Articles | Volume 14, issue 2
https://doi.org/10.5194/essd-14-449-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-449-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A flux tower dataset tailored for land model evaluation
ARC Centre of Excellence for Climate Extremes, UNSW Sydney, Kensington, NSW, Australia
Climate Change Research Centre, UNSW Sydney, Kensington, NSW, Australia
Gab Abramowitz
ARC Centre of Excellence for Climate Extremes, UNSW Sydney, Kensington, NSW, Australia
Climate Change Research Centre, UNSW Sydney, Kensington, NSW, Australia
Martin G. De Kauwe
ARC Centre of Excellence for Climate Extremes, UNSW Sydney, Kensington, NSW, Australia
Climate Change Research Centre, UNSW Sydney, Kensington, NSW, Australia
Related authors
Matthew O. Grant, Anna M. Ukkola, Elisabeth Vogel, Sanaa Hobeichi, Andy J. Pitman, Alex Raymond Borowiak, and Keirnan Fowler
EGUsphere, https://doi.org/10.5194/egusphere-2024-4024, https://doi.org/10.5194/egusphere-2024-4024, 2025
Short summary
Short summary
Australia is regularly subjected to severe and widespread drought. By using multiple drought indicators, we show that while there have been widespread decreases in droughts since the beginning of the 20th century. However, many regions have seen an increase in droughts in more recent decades. Despite these changes, our analysis shows that they remain within the range of observed variability and are not unprecedented in the context of past droughts.
Gab Abramowitz, Anna Ukkola, Sanaa Hobeichi, Jon Cranko Page, Mathew Lipson, Martin G. De Kauwe, Samuel Green, Claire Brenner, Jonathan Frame, Grey Nearing, Martyn Clark, Martin Best, Peter Anthoni, Gabriele Arduini, Souhail Boussetta, Silvia Caldararu, Kyeungwoo Cho, Matthias Cuntz, David Fairbairn, Craig R. Ferguson, Hyungjun Kim, Yeonjoo Kim, Jürgen Knauer, David Lawrence, Xiangzhong Luo, Sergey Malyshev, Tomoko Nitta, Jerome Ogee, Keith Oleson, Catherine Ottlé, Phillipe Peylin, Patricia de Rosnay, Heather Rumbold, Bob Su, Nicolas Vuichard, Anthony P. Walker, Xiaoni Wang-Faivre, Yunfei Wang, and Yijian Zeng
Biogeosciences, 21, 5517–5538, https://doi.org/10.5194/bg-21-5517-2024, https://doi.org/10.5194/bg-21-5517-2024, 2024
Short summary
Short summary
This paper evaluates land models – computer-based models that simulate ecosystem dynamics; land carbon, water, and energy cycles; and the role of land in the climate system. It uses machine learning and AI approaches to show that, despite the complexity of land models, they do not perform nearly as well as they could given the amount of information they are provided with about the prediction problem.
Anna M. Ukkola, Steven Thomas, Elisabeth Vogel, Ulrike Bende-Michl, Steven Siems, Vjekoslav Matic, and Wendy Sharples
EGUsphere, https://doi.org/10.31223/X56110, https://doi.org/10.31223/X56110, 2024
Short summary
Short summary
Future drought changes in Australia –the driest inhabited continent on Earth– have remained stubbornly uncertain. We assess future drought changes in Australia using projections from climate and hydrological models. We show an increasing probability of drought over highly-populated and agricultural regions of Australia in coming decades, suggesting potential impacts on agricultural activities, ecosystems and urban water supply.
Georgina M. Falster, Nicky M. Wright, Nerilie J. Abram, Anna M. Ukkola, and Benjamin J. Henley
Hydrol. Earth Syst. Sci., 28, 1383–1401, https://doi.org/10.5194/hess-28-1383-2024, https://doi.org/10.5194/hess-28-1383-2024, 2024
Short summary
Short summary
Multi-year droughts have severe environmental and economic impacts, but the instrumental record is too short to characterise multi-year drought variability. We assessed the nature of Australian multi-year droughts using simulations of the past millennium from 11 climate models. We show that multi-decadal
megadroughtsare a natural feature of the Australian hydroclimate. Human-caused climate change is also driving a tendency towards longer droughts in eastern and southwestern Australia.
