26 Jan 2018
26 Jan 2018
A global historical data set of tropical cyclone exposure (TCE-DAT)
Tobias Geiger et al.
Related authors
Peter Pfleiderer, Carl-Friedrich Schleussner, Tobias Geiger, and Marlene Kretschmer
Weather Clim. Dynam., 1, 313–324, https://doi.org/10.5194/wcd-1-313-2020, https://doi.org/10.5194/wcd-1-313-2020, 2020
Short summary
Short summary
Seasonal outlooks of Atlantic hurricane activity are required to enable risk reduction measures and disaster preparedness. Many seasonal forecasts are based on a selection of climate signals from which a statistical model is constructed. The crucial step in this approach is to select the most relevant predictors without overfitting. Here we show that causal effect networks can be used to identify the most robust predictors. Based on these predictors we construct a competitive forecast model.
Tobias Geiger
Earth Syst. Sci. Data, 10, 847–856, https://doi.org/10.5194/essd-10-847-2018, https://doi.org/10.5194/essd-10-847-2018, 2018
Short summary
Short summary
National economic development is usually measured as gross domestic product (GDP), a quantity that has only been regularly available since 1960. However, many users of economic data require longer time series that are easily accessible and ready-to-use, also by non-experts. This current paper unites various sources of sparsely available GDP estimates from earlier time periods to provide continuous and complete coverage of national GDP for 195 countries from 1850 to the present.
Katja Frieler, Stefan Lange, Franziska Piontek, Christopher P. O. Reyer, Jacob Schewe, Lila Warszawski, Fang Zhao, Louise Chini, Sebastien Denvil, Kerry Emanuel, Tobias Geiger, Kate Halladay, George Hurtt, Matthias Mengel, Daisuke Murakami, Sebastian Ostberg, Alexander Popp, Riccardo Riva, Miodrag Stevanovic, Tatsuo Suzuki, Jan Volkholz, Eleanor Burke, Philippe Ciais, Kristie Ebi, Tyler D. Eddy, Joshua Elliott, Eric Galbraith, Simon N. Gosling, Fred Hattermann, Thomas Hickler, Jochen Hinkel, Christian Hof, Veronika Huber, Jonas Jägermeyr, Valentina Krysanova, Rafael Marcé, Hannes Müller Schmied, Ioanna Mouratiadou, Don Pierson, Derek P. Tittensor, Robert Vautard, Michelle van Vliet, Matthias F. Biber, Richard A. Betts, Benjamin Leon Bodirsky, Delphine Deryng, Steve Frolking, Chris D. Jones, Heike K. Lotze, Hermann Lotze-Campen, Ritvik Sahajpal, Kirsten Thonicke, Hanqin Tian, and Yoshiki Yamagata
Geosci. Model Dev., 10, 4321–4345, https://doi.org/10.5194/gmd-10-4321-2017, https://doi.org/10.5194/gmd-10-4321-2017, 2017
Short summary
Short summary
This paper describes the simulation scenario design for the next phase of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), which is designed to facilitate a contribution to the scientific basis for the IPCC Special Report on the impacts of 1.5 °C global warming. ISIMIP brings together over 80 climate-impact models, covering impacts on hydrology, biomes, forests, heat-related mortality, permafrost, tropical cyclones, fisheries, agiculture, energy, and coastal infrastructure.
Christoph Welker, Thomas Röösli, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 21, 279–299, https://doi.org/10.5194/nhess-21-279-2021, https://doi.org/10.5194/nhess-21-279-2021, 2021
Short summary
Short summary
How representative are local building insurers' claims to assess winter windstorm risk? In our case study of Zurich, we use a risk model for windstorm building damages and compare three different inputs: insurance claims and historical and probabilistic windstorm datasets. We find that long-term risk is more robustly assessed based on windstorm datasets than on claims data only. Our open-access method allows European building insurers to complement their risk assessment with modelling results.
David N. Bresch and Gabriela Aznar-Siguan
Geosci. Model Dev., 14, 351–363, https://doi.org/10.5194/gmd-14-351-2021, https://doi.org/10.5194/gmd-14-351-2021, 2021
Short summary
Short summary
Climate change is a fact and adaptation a necessity. The Economics of Climate Adaptation methodology provides a framework to integrate risk and reward perspectives of different stakeholders, underpinned by the CLIMADA impact modelling platform. This extended version of CLIMADA enables risk assessment and options appraisal in a modular form and occasionally bespoke fashion yet with high reusability of functionalities to foster usage in interdisciplinary studies and international collaboration.
Samuel Eberenz, Samuel Lüthi, and David N. Bresch
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-229, https://doi.org/10.5194/nhess-2020-229, 2020
Revised manuscript accepted for NHESS
Short summary
Short summary
Asset damage caused by tropical cyclones is often computed based on impact functions mapping wind speed to damage. However, a lack of regional impact functions can lead to a substantial bias in tropical cyclone risk estimates. Here, we present regionally calibrated impact functions as well as global risk estimates. Our results are relevant for researchers, model developers, and practitioners in the context of global risk assessments, climate change adaptation, and physical risk disclosure.
Peter Pfleiderer, Carl-Friedrich Schleussner, Tobias Geiger, and Marlene Kretschmer
Weather Clim. Dynam., 1, 313–324, https://doi.org/10.5194/wcd-1-313-2020, https://doi.org/10.5194/wcd-1-313-2020, 2020
Short summary
Short summary
Seasonal outlooks of Atlantic hurricane activity are required to enable risk reduction measures and disaster preparedness. Many seasonal forecasts are based on a selection of climate signals from which a statistical model is constructed. The crucial step in this approach is to select the most relevant predictors without overfitting. Here we show that causal effect networks can be used to identify the most robust predictors. Based on these predictors we construct a competitive forecast model.
Matthias Mengel, Simon Treu, Stefan Lange, and Katja Frieler
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-145, https://doi.org/10.5194/gmd-2020-145, 2020
Revised manuscript under review for GMD
Short summary
Short summary
To identify the impacts of historical climate change it is necessary to separate the effect of the different impact drivers. To address this, one needs to compare historical impacts to a counterfactual world with impacts that would have been without climate change. We here present an approach that produces counterfactual climate data and can be used in climate impact models to simulate counterfactual impacts. We make this data available through the ISIMIP project.
Samuel Eberenz, Dario Stocker, Thomas Röösli, and David N. Bresch
Earth Syst. Sci. Data, 12, 817–833, https://doi.org/10.5194/essd-12-817-2020, https://doi.org/10.5194/essd-12-817-2020, 2020
Short summary
Short summary
The modeling of economic disaster risk on a global scale requires high-resolution maps of exposed asset values. We have developed a generic and scalable method to downscale national asset value estimates proportional to a combination of nightlight intensity and population data. Here, we present the methodology together with an evaluation of its performance for the subnational downscaling of GDP. The resulting exposure data for 224 countries and the open-source Python code are available online.
Falko Ueckerdt, Katja Frieler, Stefan Lange, Leonie Wenz, Gunnar Luderer, and Anders Levermann
Earth Syst. Dynam., 10, 741–763, https://doi.org/10.5194/esd-10-741-2019, https://doi.org/10.5194/esd-10-741-2019, 2019
Short summary
Short summary
We compute the global mean temperature increase at which the costs from climate-change damages and climate-change mitigation are minimal. This temperature is computed robustly around 2 degrees of global warming across a wide range of normative assumptions on the valuation of future welfare and inequality aversion.
Gabriela Aznar-Siguan and David N. Bresch
Geosci. Model Dev., 12, 3085–3097, https://doi.org/10.5194/gmd-12-3085-2019, https://doi.org/10.5194/gmd-12-3085-2019, 2019
Short summary
Short summary
The need for assessing the risk of weather events is ever increasing. In addition to quantification of risk today, the role of aggravating factors such as population growth and changing climate conditions matter too. We present the open-source software CLIMADA, which integrates hazard, exposure, and vulnerability to compute metrics to assess risk and to quantify socio-economic impact, and use it to estimate and contextualize the damage of hurricane Irma through the Caribbean in 2017.
Elisabeth Maidl, David N. Bresch, and Matthias Buchecker
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2018-393, https://doi.org/10.5194/nhess-2018-393, 2019
Publication in NHESS not foreseen
Short summary
Short summary
Natural hazard risk management today aims to involve all actors possibly affected by damage. Citizens are regarded as responsible actors in risk mitigation. Practitioners therefore face the challenge of building social capacity towards such a culture of risk. Research on capacity building in Alpine countries, however, so far lacks empirical evidence on individual preparedness in the common population. This study for the first time provides insights for research and practice.
