Articles | Volume 5, issue 1
https://doi.org/10.5194/essd-5-71-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/essd-5-71-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present
A. Becker
Global Precipitation Climatology Centre, Deutscher Wetterdienst, Offenbach, Germany
P. Finger
Global Precipitation Climatology Centre, Deutscher Wetterdienst, Offenbach, Germany
A. Meyer-Christoffer
Global Precipitation Climatology Centre, Deutscher Wetterdienst, Offenbach, Germany
B. Rudolf
Global Precipitation Climatology Centre, Deutscher Wetterdienst, Offenbach, Germany
K. Schamm
Global Precipitation Climatology Centre, Deutscher Wetterdienst, Offenbach, Germany
U. Schneider
Global Precipitation Climatology Centre, Deutscher Wetterdienst, Offenbach, Germany
M. Ziese
Global Precipitation Climatology Centre, Deutscher Wetterdienst, Offenbach, Germany
Related authors
Steefan Contractor, Markus G. Donat, Lisa V. Alexander, Markus Ziese, Anja Meyer-Christoffer, Udo Schneider, Elke Rustemeier, Andreas Becker, Imke Durre, and Russell S. Vose
Hydrol. Earth Syst. Sci., 24, 919–943, https://doi.org/10.5194/hess-24-919-2020, https://doi.org/10.5194/hess-24-919-2020, 2020
Short summary
Short summary
This paper provides the documentation of the REGEN dataset, a global land-based daily observational precipitation dataset from 1950 to 2016 at a gridded resolution of 1° × 1°. REGEN is currently the longest-running global dataset of daily precipitation and is expected to facilitate studies looking at changes and variability in several aspects of daily precipitation distributions, extremes and measures of hydrological intensity.
Udo Schneider, Markus Ziese, Anja Meyer-Christoffer, Peter Finger, Elke Rustemeier, and Andreas Becker
Proc. IAHS, 374, 29–34, https://doi.org/10.5194/piahs-374-29-2016, https://doi.org/10.5194/piahs-374-29-2016, 2016
Short summary
Short summary
The Global Precipitation Climatology Centre (GPCC) operated by Deutscher Wetterdienst since 1989 provides reliable information on monthly and daily precipitatation since 1901 and 1988, respectively. The information is provided as DOI referenced data sets and we provide herewith an overview and orientation which product is most suitable for a number of archetype use cases. We also provide some illustration on particular use cases. The GPCC data product will be further upgraded and prolongued.
M. Ziese, U. Schneider, A. Meyer-Christoffer, K. Schamm, J. Vido, P. Finger, P. Bissolli, S. Pietzsch, and A. Becker
Earth Syst. Sci. Data, 6, 285–295, https://doi.org/10.5194/essd-6-285-2014, https://doi.org/10.5194/essd-6-285-2014, 2014
B. Merz, J. Aerts, K. Arnbjerg-Nielsen, M. Baldi, A. Becker, A. Bichet, G. Blöschl, L. M. Bouwer, A. Brauer, F. Cioffi, J. M. Delgado, M. Gocht, F. Guzzetti, S. Harrigan, K. Hirschboeck, C. Kilsby, W. Kron, H.-H. Kwon, U. Lall, R. Merz, K. Nissen, P. Salvatti, T. Swierczynski, U. Ulbrich, A. Viglione, P. J. Ward, M. Weiler, B. Wilhelm, and M. Nied
Nat. Hazards Earth Syst. Sci., 14, 1921–1942, https://doi.org/10.5194/nhess-14-1921-2014, https://doi.org/10.5194/nhess-14-1921-2014, 2014
K. Schamm, M. Ziese, A. Becker, P. Finger, A. Meyer-Christoffer, U. Schneider, M. Schröder, and P. Stender
Earth Syst. Sci. Data, 6, 49–60, https://doi.org/10.5194/essd-6-49-2014, https://doi.org/10.5194/essd-6-49-2014, 2014
Vera Thiemig, Goncalo N. Gomes, Jon O. Skøien, Markus Ziese, Armin Rauthe-Schöch, Elke Rustemeier, Kira Rehfeldt, Jakub P. Walawender, Christine Kolbe, Damien Pichon, Christoph Schweim, and Peter Salamon
Earth Syst. Sci. Data, 14, 3249–3272, https://doi.org/10.5194/essd-14-3249-2022, https://doi.org/10.5194/essd-14-3249-2022, 2022
Short summary
Short summary
EMO-5 is a free and open European high-resolution (5 km), sub-daily, multi-variable (precipitation, temperatures, wind speed, solar radiation, vapour pressure), multi-decadal meteorological dataset based on quality-controlled observations coming from almost 30 000 stations across Europe, and is produced in near real-time. EMO-5 (v1) covers the time period from 1990 to 2019. In this paper, we have provided insight into the source data, the applied methods, and the quality assessment of EMO-5.
Steefan Contractor, Markus G. Donat, Lisa V. Alexander, Markus Ziese, Anja Meyer-Christoffer, Udo Schneider, Elke Rustemeier, Andreas Becker, Imke Durre, and Russell S. Vose
Hydrol. Earth Syst. Sci., 24, 919–943, https://doi.org/10.5194/hess-24-919-2020, https://doi.org/10.5194/hess-24-919-2020, 2020
Short summary
Short summary
This paper provides the documentation of the REGEN dataset, a global land-based daily observational precipitation dataset from 1950 to 2016 at a gridded resolution of 1° × 1°. REGEN is currently the longest-running global dataset of daily precipitation and is expected to facilitate studies looking at changes and variability in several aspects of daily precipitation distributions, extremes and measures of hydrological intensity.
Udo Schneider, Markus Ziese, Anja Meyer-Christoffer, Peter Finger, Elke Rustemeier, and Andreas Becker
Proc. IAHS, 374, 29–34, https://doi.org/10.5194/piahs-374-29-2016, https://doi.org/10.5194/piahs-374-29-2016, 2016
Short summary
Short summary
The Global Precipitation Climatology Centre (GPCC) operated by Deutscher Wetterdienst since 1989 provides reliable information on monthly and daily precipitatation since 1901 and 1988, respectively. The information is provided as DOI referenced data sets and we provide herewith an overview and orientation which product is most suitable for a number of archetype use cases. We also provide some illustration on particular use cases. The GPCC data product will be further upgraded and prolongued.
M. Ziese, U. Schneider, A. Meyer-Christoffer, K. Schamm, J. Vido, P. Finger, P. Bissolli, S. Pietzsch, and A. Becker
Earth Syst. Sci. Data, 6, 285–295, https://doi.org/10.5194/essd-6-285-2014, https://doi.org/10.5194/essd-6-285-2014, 2014
B. Merz, J. Aerts, K. Arnbjerg-Nielsen, M. Baldi, A. Becker, A. Bichet, G. Blöschl, L. M. Bouwer, A. Brauer, F. Cioffi, J. M. Delgado, M. Gocht, F. Guzzetti, S. Harrigan, K. Hirschboeck, C. Kilsby, W. Kron, H.-H. Kwon, U. Lall, R. Merz, K. Nissen, P. Salvatti, T. Swierczynski, U. Ulbrich, A. Viglione, P. J. Ward, M. Weiler, B. Wilhelm, and M. Nied
Nat. Hazards Earth Syst. Sci., 14, 1921–1942, https://doi.org/10.5194/nhess-14-1921-2014, https://doi.org/10.5194/nhess-14-1921-2014, 2014
K. Schamm, M. Ziese, A. Becker, P. Finger, A. Meyer-Christoffer, U. Schneider, M. Schröder, and P. Stender
Earth Syst. Sci. Data, 6, 49–60, https://doi.org/10.5194/essd-6-49-2014, https://doi.org/10.5194/essd-6-49-2014, 2014
Related subject area
Data, Algorithms, and Models
Improved maps of surface water bodies, large dams, reservoirs, and lakes in China
The Fengyun-3D (FY-3D) global active fire product: principle, methodology and validation
A high-resolution inland surface water body dataset for the tundra and boreal forests of North America
A Central Asia hydrologic monitoring dataset for food and water security applications in Afghanistan
HOTRUNZ: an open-access 1 km resolution monthly 1910–2019 time series of interpolated temperature and rainfall grids with associated uncertainty for New Zealand
A dataset of microphysical cloud parameters, retrieved from Fourier-transform infrared (FTIR) emission spectra measured in Arctic summer 2017
A global long-term (1981–2019) daily land surface radiation budget product from AVHRR satellite data using a residual convolutional neural network
First SMOS Sea Surface Salinity dedicated products over the Baltic Sea
HomogWS-se: a century-long homogenized dataset of near-surface wind speed observations since 1925 rescued in Sweden
Mapping long-term and high-resolution global gridded photosynthetically active radiation using the ISCCP H-series cloud product and reanalysis data
Description of the China global Merged Surface Temperature version 2.0
TimeSpec4LULC: a global multispectral time series database for training LULC mapping models with machine learning
Hyperspectral reflectance spectra of floating matters derived from Hyperspectral Imager for the Coastal Ocean (HICO) observations
Multi-site, multi-crop measurements in the soil–vegetation–atmosphere continuum: a comprehensive dataset from two climatically contrasting regions in southwestern Germany for the period 2009–2018
Full-coverage 1 km daily ambient PM2.5 and O3 concentrations of China in 2005–2017 based on a multi-variable random forest model
Median bed-material sediment particle size across rivers in the contiguous US
A flux tower dataset tailored for land model evaluation
A Landsat-derived annual inland water clarity dataset of China between 1984 and 2018
