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Abstract. Spaceborne microwave remote sensing is widely used to monitor global environmental changes for
understanding hydrological, ecological, and climate processes. A new global land parameter data record (LPDR)
was generated using similar calibrated, multifrequency brightness temperature (Tb) retrievals from the Advanced
Microwave Scanning Radiometer for EOS (AMSR-E) and the Advanced Microwave Scanning Radiometer 2
(AMSR2). The resulting LPDR provides a long-term (June 2002–December 2015) global record of key environ-
mental observations at a 25 km grid cell resolution, including surface fractional open water (FW) cover, atmo-
sphere precipitable water vapor (PWV), daily maximum and minimum surface air temperatures (Tmx and Tmn),
vegetation optical depth (VOD), and surface volumetric soil moisture (VSM). Global mapping of the land pa-
rameter climatology means and seasonal variability over the full-year records from AMSR-E (2003–2010) and
AMSR2 (2013–2015) observation periods is consistent with characteristic global climate and vegetation pat-
terns. Quantitative comparisons with independent observations indicated favorable LPDR performance for FW
(R ≥ 0.75; RMSE≤ 0.06), PWV (R ≥ 0.91; RMSE≤ 4.94 mm), Tmx and Tmn (R ≥ 0.90; RMSE≤ 3.48 ◦C), and
VSM (0.63≤ R ≤ 0.84; bias-corrected RMSE≤ 0.06 cm3 cm−3). The LPDR-derived global VOD record is also
proportional to satellite-observed NDVI (GIMMS3g) seasonality (R ≥ 0.88) due to the synergy between canopy
biomass structure and photosynthetic greenness. Statistical analysis shows overall LPDR consistency but with
small biases between AMSR-E and AMSR2 retrievals that should be considered when evaluating long-term
environmental trends. The resulting LPDR and potential updates from continuing AMSR2 operations provide
for effective global monitoring of environmental parameters related to vegetation activity, terrestrial water stor-
age, and mobility and are suitable for climate and ecosystem studies. The LPDR dataset is publicly available at
http://files.ntsg.umt.edu/data/LPDR_v2/.

1 Introduction

Earth’s atmospheric, biophysical, and hydrological pro-
cesses are closely coupled (Walko et al., 2000; Trenberth
et al., 2007) and respond to altered climate forcing mani-
fested by changes in key environmental variables (Meehl et
al., 2007). Integrated and consistent measurements of Earth
system environmental variables at the global scale are needed
for advancing our understanding of interconnected Earth
systems (Trenberth et al., 2007) and for addressing criti-

cal global-change-related questions including global water
cycle intensification (Huntington, 2006; Wild et al., 2008;
Déry et al., 2009), arctic amplification, and feedbacks to cli-
mate change (Smith et al., 2005; Grosse et al., 2011), and
the primary drivers behind global vegetation changes (Zhu et
al., 2016).

Complementary to optical–thermal infrared (IR) and ac-
tive microwave remote sensing, spaceborne passive mi-
crowave radiometers allow for measurements of global en-
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vironmental variables at a relatively coarse spatial resolu-
tion (∼ 5 to 100 km) but with relatively high temporal fi-
delity (∼ daily for higher latitudes≥ 45◦ N) and with reduced
constraints from variable solar illumination, clouds, and at-
mosphere aerosol contamination effects (Ulaby et al., 2014).
While lower-frequency (e.g., L-band) sensors, including the
ESA Soil Moisture and Ocean Salinity (SMOS) and NASA
Soil Moisture Active Passive (SMAP) missions, are gener-
ally considered optimal for detecting soil and surface wa-
ter signals under moderate to high vegetation biomass con-
ditions (Kerr et al., 2001; Entekhabi et al., 2010), higher-
frequency sensors, such as AMSR-E (Koike et al., 2004) and
AMSR2 (Imaoka et al., 2012), provide simultaneous multi-
channel (C- to W-band) Tb observations with variable sensi-
tivity to surface water, soil, vegetation, and atmosphere con-
ditions (Njoku et al., 2003; Jones et al., 2010). The com-
bined observations allow for the distinguishing of individ-
ual land parameter signals from background noise. How-
ever, the major AMSR-E and AMSR2 (hereafter denoted
as AMSR-E/2) algorithms have largely focused on single-
parameter retrievals, including the NASA and JAXA stan-
dard soil moisture products (Njoku et al., 2003; Koike et
al., 2004). In contrast, the University of Montana (UMT)
global Land Parameter Data Record version 1 (LPDR v1)
was developed to exploit AMSR-E multifrequency Tb obser-
vations for global daily mapping of multiple synergistic land
parameters related to the status and storage of water in the
atmosphere, vegetation, and soil (Jones et al., 2010; Jones
and Kimball, 2010). The LPDR v1 database has been ap-
plied for a variety of environmental studies, including quan-
tifying surface water inundation impacts on tundra methane
emissions (Watts et al., 2014), boreal wildfire disturbance
and recovery assessments (Jones et al., 2013), evaluating hy-
droclimatic controls on vegetation phenology (Alemu and
Henebry, 2013; Guan et al., 2014), biodiversity modeling and
prediction (Waltari et al., 2014), and vector-borne disease
risk assessments (Chuang et al., 2012). The LPDR v1 has
also served as a baseline for evaluating other AMSR-E al-
gorithm retrievals (Mladenova et al., 2014) and refinements
(Jang et al., 2014; Du et al., 2014). The LPDR v1 encom-
passes the AMSR-E record (2002–2011), while similar ob-
servations from AMSR2 enable potential LPDR continuity
(Du et al., 2014).

In this investigation, the version 2.0 UMT Land Param-
eter Data Record (henceforth denoted as LPDR) was gen-
erated by incorporating recent algorithm improvements (Du
et al., 2015, 2016a), new algorithm refinements, and an ex-
tended AMSR-E/2 satellite record. The key satellite mi-
crowave land parameter retrievals derived from this study in-
clude daily maximum and minimum surface air temperature
(Tmx and Tmn), atmosphere precipitable water vapor (PWV),
vegetation optical depth (VOD), surface fractional open wa-
ter cover (FW), and volumetric soil moisture (VSM). Surface
air temperature, defined as air temperature at approximately
2 m of height in this study and used as a global warming

indicator (Hansen and Lebedeff, 1987; Jones et al., 1999),
integrates key information on the thermal state of the land–
atmosphere interface (Jones et al., 2010). PWV represents
the total water content of the atmosphere column within
the satellite sensor field of view (Bedka et al., 2010) and
is strongly interactive with temperature and climate (Held
and Soden, 2000; Wentz et al., 2007). The VOD parame-
ter represents the slant-path opacity of the intervening veg-
etation layer to land surface microwave emissions; VOD is
microwave frequency dependent and sensitive to changes
in canopy biomass water content, including woody and fo-
liar elements (Shi et al., 2008; Jones et al., 2011; Liu et
al., 2011). The FW parameter is an important hydrological
and biogeochemical variable (Watts et al., 2012), while large-
scale mapping of FW dynamics has been used for studying
high-latitude ecosystems, wetlands, and carbon-cycle-related
feedbacks to climate change (Van Huissteden et al., 2011;
McVicar et al., 2012; Lupascu et al., 2014). Another key
parameter is surface soil moisture, which governs the ex-
changes of water, energy, and carbon between the soil and
atmosphere (Entekhabi et al., 2010); soil moisture is defined
in this study as the volume of water in a given volume of
soil. The relative depth of soil moisture sensitivity is depen-
dent on microwave frequency and land surface conditions but
is generally limited to the top (∼ 1 cm depth) soil layer using
moderate-frequency (e.g., C-, X-band) Tb retrievals from the
AMSR-E/2 sensors.

