gariépy, C.,
Lapointe, R., and Bienfait, G.: Heat flow variations in the Grenville
Province, Canada, Earth Planet. Sc. Lett., 136, 447–460,
https://doi.org/10.1016/0012-821X(95)00187-H, 1995.
Gupta, M. L., Sundar, A., and Sharma, S. R.: Heat flow and heat generation in
the Archaean Dharwar cratons and implications for the Southern Indian Shield
geotherm and lithospheric thickness, Tectonophysics, 194, 107–122,
https://doi.org/10.1016/0040-1951(91)90275-W, 1991.
Haack, U.: On the content and vertical distribution of K, Th and U in the
continental crust, Earth Planet. Sc. Lett., 62, 360–366,
https://doi.org/10.1016/0012-821X(83)90006-7, 1983.
Haffen, S., Géraud, Y., Diraison, M., and Dezayes, C.: Determining majors
fluid-flow zones in a geothermal sandstone reservoir from thermal
conductivity and temperature logs, EGU General Assembly Conference
Abstracts, 14, 9043, 2012.
Haffen, S., Geraud, Y., Diraison, M., and Dezayes, C.: Determination of
fluid-flow zones in a geothermal sandstone reservoir using thermal
conductivity and temperature logs, Geothermics, 46, 32–41,
https://doi.org/10.1016/j.geothermics.2012.11.001, 2013.
Hallsworth, C. R. and Knox, R. W. O'B.: Classification of sediments and
sedimentary rocks, BGS Rock Classification Scheme, Volume 3, British
Geological Survey, Research Report Number RR 99-03, Nottingham, UK, 1999.
Hantschel, A. I. and Kauerauf, T.: Fundamentals of Basin and Petroleum
Systems Modeling, 476 pp., Springer Verlag, Berlin Heidelberg,
ISBN 978-3-5-540-72318-9_1, 2009.
Hartmann, A., Rath, V., and Clauser, C.: Thermal conductivity from core and
well log data, Int. J. Rock Mech. Min.,
42, 1042–1055, https://doi.org/10.1016/j.ijrmms.2005.05.015, 2005.
Hasterok, D. and Webb, J.: On the radiogenic heat production of igneous
rocks, Geosci. Front., 8, 919–940,
https://doi.org/10.1016/j.gsf.2017.03.006, 2017.
Hasterok, D., Gard, M., and Webb, J.: On the radiogenic heat production of
metamorphic, igneous, and sedimentary rocks, Geosci. Front., 9,
1777–1794, https://doi.org/10.1016/j.gsf.2017.10.012, 2018.
Hauff, F., Hoernle, K., van den Bogaard, P., Alvarado, G., and
Garbe-Schönberg, D.: Age and geochemistry of basaltic complexes in
western Costa Rica: Contributions to the geotectonic evolution of Central
America, Geochem. Geophys. Geosyst., 1, 1009,
https://doi.org/10.1029/1999GC000020, 2000.
Heap, M. J., Vinciguerra, S., and Meredith, P. G.: The evolution of elastic
moduli with increasing crack damage during cyclic stressing of a basalt from
Mt. Etna volcano, Tectonophysics, 471, 153–160,
https://doi.org/10.1016/j.tecto.2008.10.004, 2009.
Heap, M. J., Faulkner, D. R., Meredith, P. G., and Vinciguerra, S.: Elastic
moduli evolution and accompanying stress changes with increasing crack
damage: implications for stress changes around fault zones and volcanoes
during deformation, Geophys. J. Int., 183, 225–236,
https://doi.org/10.1111/j.1365-246X.2010.04726.x, 2010.
Heap, M. J., Baud, P., Meredith, P. G., Vinciguerra, S., Bell, A. F., and
Main, I. G.: Brittle creep in basalt and its application to time-dependent
volcano deformation, Earth Planet. Sc. Lett., 307, 71–82,
https://doi.org/10.1016/j.epsl.2011.04.035, 2011.
Heap, M. J., Lavallee, Y., Laumann, A., Hess, K.-U., Meredith, P. G., and
Dingwell, D. B.: How tough is tuff in the event of fire?, Geology, 40,
311–314, https://doi.org/10.1130/G32940.1, 2012.
Heap, M. J., Baud, P., Meredith, P. G., Vinciguerra, S., and Reuschlé, T.: The permeability and elastic moduli of tuff from Campi Flegrei, Italy: implications for ground deformation modelling, Solid Earth, 5, 25–44, https://doi.org/10.5194/se-5-25-2014, 2014a.
Heap, M. J., Lavallée, Y., Petrakova, L., Baud, P., Reuschlé, T.,
Varley, N. R., and Dingwell, D. B.: Microstructural controls on the physical
and mechanical properties of edifice-forming andesites at Volcán de
Colima, Mexico, J. Geophys. Res.-Sol. Ea., 119,
2925–2963, https://doi.org/10.1002/2013JB010521, 2014b.
Heap, M. J., Farquharson, B. P., Lavallee, Y., and Reuschle, T.: Fracture and
compaction of andesite in a volcanic edifice, Bull. Volcanol., 77, 55,
https://doi.org/10.1007/s00445-015-0938-7, 2015a.
Heap, M. J., Farquharson, J. I., Wadsworth, F. B., Kolzenburg, S. and
Russell, J. K.: Timescales for permeability reduction and strength recovery
in densifying magma, Earth Planet. Sc. Lett., 429, 223–233,
https://doi.org/10.1016/j.epsl.2015.07.053, 2015b.
Heap, M. J., Kennedy, B. M., Pernin, N., Jacquemard, L., Baud, P.,
Farquharson, J. I., and Dingwell, D. B.: Mechanical behaviour and failure modes
in the Whakaari (White Island volcano) hydrothermal system, New Zealand,
J. Volcanol. Geoth. Res., 295, 26–42,
https://doi.org/10.1016/j.jvolgeores.2015.02.012, 2015c.
Heap, M. J., Russell, J. K., and Kennedy, L. A.: Mechanical behaviour of
dacite from Mount St. Helens (USA): A link between porosity and lava dome
extrusion mechanism (dome or spine)?, J. Volcanol. Geoth. Res., 328, 159–177, https://doi.org/10.1016/j.jvolgeores.2016.10.015, 2016.
Herrin, E. and Clark, S. P.: Heat flow in west Texas and eastern New Mexico,
Geophysics, 21, 1087–1099, https://doi.org/10.1190/1.1438306, 1956.
Hesse, J.: Untersuchung des geothermischen Potenzials der effusiven
Vulkanite der permischen Donnersberg-Formation, Bachelorthesis, TU
Darmstadt, 2011.
Hill, M., Morris, J., and Whelan, J.: Hybrid granodiorites intruding the
accretionary prism, Kodiak, Shumagin, and Sanak Islands, southwest Alaska, J. Geophys. Res.-Sol. Ea., 86, 10569–10590,
https://doi.org/10.1029/JB086iB11p10569, 1981.
Hoffmann, H.: Bestimmung von geothermischen Kennwerten an Gesteinen des
Kellerwaldes, Bachelorthesis, TU Darmstadt, Goethe Universität Frankfurt
am Main, 2011.
Hoffmann, H.: Petrophysikalische Eigenschaften der Mitteldeutschen
Kristallinschwelle im Bereich des Oberrheingrabens, Masterthesis, TU
Darmstadt, 2015.
Hofmann, A. W.: Chemical differentiation of the Earth: the relationship
between mantle, continental crust, and oceanic crust, Earth Planet. Sc. Lett., 90, 297–314, https://doi.org/10.1016/0012-821X(88)90132-X, 1988.
Homuth, S.: Aufschlussanalogstudie zur Charakterisierung oberjurassischer
geothermischer Karbonatreservoire im Molassebecken, PhD dissertation, TU
Darmstadt, available at:
http://nbn-resolving.de/urn:nbn:de:tuda-tuprints-42094 (last access: 14 August 2020), 2014.
Hooper, P. R. and Hawkesworth, C. J.: Isotopic and Geochemical Constraints
on the Origin and Evolution of the Columbia River Basalt, J.
Petrol., 34, 1203–1246, https://doi.org/10.1093/petrology/34.6.1203, 1993.
Howell, J. A., Allard, W. M., and Good, T. R.: The application of outcrop analogues
in geological modeling: a review, present status and future outlook, Geol.
Soc. Lond. Spec. Publ., 387, 1–25, 2014.
Huber, A., Good, J., Widmer, P., Nussbaumer, T., Trüssel, D., and Schmid,
C.: Gekoppelte Kälte-und Wärmeerzeugung mit
Erdwärmesonden-Handbuch zum Planungsvorgehen, Final report Forschungsprogramm Umgebungs- und Abwärme, Wärme-Kraft-Kopplung (UAW), Bundesamt für Energie, Zürich, Schweiz, 64 p., available at: http://www.hetag.ch/download/gekoppelte_ews.pdf (last access: 14 August 2020), 2001.
Hückel, B. and Kappelmeyer, O.: Geothermische Untersuchungen im
Saarkarbon, Zeitschrift der Deutschen Geologischen Gesellschaft, 117,
280–311, 1966.
