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Abstract. Eddy covariance flux towers measure the exchange of water, energy, and carbon fluxes between the
land and atmosphere. They have become invaluable for theory development and evaluating land models. How-
ever, flux tower data as measured (even after site post-processing) are not directly suitable for land surface
modelling due to data gaps in model forcing variables, inappropriate gap-filling, formatting, and varying data
quality. Here we present a quality-control and data-formatting pipeline for tower data from FLUXNET2015, La
Thuile, and OzFlux syntheses and the resultant 170-site globally distributed flux tower dataset specifically de-
signed for use in land modelling. The dataset underpins the second phase of the Protocol for the Analysis of Land
Surface Models (PALS) Land Surface Model Benchmarking Evaluation Project (PLUMBER), an international
model intercomparison project encompassing >20 land surface and biosphere models. The dataset is provided
in the Assistance for Land-surface Modelling Activities (ALMA) NetCDF format and is CF-NetCDF compliant.
For forcing land surface models, the dataset provides fully gap-filled meteorological data that have had periods
of low data quality removed. Additional constraints required for land models, such as reference measurement
heights, vegetation types, and satellite-based monthly leaf area index estimates, are also included. For model
evaluation, the dataset provides estimates of key water, carbon, and energy variables, with the latent and sensible
heat fluxes additionally corrected for energy balance closure. The dataset provides a total of 1040 site years
covering the period 1992–2018, with individual sites spanning from 1 to 21 years. The dataset is available at
http://doi.org/10.25914/5fdb0902607e1 (Ukkola et al., 2021).

1 Introduction

The global network of flux towers now encompasses >900
sites globally (https://fluxnet.org/, last access: 25 Octo-
ber 2021), with the longest records spanning over 3 decades.
With their increasing spatial and temporal coverage, flux
towers have become an invaluable dataset for evaluating pro-
cess representation in land surface models (LSMs). LSMs
within climate models are key tools for projecting future
climates and also operate within operational weather and
seasonal prediction models (Pitman, 2003; Dirmeyer et al.,
2019). Their key role is to simulate the terrestrial carbon,
water, and energy cycles in both coupled climate models and
uncoupled stand-alone applications. Flux towers provide si-
multaneous observations of the meteorological data needed
to force offline LSMs as well as estimates of key ecosys-

tem water, energy, and carbon fluxes at a spatial scale against
which LSMs can be evaluated. Flux towers are also one of the
few data sources to provide measurements at timescales ap-
propriate for diagnosing model process representations, pro-
viding high-frequency sub-daily (typically 30 min) observa-
tions. As such, they have enabled model evaluation ranging
from sub-diurnal to seasonal and inter-annual scales (Whitley
et al., 2016; Williams et al., 2009; Wang et al., 2011; Ren-
ner et al., 2021; Blyth et al., 2010; Best et al., 2015). Flux
tower data have also been instrumental in enabling develop-
ment of LSMs for extreme events such as drought (Harper
et al., 2021; Ukkola et al., 2016; Martínez-de la Torre et al.,
2019).

Several global multi-site collections such as
FLUXNET2015 (Pastorello et al., 2020) have been re-
leased that provide valuable opportunities for evaluating
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LSMs across multiple climates and biomes. Whilst these
collections overcome many limitations of raw flux tower
data, the data are not provided in a format directly usable
in land surface modelling. The datasets require varying
levels of gap-filling, unit conversions, and data formatting to
be applicable for modelling exercises and are missing key
metadata, such as measurement height and vegetation char-
acteristics. Most importantly, not all flux tower data releases
provide temporally continuous meteorological observations,
which are essential for forcing LSMs. FLUXNET2015
overcomes this key limitation by providing fully gap-filled
meteorological observations but includes long periods of
gap-filling at some sites, resulting in missing diurnal and/or
seasonal cycles. Extended periods of synthesized meteoro-
logical variables are problematic in model applications not
only because they bias model estimates at concurrent time
steps but also because they bias future model predictions
due to model state memory, such as soil moisture. As such,
the data quality requirements for land modelling present a
challenge that is not yet met by standard flux tower data
releases.