Martin Rückamp, Ulrike Falk, Katja Frieler, Stefan Lange, and Angelika Humbert
Earth Syst. Dynam., 9, 1169–1189, https://doi.org/10.5194/esd-9-1169-2018, https://doi.org/10.5194/esd-9-1169-2018, 2018
Short summary
Short summary
Sea-level rise associated with changing climate is expected to pose a major challenge for societies. Based on the efforts of COP21 to limit global warming to 2.0 °C by the end of the 21st century (Paris Agreement), we simulate the future contribution of the Greenland ice sheet (GrIS) to sea-level change. The projected sea-level rise ranges between 21–38 mm by 2100
and 36–85 mm by 2300. Our results indicate that uncertainties in the projections stem from the underlying climate data.
Sebastian Ostberg, Jacob Schewe, Katelin Childers, and Katja Frieler
Earth Syst. Dynam., 9, 479–496, https://doi.org/10.5194/esd-9-479-2018, https://doi.org/10.5194/esd-9-479-2018, 2018
Short summary
Short summary
It has been shown that regional temperature and precipitation changes in future climate change scenarios often scale quasi-linearly with global mean temperature change (∆GMT). We show that an important consequence of these physical climate changes, namely changes in agricultural crop yields, can also be described in terms of ∆GMT to a large extent. This makes it possible to efficiently estimate future crop yield changes for different climate change scenarios without need for complex models.
Tobias Geiger
Earth Syst. Sci. Data, 10, 847–856, https://doi.org/10.5194/essd-10-847-2018, https://doi.org/10.5194/essd-10-847-2018, 2018
Short summary
Short summary
National economic development is usually measured as gross domestic product (GDP), a quantity that has only been regularly available since 1960. However, many users of economic data require longer time series that are easily accessible and ready-to-use, also by non-experts. This current paper unites various sources of sparsely available GDP estimates from earlier time periods to provide continuous and complete coverage of national GDP for 195 countries from 1850 to the present.
Katja Frieler, Stefan Lange, Franziska Piontek, Christopher P. O. Reyer, Jacob Schewe, Lila Warszawski, Fang Zhao, Louise Chini, Sebastien Denvil, Kerry Emanuel, Tobias Geiger, Kate Halladay, George Hurtt, Matthias Mengel, Daisuke Murakami, Sebastian Ostberg, Alexander Popp, Riccardo Riva, Miodrag Stevanovic, Tatsuo Suzuki, Jan Volkholz, Eleanor Burke, Philippe Ciais, Kristie Ebi, Tyler D. Eddy, Joshua Elliott, Eric Galbraith, Simon N. Gosling, Fred Hattermann, Thomas Hickler, Jochen Hinkel, Christian Hof, Veronika Huber, Jonas Jägermeyr, Valentina Krysanova, Rafael Marcé, Hannes Müller Schmied, Ioanna Mouratiadou, Don Pierson, Derek P. Tittensor, Robert Vautard, Michelle van Vliet, Matthias F. Biber, Richard A. Betts, Benjamin Leon Bodirsky, Delphine Deryng, Steve Frolking, Chris D. Jones, Heike K. Lotze, Hermann Lotze-Campen, Ritvik Sahajpal, Kirsten Thonicke, Hanqin Tian, and Yoshiki Yamagata
Geosci. Model Dev., 10, 4321–4345, https://doi.org/10.5194/gmd-10-4321-2017, https://doi.org/10.5194/gmd-10-4321-2017, 2017
Short summary
Short summary
This paper describes the simulation scenario design for the next phase of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), which is designed to facilitate a contribution to the scientific basis for the IPCC Special Report on the impacts of 1.5 °C global warming. ISIMIP brings together over 80 climate-impact models, covering impacts on hydrology, biomes, forests, heat-related mortality, permafrost, tropical cyclones, fisheries, agiculture, energy, and coastal infrastructure.
Alex C. Ruane, Claas Teichmann, Nigel W. Arnell, Timothy R. Carter, Kristie L. Ebi, Katja Frieler, Clare M. Goodess, Bruce Hewitson, Radley Horton, R. Sari Kovats, Heike K. Lotze, Linda O. Mearns, Antonio Navarra, Dennis S. Ojima, Keywan Riahi, Cynthia Rosenzweig, Matthias Themessl, and Katharine Vincent
Geosci. Model Dev., 9, 3493–3515, https://doi.org/10.5194/gmd-9-3493-2016, https://doi.org/10.5194/gmd-9-3493-2016, 2016
Short summary
Short summary
The Vulnerability, Impacts, Adaptation, and Climate Services (VIACS) Advisory Board for CMIP6 was created to improve communications between communities that apply climate model output for societal benefit and the climate model centers. This manuscript describes the establishment of the VIACS Advisory Board as a coherent avenue for communication utilizing leading networks, experts, and programs; results of initial interactions during the development of CMIP6; and its potential next activities.
Carl-Friedrich Schleussner, Tabea K. Lissner, Erich M. Fischer, Jan Wohland, Mahé Perrette, Antonius Golly, Joeri Rogelj, Katelin Childers, Jacob Schewe, Katja Frieler, Matthias Mengel, William Hare, and Michiel Schaeffer
Earth Syst. Dynam., 7, 327–351, https://doi.org/10.5194/esd-7-327-2016, https://doi.org/10.5194/esd-7-327-2016, 2016
Short summary
Short summary
We present for the first time a comprehensive assessment of key climate impacts for the policy relevant warming levels of 1.5 °C and 2 °C above pre-industrial levels. We report substantial impact differences in intensity and frequency of extreme weather events, regional water availability and agricultural yields, sea-level rise and risk of coral reef loss. The increase in climate impacts is particularly pronounced in tropical and sub-tropical regions.
K. Frieler, M. Mengel, and A. Levermann
Earth Syst. Dynam., 7, 203–210, https://doi.org/10.5194/esd-7-203-2016, https://doi.org/10.5194/esd-7-203-2016, 2016
Short summary
Short summary
Sea level will continue to rise for centuries. We investigate the option of delaying sea-level rise by pumping ocean water onto Antarctica. Due to wave propagation ice is discharged much faster back into the ocean than expected from pure advection. A millennium-scale storage of > 80 % of the additional ice requires a distance of > 700 km from the coastline. The pumping energy required to elevate ocean water to mitigate a sea-level rise of 3 mm yr−1 exceeds 7 % of current global primary energy supply.
K. Frieler, A. Levermann, J. Elliott, J. Heinke, A. Arneth, M. F. P. Bierkens, P. Ciais, D. B. Clark, D. Deryng, P. Döll, P. Falloon, B. Fekete, C. Folberth, A. D. Friend, C. Gellhorn, S. N. Gosling, I. Haddeland, N. Khabarov, M. Lomas, Y. Masaki, K. Nishina, K. Neumann, T. Oki, R. Pavlick, A. C. Ruane, E. Schmid, C. Schmitz, T. Stacke, E. Stehfest, Q. Tang, D. Wisser, V. Huber, F. Piontek, L. Warszawski, J. Schewe, H. Lotze-Campen, and H. J. Schellnhuber
Earth Syst. Dynam., 6, 447–460, https://doi.org/10.5194/esd-6-447-2015, https://doi.org/10.5194/esd-6-447-2015, 2015
A. Levermann, R. Winkelmann, S. Nowicki, J. L. Fastook, K. Frieler, R. Greve, H. H. Hellmer, M. A. Martin, M. Meinshausen, M. Mengel, A. J. Payne, D. Pollard, T. Sato, R. Timmermann, W. L. Wang, and R. A. Bindschadler
Earth Syst. Dynam., 5, 271–293, https://doi.org/10.5194/esd-5-271-2014, https://doi.org/10.5194/esd-5-271-2014, 2014
J. Heinke, S. Ostberg, S. Schaphoff, K. Frieler, C. Müller, D. Gerten, M. Meinshausen, and W. Lucht
Geosci. Model Dev., 6, 1689–1703, https://doi.org/10.5194/gmd-6-1689-2013, https://doi.org/10.5194/gmd-6-1689-2013, 2013
S. Hempel, K. Frieler, L. Warszawski, J. Schewe, and F. Piontek
Earth Syst. Dynam., 4, 219–236, https://doi.org/10.5194/esd-4-219-2013, https://doi.org/10.5194/esd-4-219-2013, 2013
M. Perrette, F. Landerer, R. Riva, K. Frieler, and M. Meinshausen
Earth Syst. Dynam., 4, 11–29, https://doi.org/10.5194/esd-4-11-2013, https://doi.org/10.5194/esd-4-11-2013, 2013
Related subject area
Data, Algorithms, and Models
The Berkeley Earth Land/Ocean Temperature Record
Dielectric database of organic Arctic soils (DDOAS)
Global Carbon Budget 2020
A global long-term (1981–2000) land surface temperature product for NOAA AVHRR
A coastally improved global dataset of wet tropospheric corrections for satellite altimetry
Development of a standard database of reference sites for validating global burned area products
A Last Glacial Maximum forcing dataset for ocean modelling
An update of IPCC climate reference regions for subcontinental analysis of climate model data: definition and aggregated datasets
Shipborne lidar measurements showing the progression of the tropical reservoir of volcanic aerosol after the June 1991 Pinatubo eruption
Improved estimate of global gross primary production for reproducing its long-term variation, 1982–2017
Hyperspectral longwave infrared reflectance spectra of naturally dried algae, anthropogenic plastics, sands and shells
The PetroPhysical Property Database (P3) – a global compilation of lab-measured rock properties
A Climate Service for Ecologists: Sharing pre-processed EUROCORDEX Regional Climate Scenario Data using the eLTER Information System
WFDE5: bias-adjusted ERA5 reanalysis data for impact studies
A high-resolution reanalysis of global fire weather from 1979 to 2018 – overwintering the Drought Code
Crowdsourced Air Traffic Data from the OpenSky Network 2019–20
