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Abstract. Crop phenology indicators provide essential information on crop growth phases, which are highly
required for agroecosystem management and yield estimation. Previous crop phenology studies were mainly
conducted using coarse-resolution (e.g., 500 m) satellite data, such as the moderate resolution imaging spectro-
radiometer (MODIS) data. However, precision agriculture requires higher resolution phenology information of
crops for better agroecosystem management, and this requirement can be met by long-term and fine-resolution
Landsat observations. In this study, we generated the first national maize phenology product with a fine spatial
resolution (30 m) and a long temporal span (1985–2020) in China, using all available Landsat images on the
Google Earth Engine (GEE) platform. First, we extracted long-term mean phenological indicators using the har-
monic model, including the v3 (i.e., the date when the third leaf is fully expanded) and the maturity phases (i.e.,
when the dry weight of maize grains first reaches the maximum). Second, we identified the annual dynamics
of phenological indicators by measuring the difference in dates when the vegetation index in a specific year
reaches the same magnitude as its long-term mean. The derived maize phenology datasets are consistent with in
situ observations from the agricultural meteorological stations and the PhenoCam network. Besides, the derived
fine-resolution phenology dataset agrees well with the MODIS phenology product regarding the spatial patterns
and temporal dynamics. Furthermore, we observed a noticeable difference in maize phenology temporal trends
before and after 2000, which is likely attributable to the changes in temperature and precipitation, which further
altered the farming activities. The extracted maize phenology dataset can support precise yield estimation and
deepen our understanding of the future agroecosystem response to global warming. The data are available at
https://doi.org/10.6084/m9.figshare.16437054 (Niu et al., 2021).

1 Introduction

Accurate and timely crop phenology information, which con-
tains multi-phase growth information from sowing to harvest,
is highly required for precision agriculture management (Gao
and Zhang, 2021; Zeng et al., 2020), such as irrigation sched-
ules and pest control. The agriculture management schemes
should be precisely scheduled according to different growth
phases, during which period the water requirements and the
possibilities of pest and disease events are different (Yang et

al., 2021; Xiao et al., 2020). Besides, the effect of climate
change on crop phenology has been widely reported (Abbas
et al., 2017; Zhang and Tao, 2013; Tao et al., 2012). Given
that the altered growth phases of crops will influence crop
production, further research into the response of crop phe-
nology to global warming is necessary, which requires long-
term records of phenology change. In addition, information
on crop phenology is also helpful for crop mapping because
different crops vary in their growth phases (Sakamoto et al.,
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2014; Zhong et al., 2014; Zhang et al., 2014; Huang et al.,
2019b).

Remote sensing has become a profound tool for deriv-
ing crop phenology on a large scale (Pan et al., 2015; Liu
et al., 2018). The annual variations of crop phenology are
affected by many factors, including climate conditions, soil
properties, and anthropogenic activities (e.g., sowing dates)
(He et al., 2020). The traditional in situ based crop phenol-
ogy recording is time-consuming and focuses on limited sites
(Gao and Zhang, 2021). These limitations have been consid-
erably mitigated by satellite images, which provide revisit
observations of crop growth at regional and global scales
(Shanmugapriya et al., 2019; Zhang et al., 2003; Cao et al.,
2015). Different phenological indicators (such as the start of
season and the end of season) are retrieved for crop growth
monitoring using satellite observations, including the mod-
erate resolution imaging spectroradiometer (MODIS) data
(Sakamoto et al., 2010), the advanced very high resolution
radiometer (AVHRR) data (Zhang et al., 2014; Gim et al.,
2020). The retrieved multiple phenological indicators can de-
lineate the development stages of crops from sowing to har-
vest at a regional and global scale.

Fine resolution Landsat satellite data show great poten-
tial in providing crop phenological indicators with a fine
resolution and a long-term span. Despite the fact that the
coarse satellite data (such as MODIS and AVHRR) have a
fine temporal resolution, which is helpful to depict the crop
growth phases, they are limited in the spatial resolution. Re-
cently, several attempts have been made at deriving phenol-
ogy datasets using fine resolution satellite data, such as Land-
sat (Li et al., 2019; Senf et al., 2017), Sentinel-2 (Bolton
et al., 2020), and the harmonized Landsat8 and Sentinel-2
(HLS) data (Claverie et al., 2018; Bolton et al., 2020). Com-
pared with medium-resolution satellite data, such as MODIS,
the Landsat satellite data can provide numerous land surface
records from 1985 to the present, which help to derive the
long-term crop phenology dynamics. Unfortunately, limited
attempts have been made using Landsat data to map the crop
phenology with a fine resolution and a long-term span in
China due to the complex planting patterns (Luo et al., 2020;
Wu et al., 2010). Also, the computing resources required for
such a mapping project are a huge challenge (Dong et al.,
2016).