Here we present a collection of 170 globally dis-
tributed flux tower sites collated from three data releases
(FLUXNET2015, La Thuile, and OzFlux) that results from
applying land-surface-model-focused quality control and an-
cillary data collation. By combining multiple data sources,
we were able to maximize the number of available sites
to enable model evaluation against a wider range of cli-
mate and vegetation conditions. The dataset covers the
period 1992–2018 (although the majority of site records
end in 2014), with individual sites spanning from 1 to
21 years, with a total of 1040 site years. The dataset pro-
vides quality-controlled, fully gap-filled meteorological vari-
ables for forcing LSMs, together with a comprehensive set
of flux variables for model evaluation. The data are pro-
vided in the Assistance for Land-surface Modelling Activ-
ities (ALMA; https://www.lmd.jussieu.fr/~polcher/ALMA/,
last access: 25 October 2021) format, the international stan-
dard in land surface modelling, and are Climate and Fore-
cast (CF) NetCDF-compliant (https://cfconventions.org/, last
access: 25 October 2021). The dataset additionally provides
various metadata for the sites, including reference and mea-
surement height (for emulating the lowest layer of the atmo-
spheric model to which the LSM would be coupled), veg-
etation type (to ensure plant physiological traits are appro-
priate), and two different satellite-derived estimates of each
site’s monthly leaf area index (LAI). The dataset underpins
the second phase of the Protocol for the Analysis of Land
Surface Models (PALS) Land Surface Model Benchmarking
Evaluation Project (PLUMBER; Best et al., 2015), which has
participants from >20 land surface and biosphere modelling
groups internationally. Whilst primarily designed for mod-
elling purposes, the dataset would also be valuable for other
applications requiring quality-controlled meteorological data

at multiple sites. In the following sections we describe the
processing steps to derive the dataset.

2 Methods

2.1 Datasets

We collated data for 223 flux towers from three flux tower
data collections. We first obtained all available Australian
sites from the OzFlux network (Isaac et al., 2017). We then
obtained all Tier 1 (open data policy) globally distributed
sites from FLUXNET2015 (November 2016 release; Pas-
torello et al., 2020), excluding sites available in OzFlux.
For all FLUXNET2015 sites, data from the “FULLSET”
release was used. Finally, additional sites that were not
present in OzFlux or FLUXNET2015 were taken from
the La Thuile free fair-use release (https://fluxnet.org/data/
la-thuile-dataset/, last access: 25 October 2021). The fi-
nal dataset consisted of 29 sites from OzFlux, 132 from
FLUXNET2015, and 62 from La Thuile. These sites were
further screened to derive the final subset of 170 sites using
the protocols detailed below.

2.2 Processing steps

We undertook multiple processing steps to derive the final,
quality-controlled dataset. The data were first pre-processed
with the FluxnetLSM R package (Ukkola et al., 2017) to
convert the files to ALMA-formatted NetCDF files with con-
sistent units and variable conventions. The data were subse-
quently screened using expert judgement to only retain pe-
riods of good-quality meteorological data. Additional cor-
rections were then made to meteorological data to remove
outliers and non-physical values and gap-fill any remaining
missing values. The flux variables were not screened, but ad-
ditional latent and sensible heat flux estimates were calcu-
lated to correct for energy balance closure. Finally, we de-
rived two independent leaf area index time series for each
site from remotely sensed data to account for uncertainties in
satellite-derived LAI. A flowchart of the processing pipeline
is shown in Fig. 1, with each step described in detail below.

2.2.1 Initial processing with FluxnetLSM

The three datasets come in various formats, different units,
and variable naming conventions. We used the FluxnetLSM
R package (Ukkola et al., 2017), which has been designed
to translate flux tower data for use in land surface mod-
elling. The package was used to process the data into ALMA-
formatted CF-compliant NetCDF files with consistent vari-
able names and units to be readily usable in land surface
modelling (see Table 1 for ALMA conventions and variables
included in the final dataset). In addition, FluxnetLSM was
used to further gap-fill meteorological and flux variables and
to include additional site metadata, such as elevation, refer-
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Figure 1. A flowchart describing the data processing pipeline. The
dark boxes show the main data processing steps, with the lighter
boxes detailing the actions taken within each main step.

ence and vegetation canopy heights, and vegetation type (fol-
lowing the International Geosphere–Biosphere Programme
(IGBP) classification) in the NetCDF files. While some of
the information could be obtained from FLUXNET or re-
gional networks, we supplemented site metadata available
in FluxnetLSM by extracting information from publications
and site principal investigators. These metadata were col-
lected to inform modelling choices and are included in the
final NetCDF files. FluxnetLSM is fully reproducible and

provides a documented framework to replace ad hoc process-
ing methods used in many previous flux tower collections for
LSMs. The version of FluxnetLSM used for processing is
documented in the NetCDF file metadata.

FluxnetLSM was run separately for each parent dataset.
OzFlux was first pre-processed to remove incomplete years
as land surface models require whole years of data for
spinning up soil water and temperature states. To achieve
this, the data were first gap-filled to complete days, and in-
complete years were then removed using the FluxnetLSM
function “preprocess_OzFlux”. This step was not required
for FLUXNET2015 and La Thuile as they only report
whole years. FluxnetLSM was subsequently used to process
each dataset using the commands provided in Supplement
Sect. S1.