Hurtig, E. and Brugger, H.: Wärmeleitfähigkeitsmessungen unter
einaxialem Druck, Tectonophysics, 10, 67–77,
https://doi.org/10.1016/0040-1951(70)90098-3, 1970.
Hutt, J. R. and Berg, J. W.: Thermal and electrical conductivities of
sandstone rocks and ocean sediments, Geophysics, 33, 489–500,
https://doi.org/10.1190/1.1439946, 1968.
Hyndman, R. D. and Jessop, A. M.: The Mid-Atlantic Ridge Near 45 N. XV.
Thermal Conductivity of Dredge and Drill Core Samples, Can. J.
Earth Sci., 8, 391–393, https://doi.org/10.1139/e71-040, 1971.
Inger, S. I. and Harris, N. I.: Geochemical Constraints on Leucogranite
Magmatism in the Langtang Valley, Nepal Himalaya, J. Petrol., 34,
345–368, https://doi.org/10.1093/petrology/34.2.345, 1993.
Innocent, C., Briqueu, L., and Cabanis, B.: Sr-Nd isotope and trace-element
geochemistry of late Variscan volcanism in the Pyrenees: Magmatism in
post-orogenic extension?, Tectonophysics, 238, 161–181,
https://doi.org/10.1016/0040-1951(94)90054-X, 1994.
IRETHERM Project: IREland's geoTHERMal potential, available at: http://www.iretherm.ie/,
last access: 26 February 2020.
Islam, M. A.: Petrophysical evaluation of subsurface reservoir sandstones of
Bengal Basin, Bangladesh, J. Geol. Soc. India, 76,
621–631, https://doi.org/10.1007/s12594-010-0122-9, 2010.
Iyer, S. S., Choudhuri, A., Vasconcellos, M. B., and Cordani, U. G.:
Radioactive element distribution in the Archean granulite terrane of
Jequié – Bahia, Brazil. Contrib. Mineral. Petr., 85,
95–101, https://doi.org/10.1007/BF00380226, 1984.
Jahn, F., Graham, M., and Cook, M.: Hydrocarbon Exploration & Production, vol. 55, Second Edition (Developments in Petroleum Science), Elsevier
Science, 470 pp., 2008.
Jaupart, C., Mann, J. R., and Simmons, G.: A detailed study of the
distribution of heat flow and radioactivity in New Hampshire (U.S.A.), Earth Planet. Sc. Lett., 59, 267–287,
https://doi.org/10.1016/0012-821X(82)90131-5, 1982.
Jaya, M. S., Shapiro, S. A., Kristinsdóttir, L. H., Bruhn, D., Milsch,
H., and Spangenberg, E.: Temperature dependence of seismic properties in
geothermal rocks at reservoir conditions, Geothermics, 39, 115–123,
https://doi.org/10.1016/j.geothermics.2009.12.002, 2010.
Jensen, B.: Geothermische Untersuchung des Hauptrogenstein im suedlichen
Oberrheingraben. Bachelorsthesis, TU Darmstadt, 2014.
Jeong, H.-S., Kang, S.-S., and Obara, Y.: Influence of surrounding
environments and strain rates on the strength of rocks subjected to uniaxial
compression, Int. J. Rock Mech. Min.,
44, 321–331, https://doi.org/10.1016/j.ijrmms.2006.07.009, 2007.
Jochum, K. P., Hofmann, A. W., Ito, E., Seufert, H. M., and White, W. M.: K,
U and Th in mid-ocean ridge basalt glasses and heat production, K/U and K/Rb
in the mantle, Nature, 306, 431–436, https://doi.org/10.1038/306431a0, 1983.
Jodocy, M. and Stober, I.: Porositäten und Permeabilitäten im
Oberrheingraben und Südwestdeutschen Molassebecken, Erdöl, Erdgas,
Kohle, 127, 20–27, 2011.
Johannes, W., Ehlers, C., Kriegsman, L. M., and Mengel, K.: The link between
migmatites and S-type granites in the Turku area, southern Finland, Lithos,
68, 69–90, https://doi.org/10.1016/S0024-4937(03)00032-X, 2003.
John, B. E. and Wooden, J.: Chapter 5: Petrology and geochemistry of the
metaluminous to peraluminous Chemehuevi Mountains Plutonic Suite,
southeastern California, Geol. Soc. Am. Mem., 174, 71–98,
https://doi.org/10.1130/MEM174-p71, 1990.
Jones, M. Q.: Heat flow and heat production in the Namaqua Mobile Belt,
South Africa, J. Geophys. Res.-Sol. Ea., 92, 6273,
https://doi.org/10.1029/JB092iB07p06273, 1987.
Jones, M. Q.: Heat flow in the Witwatersrand Basin and environs and its
significance for the South African Shield Geotherm and lithosphere
thickness, J. Geophys. Res.-Sol. Ea., 93, 3243,
https://doi.org/10.1029/JB093iB04p03243, 1988.
Kahraman, S.: The correlations between the saturated and dry P-wave velocity
of rocks, Ultrasonics, 46, 341–348, https://doi.org/10.1016/j.ultras.2007.05.003, 2007.
Kalsbeek, F., Jepsen, H. F., and Jones, K. A.: Geochemistry and petrogenesis
of S-type granites in the East Greenland Caledonides, Lithos, 57, 91–109,
https://doi.org/10.1016/S0024-4937(01)00038-X, 2001.
Kappelmeyer, O. and Haenel, R.: Geothermics with special reference to
application, edited by: Rosenbach, O. and Morelli, C., Gebrüder
Bornträger, Stuttgart, 1974.
Kassab, M. A. and Weller, A.: Porosity estimation from compressional wave
velocity: A study based on Egyptian sandstone formations, J.
Petr. Sci. Eng., 78, 310–315,
https://doi.org/10.1016/j.petrol.2011.06.011, 2011.
Kassab, A. and Weller, A.: Study on P-wave and S-wave velocity in dry and
wet sandstones of Tushka region, Egypt, Egyptian Journal of Petroleum, 24,
1–11, https://doi.org/10.1016/j.ejpe.2015.02.001, 2015.
Kawada, K.: Studies of the Thermal State of the Earth. The 15th Paper:
Variation of Thermal Conductivity of Rocks. Part 1, Bulletin of the
Earthquake Research Institute, 42, 631–647, 1964.
Kawada, K.: Studies of the Thermal State of the Earth. The 17th Paper:
Variation of Thermal Conductivity of Rocks. Part 2, Bulletin of the
Earthquake Research Institute, 44, 1071–1091, 1966.
Kay, S. M. and Kay, R. W.: Aleutian magmas in space and time, in: The Geology of Alaska, edited by: Plafker, G. and
Berg, H. C., Geol. Soc.
Am., 687–717, https://doi.org/10.1130/dnag-gna-g1.687, 1994.
Kay, S. M., Kay, R. W., Citron, G. P., and Perfit, M. R.: Calc-alkaline
plutonism in the intra-oceanic Aleutian arc, Alaska, Geol. S. Am. S., 241, 233–256, https://doi.org/10.1130/SPE241-p233, 1990.
Keen, C. E. and Lewis, T.: Measured Radiogenic Heat Production in Sediments
from Continental Margin of Eastern North America: Implications for Petroleum
Generation: Geologic Note, AAPG Bull., 66, 1402–1407, 1982.
Kelemen, P. B., Hanghøj, K., and Greene, A. R.: One View of the
Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on
Primitive Andesite and Lower Crust, Treatise on Geochemistry, 3, 1–70,
https://doi.org/10.1016/b0-08-043751-6/03035-8, 2007.
Kemp, A. I. and Hawkesworth, C. J.: Granitic perspectives on the generation
and secular evolution of the continental crust, Treatise on Geochemistry,
Elsevier-Pergamon, 3, 349-410. https://doi.org/10.1016/B0-08-043751-6/03027-9, 2003.
Kendrick, J. E., Lavallée, Y., Hess, K.-U., Heap, M. J., Gaunt, H. E.,
Meredith, P. G., and Dingwell, D. B.: Tracking the permeable porous network
during strain-dependent magmatic flow, J. Volcanol. Geoth. Res., 260, 117–126, https://doi.org/10.1016/j.jvolgeores.2013.05.012, 2013a.
Kendrick, J. E., Smith, R., Sammonds, M. P., Dainty, M., and Pallister, J.
S.: The influence of thermal and cyclic stressing on the strength of rocks
from Mount St. Helens, Washington, B. Volcanol., 75, 728,
https://doi.org/10.1007/s00445-013-0728-z, 2013b.
Kennedy, L. A. and Russell, J. K.: Cataclastic production of volcanic ash at
Mount Saint Helens, Phys. Chem. Earth A/B/C, 45–46,
40–49, https://doi.org/10.1016/j.pce.2011.07.052, 2012.
Kennedy, L. A., Russell, J. K., and Nelles, E.: Origins of Mount St. Helens
cataclasites: Experimental insights, Am. Mineral., 94, 995–1004,
https://doi.org/10.2138/am.2009.3129, 2009.