A restructured and updated global soil respiration database (SRDB-V5)
Improving the usability of the Multi-angle Imaging SpectroRadiometer (MISR) L1B2 Georectified Radiance Product (2000–present) in land surface applications
Annual dynamics of global land cover and its long-term changes from 1982 to 2015
A global compilation of in situ aquatic high spectral resolution inherent and apparent optical property data for remote sensing applications
A digital archive of human activity in the McMurdo Dry Valleys, Antarctica
An integrated compilation of data sources for the development of a marine protected area in the Weddell Sea
European anthropogenic AFOLU greenhouse gas emissions: a review and benchmark data
Asset exposure data for global physical risk assessment
Historic photographs of glaciers and glacial landforms from the Ralph Stockman Tarr collection at Cornell University
A Fundamental Climate Data Record of SMMR, SSM/I, and SSMIS brightness temperatures
Replacing missing values in the standard Multi-angle Imaging SpectroRadiometer (MISR) radiometric camera-by-camera cloud mask (RCCM) data product
High-resolution meteorological forcing data for hydrological modelling and climate change impact analysis in the Mackenzie River Basin
Geometric accuracy assessment of coarse-resolution satellite datasets: a study based on AVHRR GAC data at the sub-pixel level
A national dataset of 30 m annual urban extent dynamics (1985–2015) in the conterminous United States
Reconstructing three decades of total international trawling effort in the North Sea
The European Radiological Data Exchange Platform (EURDEP): 25 years of monitoring data exchange
The UK Environmental Change Network datasets – integrated and co-located data for long-term environmental research (1993–2015)
Hyperspectral ultraviolet to shortwave infrared characteristics of marine-harvested, washed-ashore and virgin plastics
Cloud_cci Advanced Very High Resolution Radiometer post meridiem (AVHRR-PM) dataset version 3: 35-year climatology of global cloud and radiation properties
Reference crop evapotranspiration database in Spain (1961–2014)
A 16-year dataset (2000–2015) of high-resolution (3 h, 10 km) global surface solar radiation
Comprehensive aerosol and gas data set from the Sydney Particle Study
Geostrophic currents in the northern Nordic Seas from a combination of multi-mission satellite altimetry and ocean modeling
The BernClim plant phenological data set from the canton of Bern (Switzerland) 1970–2018
High-temporal-resolution water level and storage change data sets for lakes on the Tibetan Plateau during 2000–2017 using multiple altimetric missions and Landsat-derived lake shoreline positions
Djankuat glacier station in the North Caucasus, Russia: a database of glaciological, hydrological, and meteorological observations and stable isotope sampling results during 2007–2017
The spatial allocation of population: a review of large-scale gridded population data products and their fitness for use
The Environment and Climate Change Canada solid precipitation intercomparison data from Bratt's Lake and Caribou Creek, Saskatchewan
A decade of detailed observations (2008–2018) in steep bedrock permafrost at the Matterhorn Hörnligrat (Zermatt, CH)
STEAD: a high-resolution daily gridded temperature dataset for Spain
Time series of the Inland Surface Water Dataset in China (ISWDC) for 2000–2016 derived from MODIS archives
New 30 m resolution Hong Kong climate, vegetation, and topography rasters indicate greater spatial variation than global grids within an urban mosaic
A dataset of 30 m annual vegetation phenology indicators (1985–2015) in urban areas of the conterminous United States
Generating a rule-based global gridded tillage dataset
Robert A. Rohde and Zeke Hausfather
Earth Syst. Sci. Data, 12, 3469–3479, https://doi.org/10.5194/essd-12-3469-2020, https://doi.org/10.5194/essd-12-3469-2020, 2020
Short summary
Short summary
A global land and ocean temperature record was created by combining the Berkeley Earth monthly land temperature field with a newly interpolated version of the HadSST3 ocean dataset. The resulting dataset covers the period from 1850 to present.
This paper describes the methods used to create that combination and compares the results to other estimates of global temperature and the associated recent climate change, giving similar results.
Igor Savin, Valery Mironov, Konstantin Muzalevskiy, Sergey Fomin, Andrey Karavayskiy, Zdenek Ruzicka, and Yuriy Lukin
Earth Syst. Sci. Data, 12, 3481–3487, https://doi.org/10.5194/essd-12-3481-2020, https://doi.org/10.5194/essd-12-3481-2020, 2020
Short summary
Short summary
This article presents a dielectric database of organic Arctic soils. This database was created based on dielectric measurements of seven samples of organic soils collected in various parts of the Arctic tundra. The created database can serve not only as a source of experimental data for the development of new soil dielectric models for the Arctic tundra but also as a source of training data for artificial intelligence satellite algorithms of soil moisture retrievals based on neural networks.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone Alin, Luiz E. O. C. Aragão, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp, Selma Bultan, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Wiley Evans, Liesbeth Florentie, Piers M. Forster, Thomas Gasser, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Luke Gregor, Nicolas Gruber, Ian Harris, Kerstin Hartung, Vanessa Haverd, Richard A. Houghton, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Koji Kadono, Etsushi Kato, Vassilis Kitidis, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Gregg Marland, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Adam J. P. Smith, Adrienne J. Sutton, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Guido van der Werf, Nicolas Vuichard, Anthony P. Walker, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Xu Yue, and Sönke Zaehle
Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, https://doi.org/10.5194/essd-12-3269-2020, 2020
Short summary
Short summary
The Global Carbon Budget 2020 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Jin Ma, Ji Zhou, Frank-Michael Göttsche, Shunlin Liang, Shaofei Wang, and Mingsong Li
Earth Syst. Sci. Data, 12, 3247–3268, https://doi.org/10.5194/essd-12-3247-2020, https://doi.org/10.5194/essd-12-3247-2020, 2020
Short summary
Short summary
Land surface temperature is an important parameter in the research of climate change and many land surface processes. This article describes the development and testing of an algorithm for generating a consistent global long-term land surface temperature product from 20 years of NOAA AVHRR radiance data. The preliminary validation results indicate good accuracy of this new long-term product, which has been designed to simplify applications and support the scientific research community.
Clara Lázaro, Maria Joana Fernandes, Telmo Vieira, and Eliana Vieira
Earth Syst. Sci. Data, 12, 3205–3228, https://doi.org/10.5194/essd-12-3205-2020, https://doi.org/10.5194/essd-12-3205-2020, 2020
Short summary
Short summary
In satellite altimetry (SA), the wet tropospheric correction (WTC) accounts for the path delay induced mainly by atmospheric water vapour. In coastal regions, the accuracy of the WTC determined by the on-board radiometer deteriorates. The GPD+ methodology, developed by the University of Porto in the remit of ESA-funded projects, computes improved WTCs for SA. Global enhanced products are generated for all past and operational altimetric missions, forming a relevant dataset for coastal altimetry.
Magí Franquesa, Melanie K. Vanderhoof, Dimitris Stavrakoudis, Ioannis Z. Gitas, Ekhi Roteta, Marc Padilla, and Emilio Chuvieco
Earth Syst. Sci. Data, 12, 3229–3246, https://doi.org/10.5194/essd-12-3229-2020, https://doi.org/10.5194/essd-12-3229-2020, 2020
Short summary
Short summary
The article presents a database of reference sites for the validation of burned area products. We have compiled 2661 reference files from different international projects. The paper describes the methods used to generate and standardize the data. The Burned Area Reference Data (BARD) is publicly available and will facilitate the arduous task of validating burned area algorithms.
Anne L. Morée and Jörg Schwinger
Earth Syst. Sci. Data, 12, 2971–2985, https://doi.org/10.5194/essd-12-2971-2020, https://doi.org/10.5194/essd-12-2971-2020, 2020
Short summary
Short summary
This dataset consists of eight variables needed in ocean modelling and is made to support modelers of the Last Glacial Maximum (LGM; 21 000 years ago) ocean. The LGM is a time of specific interest for climate researchers. The data are based on the results of state-of-the-art climate models and are the best available estimate of these variables for the LGM. The dataset shows clear spatial patterns but large uncertainties and is presented in a way that facilitates applications in any ocean model.