Keirnan Fowler, Murray Peel, Margarita Saft, Tim J. Peterson, Andrew Western, Lawrence Band, Cuan Petheram, Sandra Dharmadi, Kim Seong Tan, Lu Zhang, Patrick Lane, Anthony Kiem, Lucy Marshall, Anne Griebel, Belinda E. Medlyn, Dongryeol Ryu, Giancarlo Bonotto, Conrad Wasko, Anna Ukkola, Clare Stephens, Andrew Frost, Hansini Gardiya Weligamage, Patricia Saco, Hongxing Zheng, Francis Chiew, Edoardo Daly, Glen Walker, R. Willem Vervoort, Justin Hughes, Luca Trotter, Brad Neal, Ian Cartwright, and Rory Nathan
Hydrol. Earth Syst. Sci., 26, 6073–6120, https://doi.org/10.5194/hess-26-6073-2022, https://doi.org/10.5194/hess-26-6073-2022, 2022
Short summary
Short summary
Recently, we have seen multi-year droughts tending to cause shifts in the relationship between rainfall and streamflow. In shifted catchments that have not recovered, an average rainfall year produces less streamflow today than it did pre-drought. We take a multi-disciplinary approach to understand why these shifts occur, focusing on Australia's over-10-year Millennium Drought. We evaluate multiple hypotheses against evidence, with particular focus on the key role of groundwater processes.
Sami W. Rifai, Martin G. De Kauwe, Anna M. Ukkola, Lucas A. Cernusak, Patrick Meir, Belinda E. Medlyn, and Andy J. Pitman
Biogeosciences, 19, 491–515, https://doi.org/10.5194/bg-19-491-2022, https://doi.org/10.5194/bg-19-491-2022, 2022
Short summary
Short summary
Australia's woody ecosystems have experienced widespread greening despite a warming climate and repeated record-breaking droughts and heat waves. Increasing atmospheric CO2 increases plant water use efficiency, yet quantifying the CO2 effect is complicated due to co-occurring effects of global change. Here we harmonized a 38-year satellite record to separate the effects of climate change, land use change, and disturbance to quantify the CO2 fertilization effect on the greening phenomenon.
Mengyuan Mu, Martin G. De Kauwe, Anna M. Ukkola, Andy J. Pitman, Weidong Guo, Sanaa Hobeichi, and Peter R. Briggs
Earth Syst. Dynam., 12, 919–938, https://doi.org/10.5194/esd-12-919-2021, https://doi.org/10.5194/esd-12-919-2021, 2021
Short summary
Short summary
Groundwater can buffer the impacts of drought and heatwaves on ecosystems, which is often neglected in model studies. Using a land surface model with groundwater, we explained how groundwater sustains transpiration and eases heat pressure on plants in heatwaves during multi-year droughts. Our results showed the groundwater’s influences diminish as drought extends and are regulated by plant physiology. We suggest neglecting groundwater in models may overstate projected future heatwave intensity.
Mengyuan Mu, Martin G. De Kauwe, Anna M. Ukkola, Andy J. Pitman, Teresa E. Gimeno, Belinda E. Medlyn, Dani Or, Jinyan Yang, and David S. Ellsworth
Hydrol. Earth Syst. Sci., 25, 447–471, https://doi.org/10.5194/hess-25-447-2021, https://doi.org/10.5194/hess-25-447-2021, 2021
Short summary
Short summary
Land surface model (LSM) is a critical tool to study land responses to droughts and heatwaves, but lacking comprehensive observations limited past model evaluations. Here we use a novel dataset at a water-limited site, evaluate a typical LSM with a range of competing model hypotheses widely used in LSMs and identify marked uncertainty due to the differing process assumptions. We show the extensive observations constrain model processes and allow better simulated land responses to these extremes.
Georgina Falster, Gab Abramowitz, Sanaa Hobeichi, Cath Hughes, Pauline Treble, Nerilie J. Abram, Michael I. Bird, Alexandre Cauquoin, Bronwyn Dixon, Russell Drysdale, Chenhui Jin, Niels Munksgaard, Bernadette Proemse, Jonathan J. Tyler, Martin Werner, and Carol Tadros
EGUsphere, https://doi.org/10.5194/egusphere-2025-2458, https://doi.org/10.5194/egusphere-2025-2458, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
We used a random forest approach to produce estimates of monthly precipitation stable isotope variability from 1962–2023, at high resolution across the entire Australian continent. Comprehensive skill and sensitivity testing shows that our random forest models skilfully predict precipitation isotope values in places and times that observations are not available. We make all outputs publicly available, facilitating use in fields from ecology and hydrology to archaeology and forensic science.
Lingfei Wang, Gab Abramowitz, Ying-Ping Wang, Andy Pitman, Philippe Ciais, and Daniel S. Goll
EGUsphere, https://doi.org/10.5194/egusphere-2025-2545, https://doi.org/10.5194/egusphere-2025-2545, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Accurate estimates of global soil organic carbon (SOC) content and its spatial pattern are critical for future climate change mitigation. However, the most advanced mechanistic SOC models struggle to do this task. Here we apply multiple explainable machine learning methods to identify missing variables and misrepresented relationships between environmental factors and SOC in these models, offering new insights to guide model development for more reliable SOC predictions.