Kerr, A. C.: Oceanic Plateaus. In Treatise on Geochemistry,
Elsevier, 3, 659, https://doi.org/10.1016/B0-08-043751-6/03033-4, 2003.
Khitarov, N. I., Lebedev, Y. B., Rengarten, Y. V., and Arsenyev, R. V.:
Solubility of water in basaltic and granitic melts, Geokhimya, 10, 41–49, 1959.
Kidder, S., Ducea, M., Gehrels, G., Patchett, P. J., and Vervoort, J.:
Tectonic and magmatic development of the Salinian Coast Ridge Belt,
California, Tectonics, 22, 1058, https://doi.org/10.1029/2002TC001409, 2003.
Kläske, U.: Bestimmung des geothermischen Potenzials des Kristallinen
Odenwaldes, Bachelorthesis, TU Darmstadt, 2010.
Klein, E. M.: Geochemistry of the Igneous Oceanic Crust, in: Treatise on Geochemistry, edited by: Holland, H. D. and Turekian,
K. K.,
Elsevier, 3, 433–463, https://doi.org/10.1016/B0-08-043751-6/03030-9, 2003.
Klug, C. and Cashman, K. V.: Permeability development in vesiculating
magmas: implications for fragmentation, B. Volcanol., 58, 87–100,
https://doi.org/10.1007/s004450050128, 1996.
Klumbach, S.: Photogrammetrische und felsmechanische Untersuchungen am
Piesberger Karbon-Quarzit, Bachelorthesis, Albert-Ludwigs-Universität
Freiburg, 2008.
Klumbach, S.: Petrophysical properties of geothermal reservoir rocks in the
Upper Rhine Graben from surface outcrops, Masterthesis,
Albert-Ludwigs-Universität Freiburg, 2010.
Knopoff, L.: Geophysical Monograph 12: The Crust and Upper Mantle of the
Pacific Area, edited by: Knopoff, L., Drake, C. L., and Hart, P. J., American
Geophysical Union, https://doi.org/10.1029/gm012, 1968.
Königsberger, J. and Weiss, J.: Über die thermoelektrischen Effekte
(Thermokräfte, Thomsonwärme) und die Wärmeleitung in einigen
Elementen und Verbindungen und über die experimentelle Prüfung der
Elektronentheorien, Annalen der Physik, 340, 1–46,
https://doi.org/10.1002/andp.19113400602, 1911.
Kolzenburg, S., Heap, M. J., Lavallée, Y., Russell, J. K., Meredith, P. G., and Dingwell, D. B.: Strength and permeability recovery of tuffisite-bearing andesite, Solid Earth, 3, 191–198, https://doi.org/10.5194/se-3-191-2012, 2012.
Konzack, D.: Untersuchung des Einflusses der Wassersättigung auf die
thermophysikalischen Eigenschaften von Buntsandstein, Bachelorthesis, TU
Darmstadt, 2015.
Kramers, J. D., Kreissig, K., and Jones, M. Q.: Crustal heat production and
style of metamorphism: a comparison between two Archean high grade provinces
in the Limpopo Belt, southern Africa, Precambrian Res., 112, 149–163,
https://doi.org/10.1016/S0301-9268(01)00173-5, 2001.
Kraus, E.: 3D Modellierung des tiefengeothermischen Potentials und der
Petrologie des west-lichen Taunus/Rheinisches Schiefergebirge,
Diplomathesis, TU Darmstadt, 2009.
Kristinsdóttir, L. H., Flóvenz, Ó. G., Árnason, K., Bruhn,
D., Milsch, H., Spangenberg, E., and Kulenkampff, J.: Electrical conductivity
and P-wave velocity in rock samples from high-temperature Icelandic
geothermal fields, Geothermics, 39, 94–105,
https://doi.org/10.1016/j.geothermics.2009.12.001, 2010.
Kukkonen, I. T., Golovanova, I. V., Khachay, Y. V., Druzhinin, V. S.,
Kosarev, A. M., and Schapov, V. A.: Low geothermal heat flow of the Urals
fold belt – implication of low heat production, fluid circulation or
palaeoclimate?, Tectonophysics, 276, 63–85,
https://doi.org/10.1016/S0040-1951(97)00048-6, 1997.
Kumar, P. S. and Reddy, G. K.: Radioelements and heat production of an
exposed Archaean crustal cross-section, Dharwar craton, south India, Earth Planet. Sc. Lett., 224, 309–324, https://doi.org/10.1016/j.epsl.2004.05.032,
2004.
Kumari, W. G., Ranjith, P. G., Perera, M. S., Shao, S., Chen, B. K., Lashin,
A., and Rathnaweera, T. D.: Mechanical behaviour of Australian Strathbogie
granite under in-situ stress and temperature conditions: An application to
geothermal energy extraction, Geothermics, 65, 44–59,
https://doi.org/10.1016/j.geothermics.2016.07.002, 2017.
Lambert, A.-D.: Bestimmung der petrophysikalischen und felsmechanischen
Kennwerte des Tromm- und Weschnitz-Plutons, Odenwald, Deutschland,
Bachelorthesis, TU Darmstadt, 2016.
Landolt-Börnstein – Springer Materials: the Landolt-Börnstein
database, available at: http://www.springermaterials.com, last access: 14 August 2020.
Laštovičková, M., Losito, G., and Trova, A.: Anisotropy of
electrical conductivity of dry and saturated KTB samples, Phys.
Earth Planet. In., 81, 315–324,
https://doi.org/10.1016/0031-9201(93)90138-Y, 1993.
Le Bas, M. J. and Streckeisen, A. L.: The IUGS systematics of igneous rocks, J.
Geol. Soc. London, 148, 825–833, 1991.
Ledesert, B.: Fracturation et paléocirculations hydrothermales.
Application au granite de Soultz-sous-Forêts, PhD dissertation, Université de Poitiers, France, 170 p., 1993POIT2308, 1993.
Lehnert, K., Su, Y., Langmuir, C., Sarbas, B., and Nohl, U.: A global geochemical
database structure for rocks, Gechem. Geophys. Geosy., 1, 1012,
https://doi.org/10.1029/1999GC000026, 2000.
Lehnert, K., Vinayagamoorthy, S., Djapic, B., and Klump, J.: The Digital Sample:
Metadata, Unique Identification, and Links to Data and Publications, EOS,
Transactions, American Geophysical Union, 87,
Abstract IN53C–07, 2006.
Le Maitre, R. W. and Streckeisen, A.: Igneous rocks: a classification and
glossary of terms – recommendations of the International Union of
Geological Sciences Subcommission on the Systematics of Igneous Rocks, 2nd
edn., Cambridge University Press, Cambridge, 2003.
Leonidov, Y.: Heat capacities of rocks at high temperatures, Geochem.
Int., 4, 400, 1967.
Leonidov, Y., Barskiy, Y., and Khitarov N., I.: Measurement of heat
capacities of quartz, kyanite and granite at high temperatures, Geochem.
Int., 2, 1966.
Lesquer, A., Pagel, M., Orsini, J. B., and Bonin, B.: Premières
détermination du flux de chaleur et de la production de chaleur en
Corse, C.R. Acad. Sci., 491–494, 1983.
Leu, W., Keller, G., Matter, A., Schärli, U., and Rybach, L.:
Geothermische Eigenschaften Schweizer Molassebecken (Tiefenbereich 0–500 m),
Bundesamt für Energie, Bern, available at:
https://inis.iaea.org/collection/NCLCollectionStore/_Public/39/015/39015171.pdf (last access: 28 September 2020),
2006
Linsel, A.: Lithofaziesanalyse der Forschungsbohrung Messel GA 1,
Bachelorthesis, TU Darmstadt, 2014.
Liolios, P. and Exadaktylos, G.: A relational rock mechanics database
scheme with a hierarchical structure, Comput. Geosci., 37,
1192–1204, https://doi.org/10.1016/j.cageo.2011.02.014, 2011.
Loaiza, S., Fortin, J., Schubnel, A., Gueguen, Y., Vinciguerra, S., and
Moreira, M.: Mechanical behavior and localized failure modes in a porous
basalt from the Azores, Geophys. Res. Lett., 39, L19304,
https://doi.org/10.1029/2012GL053218, 2012
Luais, B. É. and Hawkesworth, C. H.: The Generation of Continental
Crust: An Integrated Study of Crust-Forming Processes in the Archaean of
Zimbabwe, J. Petrol., 35, 43–94, https://doi.org/10.1093/petrology/35.1.43,
1994.
Lucazeau, F. and Mailhe, D.: Heat flow, heat production and fission track
data from the Hercynian basement around the Provençal Basin (Western
Mediterranean), Tectonophysics, 128, 335–356,
https://doi.org/10.1016/0040-1951(86)90300-8, 1986.
Mack, C.: Geothermische Untersuchungen in Calw, Diplomathesis, TU Darmstadt,
2007.
Mahood, G. A.: A summary of the geology and petrology of the Sierra La
Primavera, Jalisco, Mexico, J. Geophys. Res.-Sol. Ea.,
86, 10137–10152. https://doi.org/10.1029/JB086iB11p10137, 1981.