The goals of this study were to (a) provide an enhanced
data record over prior (v1) LPDR releases in terms of both
retrieval accuracy and temporal coverage, (b) generate con-
sistent retrievals from AMSR-E and AMSR2 suitable for
long-term evaluations of key land parameters important to
ecosystem processes, and (c) facilitate LPDR utility for the
Earth science community by providing detailed descriptions
of algorithm structure, retrieval accuracy and product perfor-
mance, and data format specifications. The LPDR methods,
data processing, global performance, and uncertainty assess-
ments are presented below.

2 Methods

2.1 LPDR v1 algorithm and refinements

In the LPDR v1 algorithms, the satellite-observed microwave
emission from land overlying a non-scattering atmosphere
is theoretically described by three components representing
the upward emission of the atmosphere, land surface upward
emission attenuated by the atmosphere, and the downward
atmosphere emission reflected by the land surface and at-
tenuated by atmosphere (Wang and Manning, 2003; Jones
et al., 2010). Atmosphere effects are mainly determined by
air temperature and the optical depth of oxygen, cloud liq-
uid water, and atmosphere water vapor (Wentz and Meiss-
ner, 2000; Jones et al., 2010). The land surface upward mi-
crowave emission is represented as the overall emission from
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a mix of land surface features, including open water, veg-
etation, and soil (Mo et al., 1982; Jones et al., 2010). The
AMSR-E/2 frequencies have variable sensitivity to land and
atmosphere properties, and the frequency-dependent optical
depth of vegetation or atmospheric layers determines the de-
gree to which measured microwave emissions originate from
the soil, vegetation, or atmosphere (Jones, 2016). The C-
and X-band AMSR-E/2 measurements are generally used
for inferring soil moisture under vegetation and atmosphere
layers, while higher Tb frequencies (> 18 GHz) show rela-
tively greater sensitivity to atmospheric properties (Njoku et
al., 2003). In addition, open water may significantly impact
the measured microwave emissions at all AMSR-E/2 fre-
quencies due to the high dielectric constant of water (Jones
et al., 2010; Du et al., 2016b). Based on the above theory
and considerations, the LPDR v1 algorithms utilize observa-
tions at relatively high frequencies (> 18 GHz) to estimate
PWV and FW and then apply the inferred information to
derive the X-band VOD and VSM retrievals. The two-step
retrieval process is detailed as follows: first, effective sur-
face temperature (Ts), Tmx and Tmn, FW, and PWV are ob-
tained using an iterative algorithm approach that incorpo-
rates H- and V-polarized 18.7 and 23.8 GHz Tb data and
several temperature-insensitive microwave indices (Jones et
al., 2010). In this step, a simplified land emission model that
considers constant dry soil emissivity is adopted for facilitat-
ing the inversion process. The X-band VOD is then obtained
by inverting the land–water microwave emissivity slope in-
dex, and surface (∼ 0–1 cm depth) VSM is acquired after cor-
recting for X-band atmosphere, FW, and vegetation effects
(Jones et al., 2010). More detailed descriptions of the LPDR
v1 algorithms are provided elsewhere (Jones et al., 2010).
Recent refinements based on the LPDR v1 algorithm frame-
work were carried out separately using AMSR-E or AMSR2
Tb observations, including (a) an empirical calibration of the
AMSR2 PWV retrieval based on similar observations from
the Atmospheric Infrared Sounder (AIRS; Du et al., 2015),
(b) a refined AMSR2 estimation of Tmx and Tmn that consid-
ers terrain and latitude effects (Du et al., 2015), and (c) an
improved AMSR-E VSM retrieval using a weighted averag-
ing strategy and dynamic selection of vegetation-scattering
albedos (Du et al., 2016a).

2.2 LPDR retrieval algorithms

The latest (v2) LPDR algorithms were developed based
on the available algorithm framework and improvements
(Sect. 2.1). For generating a consistent LPDR product,
the available algorithm refinements were adapted for both
AMSR-E and AMSR2 portions of the combined, calibrated
Tb record (Sect. 3.1). The final regression formulas for es-
timating PWV are described below, which follow from Du
et al. (2015) but use different regression coefficients; for the
satellite ascending (PM) overpass, the empirical calibration

resulted in

PWVPM =−4.06+ 0.22Ts

+
Avd

av23− av18
(0.47+ 0.26exp(−H ))

− 1.63log
(
1Tb(89.0)
1Tb(36.0)

)
, (1)

and for the descending (AM) overpass it was

PWVAM = 1.06+ 0.27Ts

+
Avd

av23− av18
(0.48+ 0.21exp(−H ))

− 1.63log
(
1Tb(89.0)
1Tb(36.0)

)
. (2)

The PWV estimate is derived by a weighted sum of Ts (◦C),
atmosphere optical depth Avd estimated from the 23.8 and
18.7 GHz Tb polarization difference ratios, a cloud correc-
tion term 1Tb(89.0)

1Tb(36.0) , and surface elevation H (km). The terms
av18 and av23 are empirically derived water vapor absorption
coefficients (Jones et al., 2010). The regression formulas for
estimating Tmx and Tmn are given as

Tmn = 3.55+ 0.69Ts+ 11.86Tc− 6.67T 2
c − 0.14(abs(Lat))

+ 2.74γ cos(t)+ 1.83 · log(FW+ 1.0) , (3)

Tmx = 7.49+ 0.79Ts− 5.71Tc+ 11.45T 2
c − 0.14(abs(Lat))

+ 2.20γ cos(t)+ 1.75 · log(FW+ 1.0) , (4)

where Ts is the effective surface temperature and Tc is
the frequency-dependent vegetation transmissivity, which is
Tc = exp(−VOD); t = 2πω−π ; ω = doy

n
; γ = sign(Lat)(1−

abs(abs(Lat)−45)
45 ) in which doy is the day of year, n is the to-

tal days in a year, and Lat is the geographic latitude. FW is
the fractional proportion (%) of standing water cover within
a grid cell and is used for minimizing open water impacts on
the temperature retrievals.

In addition to the above updates, we performed addi-
tional FW calibration for improving the VSM retrievals in
this study. As described above, the iterative retrieval algo-
rithm proposed in Jones et al. (2010) and revised in Du et
al. (2015) assumes dry soil conditions for estimating FW,
VOD, and atmosphere properties. Consequently, the FW re-
trieval is likely to be affected by a soil moisture signal
when the simplified dry soil assumption is not fully satis-
fied. Therefore, an empirical calibration of AMSR-E/2 FW
was made for the purpose of improving the soil moisture
inversion as follows: (a) AMSR-E FW values for the non-
frozen period over the 2003–2010 record were averaged for
each 25 km grid cell and compared with an ancillary MODIS
250 m MOD44W static FW map (Carroll et al., 2009); (b) the
resulting AMSR-E FW summer average values were grouped
into 1000 population ranges from 0.0 to 1.0 and 0.001 in-
tervals; (c) for each group, mean AMSR-E FW and corre-
sponding MOD44W values were calculated; and (d) rela-
tionships between AMSR-E and MOD44W FW retrievals
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were analyzed based on their mean group values and de-
rived for two respective conditions, AMSR-E FW< 0.15 and
FW≥ 0.15. The 0.15 FW threshold was selected for describ-
ing the AMSR-E and MOD44W FW relationships over the
different AMSR-E FW levels. Soil moisture was then esti-
mated after open water correction using the calibrated FW
record (denoted as FWcal). The resulting empirical relation-
ships were used for calibrating AMSR-E/2 ascending (PM)
and descending (AM) FW estimates prior to their use in VSM
retrievals against the MOD44W open water maps:

FWcal_PM = 4.4267FW3
+ 1.3447FW2

+ 0.4114FW FW< 0.15

FWcal_PM =−0.4683FW2
+ 1.0182FW− 0.0458 FW≥ 0.15,

(5)
FWcal_AM =−23.752FW3

+ 7.7518FW2
+ 0.1565FW FW< 0.15

FWcal_AM =−0.4014FW2
+ 0.9837FW− 0.0422 FW≥ 0.15.

