Articles | Volume 14, issue 6
Earth Syst. Sci. Data, 14, 2851–2864, 2022
https://doi.org/10.5194/essd-14-2851-2022
Earth Syst. Sci. Data, 14, 2851–2864, 2022
https://doi.org/10.5194/essd-14-2851-2022
Data description paper
23 Jun 2022
Data description paper | 23 Jun 2022

A 30 m annual maize phenology dataset from 1985 to 2020 in China

Quandi Niu et al.

Related authors

NON-RIGID MULTI-BODY TRACKING IN RGBD STREAMS
K. X. Dai, H. Guo, P. Mordohai, F. Marinello, A. Pezzuolo, Q. L. Feng, and Q. D. Niu
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W5, 341–348, https://doi.org/10.5194/isprs-annals-IV-2-W5-341-2019,https://doi.org/10.5194/isprs-annals-IV-2-W5-341-2019, 2019

Related subject area

Biogeosciences and biodiversity
The Landscape Fire Scars Database: mapping historical burned area and fire severity in Chile
Alejandro Miranda, Rayén Mentler, Ítalo Moletto-Lobos, Gabriela Alfaro, Leonardo Aliaga, Dana Balbontín, Maximiliano Barraza, Susanne Baumbach, Patricio Calderón, Fernando Cárdenas, Iván Castillo, Gonzalo Contreras, Felipe de la Barra, Mauricio Galleguillos, Mauro E. González, Carlos Hormazábal, Antonio Lara, Ian Mancilla, Francisca Muñoz, Cristian Oyarce, Francisca Pantoja, Rocío Ramírez, and Vicente Urrutia
Earth Syst. Sci. Data, 14, 3599–3613, https://doi.org/10.5194/essd-14-3599-2022,https://doi.org/10.5194/essd-14-3599-2022, 2022
Short summary
Aridec: an open database of litter mass loss from aridlands worldwide with recommendations on suitable model applications
Agustín Sarquis, Ignacio Andrés Siebenhart, Amy Theresa Austin, and Carlos A. Sierra
Earth Syst. Sci. Data, 14, 3471–3488, https://doi.org/10.5194/essd-14-3471-2022,https://doi.org/10.5194/essd-14-3471-2022, 2022
Short summary
LegacyPollen 1.0: a taxonomically harmonized global late Quaternary pollen dataset of 2831 records with standardized chronologies
Ulrike Herzschuh, Chenzhi Li, Thomas Böhmer, Alexander K. Postl, Birgit Heim, Andrei A. Andreev, Xianyong Cao, Mareike Wieczorek, and Jian Ni
Earth Syst. Sci. Data, 14, 3213–3227, https://doi.org/10.5194/essd-14-3213-2022,https://doi.org/10.5194/essd-14-3213-2022, 2022
Short summary
Individual tree point clouds and tree measurements from multi-platform laser scanning in German forests
Hannah Weiser, Jannika Schäfer, Lukas Winiwarter, Nina Krašovec, Fabian E. Fassnacht, and Bernhard Höfle
Earth Syst. Sci. Data, 14, 2989–3012, https://doi.org/10.5194/essd-14-2989-2022,https://doi.org/10.5194/essd-14-2989-2022, 2022
Short summary
Optical and biogeochemical properties of diverse Belgian inland and coastal waters
Alexandre Castagna, Luz Amadei Martínez, Margarita Bogorad, Ilse Daveloose, Renaat Dasseville, Heidi Melita Dierssen, Matthew Beck, Jonas Mortelmans, Héloïse Lavigne, Ana Dogliotti, David Doxaran, Kevin Ruddick, Wim Vyverman, and Koen Sabbe
Earth Syst. Sci. Data, 14, 2697–2719, https://doi.org/10.5194/essd-14-2697-2022,https://doi.org/10.5194/essd-14-2697-2022, 2022
Short summary

Cited articles

Abbas, G., Ahmad, S., Ahmad, A., Nasim, W., Fatima, Z., Hussain, S., ur Rehman, M. H.​​​​​​​, Khan, M. A., Hasanuzzaman, M., Fahad, S., Boote, K. J., and Hoogenboom, G.: Quantification the impacts of climate change and crop management on phenology of maize-based cropping system in Punjab, Pakistan, Agric. For. Meteorol., 247, 42–55, https://doi.org/10.1016/j.agrformet.2017.07.012, 2017. 
Badeck, F., Bondeau, A., Böttcher, K., Doktor, D., Lucht, W., Schaber, J., and Sitch, S.: Responses of spring phenology to climate change, New Phytol., 162, 295–309, https://doi.org/10.1111/j.1469-8137.2004.01059.x, 2004. 
Bolton, D. K. and Friedl, M. A.: Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics, Agric. For. Meteorol., 173, 74–84, https://doi.org/10.1016/j.agrformet.2013.01.007, 2013. 
Bolton, D. K., Gray, J. M., Melaas, E. K., Moon, M., Eklundh, L., and Friedl, M. A.: Continental-scale land surface phenology from harmonized Landsat 8 and Sentinel-2 imagery, Remote Sens. Environ., 240, 111685, https://doi.org/10.1016/j.rse.2020.111685, 2020. 
Cao, B., Yu, L., Naipal, V., Ciais, P., Li, W., Zhao, Y., Wei, W., Chen, D., Liu, Z., and Gong, P.: A 30 m terrace mapping in China using Landsat 8 imagery and digital elevation model based on the Google Earth Engine, Earth Syst. Sci. Data, 13, 2437–2456, https://doi.org/10.5194/essd-13-2437-2021, 2021. 
Download
Short summary
In this paper we generated the first national maize phenology product with a fine spatial resolution (30 m) and a long temporal span (1985–2020) in China, using Landsat images. The derived phenological indicators agree with in situ observations and provide more spatial details than moderate resolution phenology products. The extracted maize phenology dataset can support precise yield estimation and deepen our understanding of the response of agroecosystem to global warming in the future.