Maialen Iturbide, José M. Gutiérrez, Lincoln M. Alves, Joaquín Bedia, Ruth Cerezo-Mota, Ezequiel Cimadevilla, Antonio S. Cofiño, Alejandro Di Luca, Sergio Henrique Faria, Irina V. Gorodetskaya, Mathias Hauser, Sixto Herrera, Kevin Hennessy, Helene T. Hewitt, Richard G. Jones, Svitlana Krakovska, Rodrigo Manzanas, Daniel Martínez-Castro, Gemma T. Narisma, Intan S. Nurhati, Izidine Pinto, Sonia I. Seneviratne, Bart van den Hurk, and Carolina S. Vera
Earth Syst. Sci. Data, 12, 2959–2970, https://doi.org/10.5194/essd-12-2959-2020, https://doi.org/10.5194/essd-12-2959-2020, 2020
Short summary
Short summary
We present an update of the IPCC WGI reference regions used in AR5 for the synthesis of climate change information. This revision was guided by the basic principles of climatic consistency and model representativeness (in particular for the new CMIP6 simulations). We also present a new dataset of monthly CMIP5 and CMIP6 spatially aggregated information using the new reference regions and describe a worked example of how to use this dataset to inform regional climate change studies.
Juan-Carlos Antuña-Marrero, Graham W. Mann, Philippe Keckhut, Sergey Avdyushin, Bruno Nardi, and Larry W. Thomason
Earth Syst. Sci. Data, 12, 2843–2851, https://doi.org/10.5194/essd-12-2843-2020, https://doi.org/10.5194/essd-12-2843-2020, 2020
Short summary
Short summary
We report the recovery of lidar measurements of the 1991 Pinatubo eruption. Two Soviet ships crossing the tropical Atlantic in July–September 1991 and January–February 1992 measured the vertical profile of the Pinatubo cloud at different points in its spatio-temporal evolution. The datasets provide valuable new information on the eruption's impacts on climate, with the SAGE-II satellite measurements not able to measure most of the lower half of the Pinatubo cloud in the tropics in this period.
Yi Zheng, Ruoque Shen, Yawen Wang, Xiangqian Li, Shuguang Liu, Shunlin Liang, Jing M. Chen, Weimin Ju, Li Zhang, and Wenping Yuan
Earth Syst. Sci. Data, 12, 2725–2746, https://doi.org/10.5194/essd-12-2725-2020, https://doi.org/10.5194/essd-12-2725-2020, 2020
Short summary
Short summary
Accurately reproducing the interannual variations in vegetation gross primary production (GPP) is a major challenge. A global GPP dataset was generated by integrating the regulations of several major environmental variables with long-term changes. The dataset can effectively reproduce the spatial, seasonal, and particularly interannual variations in global GPP. Our study will contribute to accurate carbon flux estimates at long timescales.
Shungudzemwoyo P. Garaba, Tomás Acuña-Ruz, and Cristian B. Mattar
Earth Syst. Sci. Data, 12, 2665–2678, https://doi.org/10.5194/essd-12-2665-2020, https://doi.org/10.5194/essd-12-2665-2020, 2020
Short summary
Short summary
Technologies to support detection and tracking of plastic litter in aquatic environments capable of repeated observations at a wide-area scale have been getting increased interest from scientists and stakeholders. We report findings about thermal infrared optical properties of naturally dried samples of algae, sands, sea shells and synthetic plastics obtained in Chile. Diagnostic features of the dataset are foreseen to contribute towards research relevant in thermal infrared sensing of plastics.
Kristian Bär, Thomas Reinsch, and Judith Bott
Earth Syst. Sci. Data, 12, 2485–2515, https://doi.org/10.5194/essd-12-2485-2020, https://doi.org/10.5194/essd-12-2485-2020, 2020
Short summary
Short summary
Petrophysical properties are key to populating numerical models of subsurface process simulations and the interpretation of many geophysical exploration methods. The P3 database presented here aims at providing easily accessible, peer-reviewed information on physical rock properties in one single compilation. The uniqueness of P3 emerges from its coverage and metadata structure. Each measured value is complemented by the corresponding location, petrography, stratigraphy and original reference.
Susannah Rennie, Klaus Goergen, Christoph Wohner, Sander Apweiler, Johannes Peterseil, and John Watkins
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-225, https://doi.org/10.5194/essd-2020-225, 2020
Revised manuscript accepted for ESSD
Short summary
Short summary
This paper describes a climate service data product intended for the ecological researchers. Access to regional climate scenario data will save ecological researchers time, and for many it will allow them to work with data resources that they will not previously have had due to a lack of knowledge and skills to access them. Providing easy access to climate scenario data in this way enhances long term ecological research; for example in general regional climate change or impact assessments.
Marco Cucchi, Graham P. Weedon, Alessandro Amici, Nicolas Bellouin, Stefan Lange, Hannes Müller Schmied, Hans Hersbach, and Carlo Buontempo
Earth Syst. Sci. Data, 12, 2097–2120, https://doi.org/10.5194/essd-12-2097-2020, https://doi.org/10.5194/essd-12-2097-2020, 2020
Short summary
Short summary
WFDE5 is a novel meteorological forcing dataset for running land surface and global hydrological models. It has been generated using the WATCH Forcing Data methodology applied to surface meteorological variables from the ERA5 reanalysis. It is publicly available, along with its source code, through the C3S Climate Data Store at ECMWF. Results of the evaluations described in the paper highlight the benefits of using WFDE5 compared to both ERA5 and its predecessor WFDEI.
Megan McElhinny, Justin F. Beckers, Chelene Hanes, Mike Flannigan, and Piyush Jain
Earth Syst. Sci. Data, 12, 1823–1833, https://doi.org/10.5194/essd-12-1823-2020, https://doi.org/10.5194/essd-12-1823-2020, 2020
Short summary
Short summary
The Canadian Fire Weather Index uses temperature, relative humidity, wind speed, and rainfall to provide a fire danger rating that is crucial for fire managers and communities for risk assessment. We provide a global calculation of this index and other relevant indices using high-resolution modelled weather data for 1979–2018. These data will be useful for research studies aiming to quantify the relationships between fire occurrence, growth, or severity and weather or for trend analysis studies.
Martin Strohmeier, Xavier Olive, Jannis Lübbe, Matthias Schäfer, and Vincent Lenders
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-223, https://doi.org/10.5194/essd-2020-223, 2020
Revised manuscript accepted for ESSD
Short summary
Short summary
Flight data has been used widely for research by academic researchers and (supra-)national institutions. Example domains range from epidemiology (e.g. examining the spread of COVID-19 via air travel) to economics (e.g. use as proxy for immediate forecasting of the state of a country's economy) and Earth Sciences (climatology in particular). Until now, accurate flight data has been available only in small pieces from closed, proprietary sources. This work changes this using a crowdsourced effort.
Jinshi Jian, Rodrigo Vargas, Kristina Anderson-Teixeira, Emma Stell, Valentine Herrmann, Mercedes Horn, Nazar Kholod, Jason Manzon, Rebecca Marchesi, Darlin Paredes, and Ben Bond-Lamberty
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-136, https://doi.org/10.5194/essd-2020-136, 2020
Revised manuscript accepted for ESSD
Short summary
Short summary
Field soil-to-atmosphere CO2 flux (soil respiration, Rs) observations were compiled into a global database (SRDB) a decade ago. Here, we restructured and updated the database to the fifth version, SRDB-V5, with data published through 2017 included. SRDB-V5 aims to be a data framework for the scientific community to share seasonal to annual field Rs measurements, and it provides opportunities for the scientific community to better understand the spatial and temporal variability of Rs.
Michel M. Verstraete, Linda A. Hunt, and Veljko M. Jovanovic
Earth Syst. Sci. Data, 12, 1321–1346, https://doi.org/10.5194/essd-12-1321-2020, https://doi.org/10.5194/essd-12-1321-2020, 2020
Short summary
Short summary
The L1B2 Georectified Radiance Product, available for each of the nine cameras of the MISR instrument, contains a variable number of missing values, especially wherever and whenever the instrument is switched from the Global to the Local Mode. This paper proposes an algorithm to effectively replace those missing values and demonstrates the performance of the process. MISR data and software tools are obtainable from public domain websites to explore this issue further.
Han Liu, Peng Gong, Jie Wang, Nicholas Clinton, Yuqi Bai, and Shunlin Liang
Earth Syst. Sci. Data, 12, 1217–1243, https://doi.org/10.5194/essd-12-1217-2020, https://doi.org/10.5194/essd-12-1217-2020, 2020
Short summary
Short summary
We built the first set of 5 km resolution CDRs to record the annual dynamics of global land cover (GLASS-GLC) from 1982 to 2015. The average overall accuracy is 82 %. By conducting long-term change analysis, significant land cover changes and spatiotemporal patterns at various scales were found, which can improve our understanding of global environmental change and help achieve sustainable development goals. This will be further applied in Earth system modeling to facilitate relevant studies.