(6)

Here we note that the ancillary MOD44W map was used
solely for open water correction of the VSM estimates and
is independent from the LPDR FW retrievals. The general
LPDR retrieval process is illustrated in Fig. 1.

2.3 Evaluation of the LPDR

The resulting LPDR environmental parameters for non-
frozen land surface conditions were evaluated based on their
full-year records (2003–2010 and 2013–2015) and follow-
ing similar approaches used in previous studies (Jones et
al., 2010; Du et al., 2015, 2016a). The evaluations included
analyzing the global distributions of climatological means
and standard deviation (SD) or coefficient of variation (CV)
in LPDR full-year records. The LPDR ascending and de-
scending retrievals have similar spatial distributions, so only
the ascending result maps are presented in the following anal-
ysis. To compare with the LPDR results, similar climatolog-
ical mean and CV maps (if applicable) from alternative ref-
erence data were utilized, including MOD44W FW, normal-
ized difference vegetation index (NDVI) observations from
the third-generation Global Inventory Monitoring and Mod-
eling System project record (GIMMS3g; Tucker et al., 2005;
Pinzon and Tucker, 2014), and (AIRS) PWV (Divakarla et
al., 2006).

Global seasonal cycles defined from monthly means and
CV variations in the LPDR daily observations and full-year
data records were compared against similar aggregations
from the reference data, including GIMMS3g NDVI and
AIRS PWV. In particular, the vegetation seasonality indi-
cated by VOD and NDVI was compared for the global do-
main and six major plant functional types.

The LPDR-derived FW composites over the 2003–
2010 (representing AMSR-E) and 2013–2015 (represent-
ing AMSR2) periods were compared against the MOD44W
static open water map. While the MOD44W record is used
for surface water correction of Tb observations for the soil

Figure 1. The LPDR algorithm retrieval process.

moisture retrievals (Eqs. 5 and 6), the correction is inde-
pendent of the LPDR FW retrieval (Jones et al., 2010). The
LPDR-derived Tmx and Tmn estimates were compared with
independent daily air temperature measurements from 142
World Meteorological Organization (WMO) sites for the se-
lected years 2010 (representing AMSR-E) and 2013 (repre-
senting AMSR2). The LPDR-derived PWV results were an-
alyzed against AIRS PWV observations from the same 142
WMO site locations for the 2010 and 2013 periods. Finally,
the LPDR-derived daily VSM results were compared against
independent surface soil moisture measurements from four
regional soil station networks. The metrics used to evalu-
ate agreement between the LPDR results and independent
observations included correlation coefficient (R), root mean
square error (RMSE), and bias.

For evaluating LPDR consistency, only grid cells with
high-quality retrievals were considered in the analysis,
which excluded areas with higher vegetation biomass cover
(VOD> 2.3 representing over 90 % loss of underlying soil
and open water signals from vegetation attenuation) or where
the difference between V-pol and H-pol Tb retrievals at 18
or 23 GHz was less than 1.0 K (i.e., indicating microwave
signal saturation). Grid cells containing large water bodies
(FW> 0.2) were also excluded to avoid excessive contam-
ination of the land signal by open water (Du et al., 2015;
Jones, 2016). Moreover, we divided 365 (366 for leap year)

Earth Syst. Sci. Data, 9, 791–808, 2017 www.earth-syst-sci-data.net/9/791/2017/



J. Du et al.: A global satellite environmental record 795

days of a year into 122 3-day periods and for each 3-day
period selected for the consistency evaluation, we required
at least one high-quality retrieval within the period for each
year of the 2003–2010 and 2013–2015 portions of the record.
Based on the above data selection criteria, the global monthly
mean of the high-quality LPDR daily estimates were cal-
culated for each month of the AMSR-E (2003–2010) and
AMSR2 (2013–2015) full-year records and analyzed using
statistical metrics, including mean, SD, and range.

3 Data processing and ancillary datasets

3.1 AMSR-E and AMSR2 Tb records used for land
parameter retrievals

Multifrequency Tb observations from AMSR-E and AMSR2
provide the primary inputs for LPDR processing. The
AMSR-E sensor was launched on 4 May 2002 onboard
the NASA EOS Aqua satellite and operated until 4 Oc-
tober 2011. AMSR-E was succeeded by AMSR2, which
was launched on 18 May 2012 onboard the JAXA GCOM-
W1 satellite. Both sensors provide global measurements
of vertically (V) and horizontally (H) polarized microwave
emissions at six frequencies (6.9, 10.7, 18.7, 23.8, 36.5,
89.0 GHz) with descending and ascending orbital equatorial
crossings at 01:30 and 13:30 local time. Though succeed-
ing most characteristics of its predecessor, AMSR2 is differ-
ent from AMSR-E in several aspects, including (a) an ad-
ditional Tb channel at 7.3 GHz designed for mitigating ra-
dio frequency interference (RFI), (b) a larger (2.0 m diame-
ter) main reflector providing enhanced spatial resolution re-
trievals, and (c) an improved calibration system (Imaoka et
al., 2010).

For developing a consistent global land parameter record,
the AMSR-E/2 Tb retrievals were preprocessed in four steps.
(1) AMSR-E orbital swath Tb data from the Remote Sensing
Systems (RSS) version 7 product were spatially resampled
and re-projected to a 25 km resolution global Equal-Area
Scalable Earth (EASE) Grid version 1 format following pre-
viously established methods (Armstrong and Brodzik, 1995;
Ashcroft and Wentz, 1999; Brodzik and Knowles, 2002). In
this study, an additional altitude correction of the Tb orbital
swath retrievals was made to improve sensor footprint ge-
olocation accuracy prior to the gridding process. The alti-
tude correction to the AMSR2 L1R data considers the ac-
tual surface of the Earth instead of an ideal Earth ellipsoid
(T. Maeda et al., 2016), which helps to ensure reliable anal-
ysis of AMSR-E/2 land surface retrievals over high eleva-
tion areas, including the Qinghai–Tibetan Plateau; (2) a sim-
ilar gridding process was performed on the AMSR2 L1R
swath data. (3) The AMSR2 multifrequency (X- to W-band)
Tb retrievals were empirically calibrated against the same
AMSR-E channels using similar overlapping Tb observations
from the Microwave Radiation Imager (MWRI) onboard the
Chinese FY3B satellite (Du et al., 2014). However, in con-

