Articles | Volume 14, issue 6
https://doi.org/10.5194/essd-14-2851-2022
https://doi.org/10.5194/essd-14-2851-2022
Data description paper
 | 
23 Jun 2022
Data description paper |  | 23 Jun 2022

A 30 m annual maize phenology dataset from 1985 to 2020 in China

Quandi Niu, Xuecao Li, Jianxi Huang, Hai Huang, Xianda Huang, Wei Su, and Wenping Yuan

Related authors

CNSIF: A reconstructed monthly 500-m spatial resolution solar-induced chlorophyll fluorescence dataset in China
Kaiqi Du, Guilong Xiao, Jianxi Huang, Xiaoyan Kang, Xuecao Li, Yelu Zeng, Quandi Niu, Haixiang Guan, and Jianjian Song
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-432,https://doi.org/10.5194/essd-2024-432, 2025
Manuscript not accepted for further review
Short summary
NON-RIGID MULTI-BODY TRACKING IN RGBD STREAMS
K. X. Dai, H. Guo, P. Mordohai, F. Marinello, A. Pezzuolo, Q. L. Feng, and Q. D. Niu
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W5, 341–348, https://doi.org/10.5194/isprs-annals-IV-2-W5-341-2019,https://doi.org/10.5194/isprs-annals-IV-2-W5-341-2019, 2019

Related subject area

Biogeosciences and biodiversity
Mapping global leaf inclination angle (LIA) based on field measurement data
Sijia Li and Hongliang Fang
Earth Syst. Sci. Data, 17, 1347–1366, https://doi.org/10.5194/essd-17-1347-2025,https://doi.org/10.5194/essd-17-1347-2025, 2025
Short summary
A post-processed carbon flux dataset for 34 eddy covariance flux sites across the Heihe River basin, China
Xufeng Wang, Tao Che, Jingfeng Xiao, Tonghong Wang, Junlei Tan, Yang Zhang, Zhiguo Ren, Liying Geng, Haibo Wang, Ziwei Xu, Shaomin Liu, and Xin Li
Earth Syst. Sci. Data, 17, 1329–1346, https://doi.org/10.5194/essd-17-1329-2025,https://doi.org/10.5194/essd-17-1329-2025, 2025
Short summary
Century-long reconstruction of gridded phosphorus surplus across Europe (1850–2019)
Masooma Batool, Fanny J. Sarrazin, and Rohini Kumar
Earth Syst. Sci. Data, 17, 881–916, https://doi.org/10.5194/essd-17-881-2025,https://doi.org/10.5194/essd-17-881-2025, 2025
Short summary
High-resolution carbon cycling data from 2019 to 2021 measured at six Austrian long-term ecosystem research sites
Thomas Dirnböck, Michael Bahn, Eugenio Diaz-Pines, Ika Djukic, Michael Englisch, Karl Gartner, Günther Gollobich, Johannes Ingrisch, Barbara Kitzler, Karl Knaebel, Johannes Kobler, Andreas Maier, Armin Malli, Ivo Offenthaler, Johannes Peterseil, Gisela Pröll, Sarah Venier, Christoph Wohner, Sophie Zechmeister-Boltenstern, Anita Zolles, and Stephan Glatzel
Earth Syst. Sci. Data, 17, 685–702, https://doi.org/10.5194/essd-17-685-2025,https://doi.org/10.5194/essd-17-685-2025, 2025
Short summary
Remote sensing of young leaf photosynthetic capacity in tropical and subtropical evergreen broadleaved forests
Xueqin Yang, Qingling Sun, Liusheng Han, Wenping Yuan, Jie Tian, Liyang Liu, Wei Zheng, Mei Wang, Yunpeng Wang, and Xiuzhi Chen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-64,https://doi.org/10.5194/essd-2025-64, 2025
Revised manuscript accepted for ESSD
Short summary

Cited articles

Abbas, G., Ahmad, S., Ahmad, A., Nasim, W., Fatima, Z., Hussain, S., ur Rehman, M. H.​​​​​​​, Khan, M. A., Hasanuzzaman, M., Fahad, S., Boote, K. J., and Hoogenboom, G.: Quantification the impacts of climate change and crop management on phenology of maize-based cropping system in Punjab, Pakistan, Agric. For. Meteorol., 247, 42–55, https://doi.org/10.1016/j.agrformet.2017.07.012, 2017. 
Badeck, F., Bondeau, A., Böttcher, K., Doktor, D., Lucht, W., Schaber, J., and Sitch, S.: Responses of spring phenology to climate change, New Phytol., 162, 295–309, https://doi.org/10.1111/j.1469-8137.2004.01059.x, 2004. 
Bolton, D. K. and Friedl, M. A.: Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics, Agric. For. Meteorol., 173, 74–84, https://doi.org/10.1016/j.agrformet.2013.01.007, 2013. 
Bolton, D. K., Gray, J. M., Melaas, E. K., Moon, M., Eklundh, L., and Friedl, M. A.: Continental-scale land surface phenology from harmonized Landsat 8 and Sentinel-2 imagery, Remote Sens. Environ., 240, 111685, https://doi.org/10.1016/j.rse.2020.111685, 2020. 
Cao, B., Yu, L., Naipal, V., Ciais, P., Li, W., Zhao, Y., Wei, W., Chen, D., Liu, Z., and Gong, P.: A 30 m terrace mapping in China using Landsat 8 imagery and digital elevation model based on the Google Earth Engine, Earth Syst. Sci. Data, 13, 2437–2456, https://doi.org/10.5194/essd-13-2437-2021, 2021. 
Download
Short summary
In this paper we generated the first national maize phenology product with a fine spatial resolution (30 m) and a long temporal span (1985–2020) in China, using Landsat images. The derived phenological indicators agree with in situ observations and provide more spatial details than moderate resolution phenology products. The extracted maize phenology dataset can support precise yield estimation and deepen our understanding of the response of agroecosystem to global warming in the future.
Share
Altmetrics
Final-revised paper
Preprint