FluxnetLSM can be used to screen the data for missing
and gap-filled time steps, but this option was not used, in-
stead setting the allowed level of missing and gap-filled data
to 100 % for all datasets and variables to allow subsequent
manual visual data screening (Sect. 2.2.2). However, the gap-
filling methods for meteorological variables were set dif-
ferently for each dataset. FLUXNET2015 provides continu-
ous, downscaled ERA-Interim estimates for all meteorolog-
ical variables; these were used to gap-fill all missing time
steps in the meteorological variables (setting met_gap-fill to
“ERA-Interim” in FluxnetLSM). For OzFlux and La Thuile,
statistical gap-filling methods provided in FluxnetLSM were
used (setting met_gap-fill to “statistical”). For all variables
except surface air pressure and incoming longwave radiation,
short data gaps (up to 4 h) were gap-filled using linear inter-
polation. Longer data gaps (up to 10 d for OzFlux and 365 d
for La Thuile) were gap-filled using “copyfill”, which takes
the mean of the corresponding time steps during other years.
Surface air pressure and incoming longwave radiation were
synthesized using empirical methods. Air pressure was cal-
culated from air temperature and elevation using a baromet-
ric formula (Ukkola et al., 2017). Longwave radiation was
calculated from air temperature and relative humidity using
the method of Abramowitz et al. (2012). The synthesized val-
ues were then used to gap-fill missing time steps.

Flux variables were gap-filled using statistical methods for
all datasets. As per meteorological variables, short gaps of
up to 4 h were gap-filled using linear interpolation. Longer
gaps (up to 30 d for OzFlux and FLUXNET2015 and 365 d
for La Thuile) were gap-filled using a linear regression of
each flux variable against incoming shortwave radiation, air
temperature, and humidity (relative humidity or vapour pres-
sure deficit). This approach was demonstrated to outperform
a range of LSMs in a broad range of metrics in out-of-sample
tests (see Abramowitz, 2012; Best et al., 2015). In the ab-
sence of air temperature or humidity data, the linear regres-
sion was constructed against shortwave radiation only. A sep-
arate linear model was created for daytime and nighttime
data. Further details of all gap-filling methods can be found
in Ukkola et al. (2017).
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Table 1. Variables provided in the final dataset (please note not all sites provide all flux variables). Variable naming conventions fol-
low the ALMA format where available. FLUXNET variable derivation details can be found at https://fluxnet.org/wp-content/uploads/
FLUXNET2015_FULLSET_variable_list_20170509.pdf (last access: 25 October 2021).

Variable Description CF standard name FLUXNET name Unit

Met:

Precip Precipitation rate precipitation_flux P mm s−1

Tair Near-surface air temperature air_temperature TA_F_MDS K

SWdown Downward shortwave radiation surface_downwelling_shortwave_flux_in_air SW_IN_F_MDS W m−2

LWdown Downward longwave radiation surface_downwelling_longwave_flux_in_air LW_IN_F_MDS W m−2

Qair Near-surface specific humidity specific_humidity [VPD_F_MDS,
TA_F_MDS]

kg kg−1

VPD Vapour pressure deficit water_vapor_saturation_deficit_in_air VPD_F_MDS hPa

RH Near-surface relative humidity relative_humidity RH %

Wind Scalar wind speed wind_speed WS m s−1

Psurf Surface air pressure surface_air_pressure PA Pa

CO2air Near-surface CO2 concentration mole_fraction_of_carbon_dioxide_in_air CO2_F_MDS ppm

Flux:

Rnet Net radiation surface_net_downward_radiative_flux NETRAD W m−2

SWup Upward shortwave radiation surface_upwelling_shortwave_flux_in_air SW_OUT W m−2

Qle Latent heat flux surface_upward_latent_heat_flux LE_F_MDS W m−2

Qh Sensible heat flux surface_upward_sensible_heat_flux H_F_MDS W m−2

Qg Ground heat flux surface_downward_heat_flux G_F_MDS W m−2

Qle_cor Energy-balance-corrected latent heat
flux

surface_upward_latent_heat_flux LE_CORR W m−2

Qh_cor Energy-balance-corrected sensible heat
flux

surface_upward_sensible_heat_flux H_CORR W m−2

Qle_cor_uc∗ Qle_cor joint uncertainty – LE_CORR_JOINTUNC W m−2

Qh_cor_uc∗ Qh_cor joint uncertainty – H_CORR_JOINTUNC W m−2

Ustar Friction velocity – USTAR m s−1

NEE Net ecosystem exchange of CO2 surface_net_downward_mass_flux_of_carbon_
dioxide_expressed_as_carbon_due_to_all_land_
processes_excluding_anthropogenic_land_use_
change

NEE_VUT_REF mmol m−2 s−1

NEE_uc∗ NEE joint uncertainty – NEE_VUT_REF_
JOINTUNC

mmol m−2 s−1

GPP Gross primary productivity of CO2 gross_primary_productivity_of_carbon GPP_NT_VUT_REF mmol m−2 s−1