Kimberly A. Casey, Cecile S. Rousseaux, Watson W. Gregg, Emmanuel Boss, Alison P. Chase, Susanne E. Craig, Colleen B. Mouw, Rick A. Reynolds, Dariusz Stramski, Steven G. Ackleson, Annick Bricaud, Blake Schaeffer, Marlon R. Lewis, and Stéphane Maritorena
Earth Syst. Sci. Data, 12, 1123–1139, https://doi.org/10.5194/essd-12-1123-2020, https://doi.org/10.5194/essd-12-1123-2020, 2020
Short summary
Short summary
An increase in spectral resolution in forthcoming remote-sensing missions will improve our ability to understand and characterize aquatic ecosystems. We organize and provide a global compilation of high spectral resolution inherent and apparent optical property data from polar, midlatitude, and equatorial open-ocean, estuary, coastal, and inland waters. The data are intended to aid in development of remote-sensing data product algorithms and to perform calibration and validation activities.
Adrian Howkins, Stephen M. Chignell, Poppie Gullett, Andrew G. Fountain, Melissa Brett, and Evelin Preciado
Earth Syst. Sci. Data, 12, 1117–1122, https://doi.org/10.5194/essd-12-1117-2020, https://doi.org/10.5194/essd-12-1117-2020, 2020
Short summary
Short summary
Historical data have much to offer current research activities and environmental management in Antarctica, but such information is often widely scattered and difficult to access. We addressed this need in the McMurdo Dry Valleys by compiling over 5000 historical photographs, maps, oral interviews, and other archival resources into a user-friendly digital archive. This can be used to identify benchmarks for understanding change over time, as well as the date and extent of past human activities.
Katharina Teschke, Hendrik Pehlke, Volker Siegel, Horst Bornemann, Rainer Knust, and Thomas Brey
Earth Syst. Sci. Data, 12, 1003–1023, https://doi.org/10.5194/essd-12-1003-2020, https://doi.org/10.5194/essd-12-1003-2020, 2020
Short summary
Short summary
Successful nature conservation depends on well-founded decisions. Such decisions rely on valid and comprehensive information and data. This paper compiles data sources on the environment and ecology of the Weddell Sea (Antarctica), primarily to support the development of a marine protected area in this region. However, future projects can also benefit from our systematic data overview, as it can be used to develop specific data collections, thus saving a time-consuming data search from scratch.
Ana Maria Roxana Petrescu, Glen P. Peters, Greet Janssens-Maenhout, Philippe Ciais, Francesco N. Tubiello, Giacomo Grassi, Gert-Jan Nabuurs, Adrian Leip, Gema Carmona-Garcia, Wilfried Winiwarter, Lena Höglund-Isaksson, Dirk Günther, Efisio Solazzo, Anja Kiesow, Ana Bastos, Julia Pongratz, Julia E. M. S. Nabel, Giulia Conchedda, Roberto Pilli, Robbie M. Andrew, Mart-Jan Schelhaas, and Albertus J. Dolman
Earth Syst. Sci. Data, 12, 961–1001, https://doi.org/10.5194/essd-12-961-2020, https://doi.org/10.5194/essd-12-961-2020, 2020
Short summary
Short summary
This study is topical and provides a state-of-the-art scientific overview of data availability from bottom-up GHG anthropogenic emissions from agriculture, forestry and other land use (AFOLU) in the EU28. The data integrate recent AFOLU emission inventories with ecosystem data and land carbon models, aiming at reconciling GHG budgets with official country-level UNFCCC inventories. We provide comprehensive emission assessments in support to policy, facilitating real-time verification procedures.
Samuel Eberenz, Dario Stocker, Thomas Röösli, and David N. Bresch
Earth Syst. Sci. Data, 12, 817–833, https://doi.org/10.5194/essd-12-817-2020, https://doi.org/10.5194/essd-12-817-2020, 2020
Short summary
Short summary
The modeling of economic disaster risk on a global scale requires high-resolution maps of exposed asset values. We have developed a generic and scalable method to downscale national asset value estimates proportional to a combination of nightlight intensity and population data. Here, we present the methodology together with an evaluation of its performance for the subnational downscaling of GDP. The resulting exposure data for 224 countries and the open-source Python code are available online.
Julie Elliott and Matthew E. Pritchard
Earth Syst. Sci. Data, 12, 771–787, https://doi.org/10.5194/essd-12-771-2020, https://doi.org/10.5194/essd-12-771-2020, 2020
Short summary
Short summary
We have digitized a collection of photographs of glaciated and formerly glaciated regions in Alaska, Canada, Greenland, and New York taken during the late 1800s and early 1900s, and we compiled related information just as photo locations, photo dates, and photographic techniques. The photos document dramatic landscape transformations related to climate change and preserve records of everyday life in the Arctic during the early 20th century.
Karsten Fennig, Marc Schröder, Axel Andersson, and Rainer Hollmann
Earth Syst. Sci. Data, 12, 647–681, https://doi.org/10.5194/essd-12-647-2020, https://doi.org/10.5194/essd-12-647-2020, 2020
Short summary
Short summary
A Fundamental Climate Data Record (FCDR) from satellite-borne microwave radiometers has been created, covering the time period from October 1978 to December 2015. This article describes how the observations are processed, calibrated, corrected, inter-calibrated, and evaluated in order to provide a homogeneous data record of brightness temperatures across 10 different instruments aboard three different satellite platforms.
Michel M. Verstraete, Linda A. Hunt, Hugo De Lemos, and Larry Di Girolamo
Earth Syst. Sci. Data, 12, 611–628, https://doi.org/10.5194/essd-12-611-2020, https://doi.org/10.5194/essd-12-611-2020, 2020
Short summary
Short summary
The radiometric camera-by-camera cloud mask product, available for each of the nine cameras of the MISR instrument, contains a variable number of missing values, especially wherever and whenever the instrument is switched from the Global to Local Mode of operation. This paper proposes a simple method for effectively replacing those missing values and demonstrates the performance of the process. MISR data and software tools are obtainable from public domain websites to explore this issue further.
Zilefac Elvis Asong, Mohamed Ezzat Elshamy, Daniel Princz, Howard Simon Wheater, John Willard Pomeroy, Alain Pietroniro, and Alex Cannon
Earth Syst. Sci. Data, 12, 629–645, https://doi.org/10.5194/essd-12-629-2020, https://doi.org/10.5194/essd-12-629-2020, 2020
Short summary
Short summary
This dataset provides an improved set of forcing data for large-scale hydrological models for climate change impact assessment in the Mackenzie River Basin (MRB). Here, the strengths of two historical datasets were blended to produce a less-biased long-record product for hydrological modelling and climate change impact assessment over the MRB. This product is then used to bias-correct climate projections from the Canadian Regional Climate Model under RCP8.5.
Xiaodan Wu, Kathrin Naegeli, and Stefan Wunderle
Earth Syst. Sci. Data, 12, 539–553, https://doi.org/10.5194/essd-12-539-2020, https://doi.org/10.5194/essd-12-539-2020, 2020
Short summary
Short summary
Based on the idea of the co-registration method, this study proposes a method named correlation-based patch matching method (CPMM), which is capable of quantifying the geometric accuracy of coarse-resolution satellite data. The assessment is conducted at the sub-pixel level and not affected by the mixed-pixel problem. It is not limited to a certain landmark such as a lake or sea shoreline and thus enables a more comprehensive assessment.
Xuecao Li, Yuyu Zhou, Zhengyuan Zhu, and Wenting Cao
Earth Syst. Sci. Data, 12, 357–371, https://doi.org/10.5194/essd-12-357-2020, https://doi.org/10.5194/essd-12-357-2020, 2020
Short summary
Short summary
The information of urban dynamics with fine spatial and temporal resolutions is highly needed in urban studies. In this study, we generated a long-term (1985–2015), fine-resolution (30 m) product of annual urban extent dynamics in the conterminous United States using all available Landsat images on the Google Earth Engine (GEE) platform. The data product is of great use for relevant studies such as urban growth projection, urban sprawl modeling, and urbanization impacts on environments.
Elena Couce, Michaela Schratzberger, and Georg H. Engelhard
Earth Syst. Sci. Data, 12, 373–386, https://doi.org/10.5194/essd-12-373-2020, https://doi.org/10.5194/essd-12-373-2020, 2020
Short summary
Short summary
Fishing – especially trawling – is one of the most ubiquitous anthropogenic pressures on marine ecosystems, yet very few long-term, spatially explicit datasets on trawling effort exist, greatly hampering our understanding of its medium- to long-term impacts. Here we provide a dataset on the spatial distribution of total international otter and beam trawling effort in the North Sea, for the period 1985–2015, reconstructed using compiled effort datasets with data gaps filled by estimations.