A harmonized global land evaporation dataset from model-based products covering 1980–2017
Estimating population and urban areas at risk of coastal hazards, 1990–2015: how data choices matter
Landsat-based Irrigation Dataset (LANID): 30 m resolution maps of irrigation distribution, frequency, and change for the US, 1997–2017
GRQA: Global River Water Quality Archive
A 1 km global cropland dataset from 10 000 BCE to 2100 CE
A 1 km global dataset of historical (1979–2013) and future (2020–2100) Köppen–Geiger climate classification and bioclimatic variables
SeaFlux: harmonization of air–sea CO2 fluxes from surface pCO2 data products using a standardized approach
Nitrogen deposition in the UK at 1 km resolution from 1990 to 2017
ERA5-Land: a state-of-the-art global reanalysis dataset for land applications
An all-sky 1 km daily land surface air temperature product over mainland China for 2003–2019 from MODIS and ancillary data
100 years of lake evolution over the Qinghai–Tibet Plateau
The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019
Coastal complexity of the Antarctic continent
UAV-based very high resolution point cloud, digital surface model and orthomosaic of the Chã das Caldeiras lava fields (Fogo, Cabo Verde)
AQ-Bench: a benchmark dataset for machine learning on global air quality metrics
Bias-corrected and spatially disaggregated seasonal forecasts: a long-term reference forecast product for the water sector in semi-arid regions
The consolidated European synthesis of CH4 and N2O emissions for the European Union and United Kingdom: 1990–2017
The consolidated European synthesis of CO2 emissions and removals for the European Union and United Kingdom: 1990–2018
A new merged dataset for analyzing clouds, precipitation and atmospheric parameters based on ERA5 reanalysis data and the measurements of the Tropical Rainfall Measuring Mission (TRMM) precipitation radar and visible and infrared scanner
A new satellite-derived dataset for marine aquaculture areas in China's coastal region
Database of petrophysical properties of the Mid-German Crystalline Rise
Landsat-derived bathymetry of lakes on the Arctic Coastal Plain of northern Alaska
Merging ground-based sunshine duration observations with satellite cloud and aerosol retrievals to produce high-resolution long-term surface solar radiation over China
Hyperspectral-reflectance dataset of dry, wet and submerged marine litter
A climate service for ecologists: sharing pre-processed EURO-CORDEX regional climate scenario data using the eLTER Information System
Crowdsourced air traffic data from the OpenSky Network 2019–2020
A restructured and updated global soil respiration database (SRDB-V5)
The Berkeley Earth Land/Ocean Temperature Record
Dielectric database of organic Arctic soils (DDOAS)
Global Carbon Budget 2020
A global long-term (1981–2000) land surface temperature product for NOAA AVHRR
A coastally improved global dataset of wet tropospheric corrections for satellite altimetry
Xinxin Wang, Xiangming Xiao, Yuanwei Qin, Jinwei Dong, Jihua Wu, and Bo Li
Earth Syst. Sci. Data, 14, 3757–3771, https://doi.org/10.5194/essd-14-3757-2022, https://doi.org/10.5194/essd-14-3757-2022, 2022
Short summary
Short summary
We generated China’s surface water bodies, Large Dams, Reservoirs, and Lakes (China-LDRL) dataset by analyzing all available Landsat imagery in 2019 (19\,338 images) in Google Earth Engine. The dataset provides accurate information on the geographical locations and sizes of surface water bodies, large dams, reservoirs, and lakes in China. The China-LDRL dataset will contribute to the understanding of water security and water resources management in China.
Jie Chen, Qi Yao, Ziyue Chen, Manchun Li, Zhaozhan Hao, Cheng Liu, Wei Zheng, Miaoqing Xu, Xiao Chen, Jing Yang, Qiancheng Lv, and Bingbo Gao
Earth Syst. Sci. Data, 14, 3489–3508, https://doi.org/10.5194/essd-14-3489-2022, https://doi.org/10.5194/essd-14-3489-2022, 2022
Short summary
Short summary
The potential degradation of mainstream global fire products leads to large uncertainty in the effective monitoring of wildfires and their influence. To fill this gap, we produced a Fengyun-3D (FY-3D) global active fire product with a similar spatial and temporal resolution to MODIS fire products, aiming to serve as continuity and a replacement for MODIS fire products. The FY-3D fire product is an ideal tool for global fire monitoring and can be preferably employed for fire monitoring in China.
Yijie Sui, Min Feng, Chunling Wang, and Xin Li
Earth Syst. Sci. Data, 14, 3349–3363, https://doi.org/10.5194/essd-14-3349-2022, https://doi.org/10.5194/essd-14-3349-2022, 2022
Short summary
Short summary
High-latitude water bodies differ greatly in their morphological and topological characteristics related to their formation, type, and vulnerability. In this paper, we present a water body dataset for the North American high latitudes (WBD-NAHL). Nearly 6.5 million water bodies were identified, with approximately 6 million (~90 %) of them smaller than 0.1 km2.
Amy McNally, Jossy Jacob, Kristi Arsenault, Kimberly Slinski, Daniel P. Sarmiento, Andrew Hoell, Shahriar Pervez, James Rowland, Mike Budde, Sujay Kumar, Christa Peters-Lidard, and James P. Verdin
Earth Syst. Sci. Data, 14, 3115–3135, https://doi.org/10.5194/essd-14-3115-2022, https://doi.org/10.5194/essd-14-3115-2022, 2022
Short summary
Short summary
The Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System (FLDAS) global and Central Asia data streams described here generate routine estimates of snow, soil moisture, runoff, and other variables useful for tracking water availability. These data are hosted by NASA and USGS data portals for public use.
Thomas R. Etherington, George L. W. Perry, and Janet M. Wilmshurst
Earth Syst. Sci. Data, 14, 2817–2832, https://doi.org/10.5194/essd-14-2817-2022, https://doi.org/10.5194/essd-14-2817-2022, 2022
Short summary
Short summary
Long time series of temperature and rainfall grids are fundamental to understanding how these variables affects environmental or ecological patterns and processes. We present a History of Open Temperature and Rainfall with Uncertainty in New Zealand (HOTRUNZ) that is an open-access dataset that provides monthly 1 km resolution grids of rainfall and mean, minimum, and maximum daily temperatures with associated uncertainties for New Zealand from 1910 to 2019.
Philipp Richter, Mathias Palm, Christine Weinzierl, Hannes Griesche, Penny M. Rowe, and Justus Notholt
Earth Syst. Sci. Data, 14, 2767–2784, https://doi.org/10.5194/essd-14-2767-2022, https://doi.org/10.5194/essd-14-2767-2022, 2022
Short summary
Short summary
We present a dataset of cloud optical depths, effective radii and water paths from optically thin clouds observed in the Arctic around Svalbard. The data have been retrieved from infrared spectral radiance measured using a Fourier-transform infrared (FTIR) spectrometer. Besides a description of the measurements and retrieval technique, the data are put into context with results of corresponding measurements from microwave radiometer, lidar and cloud radar.
Jianglei Xu, Shunlin Liang, and Bo Jiang
Earth Syst. Sci. Data, 14, 2315–2341, https://doi.org/10.5194/essd-14-2315-2022, https://doi.org/10.5194/essd-14-2315-2022, 2022
Short summary
Short summary
Land surface all-wave net radiation (Rn) is a key parameter in many land processes. Current products have drawbacks of coarse resolutions, large uncertainty, and short time spans. A deep learning method was used to obtain global surface Rn. A long-term Rn product was generated from 1981 to 2019 using AVHRR data. The product has the highest accuracy and a reasonable spatiotemporal variation compared to three other products. Our product will play an important role in long-term climate change.
Verónica González-Gambau, Estrella Olmedo, Antonio Turiel, Cristina González-Haro, Aina García-Espriu, Justino Martínez, Pekka Alenius, Laura Tuomi, Rafael Catany, Manuel Arias, Carolina Gabarró, Nina Hoareau, Marta Umbert, Roberto Sabia, and Diego Fernández
Earth Syst. Sci. Data, 14, 2343–2368, https://doi.org/10.5194/essd-14-2343-2022, https://doi.org/10.5194/essd-14-2343-2022, 2022
Short summary
Short summary
We present the first Soil Moisture and Ocean Salinity Sea Surface Salinity (SSS) dedicated products over the Baltic Sea (ESA Baltic+ Salinity Dynamics). The Baltic+ L3 product covers 9 days in a 0.25° grid. The Baltic+ L4 is derived by merging L3 SSS with sea surface temperature information, giving a daily product in a 0.05° grid. The accuracy of L3 is 0.7–0.8 and 0.4 psu for the L4. Baltic+ products have shown to be useful, covering spatiotemporal data gaps and for validating numerical models.