Matthew O. Grant, Anna M. Ukkola, Elisabeth Vogel, Sanaa Hobeichi, Andy J. Pitman, Alex Raymond Borowiak, and Keirnan Fowler
EGUsphere, https://doi.org/10.5194/egusphere-2024-4024, https://doi.org/10.5194/egusphere-2024-4024, 2025
Short summary
Short summary
Australia is regularly subjected to severe and widespread drought. By using multiple drought indicators, we show that while there have been widespread decreases in droughts since the beginning of the 20th century. However, many regions have seen an increase in droughts in more recent decades. Despite these changes, our analysis shows that they remain within the range of observed variability and are not unprecedented in the context of past droughts.
Gab Abramowitz, Anna Ukkola, Sanaa Hobeichi, Jon Cranko Page, Mathew Lipson, Martin G. De Kauwe, Samuel Green, Claire Brenner, Jonathan Frame, Grey Nearing, Martyn Clark, Martin Best, Peter Anthoni, Gabriele Arduini, Souhail Boussetta, Silvia Caldararu, Kyeungwoo Cho, Matthias Cuntz, David Fairbairn, Craig R. Ferguson, Hyungjun Kim, Yeonjoo Kim, Jürgen Knauer, David Lawrence, Xiangzhong Luo, Sergey Malyshev, Tomoko Nitta, Jerome Ogee, Keith Oleson, Catherine Ottlé, Phillipe Peylin, Patricia de Rosnay, Heather Rumbold, Bob Su, Nicolas Vuichard, Anthony P. Walker, Xiaoni Wang-Faivre, Yunfei Wang, and Yijian Zeng
Biogeosciences, 21, 5517–5538, https://doi.org/10.5194/bg-21-5517-2024, https://doi.org/10.5194/bg-21-5517-2024, 2024
Short summary
Short summary
This paper evaluates land models – computer-based models that simulate ecosystem dynamics; land carbon, water, and energy cycles; and the role of land in the climate system. It uses machine learning and AI approaches to show that, despite the complexity of land models, they do not perform nearly as well as they could given the amount of information they are provided with about the prediction problem.
Lingfei Wang, Gab Abramowitz, Ying-Ping Wang, Andy Pitman, and Raphael A. Viscarra Rossel
SOIL, 10, 619–636, https://doi.org/10.5194/soil-10-619-2024, https://doi.org/10.5194/soil-10-619-2024, 2024
Short summary
Short summary
Effective management of soil organic carbon (SOC) requires accurate knowledge of its distribution and factors influencing its dynamics. We identify the importance of variables in spatial SOC variation and estimate SOC stocks in Australia using various models. We find there are significant disparities in SOC estimates when different models are used, highlighting the need for a critical re-evaluation of land management strategies that rely on the SOC distribution derived from a single approach.
Anna M. Ukkola, Steven Thomas, Elisabeth Vogel, Ulrike Bende-Michl, Steven Siems, Vjekoslav Matic, and Wendy Sharples
EGUsphere, https://doi.org/10.31223/X56110, https://doi.org/10.31223/X56110, 2024
Short summary
Short summary
Future drought changes in Australia –the driest inhabited continent on Earth– have remained stubbornly uncertain. We assess future drought changes in Australia using projections from climate and hydrological models. We show an increasing probability of drought over highly-populated and agricultural regions of Australia in coming decades, suggesting potential impacts on agricultural activities, ecosystems and urban water supply.
Georgina M. Falster, Nicky M. Wright, Nerilie J. Abram, Anna M. Ukkola, and Benjamin J. Henley
Hydrol. Earth Syst. Sci., 28, 1383–1401, https://doi.org/10.5194/hess-28-1383-2024, https://doi.org/10.5194/hess-28-1383-2024, 2024
Short summary
Short summary
Multi-year droughts have severe environmental and economic impacts, but the instrumental record is too short to characterise multi-year drought variability. We assessed the nature of Australian multi-year droughts using simulations of the past millennium from 11 climate models. We show that multi-decadal
megadroughtsare a natural feature of the Australian hydroclimate. Human-caused climate change is also driving a tendency towards longer droughts in eastern and southwestern Australia.