trast to Du et al. (2014) in which the Tb calibration was
conducted on a per grid cell basis for each frequency, po-
larization, and orbit, the approach used for this investiga-
tion involved calibrating within 5× 5 grid cell windows to
minimize the impact of the different sensor footprints. Both
ascending- and descending-orbit X-band Tb data for a given
polarization were calibrated together because the largest dif-
ferences and lowest correlations were found between over-
lapping MWRI and AMSR-E/2 X-band observations among
all sensor frequencies utilized (Du et al., 2014). The com-
bined orbit X-band calibration was also found to produce
better consistency between the AMSR2 ascending and de-
scending X-band VOD retrievals, which are particularly sen-
sitive to Tb calibration uncertainties, especially for higher
vegetation biomass conditions. (4) Finally, the gridded and
calibrated AMSR-E/2 Tb data were subjected to additional
screening prior to implementing the retrieval algorithms to
minimize potential noise effects from RFI, active precipita-
tion, frozen conditions, and permanent ice and snow cover
using previously established methods (Jones et al., 2010).
The Tb screening under frozen land surface conditions was
identified using an existing global daily freeze–thaw (FT)
data record derived from a refined classification algorithm
(Kim et al., 2017) and AMSR-E/2 36.5 GHz V-polarized Tb
retrievals in a consistent 25 km resolution global EASE-Grid
projection format; the FT mask is represented as a grid-cell-
wise daily binary bit flag in the LPDR dataset and was used
to identify and screen frozen land surface conditions from
further LPDR processing and retrievals (Fig. 1).

3.2 Ancillary data used for algorithm calibration and
LPDR performance assessment

A variety of ancillary data were used for calibrating the
LPDR algorithms and evaluating LPDR global performance.
The ancillary data included atmosphere PWV retrievals from
AIRS (Divakarla et al., 2006), a static MOD44W open wa-
ter map (Carroll et al., 2009), GIMMS3g NDVI (Pinzon
and Tucker, 2014), and in situ surface soil moisture mea-
surements from four globally distributed measurement net-
works (Jackson et al., 2010; Yang et al., 2013; Smith et
al., 2012). All ancillary data were re-projected to the same
25 km EASE-Grid version 1 format as the LPDR to facilitate
algorithm calibration and product comparisons.

The AIRS PWV products were used for LPDR PWV al-
gorithm calibration and product comparisons. The LPDR
iterative retrieval algorithm for PWV (Jones et al., 2010;
Sect. 2.1) was empirically calibrated and quantitatively vali-
dated using synergistic PWV observations (version 6 level 2
swath product) from AIRS and the Advanced Microwave
Sounding Unit (AMSU) instruments (Du et al., 2015). Both
AIRS and AMSU are deployed on the Aqua satellite together
with AMSR-E and have the same local overpass time as
AMSR2. The AIRS version 6 product is expected to have
higher accuracy than the previous AIRS version 4 water va-
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Figure 2. Global distribution of WMO weather station locations where collocated AIRS observations and WMO air temperature measure-
ments were used for calibrating (white circles) and validating (black circles) the LPDR PWV, Tmx, and Tmn estimates; the locations of the
four independent soil moisture networks used for validating the LPDR VSM retrievals are also shown (white rectangles).

por record, which shows retrieval uncertainties of less than
15 % in comparison with radiosonde measurements in 2 km
troposphere layers (Divakarla et al., 2006; Diao et al., 2013).

For calibrating LPDR-derived PWV, Tmx, and Tmn re-
trievals over different land cover types, in situ daily Tmx
and Tmn measurements were obtained along with coincident
AIRS PWV retrievals for year 2010 from 250 globally dis-
tributed WMO weather station locations (Fig. 2). The spatial
distribution of the WMO stations selected was designed to
be representative of major global land cover classes (Justice
et al., 2002; Friedl et al., 2010). The WMO air temperature
record was obtained from the National Climate Data Center
(NCDC) Global Summary of the Day (GSOD version 7) us-
ing previously established criteria (Jones et al., 2010). The
calibration was made for the year 2010 and the derived rela-
tionships were applied to the entire AMSR-E/2 record. In-
dependent daily air temperature measurements and collo-
cated AIRS PWV retrievals from 142 other globally dis-
tributed WMO weather stations (Fig. 2) operating from 2010
to 2013 were selected for the evaluation of LPDR-derived
Tmx, Tmn, and PWV accuracy; relative consistency in perfor-
mance between the AMSR-E (represented by the year 2010)

and AMSR2 (represented by the year 2013) portions of the
LPDR record was also assessed.

The LPDR-derived FW record was evaluated against
the higher-resolution (250 m), global-scale MOD44W static
open water product (Carroll et al., 2009). The MOD44W
product is derived from a compilation of the SRTM (Shut-
tle Radar Topography Mission) water body dataset and the
MODIS MOD44C Collection 5 (2000–2008) open water
classification (Haran et al., 2005; Carroll et al., 2009). The
MOD44W map was re-projected and aggregated to the same
25 km EASE-Grid format as the LPDR prior to the compar-
isons.

The LPDR-derived VOD record was evaluated over the
global domain using synergistic satellite optical–IR obser-
vations of vegetation greenness defined from NDVI. The
GIMMS3g (version 1) global NDVI record derived from cal-
ibrated NOAA Advanced Very High Resolution Radiometer
(AVHRR) sensor observations (Pinzon and Tucker, 2014) has
been widely used in evaluating global vegetation status and
changes (Zhu et al., 2016); the bimonthly NDVI data were
re-projected from their native 1/12◦ spatial resolution and
geographic projection format to the same 25 km resolution
global EASE-Grid format as the LPDR for the 2003 to 2015
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record. The NDVI is sensitive to changes in vegetation green-
ness and differs from LPDR-derived 10.65 GHz VOD sensi-
tivity to canopy biomass and water content variations, includ-
ing both photosynthetic (e.g., foliar) and non-photosynthetic
(e.g., stem and branch) elements (Jones et al., 2013). Both
satellite NDVI and VOD records have been shown to provide
similar synergistic canopy phenology metrics distinguishing
both seasonal and spatial differences among different plant
functional types (Jones et al., 2011).

The LPDR VSM retrieval accuracy was evaluated using
a similar approach as Du et al. (2016a) by comparing the
satellite X-band (10.65 GHz) daily soil moisture retrievals
against collocated in situ surface soil moisture measurements
from four globally distributed soil moisture measurement
networks (Fig. 2). The four soil moisture regional networks
represent the approximate spatial heterogeneity and sensing
depth as the AMSR-E/2 Tb footprint retrievals and were de-
signed for validating satellite regional soil moisture retrievals
as detailed in Jackson et al. (2010), Smith et al. (2012), and
Yang et al. (2013). The Little River network (LR; centroid
83.61◦W, 31.65◦ N) has a humid climate representing forest,
cropland, and pasture vegetation (Jackson et al., 2010). The
Little Washita network (LW; centroid 98.1◦W, 34.95◦ N) has
a subhumid climate dominated by rangeland and pasture veg-
etation (Jackson et al., 2010). A 3-year (2003–2005) LR
and LW daily soil moisture record representing surface (0–
5 cm of depth) soil layer conditions was used for this study.
The Nagqu (NQ; centroid 91.875◦ E, 31.625◦ N) soil mois-
ture network was located on the Tibetan Plateau in west-
ern China. Surface soil moisture measurements extending
from August 2010 to September 2011 from the NQ net-
work were used for evaluating LPDR performance in an
environment characterized as high elevation with large sur-
face soil moisture variability and sparse vegetation (Chen
et al., 2013; Yang et al., 2013). The Yanco (YC; centroid
146.0915◦ E, 34.842◦ S) network is part of the larger Mur-
rumbidgee Soil Moisture Monitoring Network (MSMMN) in
Australia (Smith et al., 2012; Panciera et al., 2014) and repre-
sents a Southern Hemisphere semiarid agricultural and graz-
ing landscape; a 2-year (2009–2010) YC surface soil mois-
ture record was also used for this study.