Chunlüe Zhou, Cesar Azorin-Molina, Erik Engström, Lorenzo Minola, Lennart Wern, Sverker Hellström, Jessika Lönn, and Deliang Chen
Earth Syst. Sci. Data, 14, 2167–2177, https://doi.org/10.5194/essd-14-2167-2022, https://doi.org/10.5194/essd-14-2167-2022, 2022
Short summary
Short summary
To fill the key gap of short availability and inhomogeneity of wind speed (WS) in Sweden, we rescued the early paper records of WS since 1925 and built the first 10-member centennial homogenized WS dataset (HomogWS-se) for community use. An initial WS stilling and recovery before the 1990s was observed, and a strong link with North Atlantic Oscillation was found. HomogWS-se improves our knowledge of uncertainty and causes of historical WS changes.
Wenjun Tang, Jun Qin, Kun Yang, Yaozhi Jiang, and Weihao Pan
Earth Syst. Sci. Data, 14, 2007–2019, https://doi.org/10.5194/essd-14-2007-2022, https://doi.org/10.5194/essd-14-2007-2022, 2022
Short summary
Short summary
Photosynthetically active radiation (PAR) is a fundamental physiological variable for research in the ecological, agricultural, and global change fields. In this study, we produced a 35-year high-resolution global gridded PAR dataset. Compared with the well-known global satellite-based PAR product of the Earth's Radiant Energy System (CERES), our PAR product was found to be a more accurate dataset with higher resolution.
Wenbin Sun, Yang Yang, Liya Chao, Wenjie Dong, Boyin Huang, Phil Jones, and Qingxiang Li
Earth Syst. Sci. Data, 14, 1677–1693, https://doi.org/10.5194/essd-14-1677-2022, https://doi.org/10.5194/essd-14-1677-2022, 2022
Short summary
Short summary
The new China global Merged Surface Temperature CMST 2.0 is the updated version of CMST-Interim used in the IPCC's AR6. The updated dataset is described in this study, containing three versions: CMST2.0 – Nrec, CMST2.0 – Imax, and CMST2.0 – Imin. The reconstructed datasets significantly improve data coverage, especially in the high latitudes in the Northern Hemisphere, thus increasing the long-term trends at global, hemispheric, and regional scales since 1850.
Rohaifa Khaldi, Domingo Alcaraz-Segura, Emilio Guirado, Yassir Benhammou, Abdellatif El Afia, Francisco Herrera, and Siham Tabik
Earth Syst. Sci. Data, 14, 1377–1411, https://doi.org/10.5194/essd-14-1377-2022, https://doi.org/10.5194/essd-14-1377-2022, 2022
Short summary
Short summary
This dataset with millions of 22-year time series for seven spectral bands was built by merging Terra and Aqua satellite data and annotated for 29 LULC classes by spatial–temporal agreement across 15 global LULC products. The mean F1 score was 96 % at the coarsest classification level and 87 % at the finest one. The dataset is born to develop and evaluate machine learning models to perform global LULC mapping given the disagreement between current global LULC products.
Chuanmin Hu
Earth Syst. Sci. Data, 14, 1183–1192, https://doi.org/10.5194/essd-14-1183-2022, https://doi.org/10.5194/essd-14-1183-2022, 2022
Short summary
Short summary
Using data collected by the Hyperspectral Imager for the Coastal Ocean (HICO) between 2010–2014, hyperspectral reflectance of various floating matters in global oceans and lakes is derived for the spectral range of 400–800 nm. Such reflectance spectra are expected to provide spectral endmembers to differentiate and quantify the floating matters from existing multi-band satellite sensors and future hyperspectral satellite missions such as NASA’s PACE, SBG, and GLIMR missions.
Tobias K. D. Weber, Joachim Ingwersen, Petra Högy, Arne Poyda, Hans-Dieter Wizemann, Michael Scott Demyan, Kristina Bohm, Ravshan Eshonkulov, Sebastian Gayler, Pascal Kremer, Moritz Laub, Yvonne Funkiun Nkwain, Christian Troost, Irene Witte, Tim Reichenau, Thomas Berger, Georg Cadisch, Torsten Müller, Andreas Fangmeier, Volker Wulfmeyer, and Thilo Streck
Earth Syst. Sci. Data, 14, 1153–1181, https://doi.org/10.5194/essd-14-1153-2022, https://doi.org/10.5194/essd-14-1153-2022, 2022
Short summary
Short summary
Presented are measurement results from six agricultural fields operated by local farmers in southwestern Germany over 9 years. Six eddy-covariance stations measuring water, energy, and carbon fluxes between the vegetated soil surface and the atmosphere provided the backbone of the measurement sites and were supplemented by extensive soil and vegetation state monitoring. The dataset is ideal for testing process models characterizing fluxes at the vegetated soil surface and in the atmosphere.
Runmei Ma, Jie Ban, Qing Wang, Yayi Zhang, Yang Yang, Shenshen Li, Wenjiao Shi, Zhen Zhou, Jiawei Zang, and Tiantian Li
Earth Syst. Sci. Data, 14, 943–954, https://doi.org/10.5194/essd-14-943-2022, https://doi.org/10.5194/essd-14-943-2022, 2022
Short summary
Short summary
We constructed multi-variable random forest models based on 10-fold cross-validation and estimated daily PM2.5 and O3 concentration of China in 2005–2017 at a resolution of 1 km. The daily R2 values of PM2.5 and O3 were 0.85 and 0.77. The meteorological variables can significantly affect both PM2.5 and O3 modeling. During 2005–2017, PM2.5 exhibited an overall downward trend, while O3 experienced the opposite. The temporal trend of PM2.5 and O3 had spatial characteristics during the study period.
Guta Wakbulcho Abeshu, Hong-Yi Li, Zhenduo Zhu, Zeli Tan, and L. Ruby Leung
Earth Syst. Sci. Data, 14, 929–942, https://doi.org/10.5194/essd-14-929-2022, https://doi.org/10.5194/essd-14-929-2022, 2022
Short summary
Short summary
Existing riverbed sediment particle size data are sparsely available at individual sites. We develop a continuous map of median riverbed sediment particle size over the contiguous US corresponding to millions of river segments based on the existing observations and machine learning methods. This map is useful for research in large-scale river sediment using model- and data-driven approaches, teaching environmental and earth system sciences, planning and managing floodplain zones, etc.
Anna M. Ukkola, Gab Abramowitz, and Martin G. De Kauwe
Earth Syst. Sci. Data, 14, 449–461, https://doi.org/10.5194/essd-14-449-2022, https://doi.org/10.5194/essd-14-449-2022, 2022
Short summary
Short summary
Flux towers provide measurements of water, energy, and carbon fluxes. Flux tower data are invaluable in improving and evaluating land models but are not suited to modelling applications as published. Here we present flux tower data tailored for land modelling, encompassing 170 sites globally. Our dataset resolves several key limitations hindering the use of flux tower data in land modelling, including incomplete forcing variable, data format, and low data quality.
Hui Tao, Kaishan Song, Ge Liu, Qiang Wang, Zhidan Wen, Pierre-Andre Jacinthe, Xiaofeng Xu, Jia Du, Yingxin Shang, Sijia Li, Zongming Wang, Lili Lyu, Junbin Hou, Xiang Wang, Dong Liu, Kun Shi, Baohua Zhang, and Hongtao Duan
Earth Syst. Sci. Data, 14, 79–94, https://doi.org/10.5194/essd-14-79-2022, https://doi.org/10.5194/essd-14-79-2022, 2022
Short summary
Short summary
During 1984–2018, lakes in the Tibetan-Qinghai Plateau had the clearest water (mean 3.32 ± 0.38 m), while those in the northeastern region had the lowest Secchi disk depth (SDD) (mean 0.60 ± 0.09 m). Among the 10 814 lakes with > 10 years of SDD results, 55.4 % and 3.5 % experienced significantly increasing and decreasing trends of SDD, respectively. With the exception of Inner Mongolia–Xinjiang, more than half of lakes in all the other regions exhibited a significant trend of increasing SDD.
Jiao Lu, Guojie Wang, Tiexi Chen, Shijie Li, Daniel Fiifi Tawia Hagan, Giri Kattel, Jian Peng, Tong Jiang, and Buda Su
Earth Syst. Sci. Data, 13, 5879–5898, https://doi.org/10.5194/essd-13-5879-2021, https://doi.org/10.5194/essd-13-5879-2021, 2021
Short summary
Short summary
This study has combined three existing land evaporation (ET) products to obtain a single framework of a long-term (1980–2017) daily ET product at a spatial resolution of 0.25° to define the global proxy ET with lower uncertainties. The merged product is the best at capturing dynamics over different locations and times among all data sets. The merged product performed well over a range of vegetation cover scenarios and also captured the trend of land evaporation over different areas well.
Kytt MacManus, Deborah Balk, Hasim Engin, Gordon McGranahan, and Rya Inman
Earth Syst. Sci. Data, 13, 5747–5801, https://doi.org/10.5194/essd-13-5747-2021, https://doi.org/10.5194/essd-13-5747-2021, 2021
Short summary
Short summary
New estimates of population and land area by settlement types within low-elevation coastal zones (LECZs) based on four sources of population data, four sources of settlement data and four sources of elevation data for the years 1990, 2000 and 2015. The paper describes the sensitivity of these estimates and discusses the fitness of use guiding user decisions. Data choices impact the number of people estimated within LECZs, but across all sources the LECZs are predominantly urban and growing.