Maier, D.: Theory of Relational Databases, Computer Science Pr,
Rockville, Maryland, USA, 640 pp., 1983.
Maire, R.: Investigation of thermo-physical and mechanical parameters of
crystalline geothermal reservoir rocks of the Upper Rhine Graben (Germany),
Masterthesis, LaSalle Beauvais, TU Darmstadt, 2014.
Manghnani, M. H. and Woollard, G. P.: Elastic Wave Velocities in Hawaiian
Rocks at Pressures to Ten Kilobars, in: Geophysical Monograph 12:The Crust and Upper Mantle of the
Pacific Area, edited by: Knopoff, L., Drake, C. L., and
Heart, P. J., American Geophysical Union, 12, 501–516,
https://doi.org/10.1029/GM012p0501, 2013.
Mareschal, J. C., Poirier, A., Rolandone, F., Bienfait, G., Gariépy, C.,
Lapointe, R., and Jaupart, C.: Low mantle heat flow at the edge of the North
American Continent, Voisey Bay, Labrador, Geophys. Res. Lett., 27,
823–826, https://doi.org/10.1029/1999GL011069, 2000.
Mariucci, M. T., Pierdominici, S., Pizzino, L., Marra, F., and Montone, P.
Looking into a volcanic area: An overview on the 350 m scientific drilling
at Colli Albani (Rome, Italy), J. Volcanol. Geoth. Res., 176, 225–240, https://doi.org/10.1016/j.jvolgeores.2008.04.007, 2008.
Marzán Blas, I.: Régimen tér mico en la Península
Ibérica. Estructura litosférica a través del Macizo Ibérico
y el Margen Surportugués, PhD dissertation, PhD Universitat de
Barcelona, 2000.
McDermott, F., Harris, N. B., and Hawkesworth, C. J.: Geochemical constraints
on crustal anatexis: a case study from the Pan-African Damara granitoids of
Namibia, Contrib. Mineral. Petr., 123, 406–423,
https://doi.org/10.1007/s004100050165, 1999.
McDonough, W. F.: Constraints on the composition of the continental
lithospheric mantle, Earth Planet. Sc. Lett., 101, 1–18,
https://doi.org/10.1016/0012-821X(90)90119-I, 1990.
McKenna, T. E. and Sharp Jr., J. M.: Radiogenic heat production in
sedimentary rocks of the Gulf of Mexico Basin, south Texas, AAPG Bull.,
82, 484–496, 1998.
McLaren, S., Sandiford, M., and Hand, M.: High radiogenic heat–producing
granites and metamorphism – An example from the western Mount Isa inlier,
Australia, Geology, 27, 679, https://doi.org/10.1130/0091-7613(1999)027<0679:hrhpga>2.3.co;2, 1999.
McLennan, S. M., Taylor, S. R., McCulloch, M. T., and Maynard, J. B.:
Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: Crustal
evolution and plate tectonic associations, Geochim. Cosmochim. Ac.,
54, 2015–2050, https://doi.org/10.1016/0016-7037(90)90269-Q, 1990.
Mengel, K., Richter, M., and Johannes, W.: Leucosome-forming small-scale
geochemical processes in the metapelitic migmatites of the Turku area,
Finland, Lithos, 56, 47–73, https://doi.org/10.1016/S0024-4937(00)00059-1, 2001.
Meqbel, N. and Ritter, O.: Joint 3D inversion of multiple electromagnetic
datasets, Geophys. Prospect., 63, 1450–1467,
https://doi.org/10.1111/1365-2478.12334, 2015.
Mielke, P.: Properties of the Reservoir Rocks in the Geothermal Field of
Wairakai/New Zealand, Diplomathesis, TU Darmstadt, 2009.
Mielke, P., Nehler, M., Bignall, G., and Sass, I.: Thermo-physical rock
properties and the impact of advancing hydrothermal alteration – A case
study from the Tauhara geothermal field, New Zealand, J. Volcanol. Geoth. Res., 301, 14–28, https://doi.org/10.1016/j.jvolgeores.2015.04.007,
2015.
Mielke, P., Bär, K., and Sass, I.: Determining the relationship of thermal
conductivity and compressional wave velocity of common rock types as a basis
for reservoir characterization, J. Appl. Geophys., 140, 135–144,
https://doi.org/10.1016/j.jappgeo.2017.04.002, 2017.
Milicevic, M.: Untersuchung thermophysikalischer Eigenschaften an hessischen
Zechstein- und Buntsandsteinproben. Bachelorthesis, TU Darmstadt, 2015.
Milord, I., Sawyer, E. W., and Brown, M.: Formation of Diatexite Migmatite
and Granite Magma during Anatexis of Semi-pelitic Metasedimentary Rocks: an
Example from St. Malo, France, J. Petrol., 42, 487–505,
https://doi.org/10.1093/petrology/42.3.487, 2001.
Misener, A. D., Thompson, L. G., and Uffen, R. J.: Terrestrial heat flow in
Ontario and Quebec. Transactions, American Geophysical Union, 32, 729,
https://doi.org/10.1029/tr032i005p00729, 1951.
Mitchell, R. H.: Kimberlites, Orangeites, and Related Rocks, Springer US,
https://doi.org/10.1007/978-1-4615-1993-5, 1995.
Moiseenko, U. I.: Wärmeleitfähigkeit der Gesteine bei hohen
Temperaturen, Freiberger Forschungshefte, 100, 89–94, 1968.
Moiseenko, U. I. and Sokolova, L. S.: Thermal conductivity of some rocks of
the East Sayan and Eastern Kazhakstan, Reports of the
Academy of Sciences of the USSR, 165, 1965.
Moiseenko, U. I. and Sokolova, L. S: Ergebnisse geothermischer
Untersuchungen in Sibirien, Freiberger Forschungshefte, C238, 79, 1968.
Moiseenko, U. I., Soloviev, S. A., and Kutolin, V. A.: Thermal conductivity
of granite at high temperatures, Reports of the Academy of Sciences of the
USSR, 165, 1965.
Moiseenko, U. I., Solovyeva, Z. A., and Kutolin, V. A.: Heat capacities of
eclogite and dolerite at high temperatures, Doklady Akademii Nauk SSSR, 173,
669–671, 1967.
Montanini, A. and Tribuzio, R.: Gabbro-derived Granulites from the Northern
Apennines (Italy): Evidence for Lower-crustal Emplacement of Tholeiitic
Liquids in Post-Variscan Times, J. Petrol., 42, 2259–2277,
https://doi.org/10.1093/petrology/42.12.2259, 2001.
Mortimer, N.: PETLAB: New Zealand's rock and geoanalytical database,
Geological Society of New Zealand Newsletter, 136, 27–31, 2005.
Mossop, S. C. and Gafner, G.: The thermal constants of some rocks from the
Orange Free State, J. Chem. Met. Min. Soc. S. Afr., 52, 61–76,
1951.
Mottaghy, D., Schellschmidt, R., Popov, Y. A., Clauser, C., Kukkonen, I. T.,
Nover, G., and Romushkevich, R. A.: New heat flow data from the immediate
vicinity of the Kola super-deep borehole: Vertical variation in heat flow
confirmed and attributed to advection, Tectonophysics, 401, 119–142,
https://doi.org/10.1016/j.tecto.2005.03.005, 2005.
Müller, D.: Investigation on the spatial variability of petrophysical
parameters of sandstone (Buntsandstein) in the Spessart, Germany,
Bachelorthesis, TU Darmstadt, 2014.
Munck, F., Walgenwitz, F., Maget, P., Sauer, K., and Tietze, R.: Synthese
géothermique du Fossé rhénan Supérieur, Commission of the
European Communities, Strasbourg, France, Freiburg i.Br., Germany, 1979.
Munoz, G., Bauer, K., Moeck, I., Schultze, A., and Ritter, O.: Exploring the
Gross Schönebeck (Germany) geothermal site using a statistical joint
interpretation of magnetotelluric and seismic tomography models,
Geothermics, 39, 35–45, https://doi.org/10.1016/j.geothermics.2009.12.004,
2010.
Murti, M.: Patterns of sedimentation in the southeastern part of the
Chhattisgarh Basin, PhD dissertation, University of Saugar, India, 1980.
Nabawy, B. S., Rochette, P., and Geraud, Y.: Petrophysical and magnetic pore
network anisotropy of some cretaceous sandstone from Tushka Basin, Egypt,
Geophys. J. Int., 177, 43–61,
https://doi.org/10.1111/j.1365-246X.2008.04061.x, 2009.
Nabawy, B. S., Rochette, P., and Géraud, Y.: Electric pore fabric of the
Nubia sandstones in south Egypt: characterization and modelling, Geophys.
J. Int., 183, 681–694, https://doi.org/10.1111/j.1365-246X.2010.04789.x,
2010.
Narayanaswamy, R. and Venkatasubramanian, V. S.: Uranium and thorium
contents of coexisting gneisses, granites and pegmatites, Geochim.
Cosmochim. Ac., 33, 1007–1009, https://doi.org/10.1016/0016-7037(69)90111-2, 1969.
National Geothermal Data System (NGDS): National Geothermal Data System, available at: http://geothermaldata.org/, last
access: 26 February 2020.