4 Results

4.1 Fractional open water

The LPDR FW composites (Fig. 3a) for nonfrozen periods
capture characteristic global inundation patterns consistent
with the ancillary MOD44W static water map (Fig. S1 in
the Supplement), including extensive wetland complexes in
the pan-Arctic region, Bangladesh, and Argentina and ma-
jor river systems such as the Amazon, Mississippi, Yangtze,
and Yenisei. Large FW seasonal variations (Fig. 3b) associ-
ated with seasonal precipitation and/or snowmelt events oc-
cur over the Mississippi basin, the Paraná River basin, north-

Figure 3. LPDR fractional water mean (a) and 2 times the coeffi-
cient of variation (b) over the years 2003–2010 and 2013–2015.

ern Canada and Eurasia, the Indian subcontinent, southern
Tibet, and eastern China. The LPDR FW record also dis-
tinguishes dynamic flooding events not represented by the
ancillary static water map, including extensive water inun-
dation (Fig. 3a) and large seasonal FW variations (Fig. 3b)
in Bangladesh where the summer monsoon brings large
precipitation-driven flooding (Brouwer et al., 2007).

Quantitative comparisons of LPDR FW annual means in
relation to MOD44W were made for respective AMSR-
E (2003–2010) and AMSR2 (2013–2015) full-year records
(Table 1). Both AMSR2 and AMSR-E FW annual means
show favorable spatial correspondence with the MOD44W
results (R ≥ 0.75, RMSE≤ 0.06). The LPDR inundated area
percentage also shows a mean 1.50 % wet bias relative to the
MOD44W product, which may partially result from better
LPDR microwave sensitivity to surface water dynamics, in-
cluding water beneath vegetation (Du et al., 2016b). Higher
LPDR FW levels along coastlines are due to larger water
cover of coastal grid cells within the land mask. The LPDR
results also show generally larger coastal FW levels than
MOD44W, indicating ocean contamination of adjacent land
grid cells within the coarser AMSR-E/2 Tb footprint.
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Table 1. Comparisons of FW global averages over AMSR-E
(2003–2010) and AMSR2 (2013–2015) periods in relation to the
MOD44W static open water map. All products were projected into a
consistent 25.0 km resolution EASE-Grid format; positive and neg-
ative bias indicates FW overestimation and underestimation, respec-
tively, relative to the static water map.

AMSR-E/2 FW vs. MOD44W

R RMSD Bias

Asc Dsc Asc Dsc Asc Dsc

AMSR-E 0.767 0.750 0.057 0.057 0.016 0.012
AMSR2 0.795 0.775 0.054 0.054 0.017 0.013

R denotes Pearson correlation coefficient; RMSD denotes root mean square difference; Asc
and Dsc denote respective ascending and descending orbits.

Figure 4. LPDR PWV climatology mean (a) and 2 times the coeffi-
cient of variation (b) from the combined 2003–2010 and 2013–2015
record.

4.2 Atmosphere precipitable water vapor

The spatial distributions of LPDR PWV climatology mean
(Fig. 4a) and CV (Fig. 4b) results derived from ascending-
orbit Tb retrievals and full-year observations were com-
pared with benchmark satellite PWV retrievals from AIRS
(Fig. S2). Both LPDR and AIRS PWV retrievals show sim-
ilar global patterns and latitudinal distributions, with gener-
ally higher water vapor levels at lower latitudes and warmer

Figure 5. LPDR and AIRS PWV monthly means and seasonal vari-
ability (2 times the standard deviation or 2×SD) over the globe and
combined for the 2003–2010 and 2013–2015 period.

climate zones, which is consistent with the near-exponential
relationship between atmospheric temperature and moisture-
holding capacity except for dry desert regions distinguished
by lower characteristic PWV levels. Especially large PWV
levels are observed over the Bay of Bengal and adjacent
regions (Fig. 4a) where a large amount of water vapor is
transported by the summer monsoon (Uma et al., 2014).
Large PWV seasonal variations (CV) are apparent in re-
gions with distinct dry and wet seasons, including the In-
dian subcontinent, eastern China, and the African Sahel
(Fig. 4b); these spatial and temporal patterns are consistent
between the LPDR and AIRS products. The LPDR shows
larger PWV seasonal variability in tropical rainforest re-
gions (Fig. 4b) than the AIRS observations, which is at-
tributed to ill-conditioned LPDR retrievals associated with
microwave signal saturation over dense vegetation cover.
Relatively large CV values in regions with average dry-air
conditions (e.g., the Tibetan Plateau) reflect the strong sensi-
tivity of the CV metric to small mean humidity values in the
denominator (% CV= 100·SD/mean). Overall, the LPDR
and AIRS ascending- and descending-orbit-derived PWV
monthly means are highly correlated (R = 0.99) (Fig. 5) with
a major peak in the Northern Hemisphere summer months
(July and August) and a secondary peak in the Southern
Hemisphere summer months (January and February).

The LPDR PWV retrievals were quantitatively validated
against the AIRS observations at 142 global WMO weather
station locations for the years 2010 and 2013 (Table 2).
The AMSR-E/2 retrievals show strong agreement with the
AIRS PWV product (R ≥ 0.91; RMSE≤ 4.94 mm), though
a slight PWV overestimation and underestimation are in-
dicated for the respective AMSR-E (bias≤ 0.27 mm) and
AMSR2 (bias≥−0.37 mm) portions of the record (Table 2).
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Table 2. LPDR daily Tmn, Tmx, and ascending- or descending-orbit-based PWV accuracy in relation to respective in situ air temperature
measurements and AIRS PWV observations for 142 global WMO site locations for the selected years 2010 (AMSR-E) and 2013 (AMSR2).

Tmx (◦C) Tmn (◦C)

R RMSE Bias∗ R RMSE Bias

AMSR-E 0.928 3.428 0.637 0.899 3.307 0.061
AMSR2 0.917 3.484 0.260 0.899 3.150 0.265

PWV (mm) from PWV (mm) from
ascending orbits descending orbits

R RMSE Bias R RMSE Bias

AMSR-E 0.926 4.241 0.266 0.923 4.788 0.197
AMSR2 0.914 4.473 −0.369 0.911 4.941 −0.050

∗ Bias is calculated from retrievals minus observations.

4.3 Daily maximum and minimum surface air
temperature

The LPDR-derived global mean and CV variability maps for
Tmx are presented in Fig. 6, while the Tmn results show sim-
ilar global and seasonal patterns. The LPDR results show
characteristic global temperature patterns following major
climate zones and latitudinal gradients and are similar to the
PWV results (Fig. 4) but with generally greater surface spa-
tial complexity influenced by proximity to coastal areas, veg-
etation and land cover conditions, and elevation-driven tem-
perature lapse rates (Du et al., 2015). The LPDR results show
expected smaller seasonal temperature variability (CV) near
the Equator and larger variability at higher latitudes, espe-
cially in the interior of large landmasses such as North Amer-
ica and Asia. The resulting temperature maps (Fig. 6) only
represent nonfrozen land surface conditions rather than com-
plete annual cycles (i.e., Sects. 2.3, 3.1). We also note that the
LPDR surface air temperatures are derived from ascending-
and descending-orbit Tb retrievals empirically adjusted to
represent daily Tmx and Tmn conditions using in situ tem-
perature measurements from sparse global weather stations.
Thus the LPDR results may deviate from actual daily max-
imum and minimum temperature conditions for some areas
and periods; these and other uncertainties impact LPDR ac-
curacy and performance, which are evaluated in the follow-
ing temperature assessment.