Yanhua Xie, Holly K. Gibbs, and Tyler J. Lark
Earth Syst. Sci. Data, 13, 5689–5710, https://doi.org/10.5194/essd-13-5689-2021, https://doi.org/10.5194/essd-13-5689-2021, 2021
Short summary
Short summary
We created 30 m resolution annual irrigation maps covering the conterminous US for the period of 1997–2017, together with derivative products and ground reference data. The products have several improvements over other data, including field-level details of change and frequency, an annual time step, a collection of ~ 10 000 ground reference locations for the eastern US, and improved mapping accuracy of over 90 %, especially in the east compared to others of 50 % to 80 %.
Holger Virro, Giuseppe Amatulli, Alexander Kmoch, Longzhu Shen, and Evelyn Uuemaa
Earth Syst. Sci. Data, 13, 5483–5507, https://doi.org/10.5194/essd-13-5483-2021, https://doi.org/10.5194/essd-13-5483-2021, 2021
Short summary
Short summary
Water quality modeling is essential for understanding and mitigating water quality deterioration in river networks due to agricultural and industrial pollution. Improving the availability and usability of open data is vital to support global water quality modeling efforts. The GRQA extends the spatial and temporal coverage of previously available water quality data and provides a reproducible workflow for combining multi-source water quality datasets.
Bowen Cao, Le Yu, Xuecao Li, Min Chen, Xia Li, Pengyu Hao, and Peng Gong
Earth Syst. Sci. Data, 13, 5403–5421, https://doi.org/10.5194/essd-13-5403-2021, https://doi.org/10.5194/essd-13-5403-2021, 2021
Short summary
Short summary
In the study, the first 1 km global cropland proportion dataset for 10 000 BCE–2100 CE was produced through the harmonization and downscaling framework. The mapping result coincides well with widely used datasets at present. With improved spatial resolution, our maps can better capture the cropland distribution details and spatial heterogeneity. The dataset will be valuable for long-term simulations and precise analyses. The framework can be extended to specific regions or other land use types.
Diyang Cui, Shunlin Liang, Dongdong Wang, and Zheng Liu
Earth Syst. Sci. Data, 13, 5087–5114, https://doi.org/10.5194/essd-13-5087-2021, https://doi.org/10.5194/essd-13-5087-2021, 2021
Short summary
Short summary
Large portions of the Earth's surface are expected to experience changes in climatic conditions. The rearrangement of climate distributions can lead to serious impacts on ecological and social systems. Major climate zones are distributed in a predictable pattern and are largely defined following the Köppen climate classification. This creates an urgent need to compile a series of Köppen climate classification maps with finer spatial and temporal resolutions and improved accuracy.
Amanda R. Fay, Luke Gregor, Peter Landschützer, Galen A. McKinley, Nicolas Gruber, Marion Gehlen, Yosuke Iida, Goulven G. Laruelle, Christian Rödenbeck, Alizée Roobaert, and Jiye Zeng
Earth Syst. Sci. Data, 13, 4693–4710, https://doi.org/10.5194/essd-13-4693-2021, https://doi.org/10.5194/essd-13-4693-2021, 2021
Short summary
Short summary
The movement of carbon dioxide from the atmosphere to the ocean is estimated using surface ocean carbon (pCO2) measurements and an equation including variables such as temperature and wind speed; the choices of these variables lead to uncertainties. We introduce the SeaFlux ensemble which provides carbon flux maps calculated in a consistent manner, thus reducing uncertainty by using common choices for wind speed and a set definition of "global" coverage.
Samuel J. Tomlinson, Edward J. Carnell, Anthony J. Dore, and Ulrike Dragosits
Earth Syst. Sci. Data, 13, 4677–4692, https://doi.org/10.5194/essd-13-4677-2021, https://doi.org/10.5194/essd-13-4677-2021, 2021
Short summary
Short summary
Nitrogen (N) may impact the environment in many ways, and estimation of its deposition to the terrestrial surface is of interest. N deposition data have not been generated at a high resolution (1 km × 1 km) over a long time series in the UK before now. This study concludes that N deposition has reduced by ~ 40 % from 1990. The impact of these results allows analysis of environmental impacts at a high spatial and temporal resolution, using a consistent methodology and consistent set of input data.
Joaquín Muñoz-Sabater, Emanuel Dutra, Anna Agustí-Panareda, Clément Albergel, Gabriele Arduini, Gianpaolo Balsamo, Souhail Boussetta, Margarita Choulga, Shaun Harrigan, Hans Hersbach, Brecht Martens, Diego G. Miralles, María Piles, Nemesio J. Rodríguez-Fernández, Ervin Zsoter, Carlo Buontempo, and Jean-Noël Thépaut
Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, https://doi.org/10.5194/essd-13-4349-2021, 2021
Short summary
Short summary
The creation of ERA5-Land responds to a growing number of applications requiring global land datasets at a resolution higher than traditionally reached. ERA5-Land provides operational, global, and hourly key variables of the water and energy cycles over land surfaces, at 9 km resolution, from 1981 until the present. This work provides evidence of an overall improvement of the water cycle compared to previous reanalyses, whereas the energy cycle variables perform as well as those of ERA5.
Yan Chen, Shunlin Liang, Han Ma, Bing Li, Tao He, and Qian Wang
Earth Syst. Sci. Data, 13, 4241–4261, https://doi.org/10.5194/essd-13-4241-2021, https://doi.org/10.5194/essd-13-4241-2021, 2021
Short summary
Short summary
This study used remotely sensed and assimilated data to estimate all-sky land surface air temperature (Ta) using a machine learning method, and developed an all-sky 1 km daily mean land Ta product for 2003–2019 over mainland China. Validation results demonstrated that this dataset has achieved satisfactory accuracy and high spatial resolution simultaneously, which fills the current dataset gap in this field and plays an important role in studies of climate change and the hydrological cycle.
Guoqing Zhang, Youhua Ran, Wei Wan, Wei Luo, Wenfeng Chen, Fenglin Xu, and Xin Li
Earth Syst. Sci. Data, 13, 3951–3966, https://doi.org/10.5194/essd-13-3951-2021, https://doi.org/10.5194/essd-13-3951-2021, 2021
Short summary
Short summary
Lakes can be effective indicators of climate change, especially over the Qinghai–Tibet Plateau. Here, we provide the most comprehensive lake mapping covering the past 100 years. The new features of this data set are (1) its temporal length, providing the longest period of lake observations from maps, (2) the data set provides a state-of-the-art lake inventory for the Landsat era (from the 1970s to 2020), and (3) it provides the densest lake observations for lakes with areas larger than 1 km2.
Jie Yang and Xin Huang
Earth Syst. Sci. Data, 13, 3907–3925, https://doi.org/10.5194/essd-13-3907-2021, https://doi.org/10.5194/essd-13-3907-2021, 2021
Short summary
Short summary
We produce the 30 m annual China land cover dataset (CLCD), with an accuracy reaching 79.31 %. Trends and patterns of land cover changes during 1985 and 2019 were revealed, such as expansion of impervious surface (+148.71 %) and water (+18.39 %), decrease in cropland (−4.85 %) and increase in forest (+4.34 %). The CLCD generally reflected the rapid urbanization and a series of ecological projects in China and revealed the anthropogenic implications on LC under the condition of climate change.
Richard Porter-Smith, John McKinlay, Alexander D. Fraser, and Robert A. Massom
Earth Syst. Sci. Data, 13, 3103–3114, https://doi.org/10.5194/essd-13-3103-2021, https://doi.org/10.5194/essd-13-3103-2021, 2021
Short summary
Short summary
This study quantifies the characteristic complexity
signaturesaround the Antarctic outer coastal margin, giving a multiscale estimate of the magnitude and direction of undulation or complexity at each point location along the entire coastline. It has numerous applications for both geophysical and biological studies and will contribute to Antarctic research requiring quantitative information about this important interface.
Gonçalo Vieira, Carla Mora, Pedro Pina, Ricardo Ramalho, and Rui Fernandes
Earth Syst. Sci. Data, 13, 3179–3201, https://doi.org/10.5194/essd-13-3179-2021, https://doi.org/10.5194/essd-13-3179-2021, 2021
Short summary
Short summary
Fogo in Cabo Verde is one of the most active ocean island volcanoes on Earth, posing important hazards to local populations and at a regional level. The last eruption occurred from November 2014 to February 2015. A survey of the Chã das Caldeiras area was conducted using a fixed-wing unmanned aerial vehicle. A point cloud, digital surface model and orthomosaic with 10 and 25 cm resolutions are provided, together with the full aerial survey projects and datasets.
Clara Betancourt, Timo Stomberg, Ribana Roscher, Martin G. Schultz, and Scarlet Stadtler
Earth Syst. Sci. Data, 13, 3013–3033, https://doi.org/10.5194/essd-13-3013-2021, https://doi.org/10.5194/essd-13-3013-2021, 2021
Short summary
Short summary
With the AQ-Bench dataset, we contribute to shared data usage and machine learning methods in the field of environmental science. The AQ-Bench dataset contains air quality data and metadata from more than 5500 air quality observation stations all over the world. The dataset offers a low-threshold entrance to machine learning on a real-world environmental dataset. AQ-Bench thus provides a blueprint for environmental benchmark datasets.