The advent of the Google Earth Engine (GEE) plat-
form relieves the huge stress of data storage and com-
puting at regional and global scales. The GEE platform
has included petabyte-scale remote sensing data with high-
performance computing capabilities and powerful algorithm
libraries (Gorelick et al., 2017). Presently, many successful
studies have been conducted using the GEE platform, such as
mapping forest dynamics (Xiong et al., 2020), terrace (Cao
et al., 2021), and surface water (Pekel et al., 2016). It is con-
venient to obtain and process satellite data using the GEE
platform. The combination of massive satellite observations
and a flexible development environment makes it possible to

derive annual dynamics of crop phenology with fine resolu-
tion in China.

In this study, we extracted spatial and temporal patterns
of maize phenology indicators in China from Landsat ob-
servations using the GEE platform. The derived phenology
indicators include v3 (the date when the third leaf is fully
expanded) and maturity (i.e., when the dry weight of maize
grains first reaches the maximum) phases. We mapped annual
phenological indicators of maize at a fine resolution (30 m)
from 1985 to 2020, using the full archive of Landsat images.
The remainder of this paper is organized as follows: Sect. 2
introduces the study area and datasets, Sect. 3 presents the
method used in this study, Sects. 4 and 5 describe the results
with discussion and the derived dataset, respectively, and a
conclusion is provided in Sect. 6.

2 Study areas and datasets

We selected China’s main maize producing area as our study
area (Fig. 1). Maize is one of the major crops in China and
is planted over a wide region, the sown area and production
accounted for 36 % and 39 % of food crops in 2019 (Na-
tional Bureau of Statistics of China, 2021), respectively. The
planting pattern and phenology of maize are highly heteroge-
neous due to the influence of climate conditions, soil proper-
ties, and anthropogenic activities (e.g., sowing date) (Wu et
al., 2010). The spring maize is mainly distributed in North-
east China, dominated by the single cropping type. How-
ever, summer maize is mainly planted in the Huang-Huai-
Hai Plain (Fig. 1b), where the double cropping system (rota-
tion between winter wheat and summer maize) is commonly
seen (Luo et al., 2020). In addition, there is also a certain
amount of maize in other provinces (e.g., Xinjiang province).
The growth period of summer maize spans roughly from
June (after the harvest of winter wheat) to October compared
with that of spring maize from May to October. Furthermore,
the maize in Northeast China is mainly rain-fed. In contrast,
irrigation is needed for maize and commonly exists in the
Huang-Huai-Hai Plain and Northwest China (arid and semi-
arid areas) (Wu et al., 2010). Under these diverse cropping
systems, phenology dates (such as v3 and maturity) of maize
varied significantly between locations.

We used the Landsat satellite data as the primary data
source to characterize the phenological changes of maize
in China. We used all available Landsat surface reflectance
data in this study, including images obtained from Thematic
Mapper (TM), Enhanced Thematic Mapper Plus (ETM+),
and Operational Land Imager (OLI), from 1985 to 2020. The
Landsat surface reflectance data have been corrected for the
radiometric and topographic effects. The atmospheric effect
has also been corrected using the Landsat ecosystem distur-
bance adaptive processing system (LEDAPS) (Masek et al.,
2006). Clouds and shadows were removed using the function
of the mask procedure (Zhu and Woodcock, 2012). There-
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Figure 1. Distribution of maize within the study area (a), which contains 17 provincial level administrative regions (b). The green polygons,
transformed from pixel-form classification results into vectors in (a), indicate maize cover under a zoomed view in one specific site. Subplot
(b) also shows the agricultural zones in China, and the data are from the Institute of Geographic Sciences and Natural Resources Research,
Chinese Academy of Sciences. In addition, the base map of figures is from ESRI (https://www.arcgis.com/apps/mapviewer/index.html, last
access: 13 August 2021).

fore, all available clear-sky pixels of Landsat observations
over the past three decades were used in our study.