The LPDR-derived Tmx and Tmn retrievals were vali-
dated against independent in situ daily air temperature mea-
surements from 142 global WMO weather stations for the
years 2010 and 2013 (Table 2). Overall, the LPDR temper-
atures corresponded favorably with the WMO temperature
measurements (R ≥ 0.90; RMSE≤ 3.48 ◦C). The AMSR-
E (2010) and AMSR2 (2013) retrievals show similar Tmx
and Tmn retrieval accuracy, with associated RMSE differ-
ences within 0.16 K in relation to the WMO daily tem-
perature measurements. These results indicate improved
LPDR temperature accuracy relative to previously reported

Figure 6. LPDR Tmx mean (a) and 2 times the coefficient of varia-
tion (b) for the years 2003–2010 and 2013–2015.

AMSR2-derived accuracies for Tmx (RMSE= 3.64 ◦C) and
Tmn (RMSE= 3.54 ◦C) from a prior study (Du et al., 2014);
the higher LPDR temperature accuracy (RMSE≤ 3.48 ◦C)
suggests an improvement in sensor inter-calibration and al-
gorithm refinements (Sect. 3.1). However, the calibrated
AMSR2 Tb is not identical to that of AMSR-E as reflected by
a maximum 0.38 ◦C difference in their Tmx and Tmn retrieval
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biases against WMO measurements (Table 2). To evaluate
the impact of the fractional water corrections on the LPDR
v2 air temperature retrievals, Eqs. (1)–(4) were re-derived us-
ing the same procedure (Sect. 2.2) but assuming zero frac-
tional water cover. The results indicated approximately 13 %
improved RMSE performance in the Tmx and Tmn retrievals
using the FW correction relative to air temperature retrievals
derived without accounting for fractional water influence.

4.4 Vegetation optical depth

The previous UMT LPDR v1 AMSR-E VOD record was
assessed globally (Jones et al., 2011) and has been used
for a range of regional ecosystem studies, including vege-
tation phenology and disturbance recovery assessments (Liu
et al., 2013; Jones et al., 2013, 2014). The VOD record can
also be used as a data quality mask for the VSM retrievals be-
cause soil moisture retrieval accuracy is generally degraded
under higher vegetation biomass levels (Du et al., 2016a). In
this study, the LPDR-derived VOD was compared with the
GIMMS3g NDVI record based on an assumption of propor-
tionality between vegetation canopy biomass and greenness
variations (Jones et al., 2011). The evaluation results of the
previous and current studies are consistent, including gener-
ally favorable correlations between VOD and optical vegeta-
tion indices and reduced correspondence at higher biomass
levels.

The LPDR VOD pattern and seasonal variability (CV)
are generally consistent with the global pattern in vegetation
cover indicated from the NDVI record (Fig. S3).The LPDR-
derived mean annual VOD results (Fig. 7a) show character-
istic global patterns in vegetation biomass, including higher
VOD in tropical rainforests (e.g., the Amazon Basin, the
Congo Basin, and Southeast Asia) and much lower VOD in
arid and sparsely vegetated areas, including the Sahara and
Sonoran deserts and Central Australia. Moderate VOD levels
occur in grassland, shrubland, and cropland areas, including
the central USA, sub-Saharan Africa, central China, and In-
dia. Larger VOD relative seasonal variability (Fig. 7b) occurs
over predominantly deciduous and lower biomass areas, in-
cluding grassland, shrubland, and cropland. Large VOD sea-
sonal variations also occur in semiarid climate zones with
distinctive wet and dry cycles, including the African Sahel
where plant growth depends on seasonal rainfall (Proud and
Rasmussen, 2011). A few VOD change hotspots occur in
wetland areas (e.g., the Iberá Wetlands in Argentina and the
Bangweulu Wetlands in Zambia), which may reflect emer-
gent vegetation overlying a standing water background dur-
ing the wet season. Lower VOD seasonality occurs in the
tropics, which is consistent with a smaller seasonal climate
cycle near the equatorial zone. Arid areas show the generally
low VOD levels and seasonality consistent with sparse vege-
tation cover except for some areas, including portions of the
Arabian Peninsula, where relatively large VOD seasonality
may be a result of irrigation activities (Siebert et al., 2005).

Figure 7. Annual mean (a) and 2 times the coefficient of varia-
tion (b) of LPDR 25 km global X-band VOD daily estimates from
AMSR-E/2 ascending observations encompassing the years 2003–
2010 and 2013–2015.

Both VOD and NDVI display similar seasonal cycles rep-
resented by their mean monthly time series (R ≥ 0.88) but
with temporal phase offsets in VOD and NDVI cycles for dif-
ferent land cover types (Fig. 8). Here, the mean seasonal cy-
cle in VOD and NDVI is depicted for major IGBP global land
cover types, including evergreen needleleaf forest (ENF),
evergreen broadleaf forest (EBF), deciduous needleleaf for-
est (DNF), deciduous broadleaf forest (DBF), grassland, and
cropland. The LPDR VOD and GIMMS3g NDVI compar-
ison results are summarized in Table 3 and show strong
correspondence for both ascending-orbit (0.67≤ R ≤ 0.90)
and descending-orbit (0.84≤ R ≤ 0.95) retrievals for ENF,
DNF, grassland, and cropland areas with relatively well-
defined seasonal cycles. A VOD temporal phase shift relative
to NDVI is evident for croplands and detectable for other
land cover types, reflecting different vegetation biophysical
properties that the microwave and optical–infrared instru-
ments are sensitive to (Jones et al., 2011, 2012). Weaker
and even negative VOD and NDVI correlations in EBF re-
gions coincide with lower characteristic canopy seasonality
in the tropics, but may reflect degraded signal-to-noise ra-
tios due to persistent cloud and atmospheric aerosol effects
limiting effective NDVI retrievals and VOD and NDVI sat-
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Table 3. Pearson correlations (R) between LPDR VOD and GIMMS3g NDVI climatology monthly means for the aggregate 2003–2010 and
2013–2015 observation record. The comparisons were made for all global vegetation and selected land cover areas, including ENF, EBF,
DNF, DBF, grassland, and cropland. Both products were projected into a consistent 25.0 km resolution EASE-Grid format. VOD results are
delineated for LPDR ascending- and descending-orbit records.

Pearson correlation Global ENF EBF DNF DBF Grassland Cropland
coefficient

Ascending 0.878 0.715 0.218 0.893 0.201 0.903 0.665
Descending 0.937 0.898 −0.116 0.944 0.871 0.951 0.845

Figure 8. Monthly means and variations (2×SD) of LPDR X-band vegetation optical depth (VOD) and GIMMS3g NDVI for all global
vegetation (a) and selected land cover types, including ENF (b), EBF (c), DNF (d), DBF (e), grassland (f), and cropland (g) areas over the
aggregate 2003–2010 and 2013–2015 observation period.

uration over dense canopies (Jones et al., 2011). For dense
canopies, NDVI seasonality can be strongly driven by the on-
set of new leaves flushing (E. E. Maeda et al., 2016), while

the asynchrony between leaf flush and vegetation growth
may also affect the VOD and NDVI correlations (Jones et
al., 2014). The VOD estimates derived from the descending-
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Figure 9. LPDR 25 km X-band volumetric soil moisture (VSM)
mean (a) and 2 times the coefficient of variation in percentage of
mean values (b) derived from the aggregate 2003–2010 and 2013–
2015 observation record.

orbit Tb retrievals also show overall stronger correspon-
dence with NDVI than the ascending retrievals, especially
for DBF regions (descending orbit R = 0.87; ascending orbit
R = 0.20). Differences in NDVI correspondence between the
ascending- and descending-orbit VOD records may reflect
regional VOD retrieval uncertainties contributed by deficien-
cies in the underlying LPDR algorithm assumptions and pa-
rameterizations, which are discussed below (Sect. 5).