Christof Lorenz, Tanja C. Portele, Patrick Laux, and Harald Kunstmann
Earth Syst. Sci. Data, 13, 2701–2722, https://doi.org/10.5194/essd-13-2701-2021, https://doi.org/10.5194/essd-13-2701-2021, 2021
Short summary
Short summary
Semi-arid regions depend on the freshwater resources from the rainy seasons as they are crucial for ensuring security for drinking water, food and electricity. Thus, forecasting the conditions for the next season is crucial for proactive water management. We hence present a seasonal forecast product for four semi-arid domains in Iran, Brazil, Sudan/Ethiopia and Ecuador/Peru. It provides a benchmark for seasonal forecasts and, finally, a crucial contribution for improved disaster preparedness.
Ana Maria Roxana Petrescu, Chunjing Qiu, Philippe Ciais, Rona L. Thompson, Philippe Peylin, Matthew J. McGrath, Efisio Solazzo, Greet Janssens-Maenhout, Francesco N. Tubiello, Peter Bergamaschi, Dominik Brunner, Glen P. Peters, Lena Höglund-Isaksson, Pierre Regnier, Ronny Lauerwald, David Bastviken, Aki Tsuruta, Wilfried Winiwarter, Prabir K. Patra, Matthias Kuhnert, Gabriel D. Oreggioni, Monica Crippa, Marielle Saunois, Lucia Perugini, Tiina Markkanen, Tuula Aalto, Christine D. Groot Zwaaftink, Hanqin Tian, Yuanzhi Yao, Chris Wilson, Giulia Conchedda, Dirk Günther, Adrian Leip, Pete Smith, Jean-Matthieu Haussaire, Antti Leppänen, Alistair J. Manning, Joe McNorton, Patrick Brockmann, and Albertus Johannes Dolman
Earth Syst. Sci. Data, 13, 2307–2362, https://doi.org/10.5194/essd-13-2307-2021, https://doi.org/10.5194/essd-13-2307-2021, 2021
Short summary
Short summary
This study is topical and provides a state-of-the-art scientific overview of data availability from bottom-up and top-down CH4 and N2O emissions in the EU27 and UK. The data integrate recent emission inventories with process-based model data and regional/global inversions for the European domain, aiming at reconciling them with official country-level UNFCCC national GHG inventories in support to policy and to facilitate real-time verification procedures.
Ana Maria Roxana Petrescu, Matthew J. McGrath, Robbie M. Andrew, Philippe Peylin, Glen P. Peters, Philippe Ciais, Gregoire Broquet, Francesco N. Tubiello, Christoph Gerbig, Julia Pongratz, Greet Janssens-Maenhout, Giacomo Grassi, Gert-Jan Nabuurs, Pierre Regnier, Ronny Lauerwald, Matthias Kuhnert, Juraj Balkovič, Mart-Jan Schelhaas, Hugo A. C. Denier van der
Gon, Efisio Solazzo, Chunjing Qiu, Roberto Pilli, Igor B. Konovalov, Richard A. Houghton, Dirk Günther, Lucia Perugini, Monica Crippa, Raphael Ganzenmüller, Ingrid T. Luijkx, Pete Smith, Saqr Munassar, Rona L. Thompson, Giulia Conchedda, Guillaume Monteil, Marko Scholze, Ute Karstens, Patrick Brockmann, and Albertus Johannes Dolman
Earth Syst. Sci. Data, 13, 2363–2406, https://doi.org/10.5194/essd-13-2363-2021, https://doi.org/10.5194/essd-13-2363-2021, 2021
Short summary
Short summary
This study is topical and provides a state-of-the-art scientific overview of data availability from bottom-up and top-down CO2 fossil emissions and CO2 land fluxes in the EU27+UK. The data integrate recent emission inventories with ecosystem data, land carbon models and regional/global inversions for the European domain, aiming at reconciling CO2 estimates with official country-level UNFCCC national GHG inventories in support to policy and facilitating real-time verification procedures.
Lilu Sun and Yunfei Fu
Earth Syst. Sci. Data, 13, 2293–2306, https://doi.org/10.5194/essd-13-2293-2021, https://doi.org/10.5194/essd-13-2293-2021, 2021
Short summary
Short summary
Multi-source dataset use is hampered by use of different spatial and temporal resolutions. We merged Tropical Rainfall Measuring Mission precipitation radar and visible and infrared scanner measurements with ERA5 reanalysis. The statistical results indicate this process has no unacceptable influence on the original data. The merged dataset can help in studying characteristics of and changes in cloud and precipitation systems and provides an opportunity for data analysis and model simulations.
Yongyong Fu, Jinsong Deng, Hongquan Wang, Alexis Comber, Wu Yang, Wenqiang Wu, Shixue You, Yi Lin, and Ke Wang
Earth Syst. Sci. Data, 13, 1829–1842, https://doi.org/10.5194/essd-13-1829-2021, https://doi.org/10.5194/essd-13-1829-2021, 2021
Short summary
Short summary
Marine aquaculture areas in a region up to 30 km from the coast in China were mapped for the first time. It was found to cover a total area of ~1100 km2, of which more than 85 % is marine plant culture areas, with 87 % found in four coastal provinces. The results confirm the applicability and effectiveness of deep learning when applied to GF-1 data at the national scale, identifying the detailed spatial distributions and supporting the sustainable management of coastal resources in China.
Sebastian Weinert, Kristian Bär, and Ingo Sass
Earth Syst. Sci. Data, 13, 1441–1459, https://doi.org/10.5194/essd-13-1441-2021, https://doi.org/10.5194/essd-13-1441-2021, 2021
Short summary
Short summary
Physical rock properties are a key element for resource exploration, the interpretation of results from geophysical methods or the parameterization of physical or geological models. Despite the need for physical rock properties, data are still very scarce and often not available for the area of interest. The database presented aims to provide easy access to physical rock properties measured at 224 locations in Bavaria, Hessen, Rhineland-Palatinate and Thuringia (Germany).
Claire E. Simpson, Christopher D. Arp, Yongwei Sheng, Mark L. Carroll, Benjamin M. Jones, and Laurence C. Smith
Earth Syst. Sci. Data, 13, 1135–1150, https://doi.org/10.5194/essd-13-1135-2021, https://doi.org/10.5194/essd-13-1135-2021, 2021
Short summary
Short summary
Sonar depth point measurements collected at 17 lakes on the Arctic Coastal Plain of Alaska are used to train and validate models to map lake bathymetry. These models predict depth from remotely sensed lake color and are able to explain 58.5–97.6 % of depth variability. To calculate water volumes, we integrate this modeled bathymetry with lake surface area. Knowledge of Alaskan lake bathymetries and volumes is crucial to better understanding water storage, energy balance, and ecological habitat.
Fei Feng and Kaicun Wang
Earth Syst. Sci. Data, 13, 907–922, https://doi.org/10.5194/essd-13-907-2021, https://doi.org/10.5194/essd-13-907-2021, 2021
Els Knaeps, Sindy Sterckx, Gert Strackx, Johan Mijnendonckx, Mehrdad Moshtaghi, Shungudzemwoyo P. Garaba, and Dieter Meire
Earth Syst. Sci. Data, 13, 713–730, https://doi.org/10.5194/essd-13-713-2021, https://doi.org/10.5194/essd-13-713-2021, 2021
Short summary
Short summary
This paper describes a dataset consisting of 47 hyperspectral-reflectance measurements of plastic litter samples. The plastic litter samples include virgin and real samples. They were measured in dry conditions, and a selection of the samples were also measured in wet conditions and submerged in a water tank. The dataset can be used to better understand the effect of water absorption on the plastics and develop algorithms to detect and characterize marine plastics.
Susannah Rennie, Klaus Goergen, Christoph Wohner, Sander Apweiler, Johannes Peterseil, and John Watkins
Earth Syst. Sci. Data, 13, 631–644, https://doi.org/10.5194/essd-13-631-2021, https://doi.org/10.5194/essd-13-631-2021, 2021
Short summary
Short summary
This paper describes a pan-European climate service data product intended for ecological researchers. Access to regional climate scenario data will save ecologists time, and, for many, it will allow them to work with data resources that they will not previously have used due to a lack of knowledge and skills to access them. Providing easy access to climate scenario data in this way enhances long-term ecological research, for example in general regional climate change or impact assessments.
Martin Strohmeier, Xavier Olive, Jannis Lübbe, Matthias Schäfer, and Vincent Lenders
Earth Syst. Sci. Data, 13, 357–366, https://doi.org/10.5194/essd-13-357-2021, https://doi.org/10.5194/essd-13-357-2021, 2021
Short summary
Short summary
Flight data have been used widely for research by academic researchers and (supra)national institutions. Example domains range from epidemiology (e.g. examining the spread of COVID-19 via air travel) to economics (e.g. use as proxy for immediate forecasting of the state of a country's economy) and Earth sciences (climatology in particular). Until now, accurate flight data have been available only in small pieces from closed, proprietary sources. This work changes this with a crowdsourced effort.