Marco Sangiorgi, Miguel Angel Hernández-Ceballos, Kevin Jackson, Giorgia Cinelli, Konstantins Bogucarskis, Luca De Felice, Andrei Patrascu, and Marc De Cort
Earth Syst. Sci. Data, 12, 109–118, https://doi.org/10.5194/essd-12-109-2020, https://doi.org/10.5194/essd-12-109-2020, 2020
Short summary
Short summary
After the Chernobyl accident in 1986 the European Commission has invested resources for developing and improving a complete system called the European Radiological Data Exchange Platform (EURDEP) to exchange real-time monitoring data to competent authorities and the public. We provide two complete datasets (air-concentration samples and gamma dose rates) for the recent radiological release of 106Ru in Europe, which occurred between the end of September and early October 2017.
Susannah Rennie, Chris Andrews, Sarah Atkinson, Deborah Beaumont, Sue Benham, Vic Bowmaker, Jan Dick, Bev Dodd, Colm McKenna, Denise Pallett, Rob Rose, Stefanie M. Schäfer, Tony Scott, Carol Taylor, and Helen Watson
Earth Syst. Sci. Data, 12, 87–107, https://doi.org/10.5194/essd-12-87-2020, https://doi.org/10.5194/essd-12-87-2020, 2020
Short summary
Short summary
This paper describes the meteorological, biological and biogeochemical datasets of the UK Environmental Change Network, a nationally unique long-term record environmental variability across UK habitats. The co-location of these measurements provides a rare opportunity to directly investigate relationships between environmental variables over significant time scales (1992–2015). This data record also provides the UK contribution to a global system of long-term environmental research networks.
Shungudzemwoyo P. Garaba and Heidi M. Dierssen
Earth Syst. Sci. Data, 12, 77–86, https://doi.org/10.5194/essd-12-77-2020, https://doi.org/10.5194/essd-12-77-2020, 2020
Short summary
Short summary
As remote sensing is becoming more integral in future plastic litter monitoring strategies, there is need to improve our understanding of the optical properties of plastics. We present spectral reflectance data (350–2500 nm) of wet and dry marine-harvested (Atlantic and Pacific oceans), washed-ashore, and virgin plastics. Absorption features were identified at ~ 931, 1215, 1417 and 1732 nm in both the marine-harvested and washed-ashore plastics.
Martin Stengel, Stefan Stapelberg, Oliver Sus, Stephan Finkensieper, Benjamin Würzler, Daniel Philipp, Rainer Hollmann, Caroline Poulsen, Matthew Christensen, and Gregory McGarragh
Earth Syst. Sci. Data, 12, 41–60, https://doi.org/10.5194/essd-12-41-2020, https://doi.org/10.5194/essd-12-41-2020, 2020
Short summary
Short summary
The Cloud_cci AVHRR-PMv3 dataset contains global, cloud and radiative flux properties covering the period of 1982 to 2016. The properties were retrieved from AVHRR measurements recorded by afternoon satellites of the NOAA POES missions. Validation against CALIOP, BSRN and CERES demonstrates the high quality of the data. The Cloud_cci AVHRR-PMv3 dataset allows for a large variety of climate applications that build on cloud properties, radiative flux properties and/or the link between them.
Miquel Tomas-Burguera, Sergio M. Vicente-Serrano, Santiago Beguería, Fergus Reig, and Borja Latorre
Earth Syst. Sci. Data, 11, 1917–1930, https://doi.org/10.5194/essd-11-1917-2019, https://doi.org/10.5194/essd-11-1917-2019, 2019
Short summary
Short summary
A database of reference evapotranspiration (ETo) was obtained and made publicly available for Spain covering the 1961–2014 period at a spatial resolution of 1.1 km. Previous to ETo calculation, data of required climate variables were interpolated and validated, and the uncertainty was estimated. Obtained ETo values can be used to calculate irrigation requirements, improve drought studies (our main motivation) and study the impact of climate change, as a positive trend was detected.
Wenjun Tang, Kun Yang, Jun Qin, Xin Li, and Xiaolei Niu
Earth Syst. Sci. Data, 11, 1905–1915, https://doi.org/10.5194/essd-11-1905-2019, https://doi.org/10.5194/essd-11-1905-2019, 2019
Short summary
Short summary
This study produced a 16-year (2000–2015) global surface solar radiation dataset (3 h, 10 km) based on recently updated ISCCP H-series cloud products with a physically based retrieval scheme. Its spatial resolution and accuracy are both higher than those of the ISCCP-FD, GEWEX-SRB and CERES. The dataset will contribute to photovoltaic applications and research related to the simulation of land surface processes.
Melita Keywood, Paul Selleck, Fabienne Reisen, David Cohen, Scott Chambers, Min Cheng, Martin Cope, Suzanne Crumeyrolle, Erin Dunne, Kathryn Emmerson, Rosemary Fedele, Ian Galbally, Rob Gillett, Alan Griffiths, Elise-Andree Guerette, James Harnwell, Ruhi Humphries, Sarah Lawson, Branka Miljevic, Suzie Molloy, Jennifer Powell, Jack Simmons, Zoran Ristovski, and Jason Ward
Earth Syst. Sci. Data, 11, 1883–1903, https://doi.org/10.5194/essd-11-1883-2019, https://doi.org/10.5194/essd-11-1883-2019, 2019
Short summary
Short summary
The Sydney Particle Study increased scientific knowledge of the processes leading to particle formation and transformations in Sydney through two comprehensive observation programs which are described in detail here. The data set and its analysis underpin comprehensive chemical transport modelling tools that can be used to assist in the development of a long-term control strategy for particles in Sydney and thus reduce the impact of particles on human health.
Felix L. Müller, Denise Dettmering, Claudia Wekerle, Christian Schwatke, Marcello Passaro, Wolfgang Bosch, and Florian Seitz
Earth Syst. Sci. Data, 11, 1765–1781, https://doi.org/10.5194/essd-11-1765-2019, https://doi.org/10.5194/essd-11-1765-2019, 2019
Short summary
Short summary
Polar regions by satellite-altimetry-derived geostrophic currents (GCs) suffer from irregular and sparse data coverage. Therefore, a new dataset is presented, combining along-track derived dynamic ocean topography (DOT) heights with simulated differential water heights. For this purpose, a combination method, based on principal component analysis, is used. The results are combined with spatio-temporally consistent DOT and derived GC representations on unstructured, triangular formulated grids.
This Rutishauser, François Jeanneret, Robert Brügger, Yuri Brugnara, Christian Röthlisberger, August Bernasconi, Peter Bangerter, Céline Portenier, Leonie Villiger, Daria Lehmann, Lukas Meyer, Bruno Messerli, and Stefan Brönnimann
Earth Syst. Sci. Data, 11, 1645–1654, https://doi.org/10.5194/essd-11-1645-2019, https://doi.org/10.5194/essd-11-1645-2019, 2019
Short summary
Short summary
This paper reports 7414 quality-controlled plant phenological observations of the BernClim phenological network in Switzerland. The data from 1304 sites at 110 stations were recorded between 1970 and 2018. The quality control (QC) points to very good internal consistency (only 0.2 % flagged as internally inconsistent) and likely to high quality of the data. BernClim data originally served in regional planning and agricultural suitability and are now valuable for climate change impact studies.
Xingdong Li, Di Long, Qi Huang, Pengfei Han, Fanyu Zhao, and Yoshihide Wada
Earth Syst. Sci. Data, 11, 1603–1627, https://doi.org/10.5194/essd-11-1603-2019, https://doi.org/10.5194/essd-11-1603-2019, 2019
Short summary
Short summary
Lakes on the Tibetan Plateau experienced rapid changes (mainly expanding) in the past 2 decades. Here we provide a data set of high temporal resolution and accuracy reflecting changes in water level and storage of Tibetan lakes. A novel source of water levels generated from Landsat archives was validated with in situ data and adopted to resolve the inconsistency in existing studies, benefiting monitoring of lake overflow floods, seasonal and interannual variability, and long-term trends.
Ekaterina P. Rets, Viktor V. Popovnin, Pavel A. Toropov, Andrew M. Smirnov, Igor V. Tokarev, Julia N. Chizhova, Nadine A. Budantseva, Yurij K. Vasil'chuk, Maria B. Kireeva, Alexey A. Ekaykin, Arina N. Veres, Alexander A. Aleynikov, Natalia L. Frolova, Anatoly S. Tsyplenkov, Aleksei A. Poliukhov, Sergey R. Chalov, Maria A. Aleshina, and Ekaterina D. Kornilova
Earth Syst. Sci. Data, 11, 1463–1481, https://doi.org/10.5194/essd-11-1463-2019, https://doi.org/10.5194/essd-11-1463-2019, 2019
Short summary
Short summary
As climate change completely restructures hydrological processes and ecosystems in alpine areas, monitoring is fundamental to adaptation. Here we present a database on more than 10 years of hydrometeorological monitoring at the Djankuat station in the North Caucasus, which is one of 30 unique world reference sites with annual mass balance series longer than 50 years. We hope it will be useful for scientists studying various aspects of hydrological processes in mountain areas.
Stefan Leyk, Andrea E. Gaughan, Susana B. Adamo, Alex de Sherbinin, Deborah Balk, Sergio Freire, Amy Rose, Forrest R. Stevens, Brian Blankespoor, Charlie Frye, Joshua Comenetz, Alessandro Sorichetta, Kytt MacManus, Linda Pistolesi, Marc Levy, Andrew J. Tatem, and Martino Pesaresi
Earth Syst. Sci. Data, 11, 1385–1409, https://doi.org/10.5194/essd-11-1385-2019, https://doi.org/10.5194/essd-11-1385-2019, 2019
Short summary
Short summary
Population data are essential for studies on human–nature relationships, disaster or environmental health. Several global and continental gridded population data have been produced but have never been systematically compared. This article fills this gap and critically compares these gridded population datasets. Through the lens of the
fitness for useconcept it provides users with the knowledge needed to make informed decisions about appropriate data use in relation to the target application.
Craig D. Smith, Daqing Yang, Amber Ross, and Alan Barr
Earth Syst. Sci. Data, 11, 1337–1347, https://doi.org/10.5194/essd-11-1337-2019, https://doi.org/10.5194/essd-11-1337-2019, 2019
Short summary
Short summary
During and following the WMO Solid Precipitation Inter-Comparison Experiment (SPICE), winter (2013–2017) precipitation intercomparison data sets were collected at two test sites in Saskatchewan: Caribou Creek in the southern boreal forest and Bratt's Lake on the prairies. Precipitation was measured by the WMO automated reference and can be compared to measurements made by gauge configurations commonly used in Canada to examine issues with systematic bias.
Samuel Weber, Jan Beutel, Reto Da Forno, Alain Geiger, Stephan Gruber, Tonio Gsell, Andreas Hasler, Matthias Keller, Roman Lim, Philippe Limpach, Matthias Meyer, Igor Talzi, Lothar Thiele, Christian Tschudin, Andreas Vieli, Daniel Vonder Mühll, and Mustafa Yücel
Earth Syst. Sci. Data, 11, 1203–1237, https://doi.org/10.5194/essd-11-1203-2019, https://doi.org/10.5194/essd-11-1203-2019, 2019
Short summary
Short summary
In this paper, we describe a unique 10-year or more data record obtained from in situ measurements in steep bedrock permafrost in an Alpine environment on the Matterhorn Hörnligrat, Zermatt, Switzerland, at 3500 m a.s.l. By documenting and sharing these data in this form, we contribute to facilitating future research based on them, e.g., in the area of analysis methodology, comparative studies, assessment of change in the environment, natural hazard warning and the development of process models.
Roberto Serrano-Notivoli, Santiago Beguería, and Martín de Luis
Earth Syst. Sci. Data, 11, 1171–1188, https://doi.org/10.5194/essd-11-1171-2019, https://doi.org/10.5194/essd-11-1171-2019, 2019
Short summary
Short summary
Spanish TEmperature At Daily scale (STEAD) is a new daily gridded maximum and minimum temperature dataset for Spain. It covers the whole territory of peninsular Spain and the Balearic and Canary Islands at a 5 km × 5 km spatial resolution for the 1901–2014 period. This product is useful not only for climatic analysis but also to provide support to any other climate-related variable and for decision-making purposes.
Shanlong Lu, Jin Ma, Xiaoqi Ma, Hailong Tang, Hongli Zhao, and Muhammad Hasan Ali Baig
Earth Syst. Sci. Data, 11, 1099–1108, https://doi.org/10.5194/essd-11-1099-2019, https://doi.org/10.5194/essd-11-1099-2019, 2019
Short summary
Short summary
A 8 d time series 250 m resolution surface water dataset of inland China (ISWDC) from 2000 to 2016 is introduced. It is a fully public-sharing data product with prominent features of long time series, moderate spatial resolution, and high temporal resolution. The ISWDC is a valuable basic data source for the analysis of dynamic changes of surface water in China over the past 20 years. It can be used as cross-validation reference data for other global surface water datasets.
Brett Morgan and Benoit Guénard
Earth Syst. Sci. Data, 11, 1083–1098, https://doi.org/10.5194/essd-11-1083-2019, https://doi.org/10.5194/essd-11-1083-2019, 2019
Short summary
Short summary
Hong Kong is poised to become a model region for understanding the effects of urbanization, biotic invasions, and protected areas in the tropics. However, until now there have been few suitable GIS layers to address these issues on a landscape scale. This set of 30 m resolution vegetation, topography, and interpolated climate rasters will enable a new generation of spatial studies in Hong Kong. Compared to global datasets, these local models consistently indicate greater climatic heterogeneity.
Xuecao Li, Yuyu Zhou, Lin Meng, Ghassem R. Asrar, Chaoqun Lu, and Qiusheng Wu
Earth Syst. Sci. Data, 11, 881–894, https://doi.org/10.5194/essd-11-881-2019, https://doi.org/10.5194/essd-11-881-2019, 2019
Short summary
Short summary
We generated a long-term (1985–2015) and medium-resolution (30 m) product of phenology indicators in urban domains in the conterminous US using Landsat satellite observations. The derived phenology indicators agree well with in situ observations and provide more spatial details in complex urban areas compared to the existing coarse resolution phenology products (e.g., MODIS). The published data are of great use for urban phenology studies (e.g., pollen-induced respiratory allergies).
Vera Porwollik, Susanne Rolinski, Jens Heinke, and Christoph Müller
Earth Syst. Sci. Data, 11, 823–843, https://doi.org/10.5194/essd-11-823-2019, https://doi.org/10.5194/essd-11-823-2019, 2019
Short summary
Short summary
This study describes the generation of a classification and the global spatially explicit mapping of six crop-specific tillage systems for around the year 2005. Tillage practices differ by the kind of equipment used, soil surface and depth affected, timing, and their purpose within the cropping systems. The identified tillage systems including a downscale algorithm of national Conservation Agriculture area values were allocated to crop-specific cropland areas with a resolution of 5 arcmin.
Cited articles
Anderson, B.: noaastormevents, available at: https://github.com/geanders/noaastormevents, 2017.
Anderson, B., Yan, M., Ferreri, J., Crosson, W., Al-Hamdan, M., Schumacher, A., and Eddelbuettel, D.: hurricaneexposure: Explore and Map County-Level Hurricane Exposure in the United States, available at: https://github.com/geanders/hurricaneexposure, 2017.
Bakkensen, L. A. and Mendelsohn, R. O.: Risk and Adaptation: Evidence from Global Hurricane Damages and Fatalities, J. Assoc. Environ. Res. Econ., 3, 555–587, https://doi.org/10.1086/685908, 2016.
Bresch, D. N.: CLIMADA – the open-source Economics of Climate Adaptation (ECA) tool, implemented in MATLAB/Octave, available at: https://github.com/davidnbresch/climada, 2014.
Chavas, D. R., Lin, N., Chavas, D. R., Lin, N., and Emanuel, K.: A Model for the Complete Radial Structure of the Tropical Cyclone Wind Field, Part I: Comparison with Observed Structure, J. Atmos. Sci., 72, 3647–3662, https://doi.org/10.1175/JAS-D-15-0014.1, 2015.
CreditSuisse: Global Wealth Databook 2016, available at: http://publications.credit-suisse.com/tasks/render/file/index.cfm?fileid=AD6F2B43-B17B-345E-E20A1A254A3E24A5, 2016.
Dellink, R., Chateau, J., Lanzi, E., and Magné, B.: Long-term economic growth projections in the Shared Socioeconomic Pathways, Global Environ. Chang., 42, 200–214, https://doi.org/10.1016/j.gloenvcha.2015.06.004, 2017.
Demuth, J. L., DeMaria, M., and Knaff, J. A.: Improvement of advanced microwave sounding unit tropical cyclone intensity and size estimation algorithms, J. Appl. Meteorol. Climatol., 45, 1573–1581, 2006.
Emanuel, K.: Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century, P. Natl. Acad. Sci. USA, 110, 12219–12224, https://doi.org/10.1073/pnas.1301293110, 2013.
Estrada, F., Botzen, W. J. W., and Tol, R. S. J.: Economic losses from US hurricanes consistent with an influence from climate change, Nat. Geosci., 8, 880–884, https://doi.org/10.1038/ngeo2560, 2015.