Lina Teckentrup, Martin G. De Kauwe, Gab Abramowitz, Andrew J. Pitman, Anna M. Ukkola, Sanaa Hobeichi, Bastien François, and Benjamin Smith
Earth Syst. Dynam., 14, 549–576, https://doi.org/10.5194/esd-14-549-2023, https://doi.org/10.5194/esd-14-549-2023, 2023
Short summary
Short summary
Studies analyzing the impact of the future climate on ecosystems employ climate projections simulated by global circulation models. These climate projections display biases that translate into significant uncertainty in projections of the future carbon cycle. Here, we test different methods to constrain the uncertainty in simulations of the carbon cycle over Australia. We find that all methods reduce the bias in the steady-state carbon variables but that temporal properties do not improve.
Yuan Zhang, Devaraju Narayanappa, Philippe Ciais, Wei Li, Daniel Goll, Nicolas Vuichard, Martin G. De Kauwe, Laurent Li, and Fabienne Maignan
Geosci. Model Dev., 15, 9111–9125, https://doi.org/10.5194/gmd-15-9111-2022, https://doi.org/10.5194/gmd-15-9111-2022, 2022
Short summary
Short summary
There are a few studies to examine if current models correctly represented the complex processes of transpiration. Here, we use a coefficient Ω, which indicates if transpiration is mainly controlled by vegetation processes or by turbulence, to evaluate the ORCHIDEE model. We found a good performance of ORCHIDEE, but due to compensation of biases in different processes, we also identified how different factors control Ω and where the model is wrong. Our method is generic to evaluate other models.
Keirnan Fowler, Murray Peel, Margarita Saft, Tim J. Peterson, Andrew Western, Lawrence Band, Cuan Petheram, Sandra Dharmadi, Kim Seong Tan, Lu Zhang, Patrick Lane, Anthony Kiem, Lucy Marshall, Anne Griebel, Belinda E. Medlyn, Dongryeol Ryu, Giancarlo Bonotto, Conrad Wasko, Anna Ukkola, Clare Stephens, Andrew Frost, Hansini Gardiya Weligamage, Patricia Saco, Hongxing Zheng, Francis Chiew, Edoardo Daly, Glen Walker, R. Willem Vervoort, Justin Hughes, Luca Trotter, Brad Neal, Ian Cartwright, and Rory Nathan
Hydrol. Earth Syst. Sci., 26, 6073–6120, https://doi.org/10.5194/hess-26-6073-2022, https://doi.org/10.5194/hess-26-6073-2022, 2022
Short summary
Short summary
Recently, we have seen multi-year droughts tending to cause shifts in the relationship between rainfall and streamflow. In shifted catchments that have not recovered, an average rainfall year produces less streamflow today than it did pre-drought. We take a multi-disciplinary approach to understand why these shifts occur, focusing on Australia's over-10-year Millennium Drought. We evaluate multiple hypotheses against evidence, with particular focus on the key role of groundwater processes.
Jon Cranko Page, Martin G. De Kauwe, Gab Abramowitz, Jamie Cleverly, Nina Hinko-Najera, Mark J. Hovenden, Yao Liu, Andy J. Pitman, and Kiona Ogle
Biogeosciences, 19, 1913–1932, https://doi.org/10.5194/bg-19-1913-2022, https://doi.org/10.5194/bg-19-1913-2022, 2022
Short summary
Short summary
Although vegetation responds to climate at a wide range of timescales, models of the land carbon sink often ignore responses that do not occur instantly. In this study, we explore the timescales at which Australian ecosystems respond to climate. We identified that carbon and water fluxes can be modelled more accurately if we include environmental drivers from up to a year in the past. The importance of antecedent conditions is related to ecosystem aridity but is also influenced by other factors.
Sami W. Rifai, Martin G. De Kauwe, Anna M. Ukkola, Lucas A. Cernusak, Patrick Meir, Belinda E. Medlyn, and Andy J. Pitman
Biogeosciences, 19, 491–515, https://doi.org/10.5194/bg-19-491-2022, https://doi.org/10.5194/bg-19-491-2022, 2022
Short summary
Short summary
Australia's woody ecosystems have experienced widespread greening despite a warming climate and repeated record-breaking droughts and heat waves. Increasing atmospheric CO2 increases plant water use efficiency, yet quantifying the CO2 effect is complicated due to co-occurring effects of global change. Here we harmonized a 38-year satellite record to separate the effects of climate change, land use change, and disturbance to quantify the CO2 fertilization effect on the greening phenomenon.
Lina Teckentrup, Martin G. De Kauwe, Andrew J. Pitman, Daniel S. Goll, Vanessa Haverd, Atul K. Jain, Emilie Joetzjer, Etsushi Kato, Sebastian Lienert, Danica Lombardozzi, Patrick C. McGuire, Joe R. Melton, Julia E. M. S. Nabel, Julia Pongratz, Stephen Sitch, Anthony P. Walker, and Sönke Zaehle
Biogeosciences, 18, 5639–5668, https://doi.org/10.5194/bg-18-5639-2021, https://doi.org/10.5194/bg-18-5639-2021, 2021
Short summary
Short summary
The Australian continent is included in global assessments of the carbon cycle such as the global carbon budget, yet the performance of dynamic global vegetation models (DGVMs) over Australia has rarely been evaluated. We assessed simulations by an ensemble of dynamic global vegetation models over Australia and highlighted a number of key areas that lead to model divergence on both short (inter-annual) and long (decadal) timescales.
Mengyuan Mu, Martin G. De Kauwe, Anna M. Ukkola, Andy J. Pitman, Weidong Guo, Sanaa Hobeichi, and Peter R. Briggs
Earth Syst. Dynam., 12, 919–938, https://doi.org/10.5194/esd-12-919-2021, https://doi.org/10.5194/esd-12-919-2021, 2021
Short summary
Short summary
Groundwater can buffer the impacts of drought and heatwaves on ecosystems, which is often neglected in model studies. Using a land surface model with groundwater, we explained how groundwater sustains transpiration and eases heat pressure on plants in heatwaves during multi-year droughts. Our results showed the groundwater’s influences diminish as drought extends and are regulated by plant physiology. We suggest neglecting groundwater in models may overstate projected future heatwave intensity.
Sanaa Hobeichi, Gab Abramowitz, and Jason P. Evans
Hydrol. Earth Syst. Sci., 25, 3855–3874, https://doi.org/10.5194/hess-25-3855-2021, https://doi.org/10.5194/hess-25-3855-2021, 2021
Short summary
Short summary
Evapotranspiration (ET) links the water, energy and carbon cycle on land. Reliable ET estimates are key to understand droughts and flooding. We develop a new ET dataset, DOLCE V3, by merging multiple global ET datasets, and we show that it matches ET observations better and hence is more reliable than its parent datasets. Next, we use DOLCE V3 to examine recent changes in ET and find that ET has increased over most of the land, decreased in some regions, and has not changed in some other regions
Anna B. Harper, Karina E. Williams, Patrick C. McGuire, Maria Carolina Duran Rojas, Debbie Hemming, Anne Verhoef, Chris Huntingford, Lucy Rowland, Toby Marthews, Cleiton Breder Eller, Camilla Mathison, Rodolfo L. B. Nobrega, Nicola Gedney, Pier Luigi Vidale, Fred Otu-Larbi, Divya Pandey, Sebastien Garrigues, Azin Wright, Darren Slevin, Martin G. De Kauwe, Eleanor Blyth, Jonas Ardö, Andrew Black, Damien Bonal, Nina Buchmann, Benoit Burban, Kathrin Fuchs, Agnès de Grandcourt, Ivan Mammarella, Lutz Merbold, Leonardo Montagnani, Yann Nouvellon, Natalia Restrepo-Coupe, and Georg Wohlfahrt
Geosci. Model Dev., 14, 3269–3294, https://doi.org/10.5194/gmd-14-3269-2021, https://doi.org/10.5194/gmd-14-3269-2021, 2021
Short summary
Short summary
We evaluated 10 representations of soil moisture stress in the JULES land surface model against site observations of GPP and latent heat flux. Increasing the soil depth and plant access to deep soil moisture improved many aspects of the simulations, and we recommend these settings in future work using JULES. In addition, using soil matric potential presents the opportunity to include parameters specific to plant functional type to further improve modeled fluxes.
Lina Teckentrup, Martin G. De Kauwe, Andrew J. Pitman, and Benjamin Smith
Biogeosciences, 18, 2181–2203, https://doi.org/10.5194/bg-18-2181-2021, https://doi.org/10.5194/bg-18-2181-2021, 2021
Short summary
Short summary
The El Niño–Southern Oscillation (ENSO) describes changes in the sea surface temperature patterns of the Pacific Ocean. This influences the global weather, impacting vegetation on land. There are two types of El Niño: central Pacific (CP) and eastern Pacific (EP). In this study, we explored the long-term impacts on the carbon balance on land linked to the two El Niño types. Using a dynamic vegetation model, we simulated what would happen if only either CP or EP El Niño events had occurred.
Mengyuan Mu, Martin G. De Kauwe, Anna M. Ukkola, Andy J. Pitman, Teresa E. Gimeno, Belinda E. Medlyn, Dani Or, Jinyan Yang, and David S. Ellsworth
Hydrol. Earth Syst. Sci., 25, 447–471, https://doi.org/10.5194/hess-25-447-2021, https://doi.org/10.5194/hess-25-447-2021, 2021
Short summary
Short summary
Land surface model (LSM) is a critical tool to study land responses to droughts and heatwaves, but lacking comprehensive observations limited past model evaluations. Here we use a novel dataset at a water-limited site, evaluate a typical LSM with a range of competing model hypotheses widely used in LSMs and identify marked uncertainty due to the differing process assumptions. We show the extensive observations constrain model processes and allow better simulated land responses to these extremes.
Cited articles
Abramowitz, G.: Towards a public, standardized, diagnostic benchmarking system for land surface models, Geosci. Model Dev., 5, 819–827, https://doi.org/10.5194/gmd-5-819-2012, 2012.
Abramowitz, G., Pouyanné, L., and Ajami, H.: On the information content
of surface meteorology for downward atmospheric long-wave radiation
synthesis, Geophys. Res. Lett., 39, L04808, https://doi.org/10.1029/2011GL050726, 2012.
Best, M. J., Abramowitz, G., Johnson, H. R., Pitman, A. J., Balsamo, G.,
Boone, A., Cuntz, M., Decharme, B., Dirmeyer, P. A., Dong, J., Ek, M. B., Guo, Z., Haverd, V., van den Hurk, B. J. J., Nearing, G. S., Pak, B., Peters-Lidard, C. D., Santanello, J. S., Stevens, L. E., and Vuichard, N.: The Plumbing of Land Surface Models: Benchmarking Model Performance, J.
Hydrometeorol., 16, 1425–1442, https://doi.org/10.1175/JHM-D-14-0158.1, 2015.
Blyth, E., Gash, J., Lloyd, A., Pryor, M., Weedon, G. P., and Shuttleworth,
J.: Evaluating the JULES Land Surface Model Energy Fluxes Using FLUXNET
Data, 11, 509–519, https://doi.org/10.1175/2009JHM1183.1, 2010.
Copernicus Global Land Service: Leaf Area Index, Copernicus Global Land Service [data set], https://land.copernicus.eu/global/products/lai, last access: 25 October 2021.
De Kauwe, M. G., Disney, M. I., Quaife, T., Lewis, P., and Williams, M.: An
assessment of the MODIS collection 5 leaf area index product for a region of
mixed coniferous forest, Remote Sens. Environ., 115, 767–780, https://doi.org/10.1016/j.rse.2010.11.004, 2011.
Dirmeyer, P. A., Gentine, P., Ek, M. B., and Balsamo, G.: Land Surface
Processes Relevant to Sub-seasonal to Seasonal (S2S) Prediction, in:
Sub-Seasonal to Seasonal Prediction, Elsevier, 165–181,
https://doi.org/10.1016/B978-0-12-811714-9.00008-5, 2019.
FLUXNET: La Thuile Synthesis Dataset, FLUXNET [data set], https://fluxnet.org/data/la-thuile-dataset/, last access: 25 October 2021.
Forsythe, G. E., Malcolm, M. A., and Moler, C. B.: Computer
Methods for Mathematical Computations, Prentice Hall Inc, Englewood Cliffs, New Jersey, 259 pp., 1977.
Harper, A. B., Williams, K. E., McGuire, P. C., Duran Rojas, M. C., Hemming, D., Verhoef, A., Huntingford, C., Rowland, L., Marthews, T., Breder Eller, C., Mathison, C., Nobrega, R. L. B., Gedney, N., Vidale, P. L., Otu-Larbi, F., Pandey, D., Garrigues, S., Wright, A., Slevin, D., De Kauwe, M. G., Blyth, E., Ardö, J., Black, A., Bonal, D., Buchmann, N., Burban, B., Fuchs, K., de Grandcourt, A., Mammarella, I., Merbold, L., Montagnani, L., Nouvellon, Y., Restrepo-Coupe, N., and Wohlfahrt, G.: Improvement of modeling plant responses to low soil moisture in JULESvn4.9 and evaluation against flux tower measurements, Geosci. Model Dev., 14, 3269–3294, https://doi.org/10.5194/gmd-14-3269-2021, 2021.
Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H.: Updated
high-resolution grids of monthly climatic observations – the CRU TS3.10
Dataset, Int. J. Climatol., 34, 623–642, https://doi.org/10.1002/joc.3711, 2014.
Haughton, N., Abramowitz, G., De Kauwe, M. G., and Pitman, A. J.: Does predictability of fluxes vary between FLUXNET sites?, Biogeosciences, 15, 4495–4513, https://doi.org/10.5194/bg-15-4495-2018, 2018a.
Haughton, N., Abramowitz, G., and Pitman, A. J.: On the predictability of land surface fluxes from meteorological variables, Geosci. Model Dev., 11, 195–212, https://doi.org/10.5194/gmd-11-195-2018, 2018b.
Isaac, P., Cleverly, J., McHugh, I., van Gorsel, E., Ewenz, C., and Beringer, J.: OzFlux data: network integration from collection to curation, Biogeosciences, 14, 2903–2928, https://doi.org/10.5194/bg-14-2903-2017, 2017.
Leuning, R., van Gorsel, E., Massman, W. J., and Isaac, P. R.: Reflections
on the surface energy imbalance problem, Agr. Forest
Meteorol., 156, 65–74, https://doi.org/10.1016/j.agrformet.2011.12.002,
2012.
Martínez-de la Torre, A., Blyth, E. M., and Robinson, E. L.: Evaluation
of Drydown Processes in Global Land Surface and Hydrological Models Using
Flux Tower Evapotranspiration, Water, 11, 356, https://doi.org/10.3390/w11020356,
2019.
Mauder, M., Foken, T., and Cuxart, J.: Surface-Energy-Balance Closure over
Land: A Review, Bound.-Lay. Meteorol., 177, 395–426,
https://doi.org/10.1007/s10546-020-00529-6, 2020.
OzFlux-TERN data repository: https://data.ozflux.org.au/portal/pub/listPubCollections.jspx, last access: 25 October 2021.
Panin, G. N. and Bernhofer, C.: Parametrization of turbulent fluxes over
inhomogeneous landscapes, Izv. Atmos. Ocean. Phys., 44, 701–716,
https://doi.org/10.1134/S0001433808060030, 2008.
Pitman, A. J.: The evolution of, and revolution in, land surface schemes
designed for climate models, Int. J. Climatol., 23, 479–510,
https://doi.org/10.1002/joc.893, 2003.
Renner, M., Kleidon, A., Clark, M., Nijssen, B., Heidkamp, M., Best, M., and
Abramowitz, G.: How Well Can Land-Surface Models Represent the Diurnal Cycle
of Turbulent Heat Fluxes?, J. Hydrometeorol., 22, 77–94,
https://doi.org/10.1175/JHM-D-20-0034.1, 2021.
Smets, B., Verger, A., Camacho, F., van der Goten, R., and Jacobs, T.:
Copernicus Global Land Operations product user manual collection 1 km, 1–56, https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/CGLOPS1_PUM_LAI1km-V2_I1.33.pdf (last access: 25 October 2021), 2019.
Stoy, P. C., Mauder, M., Foken, T., Marcolla, B., Boegh, E., Ibrom, A.,
Arain, M. A., Arneth, A., Aurela, M., Bernhofer, C., Cescatti, A., Dellwik,
E., Duce, P., Gianelle, D., van Gorsel, E., Kiely, G., Knohl, A., Margolis,
H., McCaughey, H., Merbold, L., Montagnani, L., Papale, D., Reichstein, M.,
Saunders, M., Serrano-Ortiz, P., Sottocornola, M., Spano, D., Vaccari, F.,
and Varlagin, A.: A data-driven analysis of energy balance closure across
FLUXNET research sites: The role of landscape scale heterogeneity,
Agr. Forest Meteorol., 171–172, 137–152,
https://doi.org/10.1016/j.agrformet.2012.11.004, 2013.
Tans, P. and Keeling, R.: Mauna Loa CO2 monthly mean data, NOAA GML [data set], https://www.esrl.noaa.gov/gmd/webdata/ccgg/trends/co2/co2_annmean_mlo.txt, last access: 25 October 2021.
Tuck, S. L., Phillips, H. R., Hintzen,
R. E., Scharlemann, J. P., Purvis, A., and Hudson, L. N.: MODISTools – downloading and processing
MODIS remotely sensed data in R, Ecol. Evol., 4, 4658–4668,
https://doi.org/10.1002/ece3.1273, 2014.
Ukkola, A. M., De Kauwe, M. G., Pitman, A. J., Best, M. J., Abramowitz, G.,
Haverd, V., Decker, M., and Haughton, N.: Land surface models systematically
overestimate the intensity, duration and magnitude of seasonal-scale
evaporative droughts, Environ. Res. Lett., 11, 104012,
https://doi.org/10.1088/1748-9326/11/10/104012, 2016.
Ukkola, A. M., Haughton, N., De Kauwe, M. G., Abramowitz, G., and Pitman, A. J.: FluxnetLSM R package (v1.0): a community tool for processing FLUXNET data for use in land surface modelling, Geosci. Model Dev., 10, 3379–3390, https://doi.org/10.5194/gmd-10-3379-2017, 2017.