Jinshi Jian, Rodrigo Vargas, Kristina Anderson-Teixeira, Emma Stell, Valentine Herrmann, Mercedes Horn, Nazar Kholod, Jason Manzon, Rebecca Marchesi, Darlin Paredes, and Ben Bond-Lamberty
Earth Syst. Sci. Data, 13, 255–267, https://doi.org/10.5194/essd-13-255-2021, https://doi.org/10.5194/essd-13-255-2021, 2021
Short summary
Short summary
Field soil-to-atmosphere CO2 flux (soil respiration, Rs) observations were compiled into a global database (SRDB) a decade ago. Here, we restructured and updated the database to the fifth version, SRDB-V5, with data published through 2017 included. SRDB-V5 aims to be a data framework for the scientific community to share seasonal to annual field Rs measurements, and it provides opportunities for the scientific community to better understand the spatial and temporal variability of Rs.
Robert A. Rohde and Zeke Hausfather
Earth Syst. Sci. Data, 12, 3469–3479, https://doi.org/10.5194/essd-12-3469-2020, https://doi.org/10.5194/essd-12-3469-2020, 2020
Short summary
Short summary
A global land and ocean temperature record was created by combining the Berkeley Earth monthly land temperature field with a newly interpolated version of the HadSST3 ocean dataset. The resulting dataset covers the period from 1850 to present.
This paper describes the methods used to create that combination and compares the results to other estimates of global temperature and the associated recent climate change, giving similar results.
Igor Savin, Valery Mironov, Konstantin Muzalevskiy, Sergey Fomin, Andrey Karavayskiy, Zdenek Ruzicka, and Yuriy Lukin
Earth Syst. Sci. Data, 12, 3481–3487, https://doi.org/10.5194/essd-12-3481-2020, https://doi.org/10.5194/essd-12-3481-2020, 2020
Short summary
Short summary
This article presents a dielectric database of organic Arctic soils. This database was created based on dielectric measurements of seven samples of organic soils collected in various parts of the Arctic tundra. The created database can serve not only as a source of experimental data for the development of new soil dielectric models for the Arctic tundra but also as a source of training data for artificial intelligence satellite algorithms of soil moisture retrievals based on neural networks.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone Alin, Luiz E. O. C. Aragão, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp, Selma Bultan, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Wiley Evans, Liesbeth Florentie, Piers M. Forster, Thomas Gasser, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Luke Gregor, Nicolas Gruber, Ian Harris, Kerstin Hartung, Vanessa Haverd, Richard A. Houghton, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Koji Kadono, Etsushi Kato, Vassilis Kitidis, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Gregg Marland, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Adam J. P. Smith, Adrienne J. Sutton, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Guido van der Werf, Nicolas Vuichard, Anthony P. Walker, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Xu Yue, and Sönke Zaehle
Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, https://doi.org/10.5194/essd-12-3269-2020, 2020
Short summary
Short summary
The Global Carbon Budget 2020 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Jin Ma, Ji Zhou, Frank-Michael Göttsche, Shunlin Liang, Shaofei Wang, and Mingsong Li
Earth Syst. Sci. Data, 12, 3247–3268, https://doi.org/10.5194/essd-12-3247-2020, https://doi.org/10.5194/essd-12-3247-2020, 2020
Short summary
Short summary
Land surface temperature is an important parameter in the research of climate change and many land surface processes. This article describes the development and testing of an algorithm for generating a consistent global long-term land surface temperature product from 20 years of NOAA AVHRR radiance data. The preliminary validation results indicate good accuracy of this new long-term product, which has been designed to simplify applications and support the scientific research community.
Clara Lázaro, Maria Joana Fernandes, Telmo Vieira, and Eliana Vieira
Earth Syst. Sci. Data, 12, 3205–3228, https://doi.org/10.5194/essd-12-3205-2020, https://doi.org/10.5194/essd-12-3205-2020, 2020
Short summary
Short summary
In satellite altimetry (SA), the wet tropospheric correction (WTC) accounts for the path delay induced mainly by atmospheric water vapour. In coastal regions, the accuracy of the WTC determined by the on-board radiometer deteriorates. The GPD+ methodology, developed by the University of Porto in the remit of ESA-funded projects, computes improved WTCs for SA. Global enhanced products are generated for all past and operational altimetric missions, forming a relevant dataset for coastal altimetry.
Cited articles
Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., Arkin, P., and Nelkin, E.: The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation analysis (1979–present), J. Hydrometeorol., 4, 1147–1167, 2003.
Andersson, A., Fennig, K., Klepp, C., Bakan, S., Gra{ß}l, H., and Schulz, J.: The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data – HOAPS-3, Earth Syst. Sci. Data, 2, 215–234, https://doi.org/10.5194/essd-2-215-2010, 2010.
Arkin, P., Turk, J., and Ebert, B.: Pilot Evaluation of High Resolution Precipitation Products (PEHRPP): A Contribution to GPM Planning, http://www.eorc.jaxa.jp/GPM/event/ws5/hp/en/materials/6.8.3_abstract_Arkin.pdf (last access: 11 January 2013), 2005.
Barrett, E. C., Doodge, J., Goodman, M., Janowiak, J., Smith, E., and Kidd, C.: The FirstWetNet Precipitation Intercomparison Project (PIP-1), Remote Sensing Review, 11, 49–60, 1994.
Beck, C., Grieser, J., and Rudolf, B.: A New Monthly Precipitation Climatology for the Global Land Areas for the Period 1951 to 2000, Climate status report, 2004, 181–190, http://www.dwd.de/bvbw/generator/DWDWWW/Content/Oeffentlichkeit/KU/KU4/KU42/en/VASClimO/pdf__28__precipitation,templateId=raw,property=publicationFile.pdf/pdf_28_precipitation.pdf (last access: 11 January 2013), 2005.
Bulygina, O. N., Razuvaev, V. N., Korshunova, N. N., and Shvets, N. V.: Description of dataset of monthly precipitation totals from Russian stations, Internet Publication available from http://meteo.ru/english/climate/descrip7.htm (last access: 11 January 2013), 2010.
Bussieres, N. and Hogg, W.: The objective analysis of daily rainfall by distance weighting schemes on a mesoscale grid, Atmos. Ocean, 27, 521–541, 1989.
Caussinus, H. and Mestre, O.: Detection and correction of artificial shifts in climate series, J. Roy. Stat. Soc. C-App., 53, 405–425, 2004.
Chen, M. P., Xie, P., Janowiak, J. E., and Arkin, P. A.: Global land precipitation: A 50-year monthly analysis based on gauge observations, J. Hydrometeorol., 3, 249–266, 2002.
Dai, A., Fung, I. Y., and Del Genio, A. D.: Surface observed global land precipitation variations during 1900–1988, J. Climate, 10, 2943–2962, 1997.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H. , Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, 2011.
Dinku, T., Connor, S. J., Ceccato, P., and Ropelewski, C. F.: Comparison of global gridded precipitation products over a mountainous region of Africa, Int. J. Climatol., 28, 1627–1638, 2008.
Ebert, E. E., Janowiak, J., and Kidd, C.: Comparison of near-real-time precipitation estimates from satellite observations and numerical models, B. Am. Meteorol. Soc., 88, 47–64, 2007.
FAO: FAOClim 2.0. A world-wide agroclimatic database. Food and Agriculture Organization of the UN, Rome, Italy, CD-ROM + Users Manual (72 pp.) Environment and Natural Resources Working paper No. 5, available at: http://www.fao.org/nr/climpag/pub/en1102_en.asp (last access: 11 January 2013), 2001.
FAO: http://www.fao.org/nr/climpag/hot_2_en.asp (last access: 11 January 2013), 2011.
Fuchs, T., Rapp, J., Rubel, F., and Rudolf, B.: Correction of Synoptic Precipitation Observations due to Systematic Measuring Errors with Special Regard to Precipitation Phases, Phys. Chem. Earth Pt. B, 26, 689–693, 2001.
GCOS: Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC, 186 pp., http://www.wmo.int/pages/prog/gcos/Publications/gcos-138.pdf (last access: 11 January 2013), 2010.
GCOS: Summary Report and Recommendations from the Sixteenth Session of the GCOS/WCRP Atmospheric Observation Panel for Climate (AOPC-XVI), http://www.wmo.int/pages/prog/gcos/Publications/gcos-148.pdf (last access: 11 January 2013), 2011.
Goodison, B. E., Louie, P. Y. T., and Yang, D.: WMO solid precipitation measurement inter-comparison – final report; WMO/TD-No. 872; Instruments and Observing Methods Report No. 67, WMO, Geneva, Switzerland, 212 pp., http://www.wmo.int/pages/prog/www/reports/WMOtd872.pdf (last access: 11 January 2013), 1998.
Groisman, P. Y. and Rankova, E. Y.: Precipitation trends over the Russian permafrost-free zone: removing the artefacts of pre-processing, Int. J. Climatol., 21, 658–678, 2001.
Groisman, P. Y., Koknaeva, V. V., Belokrylova, T. A., and Karl, T. R.: Overcoming biases of precipitation measurement: A history of the USSR experience, B. Am. Meteorol. Soc., 72, 1725–1733, 1991.
Gruber, A. and Levizzani, V.: Assessment of Global Precipitation, A Project of the Global Energy and Water Cycle Experiment (GEWEX) Radiation Panel GEWEX, World Climate Research Program, WCRP Report, WMO/TD-No. 1430, WMO Geneva, Switzerland, p. 5, 2008.