GPP_se∗ Standard error in GPP – GPP_NT_VUT_SE mmol m−2 s−1

GPP_DT∗ Gross primary productivity of CO2
from daytime partitioning method

gross_primary_productivity_of_carbon GPP_DT_VUT_REF mmol m−2 s−1

GPP_DT_se∗ Standard error in GPP_DT – GPP_DT_VUT_SE mmol m−2 s−1

Resp Ecosystem respiration – RECO_NT_VUT_REF mmol m−2 s−1

Resp_se∗ Standard error in Resp – RECO_NT_VUT_SE mmol m−2 s−1

∗ FLUXNET2015 only.
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2.2.2 Site and time period selection

We screened the original dataset of 223 sites to only retain
sites and time periods with good-quality meteorological forc-
ing data. This was done to ensure models were forced with
data that were largely observed to avoid biasing the model
flux estimates. We used expert judgement to manually screen
sites instead of an automated process to be able to compro-
mise between data quality and time series length. During
screening, we prioritized five key meteorological variables
in site selection that have the largest influence on LSM sim-
ulations: incoming shortwave radiation (SWdown), precipita-
tion (Precip), air temperature (Tair), air humidity (Qair), and
wind speed (Wind). These variables were allowed to have ap-
proximately 10 % or fewer gap-filled time steps in any given
year. If no years fulfilling this criterion were available, the
site was excluded. For sites with heavily gap-filled or miss-
ing periods in the middle of the time series, we chose the
longest continuous period with good-quality meteorological
data. The remaining three meteorological variables (incom-
ing longwave radiation (LWdown), atmospheric CO2 concen-
tration (CO2_air), and air pressure (Psurf)) were allowed to be
gap-filled or missing for a site to be selected, but any missing
or poor-quality data were later corrected as a post-processing
step (Sect. 3.2.3). Not all sites report these variables, and as
such, the less strict criteria were applied to retain as many
sites as possible. The flux variables were not screened to
allow model evaluation at multiple timescales and specific
events. The specific criteria for excluding a site or time pe-
riods are provided for each site in Table S1. After site se-
lection, the final dataset included 23 sites from OzFlux, 102
from FLUXNET2015, and 45 from La Thuile. Table S1 pro-
vides a list of the selected sites, including the criteria for time
period selection. Table S2 lists excluded sites and the reason
for omitting them.

Figure 2 presents examples of how the selection criteria
were applied at three sites. AU-Lit shows a site where no
adjustments to the time period were required. All key mete-
orological variables are largely observed, with only 3.3 %–
5.1 % of the 2-year time series gap-filled. As such, the full
time series was selected for this site. BE-Bra shows an exam-
ple where a subset of the years were excluded from the final
dataset due to a heavily gap-filled year (2003) in the middle
of the time series. During 2003, four key variables (SWdown,
Precip, Tair, and Wind) are largely gap-filled, leading to unre-
alistic seasonal cycles in these variables. As such, the longest
continuous period with low levels of gap-filling (2004–2014)
was chosen, leading to years prior to and including 2003 be-
ing discarded. US-Tw2 is an example of a site that was ex-
cluded from the final dataset. In both available years, four
meteorological variables (SWdown, Tair, Qair, and Wind) are
∼ 50 % gap-filled, exceeding our threshold of ∼ 10 %. Fur-
thermore, no observed precipitation data were available, with
the time series fully gap-filled.

2.2.3 Further corrections to meteorological data

After selecting the final sites, meteorological variables were
further corrected for anomalous values, step changes, and
missing data. These corrections mainly applied to CO2_air
and LWdown due to a larger proportion of gap-filled and miss-
ing data in these variables. Anomalous or non-physical val-
ues in other variables were also corrected at individual sites.

For atmospheric CO2 concentration, we screened the data
for step changes, unrealistically high concentrations, and
missing data. Where CO2_air was not provided for a site,
we used annual concentrations from the Mauna Loa at-
mospheric CO2 time series (https://www.esrl.noaa.gov/gmd/
ccgg/trends/mlo.html, last access: 25 October 2021) for the
period covered by site observations. The annual values were
repeated to match the site temporal resolution (half-hourly
or hourly) each year. Missing CO2 values were gap-filled
by predicting CO2_air from a linear regression of available
CO2_air values against time, except when large data gaps
(multiple months or longer) existed, in which case CO2_air
was replaced with the annual Mauna Loa values.

For OzFlux sites, unphysical values existed in the dataset
that were corrected. These included negative Precip, SWdown,
LWdown, Wind, andQair (vapour pressure deficit and/or rela-
tive and specific humidity), which were capped at zero. Sim-
ilarly, relative humidity values above 100 % were capped at
100 %. At a further 11 sites, we also corrected large step
changes in CO2_air, heavily gap-filled periods in LWdown
(which led to unrealistic seasonal cycles), and anomalous
values in Psurf and relative humidity. Table S3 summa-
rizes the corrections made to meteorological data at each
site. All corrections done during this post-processing step
are documented at https://github.com/aukkola/PLUMBER2/
blob/master/functions/site_exceptions.R (last access: 25 Oc-
tober 2021).

2.2.4 Energy balance closure correction of latent and
sensible heat fluxes

Latent (Qle) and sensible (Qh) heat fluxes were corrected
for energy balance closure (EBC) using the Bowen ratio
method (Mauder et al., 2020) to aid model evaluation. At
flux tower sites, the sum of measured latent and sensi-
ble heat fluxes is commonly lower than available energy
(Wohlfahrt et al., 2009), complicating comparison with mod-
els which conserve energy. The FLUXNET2015 dataset pro-
vides EBC-corrected Qle and Qh, and as such, for sites de-
rived from FLUXNET2015 these estimates were used (vari-
ables LE_CORR and H_CORR in FLUXNET2015). For La
Thuile and OzFlux sites, Qle and Qh were EBC-corrected
using a procedure adapted from FLUXNET2015.

The EBC-corrected fluxes were obtained by multiplying
Qle and Qh by an EBC correction factor (fEBC); fEBC was
calculated for each time step separately as fEBC = (Rnet−

G)/(Qh+Qle), where Rnet is net radiation and G ground
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Figure 2. Examples of meteorological data pre-screening plots for three sites (AU-Lit, BE-Bra, and US-Tw2). For each site different pro-
cessing approaches were used and sections of these data discarded.

heat flux (all variables are in W m−2). Only time steps for
which all four energy balance components were available
were used. The fEBC time series was further filtered for data
quality to only retain time steps for which observed G and
observed or good-quality (QC value≤ 1) Qh and Qle data
were available. To remove outliers, fEBC values outside 1.5
times the interquartile range were then discarded.

The fluxes were then corrected using a two-step method.
First, for each time step, a moving window of±15 d was used
to select fEBC for all time steps within the hours 22:00–02:30
and 10:00–14:30 local time. Other times were discarded to
avoid periods of large changes in ecosystem heat storage dur-
ing sunrise and sunset periods, which can bias the energy
balance closure estimates (Pastorello et al., 2020). If at least
five fEBC values were available within the moving window,
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the median of these values was used to correct Qle and Qh.
Otherwise, the same moving window of ±15 d and hours of
the day was applied to the same time step using the current,
previous, and next year (if available). The median of all avail-
able fEBC was then used to correct Qle and Qh. If no avail-
able fEBC values were found using this method, the fluxes
for that time step were not corrected.

2.2.5 Leaf area index processing

We obtained two independent remotely sensed leaf area in-
dex (LAI) time series for each site input to account for large
uncertainties in satellite-derived LAI estimates (Zhu et al.,
2016). The LAI time series can be used to force LSMs that do
not include a predictive carbon cycle and require prescribed
LAI as an input. The standardized LAI time series are also
useful for reducing the degrees of freedom in evaluation stud-
ies by allowing the models to be driven by the same LAI
estimates and allow the minimization of LAI-driven model
errors at sites where observed and modelled LAI converge
strongly. The LAI data were derived from Moderate Res-
olution Imaging Spectroradiometer (MODIS) and Coperni-
cus Global Land Service products as these products provide
long-term records at high (≤ 1 km) spatial resolution.

MODIS LAI

We used the MODIS product MCD15A2H, which is derived
from a combination of the Terra and Aqua sensors at 500 m
spatial resolution and 8-daily temporal resolution, starting
in January 2000. The LAI data and associated standard de-
viation and QC flags were obtained using the R package
MODISTools (Tuck et al., 2014). The pixel containing the
site and its surrounding pixels (in total nine pixels) were ob-
tained for each site. Only good-quality data (QC flag values
0, 2, 24, 26, 32, 34, 56, and 58) were kept, and all other val-
ues were set to missing. At each time step, a weighted mean
was then calculated from the nine pixels by weighting them
by their standard deviation error (defined as 1/σ 2). The re-
sulting 8-daily time series were then gap-filled using a cubic
spline function (Forsythe et al., 1977) and any negative LAI
values set to zero. To remove unrealistic short-term variabil-
ity in LAI, e.g. due to cloud artefacts, that remained after
the initial quality control, several steps were taken to further
smooth the time series. The gap-filled time series was first
smoothed using a cubic smoothing spline. A climatology (46
time steps) was then calculated from all available years. An
anomaly time series was then created by removing the clima-
tology and smoothed by taking a rolling mean over a window
of±6 time steps to further remove short-term variability. The
climatology was then added to the smoothed time series and
the 8-daily time series interpolated to the time resolution of
the flux tower data using the climatological values prior to
MODIS commencing in January 2000.

Copernicus LAI

We used the Copernicus Global Land Service LAI v.2.0.2.,
which provides LAI estimates at 1 km spatial resolution and
10-daily temporal resolution for the period 1999–2017. The
estimates have been derived from SPOT-VGT and PROBA-
V sensors (Smets et al., 2019). The 10-daily data were first
averaged to monthly by taking the maximum of the three 10-
daily values for each month following the maximum com-
posite procedure to remove low values, e.g. due to cloud con-
tamination. The data were then smoothed spatially by aver-
aging each pixel with its surrounding pixels (with each pixel
representing the mean of nine pixels). The monthly values
were then extracted for each site using the pixel containing
the site. If the value for the pixel containing the site was miss-
ing, the value from the nearest non-missing pixel was used.
To remove non-physical short-term variability, the monthly
site time series was then smoothed using a cubic smoothing
spline. A monthly climatology was then calculated and an
anomaly time series calculated by removing the climatology
from the monthly LAI time series. The anomaly time series
was smoothed by taking a rolling mean over a window of
±6 time steps to further remove short-term variability before
adding the climatology to the smoothed anomalies. Finally,
the resulting monthly time series was interpolated to the time
resolution of the flux tower data using the climatology for
time periods not covered by the product.

LAI selection for sites

Both Copernicus and MODIS LAI were provided for each
site, but we selected one as a preferred LAI time series
for each site to use as the default for use with LSMs that
rely on prescribed LAI. Overall, we selected MODIS as the
default time series due to its higher spatial resolution, but
where MODIS was deemed unrealistic for the site due to its
magnitude, seasonal cycle, or non-physical short-term vari-
ations, using site data where available, Copernicus was se-
lected instead. Table S1 summarizes the selected LAI time
series for each site. The preferred LAI variable was called
“LAI” in the final NetCDF files and the alternative time se-
ries “LAI_alternative”.

3 Results

3.1 Global distribution of selected sites

The final dataset includes 170 globally distributed sites
shown in Fig. 3a. The majority of the sites are located in
North America, Europe, and Australia, with 3 sites located
in South America, 4 in Africa, and 11 in Asia. The excluded
sites are largely located in data-rich regions and as such did
not significantly change the global distribution of sites. The
dataset covers the periods 1992–2018, with a total of 1041
site years. Individual site records span 1 to 21 years, with
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Figure 3. Selected and excluded sites. (a) A map of selected sites including the length of data period and excluded sites, (b) a histogram of
record length for selected sites, (c) number of selected sites per IGBP vegetation class, and (d) the distribution of selected and excluded sites
within the global envelope of mean annual temperature (MAT) and mean annual precipitation (MAP).

a median record length of 4.5 years (Fig. 3b). A total of 39
sites cover ≥ 10 years and 14 sites ≥ 15 years.

The sites cover a wide range of biomes, ranging from
grasslands and savannas to forest ecosystems (Fig. 3c). The
majority of sites are located in grassland (40), forested (89),
and cropland (17) ecosystems. A total of 22 sites are located
in savanna and shrubland ecosystems and 10 sites in wet-
lands. The sites also cover a wide range of climates, with
Fig. 3d showing the sites within the global range of mean
annual precipitation (MAP) and mean annual temperature
(MAT) from the Climatic Research Unit (CRU) TS 4.02
dataset (Harris et al., 2014). The sites capture the global cli-
matic range well, but only a limited number of sites were
available in wet tropical environments with high MAP and
MAT and very cold environments (MAT< 0 ◦C). The ex-

cluded sites lie largely within the climate envelope covered
by the final dataset and are thus not strongly influencing the
climate range covered by the final dataset.

3.2 Impact of screening meteorological variables

For the selected sites, the original time series was reduced
at multiple sites to exclude periods of poor-quality meteo-
rological data. The number of years excluded at each site is
shown in Fig. 4. Regionally, the average number of years ex-
cluded was similar over North America (mean: 1.8; median:
1) and Europe (1.9, 1), whereas fewer years were removed
over Australia (0.7, 0) (see sub-panels in Fig. 3a for region
definitions). The number of excluded years was also simi-
lar across the FLUXNET2015 (mean: 2.0; median: 1) and La
Thuile site (1.3, 1) datasets but lower for OzFlux (as per Aus-
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Figure 4. Excluded years from selected sites. (a) A map of selected sites showing the number of excluded years. (b) A histogram of excluded
site years.

tralia). Overall, there were no systematic spatial variations in
the number of years excluded.

For the selected sites, our data screening reduced the
mean record length by 1.7 years (median: 1), ranging from
0 to 12 years for individual sites (Fig. 4b). A total of 283
site years were removed. The majority of sites (139 out
of 170) had 0–2 years removed, while only 11 sites had
>5 years removed. The screening also reduced the propor-
tion of gap-filled meteorological data from 21 % to 15 % on
average for all meteorological variables. For the key vari-
ables, the level of gap-filled data was reduced from 10.4 %
to 3.6 % for Tair, from 16 % to 5 % for Precip, from 10.1 %
to 7.6 % for SWdown, from 7.8 % to 2.6 % for Qair, and from
15.9 % to 8.3 % for Wind on average across all sites. Less
strict criteria were applied to LWdown and CO2_air, leading
to a larger proportion of gap-filled data in the final dataset.
For LWdown, the proportion of gap-filled data was reduced
from 48.8 % to 41.5 %. For CO2_air, the level of gap-filling
remained similar (31.5 % in screened data and 30.4 % in the
original data). This was due to the additional gap-filling done
at multiple sites to correct for step changes and a large pro-
portion of missing data (7.2 %) in the original dataset that
was replaced with gap-filled values. The screening and post-
processing of all meteorological variables also ensured that
no missing values are present in the meteorological variables.

3.3 Impact of energy balance closure correction on
latent and sensible heat fluxes

Flux tower observations do not commonly close the energy
balance, with the sum of latent and sensible heat fluxes
underestimated relative to available energy (Leuning et al.,
2012; Wilson et al., 2002). This problem is particularly com-
mon at sites with heterogeneous land cover (Stoy et al., 2013)
but is also driven by other factors such as unaccounted en-
ergy storage and mesoscale circulation impacts (Panin and
Bernhofer, 2008; Leuning et al., 2012). As LSMs balance all
energy fluxes, latent and sensible heat fluxes were corrected
for energy balance closure to aid model evaluation. In total,

corrected fluxes are available for 143 sites, which reported
all required variables to perform the correction (Rnet, G, Qle
and Qh). FLUXNET2015 already provided EBC-corrected
Qle and Qh estimates for 82 sites, and we additionally cor-
rected 38 La Thuile sites and 23 OzFlux sites.

At the corrected sites, the instantaneous EBC (i.e. the ra-
tio (Qle+Qh)/(Rnet+G)) was 0.55 on average considering
all available data points (note additional filtering was applied
during correction). The EBC correction on average increased
Qle and Qh by 25 % relative to the original estimates. At in-
dividual sites, the change in Qle and Qh relative to uncor-
rected data ranged from 82 % lower to 88 % higher. How-
ever, for the majority of sites (123 out of 143) the correction
increased Qle and Qh.

The corrected variables should provide a more robust ba-
sis for evaluating model biases but rely on the assumption
that the measured Bowen ratio is correct. Another limitation
of the corrected fluxes is a larger proportion of missing data
as the corrected fluxes are only provided for time steps for
which the correction could be performed using our method
detailed in Sect. 3.2.4. As such, 9.2 % of the corrected Qle is
missing across all site years compared to 1.3 % in the origi-
nalQle estimates. Similarly forQh, 9.2 % of corrected fluxes
are missing compared to 0.6 % in the original data.

4 Code availability

The processing codes are available at https://github.
com/aukkola/PLUMBER2 (last access: 25 October 2021)
(DOI: https://doi.org/10.25914/5fdb0902607e1; Ukkola et
al., 2021).

5 Data availability

The final dataset is available at http://doi.org/10.25914/
5fdb0902607e1 (Ukkola et al., 2021). The data can also be
obtained through https://modelevaluation.org/ (last access:
25 October 2021), including diagnostic plots of key variables
for each site. The original flux tower datasets are available
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upon registration from the following websites: OzFlux (https:
//data.ozflux.org.au/portal/pub/listPubCollections.jspx, last
access: 25 October 2021, OzFlux-TERN data reposi-
tory, 2021), FLUXNET2015 (https://doi.org/10.1038/
s41597-020-0534-3; Pastorello et al., 2020), and La
Thuile (https://fluxnet.org/data/la-thuile-dataset/, last ac-
cess: 25 October 2021; FLUXNET, 2021). MODIS LAI
data can be obtained with the freely available MODIS-
Tools R package. LAI data are available from Copernicus
(https://land.copernicus.eu/global/products/lai, last access:
25 October 2021; Copernicus Global Land Service, 2021),
the CO2 data are from Mauna Loa (https://www.esrl.noaa.
gov/gmd/webdata/ccgg/trends/co2/co2_annmean_mlo.txt,
last access: 25 October 2021; Tans and Keeling, 2021
apologise the mistake, initials should be cited in t), and
precipitation and mean temperature data are from CRU
TS4.02 (https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.02/,
last access: 25 October 2021; DOI: https://doi.org/10.5285/
b2f81914257c4188b181a4d8b0a46bff, University of East
Anglia Climatic Research Unit, 2019).