Nehler, M.: Geothermische Untersuchungen des Zechsteins im Raum Sontra,
Bachelorthesis, TU Darmstadt, 2011.
Nicolaysen, L. O., Hart, R. J., and Gale, N. H.: The Vredefort radioelement
profile extended to supracrustal strata at Carletonville, with implications
for continental heat flow, J. Geophys. Res.-Sol. Ea., 86,
10653–10661, https://doi.org/10.1029/JB086iB11p10653, 1981.
Noritomi, K. and Asada, A.: Studies on the Electrical Conductivity of a few
Samples of Granite and Andesite, Sci. Rep. Tohoku Univ. Ser., 5, 201–207,
1955.
Nyblade, A. A., Pollack, H. N., Jones, D. L., Podmore, F., and Mushayandebvu,
M.: Terrestrial heat flow in east and southern Africa, J. Geophys. Res.-Sol. Ea., 95, 17371, https://doi.org/10.1029/JB095iB11p17371,
1990.
Oelsner, C.: Grundlagen der Geothermik, Sektion Geowissenschaften,
Bergakademie, Freiberg, Germany, 1981.
Orendt, R.: Geothermisches Potenzial im Erlaubnisfeld Südtaunus,
Diplomathesis, TU Darmstadt, 2014.
Pannike, D. G., Kölling, M., Schulz, H. D., Panteleit, B., Reichling, J.,
and Scheps, V.: Auswirkung hydrogeologischer Kenngrößen auf die
Kältefahnen von Erdwärmesondenanlagen in Lockersedimenten,
Grundwasser, 11, 6–18, https://doi.org/10.1007/s00767-006-0114-2, 2006.
Pannike, S.: Ausbreitung von Kältefahnen oberflächennaher
Erdwärmesonden in Lockergestein, 48 pp., PhD dissertation,
Universität Bremen, 2005.
Parkhomenko, E. I. and Bondarenko, A. T.: Electrical conductivity of rocks
at high pressures and temperatures, Nauka Press, Moscow, 1972.
Paslick, C., Halliday, A., James, D., and Dawson, J. B.: Enrichment of the
continental lithosphere by OIB melts: Isotopic evidence from the volcanic
province of northern Tanzania, Earth Planet. Sc. Lett., 130,
109–126, https://doi.org/10.1016/0012-821X(95)00002-T, 1995.
Peate, D. W.: The Paraná-Etendeka Province, in: Large Igneous Provinces:
Continental, Oceanic, and Planetary Flood Volcanism, American
Geophysical Union, 217–245, https://doi.org/10.1029/gm100p0217, 1997.
Peccerillo, A. and Taylor, S. R.: Geochemistry of eocene calc-alkaline
volcanic rocks from the Kastamonu area, Northern Turkey, Contrib. Mineral. Petr., 58, 63–81, https://doi.org/10.1007/BF00384745, 1976.
Pei, L.: Analysis of initiation and propagation of hydraulically induced
fracture, Masterthesis, TU Darmstadt, 2009.
Pereira, E. B., Hamza, V. M., Furtado, V. V., and Adams, J. A.: U, Th and K
content, heat production and thermal conductivity of São Paulo, Brazil,
continental shelf sediments: A reconnaissance work, Chem. Geol., 58, 217–226, https://doi.org/10.1016/0168-9622(86)90011-4,
1986.
PetroMod – Petroleum systems Modeling Software: PetroMod – Petroleum systems Modeling Software, available at: http://www.slb.com/petromod,
last access: 26 February 2020.
PETLAB: National Rock and Geoanalytical Database: Petlab,
available at: http://pet.gns.cri.nz/#/ or
https://www.gns.cri.nz/Home/Products/Databases/PETLAB-National-Rock-and-Geoanalytical-Database,
last access: 26 February 2020.
Pickett, D. A. and Saleeby, J. B.: Thermobarometric constraints on the depth
of exposure and conditions of plutonism and metamorphism at deep levels of
the Sierra Nevada Batholith, Tehachapi Mountains, California, J. Geophys. Res.-Sol. Ea., 98, 609–629, https://doi.org/10.1029/92JB01889, 1993.
Pimienta, L., Sarout, J., Esteban, L., and Piane, C. D.: Prediction of rocks
thermal conductivity from elastic wave velocities, mineralogy and
microstructure, Geophys. J. Int., 197, 860–874,
https://doi.org/10.1093/gji/ggu034, 2014.
Plank, T. and Langmuir, C. H.: The chemical composition of subducting
sediment and its consequences for the crust and mantle, Chem. Geol.,
145, 325–394, https://doi.org/10.1016/S0009-2541(97)00150-2, 1998.
Pola, A., Crosta, Fusi, N., Barberini, V., and Norini, G.: Influence of
alteration on physical properties of volcanic rocks, Tectonophysics,
566–567, 67–86, https://doi.org/10.1016/j.tecto.2012.07.017, 2012.
Pola, A., Crosta, G. B., Fusi, N., and Castellanza, R.: General
characterization of the mechanical behaviour of different volcanic rocks
with respect to alteration, Eng. Geol., 169, 1–13,
https://doi.org/10.1016/j.enggeo.2013.11.011, 2014.
Popov, Y. A., Pribnow, D. F., Sass, J. H., Williams, C. F., and Burkhardt,
H.: Characterization of rock thermal conductivity by high-resolution optical
scanning, Geothermics, 28, 253–276, https://doi.org/10.1016/S0375-6505(99)00007-3, 1999.
Pribnow, D. F., Kinoshita, M., and Stein, C. A.: Thermal Data Collection and
Heat Flow Recalculations for ODP Legs 101–180, Inst. Joint
Geosci. Res., Inst. Geowiss. Gemeinschaftsauf. (GGA), Hanover, Germany, 2000.
Price, R. C., Gray, C. M., and Frey, F. A.: Strontium isotopic and trace
element heterogeneity in the plains basalts of the Newer Volcanic Province,
Victoria, Australia, Geochim. Cosmochim. Ac., 61, 171–192,
https://doi.org/10.1016/s0016-7037(96)00318-3, 1997.
Priebs, R.: Properties of geothermal reservoir rocks. Comparison between
Ohaaki Field (NZ) and Saar-Nahe Basin (Germany), Diplomathesis, TU
Darmstadt, 2011.
Rao, G. V. and Rao, R. U.: Heat flow in Indian Gondwana basins and heat
production of their basement rocks, Tectonophysics, 91, 105–117,
https://doi.org/10.1016/0040-1951(83)90060-4, 1983.
Rao, R. U. and Rao, G. V.: Radiogeologic studies at NGRI – a review,
Geophys. Research Bull., 17, 163–173, 1979.
Rao, V. D., Aswathanarayana, U., and Qureshy, M. N.: Trace element
geochemistry of parts of the Closepet granite, Mysore State, India, Mineral.
Mag., 38, 678–686, https://doi.org/10.1180/minmag.1972.038.298.04, 1972.
Ray, L., Förster, H.-J., Förster, A., Fuchs, S., Naumann, R., and
Appelt, O.: Tracking the thermal properties of the lower continental crust:
Measured versus calculated thermal conductivity of high-grade metamorphic
rocks (Southern Granulite Province, India), Geothermics, 55, 138–149,
https://doi.org/10.1016/j.geothermics.2015.01.007, 2015.
Rebay, G. and Spalla, M. I.: Emplacement at granulite facies conditions of
the Sesia–Lanzo metagabbros: an early record of Permian rifting?, Lithos,
58, 85–104, https://doi.org/10.1016/s0024-4937(01)00046-9, 2001.
Reyer, D. and Philipp, S. L.: Empirical relations of rock properties of
outcrop and core samples from the Northwest German Basin for geothermal
drilling, Geothermal Energy Science, 2, 21–37, https://doi.org/10.5194/gtes-2-21-2014,
2014.
Reynaud, C., Jaillard, É., Lapierre, H., Mamberti, M., and Mascle, G. H.:
Oceanic plateau and island arcs of southwestern Ecuador: their place in the
geodynamic evolution of northwestern South America, Tectonophysics, 307,
235–254, https://doi.org/10.1016/s0040-1951(99)00099-2, 1999.
Ringrose, P. and Bentley, M.: Reservoir Model Design, Springer, the Netherlands,
249, https://doi.org/10.1007/978-94-007-5497-3, 2015.
Roberts, J. J., Bonner, B. P., and Duba, A. G.: Electrical resistivity
measurements of andesite and hydrothermal breccia from the Awibengkok
geothermal field, Indonesia. TwentyFifth Annual Stanford Geothermal
Reservoir Engineering Workshop, 339–344, available at:
http://www.geothermal-energy.org/pdf/IGAstandard/SGW/2000/Roberts.pdf (last access: 14 August 2020), 2000.
Robertson S.: Classification of metamorphic rocks, BGS Rock Classification
Scheme, Volume 2, British Geological Survey, Research Report Number RR
99-02, Nottingham, UK, 1999.
Rogers, N. W., James, D., Kelley, S. P., and Mulder, M. D.: The Generation of
Potassic Lavas from the Eastern Virunga Province, Rwanda, J.