Hennon, P., Kruk, M., Hiburn, K., Yin, X., and Becker, A.: Global Climate Precipitation, in: State of the Climate in 2010, B. Am. Meteor. Soc., 92, 161–163, 2011.
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., and Jarvis, A.: Very high resolution interpolated climate surfaces for global land areas, Int. J. Climatol., 25, 1965–1978, 2005.
Hofstra, N., Haylock, M., New, M., Jones, P., and Frei, C.: Comparison of six methods for the interpolation of daily, European climate data, J. Geophys. Res., 113, D21110, https://doi.org/10.1029/2008JD010100, 2008.
Hou, A. Y., Skofronick-Jackson, G., Kummerow, C., and Shepherd, J. M.: Global Precipitation Measurement, in: Precipitation: Advances in Measurement, Estimation and Prediction, edited by: Michaelides, S., Springer-Verlag, 540 pp., ISBN 978-3-540-77654-3, 2008.
Huffman, G. J., Adler, R. F., Rudolf, B., Schneider, U., and Keehn, P. R.: Global precipitation estimates based on a technique for combining satellite- based estimates, rain gauge analysis, and NWP model precipitation information, J. Climate, 8, 1284–1295, 1995.
Huffman, G. J., Adler, R. F., Bolvin, D. T., and Gu, G.: Improving the global precipitation record: GPCP Version 2.1, Geophys. Res. Lett., 36, L17808, https://doi.org/10.1029/2009GL040000, 2009.
Huxol, S.: Trendanalyse von Zeitreihen der Komponenten des Wasserkreislaufes im Einzugsgebiet der Dreisam zur prozessorientierten Beurteilung hydrologischer Klimafolgen, Diploma Thesis, Institut for Hydrology at the Albert-Ludwigs-University Freiburg i.Br., Germany, http://www.hydrology.uni-freiburg.de/abschluss/Huxol_S_2007_DA.pdf (last access: 11 January 2013), 2007.
Jenne, R. and Joseph, D.: Sensitivity experiments with different 1 to 500 km scale networks (NCAR), WMO/TD-No. 115, Geneva, Switzerland, 1985.
Kaspar, F. and Cubasch, U.: Simulation of East African precipitation patterns, Meteorol. Z., 17, 511–517, 2008.
Kidd, C. and Huffman, G.: Review Global precipitation measurement, Meteorol. Appl., 18, 334–351, http://onlinelibrary.wiley.com/doi/10.1002/met.284/pdf, 2011.
Kidd, C., Ferraro, R., and Levizzani, V.: The International Precipitation Working Group, B. Am. Meteorol. Soc., 8, 1095–1099, https://doi.org/10.1175/2009BAMS2871.1, 2010.
Kidd, C., Bauer, P., Turk, J., Huffman, G., Joyce, R., Hsu, K.-L., and Braithwaite, D.: Inter-comparison of High-Resolution Precipitation Products over Northwest Europe, J. Hydrometeorol., 13, 67–83, https://doi.org/10.1175/JHM-D-11-042.1, 2012.
Kottek, M. and Rubel, F.: Global daily precipitation field from bias-corrected rain gauge and satellite observations. Part I: Design and Development, Meteorol. Z., 16, 525–539, 2007.
Krige, D. G.: A statistical approach to some basic mine valuation problems on the Witwatersrand, Journal of the Chemical, Metallurgical and Mining Society of South Africa, 52, 119–139, 1951.
Legates, D. R.: A climatology of global precipitation, Publ. in Climatology, 40, 85 pp., 1987.
Legates, D. R. and Willmott, C. J.: Mean seasonal and spatial variability in gauge-corrected, global precipitation, Int. J. Climatol., 10, 111–127, 1990.
Mächel, H., Rudolf, B., Maurer, T., Hagemann, S., Hagenbrock, R., Kitaev, L., Førland, E. J., Rasuvaev, V., and Tveito, I. E.: Chapter 5: Observed Hydrological Cycle, in: Arctic Climate Change, edited by: Lemke, P. and Jacobi, H.-W., Springer Dordrecht Heidelberg London New York, ISSN 1381-8601, ISBN 97894-007-2026-8, https://doi.org/10.1007/978-94-007-2027-5, 464 pp., 2012.
Matsuura, K. and Willmott, C. J.: Terrestrial Precipitation: 1900–2010 Gridded Monthly Time Series (Version 3.01), http://climate.geog.udel.edu/ climate/html_pages/Global2011/README.GlobalTsP2011.html (last access: 11 January 2013), 2012.
Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E., and Houston, T. G.: An Overview of the Global Historical Climatology Network-Daily Database, J. Atmos. Ocean. Tech., 29, 897–910, 2012.
Mestre, O.: Correcting climate series using ANOVA technique, Proceedings of the Fourth Seminar for Homogenization and Quality Control in Climatological Databases, Budapest, Hungary, 93–96, 2004.
Meyer-Christoffer, A., Becker, A., Finger, P., Rudolf, B., Schneider, U., and Ziese, M.: GPCC Climatology Version 2011 at 0.25°: Monthly Land-Surface Precipitation Climatology for Every Month and the Total Year from Rain-Gauges built on GTS-based and Historic Data, https://doi.org/10.5676/DWD_GPCC/CLIM_M_V2011_025, 2011a.
Meyer-Christoffer, A., Becker, A., Finger, P., Rudolf, B., Schneider, U., and Ziese, M.: GPCC Climatology Version 2011 at 0.5°: Monthly Land-Surface Precipitation Climatology for Every Month and the Total Year from Rain-Gauges built on GTS-based and Historic Data, https://doi.org/10.5676/DWD_GPCC/CLIM_M_V2011_050, 2011b.
Meyer-Christoffer, A., Becker, A., Finger, P., Rudolf, B., Schneider, U., and Ziese, M.: GPCC Climatology Version 2011 at 1.0°: Monthly Land-Surface Precipitation Climatology for Every Month and the Total Year from Rain-Gauges built on GTS-based and Historic Data, https://doi.org/10.5676/DWD_GPCC/CLIM_M_V2011_100, 2011c.
Meyer-Christoffer, A., Becker, A., Finger, P., Rudolf, B., Schneider, U., and Ziese, M.: GPCC Climatology Version 2011 at 2.5°: Monthly Land-Surface Precipitation Climatology for Every Month and the Total Year from Rain-Gauges built on GTS-based and Historic Data, https://doi.org/10.5676/DWD_GPCC/CLIM_M_V2011_250, 2011d.
Miller, R. D.: The jackknife – a review, Biometrika, 61, 1–15, 1974.
Mitchel, T. D. and Jones, P. D.: An Improved Method of Construction a Database of Monthly Climate Observations and Associated High-Resolution Grids, Int. J. Climatol., 25, 693–712, 2005.
NCDC: Data Documentation for Dataset 9813: Daily and Sub-daily Precipitation for the Former USSR, Version 1.0, National Climatic Data Center, 151 Patton Ave., Asheville, NC 28801-5001 USA, ftp://ftp.ncdc.noaa.gov/pub/data/documentlibrary/tddoc/td9813.pdf (last access: 11 January 2013), 2005.
New, M. G., Hulme, M., and Jones, P. D.: Representing twentieth-century space-time climate variability. Part I: development of a 1961–90 mean monthly terrestrial climatology, J. Climate, 12, 829–856, 1999.
New, M. G., Hulme, M., and Jones, P. D.: Representing twentieth-century space-time climate variability. Part II: development of 1901–1996 monthly grids of terrestrial surface climate, J. Climate, 13, 2217–2238, 2000.
New, M., Todd, M., Hulme, M., and Jones, P.: Precipitation measurements and trends on the twentieth century, Int. J. Climatol., 21, 1899–1922, 2001.
New, M., Lister, D., Hulme, M., and Makin, I.: A high-resolution data set of surface climate over global land areas, Clim. Res., 21, 1–25, https://doi.org/10.3354/cr021001, 2002.
Nicholson, S. E.: Revised rainfall series for the West African subtropics, Mon. Weather Rev., 107, 620–623, 1979.
Nicholson, S. E.: The spatial coherence of African rainfall anomalies: Interhemispheric teleconnections, J. Clim. Appl. Meteorol., 25, 1365–1381, 1986.
Nicolson, S. E.: An overview of African rainfall fluctuations of the last decade, J. Climate, 6, 1463–1466, 1993.
Nicolson, S. E.: The intensity, location and structure of the tropical rainbelt over West Africa as a factor in interannual variability, Int. J. Climatol., 28, 1775–1785, 2008.
Oldenborgh, G., van Urk, A., and Allen, M.: The Absence of a Role of Climate Change in the 2011 Thailand Floods, in: Explaining Extreme Events of 2011 from a Climate Perspective, edited by: Peterson, T. C., Stott, P. A., and Herring, S., B. Am. Meteorol. Soc., 93, 1041–1067, 2012.
Parker, D. E., Hilburn, K., Hennon, P., and Becker, A.: Global Climate Precipitation, in: State of the Climate in 2011, B. Am. Meteorol. Soc., 93, 26–27, 2012.
Peterson, T. C. and Vose, R. S.: An overview of the Global Historical Climatology Network temperature database, B. Am. Meteorol. Soc., 78, 2837–2849, 1997.