Maize maps from multiple resources were adopted to con-
strain the region of crop phenology mapping. The distribu-
tion map of maize in Northeast China was derived using
Sentinel-2 data (You et al., 2021), and the maize map used
was the classification result in 2019. You et al. (2021) de-
rived the crop maps in Northeast China using a random for-
est classifier, with optimized features including spectral, tem-
poral, and textural characteristics (gray-level co-occurrence
matrix). In other provinces, the maize maps were obtained
using the temporal similarity assessment approach proposed
by Dong et al. (2020). The distribution of maize is mainly
determined by comparing the similarity of the vegetation
index series of unknown pixels with a referred curve de-
rived from maize fields. The retrieved maize datasets have
been validated with survey data with reliable performance
(Fig. S1 in the Supplement). The accuracy of the maize
map in Northeast China is 0.85 (more than 8000 samples
for cross-validation in 2019), and that of maize maps in

other provinces is 0.79 (about 2000 samples for validation).
Given that the original resolutions of these two classification
maps are 10 m (i.e., Northeast China) and 30 m (i.e., other
provinces), we aggregated the 10 m maize map to 30 m in
our study. It is worth noting that the maize distribution map
is consistent across different years in our study due to the
relatively stable planting situation as one of the major crops
(Sun et al., 2007; Li et al., 2008). Of course, we also ad-
mit that certain dynamics in maize distribution exist due to
the changing maize price, climate conditions, and choice of
farmers across different years. Mapping the maize dynamics
at the national scale in China is challenging because of the
scarcity of massive ground samples. There is also no publicly
available maize dynamic product with fine spatial resolution
and a long temporal span. So we kept the maize distribution
map consistent and derived dynamics of maize phenology in-
dicators with tolerable errors.

In addition, we also collected massive datasets to vali-
date our results, such as the agricultural meteorological sta-
tions (AMS), PhenoCam network, and the MODIS phenol-
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Figure 2. Distribution of agricultural meteorological stations (AMS) with phenology records of spring (a) and summer (b) maize. The blue
and yellow areas are provinces with available AMS in this study.

ogy product (MCD12Q2). First, the records in the AMS in-
clude phenology information of major crops (such as maize,
wheat, and rice) in China, with large spatial and tempo-
ral ranges (Luo et al., 2020; Huang et al., 2019a). Crucial
phases during the maize growth periods, including v3 (i.e.,
the date when the third leaf is fully expanded), and matu-
rity (when the dry weight of maize grains first reaches the
maximum) phases, were recorded in the AMS. Thus, this
dataset can validate the mapped phenological indicators from
remote sensing, and we collected AMS phenology records of
the spring and summer maize (Fig. 2). Second, the in situ
PhenoCam observation was derived from digital cameras us-
ing the green chromatic coordinate (GCC) index, which is
composited by visible wavebands and able to characterize the
dynamic greenness of vegetation. Third, the MODIS phenol-
ogy product (MCD12Q2) was also employed in our study
to validate the results derived from Landsat observations.
The phenological indicators (e.g., dates of green-up and dor-
mancy) in the MODIS product were mainly derived from the
two-band enhanced vegetation index (EVI2) time series data
(Gray et al., 2019). The multiple cycles (up to two) of crop
rotations were also recorded in the MODIS phenology prod-
uct, which is suitable for validation with our phenology re-
sults of maize in this study.

3 Methodology

We extracted the phenology indicators of maize using the
full archive of Landsat images in GEE. The adopted frame-
work includes three components (Fig. 3). First, we collected
all available Landsat images during 1985–2020 in our study
area and used the collected maize map as a mask. After the
cloud removal, we constructed the long-term time series data
of EVI for each pixel. Second, we fitted the long-term mean
EVI curve using the harmonic model, which can delineate
multiple cycles of crop rotations and identify the number of
cycles (i.e., used to distinguish spring and summer maize).

Figure 3. The adopted framework for deriving annual phenology
dynamics (1985–2020) from Landsat time series data, including
data preprocessing (a), mapping the long-term mean phenology in-
dicators (b), and identifying the annual dynamics (c).

Thus, two phenological indicators, the v3 (the date when the
third leaf is fully expanded) and the maturity (when the dry
weight of maize grains first reaches the maximum) phases,
were determined from the long-term mean curve of spring
and summer maize. Finally, we identified the annual dynam-
ics of these two phenological indicators by measuring the dif-
ference in dates when the vegetation index in a specific year
reaches the same magnitude as its long-term mean. