Articles | Volume 9, issue 2
https://doi.org/10.5194/essd-9-791-2017
https://doi.org/10.5194/essd-9-791-2017
Review article
 | 
01 Nov 2017
Review article |  | 01 Nov 2017

A global satellite environmental data record derived from AMSR-E and AMSR2 microwave Earth observations

Jinyang Du, John S. Kimball, Lucas A. Jones, Youngwook Kim, Joseph Glassy, and Jennifer D. Watts

Related authors

An extended global Earth system data record on daily landscape freeze–thaw status determined from satellite passive microwave remote sensing
Youngwook Kim, John S. Kimball, Joseph Glassy, and Jinyang Du
Earth Syst. Sci. Data, 9, 133–147, https://doi.org/10.5194/essd-9-133-2017,https://doi.org/10.5194/essd-9-133-2017, 2017
Short summary
Satellite microwave assessment of Northern Hemisphere lake ice phenology from 2002 to 2015
Jinyang Du, John S. Kimball, Claude Duguay, Youngwook Kim, and Jennifer D. Watts
The Cryosphere, 11, 47–63, https://doi.org/10.5194/tc-11-47-2017,https://doi.org/10.5194/tc-11-47-2017, 2017
Short summary

Related subject area

Data, Algorithms, and Models
Improved maps of surface water bodies, large dams, reservoirs, and lakes in China
Xinxin Wang, Xiangming Xiao, Yuanwei Qin, Jinwei Dong, Jihua Wu, and Bo Li
Earth Syst. Sci. Data, 14, 3757–3771, https://doi.org/10.5194/essd-14-3757-2022,https://doi.org/10.5194/essd-14-3757-2022, 2022
Short summary
The Fengyun-3D (FY-3D) global active fire product: principle, methodology and validation
Jie Chen, Qi Yao, Ziyue Chen, Manchun Li, Zhaozhan Hao, Cheng Liu, Wei Zheng, Miaoqing Xu, Xiao Chen, Jing Yang, Qiancheng Lv, and Bingbo Gao
Earth Syst. Sci. Data, 14, 3489–3508, https://doi.org/10.5194/essd-14-3489-2022,https://doi.org/10.5194/essd-14-3489-2022, 2022
Short summary
A high-resolution inland surface water body dataset for the tundra and boreal forests of North America
Yijie Sui, Min Feng, Chunling Wang, and Xin Li
Earth Syst. Sci. Data, 14, 3349–3363, https://doi.org/10.5194/essd-14-3349-2022,https://doi.org/10.5194/essd-14-3349-2022, 2022
Short summary
A Central Asia hydrologic monitoring dataset for food and water security applications in Afghanistan
Amy McNally, Jossy Jacob, Kristi Arsenault, Kimberly Slinski, Daniel P. Sarmiento, Andrew Hoell, Shahriar Pervez, James Rowland, Mike Budde, Sujay Kumar, Christa Peters-Lidard, and James P. Verdin
Earth Syst. Sci. Data, 14, 3115–3135, https://doi.org/10.5194/essd-14-3115-2022,https://doi.org/10.5194/essd-14-3115-2022, 2022
Short summary
HOTRUNZ: an open-access 1 km resolution monthly 1910–2019 time series of interpolated temperature and rainfall grids with associated uncertainty for New Zealand
Thomas R. Etherington, George L. W. Perry, and Janet M. Wilmshurst
Earth Syst. Sci. Data, 14, 2817–2832, https://doi.org/10.5194/essd-14-2817-2022,https://doi.org/10.5194/essd-14-2817-2022, 2022
Short summary

Cited articles

Alemu, W. G. and Henebry, G. M.: Land surface phenologies and seasonalities using cool earthlight in mid-latitude croplands, Environ. Res. Lett., 8, 045002, https://doi.org/10.1088/1748-9326/8/4/045002, 2013.
Armstrong, R. L. and Brodzik, M. J.: An earth-gridded SSM/I data set for cryospheric studies and global change monitoring, Adv. Space Res., 16, 155–163, 1995.
Ashcroft, P. and Wentz, F.: Algorithm Theoretical Basis Document, AMSR Level 2A Algorithm, Santa Rosa, CA, RSS Tech. Rep. 121 599B-1, 1999.
Bedka, S., Knuteson, R., Revercomb, H., Tobin, D., and Turner, D.: An assessment of the absolute accuracy of the Atmospheric Infrared Sounder v5 precipitable water vapor product at tropical, midlatitude, and arctic ground-truth sites: September 2002 through August 2008, J. Geophys. Res., 115, D17310, https://doi.org/10.1029/2009JD013139, 2010.
Brodzik, M. J. and Knowles, K. W.: EASE-Grid: A versatile set of equal area projections and grids, in: Discrete Global Grids, edited by: Goodchild, M., National Center for Geographic Information & Analysis, Santa Barbara, CA, 2002.
Download
Short summary
We developed a global land parameter data record (LPDR; 2002–2015) using satellite microwave observations. The LPDR algorithms exploit multifrequency microwave observations to derive a set of environmental variables, including surface fractional water, atmosphere precipitable water vapor, daily surface air temperatures, vegetation optical depth, and volumetric soil moisture. The resulting LPDR shows favorable accuracy and provides for the consistent monitoring of global environmental changes.
Altmetrics
Final-revised paper
Preprint