Petrol., 39, 1223–1247, https://doi.org/10.1093/petroj/39.6.1223, 1998.
Rolandone, F., Jaupart, C., Mareschal, J. C., Gariépy, C., Bienfait, G.,
Carbonne, C., and Lapointe, R.: Surface heat flow, crustal temperatures and
mantle heat flow in the Proterozoic Trans-Hudson Orogen, Canadian Shield, J. Geophys. Res.-Sol. Ea., 107, ETG 7-1–ETG 7-19,
https://doi.org/10.1029/2001jb000698, 2002.
Rosener, M.: Etude pétrophysique et modélisation des effets des
transferts thermiques entre roche et fluide dans le contexte
géothermique de Soultz-sous-Forêts, PhD dissertation,
Université Louis Pasteur-Strasbourg I, available at:
https://tel.archives-ouvertes.fr/tel-00202959/ (last access: 14 August 2020), 2007.
Rudnick, R. L. and Fountain, D. M.: Nature and composition of the
continental crust: A lower crustal perspective, Rev. Geophys., 33,
267, https://doi.org/10.1029/95rg01302, 1995.
Rudnick, R. L., McDonough, W. F., and O'Connell, R. J.: Thermal structure,
thickness and composition of continental lithosphere, Chem. Geol., 145,
395–411, https://doi.org/10.1016/s0009-2541(97)00151-4, 1998.
Rudnick, R. O.: Xenolith-samples of the lower continental crust, Continental
lower crust, Elsevier, Amsterdam, 23, 269–316, 1992.
Rühaak, W. Guadagnini, A., Geiger, S., Bär, K., Gu, Y., Aretz, A.,
Homuth, S., and Sass, I.: Upscaling thermal conductivities of sedimentary
formations for geothermal exploration, Geothermics, 58, 49–61,
https://doi.org/10.1016/j.geothermics.2015.08.004, 2015.
Rüther, J.: The Validation of the LMC device – Analysis of Icelandic
basaltic rocks, Masterthesis, TU Darmstadt, RES – The School of Renewable
Energy Science, Iceland, Akureyri, 2011.
Rummel, F.: Physical properties of the rock in the granitic section of
borehole GPK1, Soultzsous- Forêts, Geotherm. Sci. & Tech., 3,
199–216, 1991.
Rummel, F.: Physical properties of the rock in the granitic section of
borehole GPK1, Soultz-sous-Forêts, in: Geothermal Energy in Europe: the soultz hot dry rock project, edited by: Bresee, J. C., Gordon and Breach Science Publishers, Montreaux, Switzerland, 199–216, 1992.
Rummel, F. and Schreiber, D.: Physical properties of the core K21, borehole
GPK1, Soultz-sous-Forêts, depth interval 3522.58–3525.88 m, Yellow
Report 12, Ruhr-Universität Bochum, 1993.
Russell, J. K., Dipple, G. M., and Kopylova, M. G.: Heat production and heat
flow in the mantle lithosphere, Slave craton, Canada, Phys. Earth
Planet. In., 123, 27–44, https://doi.org/10.1016/S0031-9201(00)00201-6,
2001.
Rybach, L., Bassetti, S., Baumgärtner, R., Rohner, E., and Schärli,
U.: Projekt Drahtloser Minidatenlogger für Temperaturmessungen in
Erdwärmesonden, Schlussbericht, 2003.
Sakvarelidze, E. A.: Verkhnaya Mantiya, Izd. Nauka, 125, 1973.
Salters, V. J., Storey, M., Sevigny, J. H., and Whitechurch, H.: Trace
element and isotopic characteristics of Kerguelen-Heard Plateau basalts,
Proc. Ocean Drill. Program Sci. Results, 120, 55–62, 1992.
Salton, M.: Untersuchungen zum Verhalten von Erdwärmesonden,
Masterthesis, Diplomarbeit an der Abt. für Erdwissenschaften der ETH
Zürich, 1999.
Sandiford, M., Mclaren, S., and Neumann, N.: Long-term thermal consequences
of the redistribution of heat-producing elements associated with large-scale
granitic complexes, J. Metamorph. Geol., 20, 87–98,
https://doi.org/10.1046/j.0263-4929.2001.00359.x, 2002.
Sandkühler, L.: Untersuchung des Einflusses der Wassersättigung auf
die thermophysikalischen Eigenschaften von Kernproben der Bohrungen Aura und
Rosenthal, Bachelorthesis, TU Darmstadt, 2015.
Sanner, B. and Anderson, O.: Drilling methods for shallow geothermal
installations, Tech. rep., International Geothermal Days, Germany, 2001.
Sanner, B., Reuß, M., Mands, E., and Müller, J.: Erfahrungen mit dem
thermal response test in Deutschland, Tagungsband 6, Geothermische
Fachtagung Herne, GtV, Geeste, 2000.
Sass, J. H., Lachenbruch, A. H., and Munroe, R. J.: Thermal conductivity of
rocks from measurements on fragments and its application to heat-flow
determinations, J. Geophys. Res., 76, 3391–3401,
https://doi.org/10.1029/jb076i014p03391, 1971.
Sawka, W. N. and Chappell, B. W.: Fractionation of uranium, thorium and rare
earth elements in a vertically zoned granodiorite: Implications for heat
production distributions in the Sierra Nevada batholith, California, U.S.A.,
Geochim. Cosmochim. Ac., 52, 1131–1143,
https://doi.org/10.1016/0016-7037(88)90267-0, 1988.
Schäffer, R.: Hydrogeologische und geothermische Untersuchungen der
Heilquellen und Heil-brunnen Bad Soden-Salmuensters, Diplomathesis, TU
Darmstadt, 2012.
Schärli, U. and Kohl, T.: Archivierung und Kompilation geothermischer
Daten der Schweiz und angrenzender Gebiete, Schweizerische Geophysikalische
Kommission, Zürich, Switzerland, 2002.
Schintgen, T. V.: The Geothermal Potential of Luxembourg, PhD
dissertation, University of Potsdam, Universität Potsdam, available at:
http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:kobv:517-opus4-87110 (last access: 14 August 2020),
2015.
Schmid, R.: Descriptive nomenclature and classification of pyroclastic
deposits and fragments: Recommendations of the IUGS Subcommission on the
Systematics of Igneous Rocks, Geology, 9, 41–43, 1981.
Schön, J. H.: Petrophysik: Physikalische Eigenschaften von Gesteinen und
Mineralen, F. Enke, Stuttgart, 1983.
Schön, J. H.: Handbook of geophysical exploration. Physical Properties of
Rocks: Fundamentals and Principles of Petrophysics, Pergamon Pr., Oxford, 421 pp.,
1996.
Schön, J. H.: Physical properties of rocks: fundamentals and principles
of petrophysics (Bd. 18), Pergamon Pr., Oxford, 1998.
Schön, J. H.: Physical Properties of Rocks: Fundamentals and Principles
of Petrophysics, in: Handbook of Geophysical Explorations, Section I,
Seismic Exploration, 18, Redwood Books, Trowbridge, 2004.
Schön, J. H.: Physical Properties of Rocks: A Workbook, in: Handbook of
Petroleum Exploration and Production, Elsevier, Amsterdam, the Netherlands, 2011.
Schön, J. H. (Ed.): Physical properties of rocks: Fundamentals and
principles of petrophysics, Developments in petroleum science, 65, Elsevier,
Amsterdam Netherlands, 2015.
Schöpflin, S.: Determination of Rockmechanical Properties of the
Palatinate Forest's Buntsandstein, Master's thesis,
Albert-Ludwigs-Universität Freiburg, 2013.
Schubert, K. O.: Geothermische Untersuchungen des Buntsandsteins des
Odenwaldes, Bachelorthesis, TU Darmstadt, Goethe Universitaet Frankfurt am
Main, 2011.
Schumann, A.: GIS basierte Erdwaermepotenzialkarte Spielberg und Wart,
Diplomathesis, TU Darmstadt, 2008.
Schütz, F.: Surface heat flow and lithospheric thermal structure of the
northwestern Arabian Plate, PhD dissertation, University of Potsdam,
University of Potsdam, Germany, available at:
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus-69622 (last access: 14 August 2020), 2013.
Schwalb, B.: Thermofazielle und petrophysikalische Untersuchung der Bohrung
Solnhofen-Maxberg und weiterer Aufschlussproben der Fränkischen und
Schwäbischen Alb, Bachelorthesis, TU Darmstadt, 2012.
Schwalb, B.: Bestimmung geothermischer Kennwerte an Cuttings und Auswertung
der bohrtechnischen Daten der Tiefbohrung Geretsried, Masterthesis, TU
Darmstadt, 2014.
Shimojuku, A., Yoshino, T., Yamazaki, D., and Okudaira, T.: Electrical
conductivity of fluid-bearing quartzite under lower crustal conditions,
Phys. Earth Planet. In., 198–199, 1–8,
https://doi.org/10.1016/j.pepi.2012.03.007, 2012.