6 Discussion and conclusions

We have presented a quality-controlled flux tower dataset
for 170 sites for use in land surface modelling. Whilst the
dataset was developed with land surface modelling in mind,
it is also suitable for other applications requiring a large
collection of sites with good-quality meteorological data. In
our site selection, we prioritized long continuous periods of
high-quality meteorological observations to derive a consis-
tent dataset across individual sites. In doing so, shorter good-
quality periods were discarded for some sites (e.g. Be-Bra in
Fig. 2); future work might revisit these choices to retain ad-
ditional data periods. FluxnetLSM provides one possible re-
producible tool for automated data screening to achieve this
for the FLUXNET2015, La Thuile, and OzFlux releases.

The meteorological data were screened and fully gap-filled
using multiple criteria. This screening should allow model
simulations to be produced that are less strongly biased by
high levels of gap-filling and other data quality issues that
affect the original data collections. We did not quality con-
trol the flux variables used for model evaluation. This was
to enable model evaluation at multiple timescales, ranging
from sub-daily to interannual. This also allows models to
be evaluated against individual weather and climate events,
such as heatwaves and drought. The lack of screening leads
to a much higher proportion of gap-filled data in the flux
variables, which should be taken into account when select-
ing sites for individual applications. For example, 31 % of
all the Qle data are gap-filled, ranging from 3 % to 84 % at
individual sites. ForQh, 24 % of the data are gap-filled (2 %–
84 % at individual sites). The level of gap-filling also varies
strongly by variable; for example NEE estimates are on av-
erage 67 % gap-filled. The level of gap-filling for individual

variables can further vary by climatic conditions; for exam-
ple higher levels of observed data are often available under
extreme hot than cold conditions (van der Horst et al., 2019).

Model evaluation, particularly at shorter timescales,
should thus be avoided against long periods of gap-filled
data. Depending on the gap-filling methods, these periods
often reflect climatological conditions at the site and do not
represent diurnal and seasonal variations well. This can be
particularly problematic at sites with high seasonal or inter-
annual variability in the variables of interest. Longer (daily
to monthly scale) data gaps in flux variables were gap-filled
using the regression method based on SWdown, Tair, and air
humidity. The quality of these gap-filled values obviously de-
pends on how well the site fluxes can be predicted from these
three variables. This method has for example been shown to
predict Qle well under energy-limited conditions but leads
to an overestimation of Qle under water-stressed conditions
(Haughton et al., 2018a, b).

The dataset additionally provides two alternative LAI time
series for each site. These can be used as inputs to those
LSMs that require LAI as an input. Alternatively, they can
be used to evaluate simulated LAI in those models that pre-
dict it or to verify whether model biases arise from predictive
LAI feedbacks. However, it should be noted that the remotely
sensed LAI estimates are uncertain at site scales, with large
differences between Copernicus and MODIS LAI at many
sites. This is because of both the difficulties inherent in es-
timating LAI from satellites (methodological) and the fact
that the satellite data may be drawn from a different footprint
from the one that influences the site-scale-measured fluxes
(De Kauwe et al., 2011). LAI is a key model property and
has a strong influence on simulated fluxes. As such, more ac-
curate LAI estimates would be highly valuable for constrain-
ing models. Particularly, where site-level LAI is measured,
the inclusion of these data in future flux tower collections
would allow large-scale remote sensing LAI estimates used
to drive models or evaluate model-simulated LAI to be better
constrained. Additionally, the inclusion of detailed site prop-
erties in future collections would strongly benefit model eval-
uation. This includes information on vegetation composition
and crop cycles, disturbance events such as fire, soil proper-
ties, and irrigation. Furthermore, models ideally require pa-
rameters such as reference height and canopy height to re-
duce model–observation mismatches arising from model in-
puts. Key metadata were collected from multiple sources for
this data collection, but the inclusion of site characteristics
in future data releases would allow for more direct access to
these metadata.

Finally, whilst our dataset includes a large number of glob-
ally distributed flux tower sites, the flux tower network in-
cludes >900 sites in total. In constructing our dataset, we
used the two most common global multi-site collections
(FLUXNET2015 and La Thuile), supplemented by OzFlux.
Whilst many flux tower sites are not freely available, re-
gional networks such as AmeriFlux, AsiaFlux, and the Eu-
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ropean Fluxes Database provide additional open-policy sites
that would be valuable in expanding our dataset. The cur-
rent limitation with collating flux tower sites across multi-
ple regional networks is the different data formats and stan-
dards they provide data in. To this end, active discussions are
underway with FLUXNET and AmeriFlux organizers to in-
corporate the data processing and formatting detailed in this
paper into their automated data processing streams, reduc-
ing duplication and lag time for the ecological and modelling
community. Standardization of these datasets into a common
format would strongly benefit the wider community, mod-
elling applications, and theory development and would likely
lead to a greater uptake of these data.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-14-449-2022-supplement.
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