Articles | Volume 14, issue 6
https://doi.org/10.5194/essd-14-2851-2022
https://doi.org/10.5194/essd-14-2851-2022
Data description paper
 | 
23 Jun 2022
Data description paper |  | 23 Jun 2022

A 30 m annual maize phenology dataset from 1985 to 2020 in China

Quandi Niu, Xuecao Li, Jianxi Huang, Hai Huang, Xianda Huang, Wei Su, and Wenping Yuan

Related authors

CNSIF: A reconstructed monthly 500-m spatial resolution solar-induced chlorophyll fluorescence dataset in China
Kaiqi Du, Guilong Xiao, Jianxi Huang, Xiaoyan Kang, Xuecao Li, Yelu Zeng, Quandi Niu, Haixiang Guan, and Jianjian Song
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-432,https://doi.org/10.5194/essd-2024-432, 2025
Manuscript not accepted for further review
Short summary
NON-RIGID MULTI-BODY TRACKING IN RGBD STREAMS
K. X. Dai, H. Guo, P. Mordohai, F. Marinello, A. Pezzuolo, Q. L. Feng, and Q. D. Niu
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W5, 341–348, https://doi.org/10.5194/isprs-annals-IV-2-W5-341-2019,https://doi.org/10.5194/isprs-annals-IV-2-W5-341-2019, 2019

Related subject area

Biogeosciences and biodiversity
Multi-temporal high-resolution data products of ecosystem structure derived from country-wide airborne laser scanning surveys of the Netherlands
Yifang Shi, Jinhu Wang, and W. Daniel Kissling
Earth Syst. Sci. Data, 17, 3641–3677, https://doi.org/10.5194/essd-17-3641-2025,https://doi.org/10.5194/essd-17-3641-2025, 2025
Short summary
Remote sensing of young leaf photosynthetic capacity in tropical and subtropical evergreen broadleaved forests
Xueqin Yang, Qingling Sun, Liusheng Han, Jie Tian, Wenping Yuan, Liyang Liu, Wei Zheng, Mei Wang, Yunpeng Wang, and Xiuzhi Chen
Earth Syst. Sci. Data, 17, 3293–3314, https://doi.org/10.5194/essd-17-3293-2025,https://doi.org/10.5194/essd-17-3293-2025, 2025
Short summary
China's annual forest age dataset at a 30 m spatial resolution from 1986 to 2022
Rong Shang, Xudong Lin, Jing M. Chen, Yunjian Liang, Keyan Fang, Mingzhu Xu, Yulin Yan, Weimin Ju, Guirui Yu, Nianpeng He, Li Xu, Liangyun Liu, Jing Li, Wang Li, Jun Zhai, and Zhongmin Hu
Earth Syst. Sci. Data, 17, 3219–3241, https://doi.org/10.5194/essd-17-3219-2025,https://doi.org/10.5194/essd-17-3219-2025, 2025
Short summary
CEDAR-GPP: spatiotemporally upscaled estimates of gross primary productivity incorporating CO2 fertilization
Yanghui Kang, Maoya Bassiouni, Max Gaber, Xinchen Lu, and Trevor F. Keenan
Earth Syst. Sci. Data, 17, 3009–3046, https://doi.org/10.5194/essd-17-3009-2025,https://doi.org/10.5194/essd-17-3009-2025, 2025
Short summary
Permafrost–wildfire interactions: active layer thickness estimates for paired burned and unburned sites in northern high latitudes
Anna C. Talucci, Michael M. Loranty, Jean E. Holloway, Brendan M. Rogers, Heather D. Alexander, Natalie Baillargeon, Jennifer L. Baltzer, Logan T. Berner, Amy Breen, Leya Brodt, Brian Buma, Jacqueline Dean, Clement J. F. Delcourt, Lucas R. Diaz, Catherine M. Dieleman, Thomas A. Douglas, Gerald V. Frost, Benjamin V. Gaglioti, Rebecca E. Hewitt, Teresa Hollingsworth, M. Torre Jorgenson, Mark J. Lara, Rachel A. Loehman, Michelle C. Mack, Kristen L. Manies, Christina Minions, Susan M. Natali, Jonathan A. O'Donnell, David Olefeldt, Alison K. Paulson, Adrian V. Rocha, Lisa B. Saperstein, Tatiana A. Shestakova, Seeta Sistla, Oleg Sizov, Andrey Soromotin, Merritt R. Turetsky, Sander Veraverbeke, and Michelle A. Walvoord
Earth Syst. Sci. Data, 17, 2887–2909, https://doi.org/10.5194/essd-17-2887-2025,https://doi.org/10.5194/essd-17-2887-2025, 2025
Short summary

Cited articles

Abbas, G., Ahmad, S., Ahmad, A., Nasim, W., Fatima, Z., Hussain, S., ur Rehman, M. H.​​​​​​​, Khan, M. A., Hasanuzzaman, M., Fahad, S., Boote, K. J., and Hoogenboom, G.: Quantification the impacts of climate change and crop management on phenology of maize-based cropping system in Punjab, Pakistan, Agric. For. Meteorol., 247, 42–55, https://doi.org/10.1016/j.agrformet.2017.07.012, 2017. 
Badeck, F., Bondeau, A., Böttcher, K., Doktor, D., Lucht, W., Schaber, J., and Sitch, S.: Responses of spring phenology to climate change, New Phytol., 162, 295–309, https://doi.org/10.1111/j.1469-8137.2004.01059.x, 2004. 
Bolton, D. K. and Friedl, M. A.: Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics, Agric. For. Meteorol., 173, 74–84, https://doi.org/10.1016/j.agrformet.2013.01.007, 2013. 
Bolton, D. K., Gray, J. M., Melaas, E. K., Moon, M., Eklundh, L., and Friedl, M. A.: Continental-scale land surface phenology from harmonized Landsat 8 and Sentinel-2 imagery, Remote Sens. Environ., 240, 111685, https://doi.org/10.1016/j.rse.2020.111685, 2020. 
Cao, B., Yu, L., Naipal, V., Ciais, P., Li, W., Zhao, Y., Wei, W., Chen, D., Liu, Z., and Gong, P.: A 30 m terrace mapping in China using Landsat 8 imagery and digital elevation model based on the Google Earth Engine, Earth Syst. Sci. Data, 13, 2437–2456, https://doi.org/10.5194/essd-13-2437-2021, 2021. 
Download
Short summary
In this paper we generated the first national maize phenology product with a fine spatial resolution (30 m) and a long temporal span (1985–2020) in China, using Landsat images. The derived phenological indicators agree with in situ observations and provide more spatial details than moderate resolution phenology products. The extracted maize phenology dataset can support precise yield estimation and deepen our understanding of the response of agroecosystem to global warming in the future.
Share
Altmetrics
Final-revised paper
Preprint