Sighinolfi, G. P., Figueredo, M. C., Fyfe, W. S., Kronberg, B. I., and
Oliveira, M. A.: Geochemistry and petrology of the jequie granulitic complex
(Brazil): an archean basement complex, Contrib. Mineral. Petr., 78, 263–271, https://doi.org/10.1007/bf00398921, 1981.
Sikora, C.: Strukturgeologische und geothermische Analogstudie verkarsteter
Karbonatgesteine im Bereich der Tunnelbaustelle Widderstall, Masterthesis,
TU Darmstadt, 2015.
Sims, P. K., Peterman, Z. E., Prinz, W. C., Benedict, F. C., and Klasner, J.
S.: Geology, geochemistry, and age of Archean and early Proterozoic rocks in
the Marenisco-Watersmeet area, northern Michigan; and Geologic
interpretation of gravity data, Marenisco-Watersmeet area, northern
Michigan, Tech. rep., Geological Survey Professional Paper, 1292A-B, 41 p. and 13 p., United States Government Printing Office, Washington, https://doi.org/10.3133/pp1292AB, 1984.
Siratovich, P.: Thermal Stimulation of Icelandic High-Temperature Geothermal
Systems. Mastersthesis, RES – The School of Renewable Energy Science,
Iceland, Akureyri, 2010.
Siratovich, P. A., Heap, M. J., Villenueve, M. C., Cole, J. W., and
Reuschlé, T.: Physical property relationships of the Rotokawa Andesite,
a significant geothermal reservoir rock in the Taupo Volcanic Zone, New
Zealand, Geotherm. Energy, 2, 31, https://doi.org/10.1186/s40517-014-0010-4, 2014.
Siratovich, P. A., Heap, M. J., Villeneuve, M. C., Cole, J. W., Kennedy, B.
M., Davidson, J., and Reuschlé, T.: Mechanical behaviour of the Rotokawa
Andesites (New Zealand): Insight into permeability evolution and
stress-induced behaviour in an actively utilised geothermal reservoir,
Geothermics, 64, 163–179, https://doi.org/10.1016/j.geothermics.2016.05.005, 2016.
Sizun, J. P.: Modification des structures de porosité de grès lors de
transformations petrographiques dans la diagenese et l'hydrothermalisme,
PhD dissertation, Institut de Geologie Strasbourg, Université Louis
Pasteur, Strasbourg, France, 1995.
Smith, I. E. and Johnson, R. W.: Contrasting rhyolite suites in the Late
Cenozoic of Papua New Guinea, J. Geophys. Res.-Sol. Ea.,
86, 10257–10272, https://doi.org/10.1029/JB086iB11p10257, 1981.
Smith, R., Sammonds, P. R., Tuffen, H., and Meredith, P. G.: Evolution of the
mechanics of the 2004–2008 Mt. St. Helens lava dome with time and
temperature, Earth Planet. Sc. Lett., 307, 191–200,
https://doi.org/10.1016/j.epsl.2011.04.044, 2011.
Southern Methodist University: SMU Geothermal Lab Heat Flow and Western Geothermal Data
Bases References, Tech. rep., Southern Methodist University, Dallas, Texas, USA, 2000.
Stober, I. and Bucher, K.: Hydraulic properties of the crystalline basement,
Hydrogeol. J., 15, 213–224, https://doi.org/10.1007/s10040-006-0094-4, 2007.
Stober, I. and Jodocy, M.: Eigenschaften geothermischer Nutzhorizonte im
Baden-Württembergischen und französischen Teil des Oberrheingrabens,
Grundwasser, 14, 127–137, https://doi.org/10.1007/s00767-009-0103-3, 2009.
Strong, D., Turnbull, R., Haubrock, S., and Mortimer, N.: Petlab: New
Zealand's national rock catalogue and geoanalytical database, New Zealand J.
Geol. Geophys., 53, 475–481,
https://doi.org/10.1080/00288306.2016.1157086, 2016.
Sun, S.-S. and McDonough, W. F.: Chemical and isotopic systematics of
oceanic basalts: implications for mantle composition and processes,
Geol. Soc. London Spec. Publications, 42, 313–345,
https://doi.org/10.1144/GSL.SP.1989.042.01.19, 1989.
Sundberg, J.: Thermal properties of soils and rocks, PhD dissertation,
Chalmers University of Technology and University of Goetenburg, 1988.
Surma, F.: Détermination de la porosité des zones endommagées
autour des failles et rôle de l'état du matériau sur les
propriétés d'echange fluides-roches: minéralogie, structures de
porosité, caractéristiques mécaniques, PhD dissertation,
Université Louis Pasteur, Strasbourg, 2003.
Surma, F. and Geraud, Y.: Porosity and Thermal Conductivity of the
Soultz-sous-Forêts Granite, in: Thermo-Hydro-Mechanical Coupling in
Fractured Rock, Birkh_user, Basel, 1125–1136,
https://doi.org/10.1007/978-3-0348-8083-1_20, 2003.
Swanberg, C. A.: Vertical distribution of heat generation in the Idaho
batholith, J. Geophys. Res., 77, 2508–2513,
https://doi.org/10.1029/JB077i014p02508, 1972.
Taylor, S. R., McLennan, S. M., and McCulloch, M. T.: Geochemistry of loess,
continental crustal composition and crustal model ages, Geochim.
Cosmochim. Ac., 47, 1897–1905, https://doi.org/10.1016/0016-7037(83)90206-5, 1983.
Taylor, W. R., Tompkins, L. A., and Haggerty, S. E.: Comparative geochemistry
of West African kimberlites: Evidence for a micaceous kimberlite endmember
of sublithospheric origin, Geochim. Cosmochim. Ac., 58, 4017–4037,
https://doi.org/10.1016/0016-7037(94)90264-X, 1994.
Tchameni, R., Mezger, K., Nsifa, N. E., and Pouclet, A.: Neoarchæan
crustal evolution in the Congo Craton: evidence from K rich granitoids of
the Ntem Complex, southern Cameroon, J. Afr. Earth Sci., 30,
133–147, https://doi.org/10.1016/S0899-5362(00)00012-9, 2000.
Tejada, M. L., Mahoney, J. J., Duncan, R. A., and Hawkins, M. P.: Age and
Geochemistry of Basement and Alkalic Rocks of Malaita and Santa Isabel,
Solomon Islands, Southern Margin of Ontong Java Plateau, J.
Petrol., 37, 361–394, https://doi.org/10.1093/petrology/37.2.361, 1996.
Tejada, M. L., Mahoney, J. J., Neal, C. R., Duncan, R. A., and Petterson, M.
G.: Basement Geochemistry and Geochronology of Central Malaita, Solomon
Islands, with Implications for the Origin and Evolution of the Ontong Java
Plateau, J. Petrol., 43, 449–484, https://doi.org/10.1093/petrology/43.3.449,
2002.
Thompson, R. N., Gibson, S. A., Dickin, A. P., and Smith, P. M.: Early
Cretaceous Basalt and Picrite Dykes of the Southern Etendeka Region, NW
Namibia: Windows into the Role of the Tristan Mantle Plume in
Paraná–Etendeka Magmatism, J. Petrol., 42, 2049–2081,
https://doi.org/10.1093/petrology/42.11.2049, 2001.
Trautwein, U.: Poroelastische Verformung und petrophysikalische
Eigenschaften von Rotliegend Sandsteinen. Technische Universität Berlin,
Technische Universität Berlin, https://doi.org/10.14279/depositonce-1240, 2005.
Ucok, H.: Temperature dependence of the electrical resistivity of aqueous
salt solutions and solution-saturated porous rocks, Master's thesis,
University of Southern California, 1979.
Ufondu, L. S.: The geothermal potentials of the Middle and Lower Benue
Trough, Nigeria, Masterthesis, TU Darmstadt, 2012.
Van Wees, J.-D., Hopman, J., Dezayes, C., Vernier, R., Manzella A., Bruhn,
D., Scheck-Wenderoth, M., Flovenz, O., Páll Hersir, G.
Halldórsdóttir, S., and Liotta, D.: IMAGE: the EU Funded Research
Project Integrated Methods for Advanced Geothermal Exploration, Proceedings
World Geothermal Congress 2015, Melbourne, Australia, 19–25 April 2015.
VDI 4640 Blatt 1: Thermische Nutzung des Untergrundes – Grundlagen,
Genehmigungen, Umweltaspekte, VDI, Düsseldorf, 2010.
Verdoya, M., Pasquale, V., Chiozzi, P., and Kukkonen, I. T.: Radiogenic heat
production in the Variscan crust: new determinations and distribution models
in Corsica (northwestern Mediterranean), Tectonophysics, 291, 63–75,
https://doi.org/10.1016/s0040-1951(98)00031-6, 1998.
Vernoux, J. F. and Lambert, M.: Rapport BRGM SGN/IRG ARG 93 T37, Tech. rep.,
BRGM, Orleans, France, 1993.
Vernoux, J. F., Genter, A., Razin, P., Vinchon, C., Orléans, B. R., and
Nord-Pas de Calais, B. R.: Geological and petrophysical parameters of a deep
fractured sandstone formation as applied to geothermal exploitation, BRGM
Report, 38622, 70, available at:
http://infoterre.brgm.fr/rapports/RR-38622-FR.pdf (last access: 14 August 2020), 1995.