Ukkola, A. M., Abramowitz, G., and De Kauwe, M. G.: PLUMBER2: forcing and
evaluation datasets for a model intercomparison project for land surface
models v1.0, Geonetwork [data set], https://doi.org/10.25914/5fdb0902607e1, 2021 (data available at https://github.com/aukkola/PLUMBER2, last access: 25 October 2021).
University of East Anglia Climatic Research Unit:
Harris, I. C., Jones, P. D.: CRU TS4.02: Climatic Research Unit (CRU) Time-Series (TS) version 4.02 of high-resolution gridded data of month-by-month variation in climate (Jan. 1901–Dec. 2017), Centre for Environmental Data Analysis [data set], https://doi.org/10.5285/b2f81914257c4188b181a4d8b0a46bff, 2019 (data available at: https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.02/,
last access: 25 October 2021).
van der Horst, S. V. J., Pitman, A. J., De Kauwe, M. G., Ukkola, A., Abramowitz, G., and Isaac, P.: How representative are FLUXNET measurements of surface fluxes during temperature extremes?, Biogeosciences, 16, 1829–1844, https://doi.org/10.5194/bg-16-1829-2019, 2019.
Wang, Y. P., Kowalczyk, E., Leuning, R., Abramowitz, G., Raupach, M. R.,
Pak, B., van Gorsel, E., and Luhar, A.: Diagnosing errors in a land surface
model (CABLE) in the time and frequency domains, J. Geophys. Res., 116,
G01034, https://doi.org/10.1029/2010JG001385, 2011.
Whitley, R., Beringer, J., Hutley, L. B., Abramowitz, G., De Kauwe, M. G., Duursma, R., Evans, B., Haverd, V., Li, L., Ryu, Y., Smith, B., Wang, Y.-P., Williams, M., and Yu, Q.: A model inter-comparison study to examine limiting factors in modelling Australian tropical savannas, Biogeosciences, 13, 3245–3265, https://doi.org/10.5194/bg-13-3245-2016, 2016.
Williams, M., Richardson, A. D., Reichstein, M., Stoy, P. C., Peylin, P., Verbeeck, H., Carvalhais, N., Jung, M., Hollinger, D. Y., Kattge, J., Leuning, R., Luo, Y., Tomelleri, E., Trudinger, C. M., and Wang, Y.-P.: Improving land surface models with FLUXNET data, Biogeosciences, 6, 1341–1359, https://doi.org/10.5194/bg-6-1341-2009, 2009.
Wilson, K., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D., Berbigier,
P., Bernhofer, C., Ceulemans, R., Dolman, H., Field, C., Grelle, A., Ibrom,
A., Law, B. E., Kowalski, A., Meyers, T., Moncrieff, J., Monson, R., Oechel,
W., Tenhunen, J., Valentini, R., and Verma, S.: Energy balance closure at
FLUXNET sites, Agr. Forest Meteorol., 113, 223–243,
https://doi.org/10.1016/S0168-1923(02)00109-0, 2002.
Wohlfahrt, G., Haslwanter, A., Hörtnagl, L., Jasoni, R. L.,
Fenstermaker, L. F., Arnone, J. A., and Hammerle, A.: On the consequences of
the energy imbalance for calculating surface conductance to water vapour,
Agr. Forest Meteorol., 149, 1556–1559,
https://doi.org/10.1016/j.agrformet.2009.03.015, 2009.
Zhu, Z., Piao, S., Myneni, R. B., Huang, M., Zeng, Z., Canadell, J. G.,
Ciais, P., Sitch, S., Friedlingstein, P., Arneth, A., Cao, C., Cheng, L.,
Kato, E., Koven, C., Li, Y., Lian, X., Liu, Y., Liu, R., Mao, J., Pan, Y.,
Peng, S., Peñuelas, J., Poulter, B., Pugh, T. A. M., Stocker, B. D.,
Viovy, N., Wang, X., Wang, Y., Xiao, Z., Yang, H., Zaehle, S., and Zeng, N.:
Greening of the Earth and its drivers, Nat. Clim. Change, 6, 791–795,
https://doi.org/10.1038/nclimate3004, 2016.
Short summary
Flux towers provide measurements of water, energy, and carbon fluxes. Flux tower data are invaluable in improving and evaluating land models but are not suited to modelling applications as published. Here we present flux tower data tailored for land modelling, encompassing 170 sites globally. Our dataset resolves several key limitations hindering the use of flux tower data in land modelling, including incomplete forcing variable, data format, and low data quality.
Flux towers provide measurements of water, energy, and carbon fluxes. Flux tower data are...
Altmetrics
Final-revised paper
Preprint