4.5 Soil moisture

The global soil moisture pattern depicted by the LPDR X-
band VSM record (Fig. 9) is generally consistent with the
known global climatology, including characteristically wet
surface soil moisture conditions in northern high-latitude ar-
eas and drier soil moisture extremes in deserts and semiarid
regions such as the African Sahara, the southwestern USA,
and Central Australia. Wetter VSM conditions along coastal
boundaries may reflect remaining ocean Tb contamination of
adjacent land grid cells within the coarser sensor footprint
despite explicit FW correction of the VSM retrievals. Rela-
tively large seasonal soil moisture variations are associated
with areas having distinctive wet and dry seasons, includ-

ing the African Sahel, Central USA, the Indian subconti-
nent, and southern Tibet. For arid regions such as Central
Australia, high relative (%) seasonal CV variability is due
to low average VSM conditions. Lower VSM variability oc-
curs over higher vegetation biomass (VOD) areas, including
forests, where AMSR-E/2 soil moisture sensitivity and VSM
retrieval performance are expected to be lower due to loss of
soil sensitivity; the global range of effective VSM retrievals
and other LPDR observations is represented by the data qual-
ity metrics described below (Sect. 5.2).

The LPDR VSM retrievals were compared against glob-
ally distributed validation watershed measurements (Ta-
ble 4). The LPDR results show overall favorable VSM ac-
curacy in relation to independent in situ soil moisture obser-
vations from the globally distributed monitoring sites within
the effective LPDR domain (0.63≤ R ≤ 0.84; 0.03≤ bias-
corrected RMSE≤ 0.06 cm3 cm−3). The apparent retrieval
biases (−0.10 to 0.09) may partially reflect inconsistencies in
horizontal and vertical representativeness between the in situ
soil moisture measurements and AMSR-E/2 Tb retrievals
(Du et al., 2016a). These results indicate similar or better
accuracy than the reported performance of other AMSR-E
soil moisture products (Jackson et al., 2010; Du et al., 2016a)
and generally better LPDR performance for descending-orbit
(AM) than ascending-orbit (PM) VSM retrievals.

5 Discussion

The latest (v2) LPDR incorporates recent algorithm refine-
ments and updates over the original baseline algorithms and
data record (Jones et al., 2010) while also including an
extended global data record spanning both AMSR-E and
AMSR2 observation periods (June 2002–December 2015).
The resulting data record produces global environmental pat-
terns and seasonal dynamics consistent with characteristic
climate and land cover variability; the LPDR also shows fa-
vorable agreement with a diverse set of independent obser-
vation benchmarks. The LPDR algorithms and parameter es-
timates are internally consistent and include an integrated set
of environmental parameters representing atmosphere, veg-
etation, surface, and soil conditions derived from simulta-
neous satellite multifrequency Tb observations. The itera-
tive algorithm and multiparameter retrieval approach enable
the decomposition of the satellite observations into atmo-
sphere, vegetation, standing water, and soil moisture compo-
nents. In particular, the dynamic open water (FW) correction
in the LPDR algorithm benefits VSM retrievals over areas
with significant spatial and seasonal inundation variability.
The current algorithm is limited to nonfrozen land surface
conditions determined using an independent AMSR-E/2 FT
product (Kim et al., 2017), while the FT parameter is rep-
resented as a simplified daily frozen flag in the LPDR. Po-
tential extension of the LPDR to represent snow cover prop-
erties and frozen conditions would enable continuous land
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Table 4. Summary of satellite LPDR soil moisture retrieval accuracy in relation to in situ surface soil moisture measurements from four
globally distributed validation watersheds.

Statistics Little River Little Washita Nagqu Yanco All sites
(USA; 2003–2005) (USA; 2003–2005) (China; 2010–2011) (Australia; 2009–2010)

Ascending orbits

R 0.627 0.762 0.790 0.755 0.815
RMSE 0.035 0.036 0.051 0.059 0.045
Bias 0.041 0.053 −0.102 −0.042 0.012

Descending orbits

R 0.696 0.733 0.831 0.787 0.835
RMSE 0.032 0.036 0.042 0.055 0.042
Bias 0.071 0.086 −0.063 −0.031 0.038

R is correlation coefficient; RMSE (root mean square error) and bias are in cm3 cm−3. RMSE and all site statistics except bias are calculated with
watershed bias corrected.

parameter observations over a full annual cycle while incor-
porating observations of other key environmental indicators
of the changing cryosphere. The complex microwave emis-
sion and scattering signatures of snow, lake ice, frozen soil,
and vegetation must first be carefully accounted for to enable
the further development and extension of the LPDR retrieval
algorithms (Tedesco et al., 2010; Du et al., 2017).

5.1 LPDR data format

The resulting LPDR is available in a 25 km resolution global
EASE-Grid (v1) projection and GeoTIFF file format. The
data files are organized by ascending and descending orbits
on a daily basis. Each GeoTIFF file consists of six 2-D (1383
columns, 586 rows) data arrays representing five float-type
retrieval data bands (FW, Tmx or Tmn, Tc, PWV, VSM) and
one byte-type QC band. A set of product QC flags are in-
cluded to inform the user about the estimated quality of re-
trieved parameters or missing data. The QC binary bit flags
are summarized in Table 5 and indicate the presence or ab-
sence of the following land surface conditions: frozen ground
(bit 1), snow or ice presence (bit 2), strong precipitation (bit
3), RFI at 18.7 GHz (bit 4), RFI at 10.65 GHz (bit 5), dense
vegetation with VOD> 2.3 (bit 6), large water bodies with
FW> 0.2 (bit 7), and saturated microwave signals (differ-
ence between V-pol and H-pol brightness temperature at 18
or 23 GHz less than 1.0 K; bit 8). The percentages of land ar-
eas with high QC retrievals were summarized by seasons and
sensor orbits (Table 6).

5.2 Data record consistency

The LPDR record described in this study extends from June
2002 to December 2015 and captures both short-term (di-
urnal, daily, annual) variability and longer-term (annual,
decadal) climate trends over the global terrestrial environ-
ment for a diverse set of significant environmental param-

Figure 10. Temporal frequency distribution map of estimated high-
quality (QC) retrievals, which exclude areas with dense vegetation
(VOD> 2.3), saturated microwave signals (V-pol and H-pol Tb dif-
ference at 18 or 23 GHz less than 1.0 K), and large water bodies
(FW> 0.2).

eters. Potential differences in Tb characteristics and algo-
rithm performance between the AMSR-E and AMSR2 por-
tions of the LPDR are expected to introduce artifacts and de-
grade LPDR precision for analyzing long-term environmen-
tal changes. LPDR data consistency was examined through
statistical comparison of best-quality (QC) retrievals be-
tween the AMSR-E and AMSR2 portions of the record
(Sect. 2.3); the global pattern and temporal frequency of
the estimated best retrievals are presented in Fig. 10. As
summarized in Table S1 in the Supplement, the land pa-
rameter retrievals have similar mean values, variations, and
ranges between the AMSR-E and AMSR2 portions of the
record, indicating general LPDR consistency and quality.
However, the underlying Tb retrieval biases between the two
sensors are not completely removed by the sensor inter-
calibration process (Du et al., 2014), which may propa-
gate to uncertainty in the higher-order LPDR retrievals and
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Table 5. LPDR data quality flag description.