Vilà, M., Fernández, M., and Jiménez-Munt, I.: Radiogenic heat
production variability of some common lithological groups and its
significance to lithospheric thermal modeling, Tectonophysics, 490,
152–164, https://doi.org/10.1016/j.tecto.2010.05.003, 2010.
Villaseca, C., Downes, H., Pin, C., and Barbero, L.: Nature and Composition
of the Lower Continental Crust in Central Spain and the Granulite-Granite
Linkage: Inferences from Granulitic Xenoliths, J. Petrol., 40,
1465–1496, https://doi.org/10.1093/petroj/40.10.1465, 1999.
Violay, M., Pezard, P. A., Ildefonse, B., Belghoul, A., and Laverne, C.:
Petrophysical properties of the root zone of sheeted dikes in the ocean
crust: A case study from Hole ODP/IODP 1256D, Eastern Equatorial Pacific,
Tectonophysics, 493, 139–152, https://doi.org/10.1016/j.tecto.2010.07.013, 2010.
Violay, M., Gibert, B., Azais, P., Pezard, P. A., and Lods, G.: A New Cell
for Electrical Conductivity Measurement on Saturated Samples at Upper Crust
Conditions, Transport Porous Med., 91, 303–318,
https://doi.org/10.1007/s11242-011-9846-2, 2012a.
Violay, M., Gibert, B., Mainprice, D., Evans, B., Dautria, J.-M., Azais, P.,
and Pezard, P.: An experimental study of the brittle-ductile transition of
basalt at oceanic crust pressure and temperature conditions, J. Geophys. Res.-Sol. Ea., 117, B03213, https://doi.org/10.1029/2011jb008884,
2012b.
Vogel, B. C.: Petrophysikalische und felsmechanische Untersuchung
kristalliner Gesteine des Weschnitz-Plutons, Bachelorthesis, TU Darmstadt,
2016.
Volarovich, M. P.: Geophysical Aspects of the Problems of Elastic and
Electrical Properties of Rocks at Pressures Up to Tens of Kilobars, in: Geophysical Monograph 12: The
Crust and Upper Mantle of the Pacific Area, edited by:
Knopoff, L., Drake, C. L., and Heart, P. J., American
Geophysical Union, 12, 517–522, https://doi.org/10.1029/gm012p0517, 1968.
Walters, M. A. and Combs, J.: Heat flow in The Geysers-Clear Lake geothermal
area of northern California, USA, Monograph on the Geysers Geothermal Field,
43–53, available at:
https://www.geothermal-library.org/index.php?mode=pubs&action=view&record=1005473 (last access: 14 August 2020),
1991.
Wang, J.-H., Hung, J.-H., and Dong, J.-J.: Seismic velocities, density,
porosity, and permeability measured at a deep hole penetrating the Chelungpu
fault in central Taiwan, J. Asian Earth Sci., 36, 135–145,
https://doi.org/10.1016/j.jseaes.2009.01.010, 2009.
Weaver, B. L., Wood, D. A., Tarney, J., and Joron, J. L.: Geochemistry of
ocean island basalts from the South Atlantic: Ascension, Bouvet, St. Helena,
Gough and Tristan da Cunha, Geological Society, London, Special
Publications, 30, 253–267, https://doi.org/10.1144/GSL.SP.1987.030.01.11, 1987.
Weber, J. N.: Geothermische Aufschlussanalyse des Steinbruches Mainzer Berg,
oestlich von Darmstadt, Bachelorthesis, TU Darmstadt, 2014.
Weber, J. N.: Vorplanung einer geothermischen Nutzung der Tiefbohrung
Rotenburg HKZ 1001, Masterthesis, TU Darmstadt, 2016.
Weinert, S.: Geomechanical Characterization of Volcanic Rocks of the Taupo
and Coromandel Volcanic Zone, New Zealand, Masterthesis, TU Darmstadt, 2014.
Welsch, B.: Geothermische Untersuchungen an ausgewählten Standorten der
Schwäbischen Alb, Bachelorthesis, TU Darmstadt, 2011.
Welsch, B.: Forschungsbohrung Heubach: Untersuchungen zu den geothermischen
Reservoireigenschaften des Odenwald Kristallins, Diplomathesis, TU
Darmstadt, 2012.
Welsch, B., Baer, K., Schulte, D., Rühaak, W., and Chauhan, S.:
Simulation und Evaluierung von Kopplungs- und Speicherkonzepten
regenerativer Energieformen zur Heizwärmeversorgung, Final report, TU
Darmstadt, 2015.
Wenk, H.-R. and Wenk, E.: Physical constants of Alpine rocks (density,
porosity, specific heat, thermal diffusivity and conductivity),
Schweizerische mineralogische und petrographische Mitteilungen, 49, 343–357,
available at: http://nbn-resolving.de/urn:nbn:de:hebis:30-1096297 (last access: 14 August 2020), 1969.
Weydt, L. M.: Analogue Study of Geothermal Properties of the
Rimbey-Meadowbrook Reef Trend in the Alberta Basin, Canada, Masterthesis, TU
Darmstadt, 2016.
Whitford, D. J.: Strontium isotopic studies of the volcanic rocks of the
Saunda arc, Indonesia, and their petrogenetic implications, Geochim.
Cosmochim. Ac., 39, 1287–1302, https://doi.org/10.1016/0016-7037(75)90136-2, 1975.
Wicke, H.: Faziesabhängigkeit geothermischer Kennwerte am Beispiel des
Oberen Muschelkalk (Crailsheim, Baden-Württemberg), Diplomathesis, TU
Darmstadt, 2009.
Wickham, S. M.: Crustal Anatexis and Granite Petrogenesis During
Low-pressure Regional Metamorphism: The Trois Seigneurs Massif, Pyrenees,
France, J. Petrol., 28, 127–169, https://doi.org/10.1093/petrology/28.1.127,
1987.
Wiesner, P.: Modellierung einer mitteltiefen Erdwaermesonde zur
Heiz-Grundlastabdeckung des Taunusgymnasiums Koenigstein, Masterthesis, TU
Darmstadt, 2014.
Wilkinson, M., Dumontier, M., Aalbersberg, I., Appleton, G., Axton, M., Baak, A., Blomber, N., Boiten, J.-W., da silca Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray, A. J. G., Groth, P., Goble, C., Grethe, J. S., Heringa, J., Hoen, P. A. C., Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons, A., Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R., Sansone, S.-A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz, M. A., Thompson, M., van der Lei, J., van Mulligen, E., Velterop, J., Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., and Mons, B.: The FAIR Guiding
Principles for scientific data management and stewardship, Sci Data., 3,
160018, https://doi.org/10.1038/sdata.2016.18, 2016.
Winkler, H. G.: Landolt-Börnstein, Zahlenwerte und Funktionen Bd. III
Astronomie und Geophysik, edited by: Bartels, J. and ten Bruggencate, P.,
Springer-Verlag, Berlin Heidelberg, ISBN 978-3-662-41604-4, 1952.
Wittig, T.: Charakterisierung der Aquifereigenschaften von Dolomiten der
Wustkogel-Formation im Raum Tux, Tirol, Masterthesis, TU Darmstadt, 2017.
Zhao, X. G., Wang, J., Chen, F., Li, P. F., Ma, L. K., Xie, J. L., and Liu,
Y. M.: Experimental investigations on the thermal conductivity
characteristics of Beishan granitic rocks for Chinas HLW disposal,
Tectonophysics, 683, 124–137, https://doi.org/10.1016/j.tecto.2016.06.021, 2016.
Zhu, W., Baud, P., Vinciguerra, S, and Wong, T.-F.: Micromechanics of
brittle faulting and cataclastic flow in Alban Hills tuff, J.
Geophys. Res., 116, B06209, https://doi.org/10.1029/2010JB008046, 2011.
Zhu, W., Baud, P., Vinciguerra, S., and Wong, T.-F.: Micromechanics of
brittle faulting and cataclastic flow in Mount Etna basalt, J. Geophys. Res.-Sol. Ea., 121, 4268–4289, https://doi.org/10.1002/2016JB012826,
2016.
Zilch, D.: Geothermische Gesteinskennwerte der palaeozoischen Gesteine des
Werra-Grauwacken-Aufbruchs. Bachelorthesis, TU Darmstadt, Goethe
Universitaet Frankfurt am Main, 2011.
Zoth, G.: Nordwestdeutschland im Tertiär, edited by: Tobien, H.,
Gebrüder Bornträger, Stuttgart, Germany, ISBN 9783443110185, 1986.
Short summary
Petrophysical properties are key to populating numerical models of subsurface process simulations and the interpretation of many geophysical exploration methods. The P3 database presented here aims at providing easily accessible, peer-reviewed information on physical rock properties in one single compilation. The uniqueness of P3 emerges from its coverage and metadata structure. Each measured value is complemented by the corresponding location, petrography, stratigraphy and original reference.
Petrophysical properties are key to populating numerical models of subsurface process...
Altmetrics
Final-revised paper
Preprint