Frieler, K., Lange, S., Piontek, F., Reyer, C. P. O., Schewe, J., Warszawski, L., Zhao, F., Chini, L., Denvil, S., Emanuel, K., Geiger, T., Halladay, K., Hurtt, G., Mengel, M., Murakami, D., Ostberg, S., Popp, A., Riva, R., Stevanovic, M., Suzuki, T., Volkholz, J., Burke, E., Ciais, P., Ebi, K., Eddy, T. D., Elliott, J., Galbraith, E., Gosling, S. N., Hattermann, F., Hickler, T., Hinkel, J., Hof, C., Huber, V., Jägermeyr, J., Krysanova, V., Marcé, R., Müller Schmied, H., Mouratiadou, I., Pierson, D., Tittensor, D. P., Vautard, R., van Vliet, M., Biber, M. F., Betts, R. A., Bodirsky, B. L., Deryng, D., Frolking, S., Jones, C. D., Lotze, H. K., Lotze-Campen, H., Sahajpal, R., Thonicke, K., Tian, H., and Yamagata, Y.: Assessing the impacts of 1.5 °C global warming – simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b), Geosci. Model Dev., 10, 4321–4345, https://doi.org/10.5194/gmd-10-4321-2017, 2017.
Geiger, T.: Continuous national Gross Domestic Product (GDP) time series for 195 countries: past observations (1850–2005) harmonized with future projections according to the Shared Socio-economic Pathways (2006–2100), Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2017-80, in review, 2017.
Geiger, T. and Frieler, K.: Continuous national Gross Domestic Product (GDP) time series for 195 countries: past observations (1850–2005) harmonized with future projections according to the Shared Socio-economic Pathways (2006–2100), GFZ Data Services, https://doi.org/10.5880/PIK.2017.003, 2017.
Geiger, T., Frieler, K., and Levermann, A.: High-income does not protect against hurricane losses, Environ. Res. Lett., 11, 084012, https://doi.org/10.1088/1748-9326/11/8/084012, 2016.
Geiger, T., Frieler, K., and Levermann, A.: Reply to Comment on “High-income does not protect against hurricane losses”, Environ. Res. Lett., 12, 098002, https://doi.org/10.1088/1748-9326/AA88D6, 2017a.
Geiger, T., Murakami, D., Frieler, K., and Yamagata, Y.: Spatially-explicit Gross Cell Product (GCP) time series: past observations (1850–2000) harmonized with future projections according to the Shared Socioeconomic Pathways (2010–2100), https://doi.org/10.5880/PIK.2017.007, 2017b.
Geiger, T., Frieler, K., and Bresch, D. N.: A data collection of tropical cyclone exposure data sets (TCE-DAT), Potsdam Institute for Climate Impact Research by GFZ Data Services, https://doi.org/10.5880/pik.2017.011, 2017c.
Gettelman, A., Bresch, D. N., Chen, C. C., Truesdale, J. E., and Bacmeister, J. T.: Projections of future tropical cyclone damage with a high-resolution global climate model, Clim. Change, 1–11, https://doi.org/10.1007/s10584-017-1902-7, online first, 2017.
Guha-Sapir, D.: EM-DAT: The Emergency Events Database – Université catholique de Louvain (UCL) – CRED, Brussels, Belgium, available at: www.emdat.be, 2017.
Guha-Sapir, D. and Below, R.: The quality and accuracy of disaster data: A comparative analyse of 3 global data sets, Disaster Management Facil. World Bank, Work Paper ID 191, 2002.
Holland, G.: A Revised Hurricane Pressure–Wind Model, Mon. Weather Rev., 136, 3432–3445, https://doi.org/10.1175/2008MWR2395.1, 2008.
Holland, G. and Bruyère, C. L.: Recent intense hurricane response to global climate change, Clim. Dyn., 42, 617–627, https://doi.org/10.1007/s00382-013-1713-0, 2014.
Holland, G. J.: An Analytic Model of the Wind and Pressure Profiles in Hurricanes, Mon. Weather Rev., 108, 1212–1218, https://doi.org/10.1175/1520-0493(1980)108<1212:AAMOTW>2.0.CO;2, 1980.
Holland, G. J., Belanger, J. I., and Fritz, A.: A Revised Model for Radial Profiles of Hurricane Winds, Mon. Weather Rev., 138, 4393–4401, https://doi.org/10.1175/2010MWR3317.1, 2010.
Hsiang, S. and Jina, A.: The Causal Effect of Environmental Catastrophe on Long-Run Economic Growth: Evidence From 6,700 Cyclones, Natl. Bur. Econ. Res., available at: http://www.nber.org/papers/w20352, 2014.
Hsiang, S. M.: Temperatures and cyclones strongly associated with economic production in the Caribbean and Central America, P. Natl. Acad. Sci. USA, 107, 15367–15372, https://doi.org/10.1073/pnas.1009510107, 2010.
IPCC: Climate Change 2014: Impacts, Adaptation, and Vulnerability, Part A: Global and Sectoral Aspects, Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea, P. R., and White, L. L., Cambridge University Press, Cambridge, UK, New York, NY, USA, 2014.
Jones, B. and O'Neill, B. C.: Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways, Environ. Res. Lett., 11, 084003, https://doi.org/10.1088/1748-9326/11/8/084003, 2016.
Klein Goldewijk, C. G. M.: Anthropogenic land-use estimates for the Holocene, HYDE 3.2, DANS, https://doi.org/10.17026/dans-25g-gez3, 2017.
Klein Goldewijk, K., Beusen, A., and Janssen, P.: Long-term dynamic modeling of global population and built-up area in a spatially explicit way: HYDE 3.1, The Holocene, 20, 565–573, https://doi.org/10.1177/0959683609356587, 2010.
Klein Goldewijk, K., Beusen, A., Van Drecht, G., and De Vos, M.: The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years, Global Ecol. Biogeogr., 20, 73–86, https://doi.org/10.1111/j.1466-8238.2010.00587.x, 2011.
Klein Goldewijk, K., Beusen, A., Doelman, J., and Stehfest, E.: Anthropogenic land use estimates for the Holocene – HYDE 3.2, Earth Syst. Sci. Data, 9, 927–953, https://doi.org/10.5194/essd-9-927-2017, 2017.
Knapp, K. R., Kruk, M. C., Levinson, D. H., Diamond, H. J., and Neumann, C. J.: The international best track archive for climate stewardship (IBTrACS) unifying tropical cyclone data, B. Am. Meteorol. Soc., 91, 363–376, 2010.
Lin, N. and Chavas, D.: On hurricane parametric wind and applications in storm surge modeling, J. Geophys. Res.-Atmos., 117, D09120, https://doi.org/10.1029/2011JD017126, 2012.
MunichRe: Munich Re NatCatSERVICE, Top. Geo 2014, available at: http://www.munichre.com/natcatservice, 2015.
Murakami, D. and Yamagata, Y.: Estimation of gridded population and GDP scenarios with spatially explicit statistical downscaling, Environ. Res. Lett., submitted, 2017.
Peduzzi, P., Chatenoux, B., Dao, H., De Bono, A., Herold, C., Kossin, J., Mouton, F., and Nordbeck, O.: Global trends in tropical cyclone risk, Nat. Clim. Chang., 2, 289–294, https://doi.org/10.1038/nclimate1410, 2012.
Pielke, R. A., Gratz, J., Landsea, C. W., Collins, D., Saunders, M. A., and Musulin, R.: Normalized Hurricane Damage in the United States: 1900–2005, Nat. Hazards Rev., 9, 29–42, https://doi.org/10.1061/(ASCE)1527-6988(2008)9:1(29), 2008.
Uhlhorn, E. W., Klotz, B. W., Vukicevic, T., Reasor, P. D., Rogers, R. F., Uhlhorn, E. W., Klotz, B. W., Vukicevic, T., Reasor, P. D., and Rogers R. F.: Observed Hurricane Wind Speed Asymmetries and Relationships to Motion and Environmental Shear, Mon. Weather Rev., 142, 1290–1311, https://doi.org/10.1175/MWR-D-13-00249.1, 2014.
UNISDR: Making Development Sustainable: The Future of Disaster Risk Management, Global Assessment Report on Disaster Risk Reduction: United Nations Office for Disaster Risk Reduction (UNISDR), Geneva, Switzerland, 2015.
Wirtz, A., Kron, W., Löw, P., and Steuer, M.: The need for data: natural disasters and the challenges of database management, Nat. Hazards, 70, 135–157, https://doi.org/10.1007/s11069-012-0312-4, 2014.
Short summary
Tropical cyclones (TCs) pose a major risk to societies worldwide but very limited data exist on their socioeconomic impacts. Here, we apply a common wind field model to comprehensively and consistently estimate the number of people and the sum of assets exposed by all TCs between 1950 and 2015. This information is crucial to assess changes in societal vulnerabilites, to calibrate TC damage functions, and to make risk data more accessible to non-experts and stakeholders.
Tropical cyclones (TCs) pose a major risk to societies worldwide but very limited data exist on...