Bit number Land surface condition Indication

1 Frozen ground No LPDR retrieval
2 Snow or ice presence No LPDR retrieval
3 Strong precipitation No LPDR retrieval
4 RFI at 18.7 GHz No LPDR retrieval
5 RFI at 10.65 GHz No LPDR retrieval
6 Dense vegetation with VOD> 2.3 Possible large retrieval uncertainty
7 Large water bodies with FW> 0.2 Possible large retrieval uncertainty
8 Saturated microwave signals with V-pol and H-pol Tb Possible large retrieval uncertainty

difference at 18 or 23 GHz less than 1.0 K

Table 6. The percentages of land areas having high QC retrievals
summarized by seasons and sensor orbits; seasons aggregated by
spring (MAM), summer (JJA), autumn (SON), and winter (DJF)
months of the Northern Hemisphere.

Ascending Descending

Northern Southern Northern Southern
Hemisphere Hemisphere Hemisphere Hemisphere

MAM 95.8 % 92.6 % 93.1 % 88.4 %
JJA 95.3 % 92.6 % 94.4 % 89.2 %
SON 95.1 % 93.5 % 93.4 % 89.2 %
DJF 76.5 % 92.2 % 73.0 % 88.3 %

trends. For ascending retrievals, the AMSR2 biases relative
to AMSR-E for the LPDR parameters FW, PWV, Tmx, VOD,
and VSM are about 0.00, −0.50 mm, −0.24 ◦C, −0.03, and
−0.01 cm3 cm−3, respectively. For descending retrievals,
the corresponding biases are 0.00, −0.45 mm, 0.13 ◦C, 0.01,
and 0.01 cm3 cm−3. The AMSR2 record also tends to have
smaller PWV- and VOD-derived SD variability and ranges
compared with AMSR-E (Table S1). Similar differences be-
tween AMSR-E and AMSR2 retrievals are also evident in the
validation assessments against the independent observations,
including WMO surface air temperature measurements and
AIRS PWV (Table 2).

5.3 LPDR uncertainty

While the v2 data record provides new refinements and en-
hancements over the earlier LPDR baseline, several prod-
uct uncertainty and consistency issues remain unresolved.
The LPDR VOD and VSM analysis (Sect. 4.4 and 4.5) in-
dicated generally better performance for descending- than
ascending-orbit retrievals. Better descending (∼ 01:30) per-
formance may result from seasonal changes in thermal gradi-
ents between surface air, canopy, and ground layer conditions
through the process of leaf development (Durre and Wallace,
2001), which is not accounted for in the VOD retrieval algo-
rithm (Jones et al., 2012). The AMSR-E/2 descending obser-
vations reflect relatively isothermal early morning conditions

that promote better VOD and VSM performance relative to
ascending observations under midday (∼ 13:30) conditions
characterized by larger thermal gradients.

The LPDR retrievals in more densely vegetated areas
(e.g., VOD> 2.3) are expected to have greater uncertainty
and should be used with caution; these areas are flagged
in the LPDR QC data fields and distinguished from areas
with expected higher-quality retrievals (Fig. 10). In more
densely vegetated areas, the higher-frequency AMSR-E/2 Tb
retrievals are more likely to have smaller polarization dif-
ferences and signal saturation, resulting in less sensitivity
to VOD and PWV and higher retrieval uncertainties. For
this reason, differences in VOD and PWV retrievals be-
tween AMSR-E and AMSR2 may be magnified over more
densely vegetated areas where sensor inter-calibration uncer-
tainties further lower the signal-to-noise ratio. Denser vege-
tation cover also promotes stronger attenuation of underlying
soil and water microwave signals, increasing VSM retrieval
uncertainty in these areas (Du et al., 2016a). Similarly, the
retrieval accuracy for standing water with overlying vegeta-
tion cover, a different scenario from the exposed open water
with surrounding vegetation cover assumed in this study, is
expected to decrease exponentially under higher VOD lev-
els (Du et al., 2016b). The land parameter grid cells and
retrievals along coastlines and other large water bodies are
likely to be affected by water contamination of the coarse
sensor Tb footprint, though these effects are partially ac-
counted for by representation of FW on the associated land
parameter retrievals within a grid cell. Regions with larger
FW cover may have higher retrieval uncertainties, which are
represented as a water flag (FW> 0.2) in the LPDR quality
mask (Fig. 10).

The AMSR2 and AMSR-E Tb records used for this study
were previously calibrated (Du et al., 2014), but remaining
artifacts from the different sensor spatial resolutions and in-
strument calibration systems likely contribute to differences
in land parameter characteristics and performance between
the two sensor periods of the record. Though small in quan-
tity, the AMSR2 retrieval biases relative to AMSR-E (Ta-
bles 2 and S1) should be considered when analyzing long-
term environmental trends. Differences in parameter accu-
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racy and performance between AMSR2 and AMSR-E ob-
servations and a limited (12.5 years) LPDR (v2) period of
record constrain capabilities for assessing subtle environ-
mental trends. Future LPDR releases are expected to benefit
from continuing AMSR2 operations and calibration refine-
ments to the integrated AMSR-E/2 Tb record, enabling more
accurate environmental change assessments.

6 Data availability

The AMSR-E/2-derived LPDR described in this study is
publicly available through the following link: http://files.
ntsg.umt.edu/data/LPDR_v2.

7 Conclusions

We developed an extended global land parameter data record
for ecosystem studies using similar calibrated satellite multi-
frequency and polarization Tb retrievals from AMSR-E and
AMSR2. The latest (v2) LPDR represents an advance over a
prior (v1) product release by incorporating recent algorithm
refinements and an extended (June 2002–December 2015)
satellite observation record. The LPDR algorithms are inter-
nally consistent and rely on AMSR-E and AMSR2 bright-
ness temperatures as primary inputs. The algorithms exploit
the strong microwave sensitivity to liquid water in the land-
scape and the variable sensitivity of different Tb frequen-
cies and polarizations to vegetation, soil, and atmosphere el-
ements to derive a set of synergistic daily land parameters,
including VSM, FW, VOD, Tmx, Tmn, and PWV. The result-
ing data record shows favorable accuracy and performance
in relation to a diversity of other observation benchmarks.
However, small but significant differences were found be-
tween the AMSR-E and AMSR2 portions of the record due
to artifacts from cross-sensor calibration; these effects should
be considered when interpreting environmental trends from
the long-term record. The LPDR provides global coverage
and up to twice-daily observations for non-snow- or non-ice-
covered land surface conditions. The data are publicly avail-
able with detailed documentation and data quality informa-
tion and with suitable precision to support a range of envi-
ronmental studies. Example LPDR applications from the lit-
erature include land surface phenology monitoring, vector-
borne disease risk, surface hydrology and drought severity,
and climate-change-related assessments. Continuing opera-
tions from AMSR2 and similar microwave sensors allow
for future LPDR extensions, while further calibration refine-
ments and a longer data record are expected to yield addi-
tional gains in precision and product utility for distinguishing
and diagnosing global environmental changes.

The Supplement related to this article is available online
at https://doi.org/10.5194/essd-9-791-2017-supplement.
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