Peterson, T. C., Vose, R., Schmoyer, R., and Razuvaev, V.: Global Historical Climatology Network (GHCN) quality control of monthly temperature data, Int. J. Climatol., 18, 1169–1179, 1998.
Rajeevan, M., Bhate, J., Kale, J. D., and Lal, B.: Development of a High Resolution Daily Gridded Rainfall Data for the Indian Region, Met. Monograph Climatology No. 22/2005, http://apdrc.soest.hawaii.edu/doc/india_rain_ref_report.pdf (last access: 11 January 2013), 2005.
Rubel, F. and Hantel, M.: BALTEX 1/6 degree daily precipitation climatology 1996–1998, Meteorol. Atmos. Phys., 77, 155–166, 2001.
Rubel, F. and Kottek, M.: Observed and projected climate shifts 1901–2100 depicted by world maps of the Köppen-Geiger climate classification, Meteorol. Z., 19, 135–141, https://doi.org/10.1127/0941-2948/2010/0430, 2010.
Rubel, F. and Rudolf, B.: Global daily precipitation estimates proved over the European Alps, Meteorol. Z., 10, 403–414, 2001.
Rudolf, B.: The global precipitation climatology centre, WMO Bulletin, 44, 77–78, 1995.
Rudolf, B. and Rubel, F.: Global Precipitation. Chapter 11 in Hantel: Observed Global Climate, Landolt-Börnstein (Numerical Data and Functional Relationships), Group V: Geophysics, Volume 6, Springer Berlin Heidelberg New York, Springer Berlin Heidelberg New York, ISBN-13 978-3-540-20206-6, 11–22, 2005.
Rudolf, B. und Schneider, U.: Calculation of Gridded Precipitation Data for the Global Land-Surface using in-situ Gauge Observations, Proceedings of the 2nd Workshop of the International Precipitation Working Group IPWG, Monterey, October 2004, ISBN 92-9110-070-6, ISSN 1727-432X, 231–247, 2005.
Rudolf, B., Hauschild, H., Reiss, M., and Schneider, U.: Berechnung der Gebietsniederschläge im 2,5°-Raster durch ein objektives Analyseverfahren, Meteorol. Z., 1, 32–50, 1992.
Rudolf, B., Hauschild, H., Rueth, W., and Schneider, U.: Terrestrial precipitation analysis: Operational method and required density of point measurements, in: Global Precipitation and Climate Change, edited by: Desbois, M. und Desalmand, F., Springer, Berlin, 173–186, 1994.
Rustemeier, E., Kapala, A., Mächel, H., Meyer-Christoffer, A., Schneider, U., Ziese, M., Venema,V., Becker, A., and Simmer, C.: An automatic method to homogenize trends in longterm monthly precipitation series, Geophys. Res. Abstr., Vol. 14, EGU2012-10654, 2012.
Schneider, U., Henning, D., Hauschild, H., Reiss, M., and Rudolf, B.: Zur Berechnung monatlicher Niederschlagshöhen aus synoptischen Meldungen, Meteorol. Z., 1, 22–31, 1992.
Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., and Ziese, M.: GPCC Monitoring Product Version 4.0 at 1.0°: Near Real-Time Monthly Land-Surface Precipitation from Rain-Gauges based on SYNOP and CLIMAT Data, https://doi.org/10.5676/DWD_GPCC/MP_M_V4_100, 2011a.
Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., and Ziese, M.: GPCC Monitoring Product Version 4.0 at 2.5°: Near Real-Time Monthly Land-Surface Precipitation from Rain-Gauges based on SYNOP and CLIMAT Data, https://doi.org/{10.5676/DWD_GPCC/MP_M_V4_250}, 2011b.
Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., and Ziese, M.: GPCC Full Data Reanalysis Version 6.0 at 0.5°: Monthly Land-Surface Precipitation from Rain-Gauges built on GTS-based and Historic Data, https://doi.org/{10.5676/DWD_GPCC/FD_M_V6_050}, 2011c.
Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., and Ziese, M.: GPCC Full Data Reanalysis Version 6.0 at 1.0°: Monthly Land-Surface Precipitation from Rain-Gauges built on GTS-based and Historic Data, https://doi.org/{10.5676/DWD_GPCC/FD_M_V6_100}, 2011d.
Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., and Ziese, M.: GPCC Full Data Reanalysis Version 6.0 at 2.5°: Monthly Land-Surface Precipitation from Rain-Gauges built on GTS-based and Historic Data, https://doi.org/{10.5676/DWD_GPCC/FD_M_V6_250}, 2011e.
Schneider, U., Becker, A., Finger, F., Meyer-Christoffer, A., Ziese, M., and Rudolf, B.: GPCC's new land-surface precipitation climatology based on quality-controlled in-situ data and its role in quantifying the global water cycle, Theor. Appl. Climatol., accepted, 2013.
Schulzweida, U., Kornblueh, L., and Quast, R.: Climate Data Operators (CDO), User Guide, Version 1.5.2, https://code.zmaw.de/files/cdo/html/1.5.2/cdo.pdf (last access: 11 January 2013), 2011.
Sen, P. K.: Estimates of the regression coefficient based on Kendall's tau, J. Am. Stat. Assoc., 63, 1379–1389, 1968.
Shepard, D.: A two-dimensional interpolation function for irregularly spaced data, Proc. 23rd ACM Nat. Conf., Brandon/Systems Press, Princeton, NJ, 517–524, 1968.
Simmons, A.: From observations to service delivery: Challenges and opportunities, WMO Bulletin, 60, 96–107, 2011.
Simmons, A. J., Willet, K. M., Jones, P. D., Thorne P. W., and Dee, D. P.: Low frequency variations in surface atmospheric humidity, temperature, and precipitation: Inferences from reanalyses and monthly gridded observational data sets, J. Geophys. Res., 115, D01110, https://doi.org/10.1029/2009JD012442, 2010.
Strangeways, I.: Precipitation: Theory, Measurement and Distribution, Cambridge University Press, Cambridge, 290 pp., 2007.
Trenberth, K. E.: The Definition of El Niño, B. Am. Meteorol. Soc., 78, 2771–2777, 1997.
UCL: http://drought.mssl.ucl.ac.uk/sources.html (last access: 11 January 2013), 2011.
USGS: Global 30 Arc-Second Elevation (GTOPO 30), http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/gtopo30/, last access: 11 January 2013.
Wild, M., Grieser, J., and Schär, C.: Combined surface solar brightening and increasing greenhouse effect support recent intensification of the global land-based hydrological cycle, Geophys. Res. Lett., 35, L17706, https://doi.org/10.1029/2008GL034842, 2008.
Willmott, C. J., Rowe, C. M., and Philpot,W. D.: Small-scale climate maps: A sensitivity analysis of some common assumptions associated with grid-point interpolation and contouring, Am. Cartographer, 12, 5–16, 1985.
WMO: Review of requirements for area-averaged precipitation data, surface based and space based estimation techniques, space and time sampling, accuracy and error, data exchange, WCP-100, WMO/TD-No. 115, 1985.
WMO: The Global Precipitation Climatology Project – Implementation and Data Management Plan, WMO/TD-No. 367, 47 pp. and 6 Appendices, Geneva, 1990.
WMO: WMO Publication No. 9, Volume A, Observing Stations and WMO Catalogue of Radiosondes, http://www.wmo.int/pages/prog/www/ois/volume-a/vola-home.htm, last access: 8 November 2011a.
WMO: WMO statement on the status of the global climate in 2010, WMO No. 1074, http://www.wmo.int/pages/publications/showcase/documents/1074_en.pdf (last access: 11 January 2013), 2011b.
Xie, P. and Arkin, P. A.: Global Precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs, B. Am. Meteorol. Soc., 78, 2539–2558, 1997.
Xie, P., Rudolf, B., Schneider, U., and Arkin, P. A.: Gauge-Based Monthly Analyses of Global Land Precipitation from 1971 to 1994, J. Geophys. Res., 101, 19023–19034, https://doi.org/10.1029/96JD01553, 1996.
Yatagai, A., Arakawa, O., Kamiguchi, K., Kawamoto, H., Nodzu, M. I., and Hamada, A.: A 44-year daily gridded precipitation dataset for Asia based on a dense network of rain gauges, SOLA, 5, 137–140, https://doi.org/10.2151/sola.2009-035, 2009.
Yatagai, A., Kamiguchi, K., Arakawa, O., Hamada, A., Yasutomi, N., and Kitoh, A.: APHRODITE: Constructing a Long-term Daily Gridded Precipitation Dataset for Asia based on a Dense Network of Rain Gauges, B. Am. Meteorol. Soc., 93, 1401–1415, https://doi.org/10.1175/BAMS-D-11-00122.1, 2012.
Ye, B., Yang, D., Ding, Y., Han, T., and Koike, T.: A bias-corrected precipitation climatology for China, J. Hydrometeorol., 5, 1147–1160, 2004.
Ziese, M., Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., and Schneider, U.: GPCC First Guess Product at 1.0°: Near Real-Time First Guess Monthly Land-Surface Precipitation from Rain-Gauges based on SYNOP Data, https://doi.org/10.5676/DWD_GPCC/FG_M_100, 2011.
Altmetrics
Final-revised paper
Preprint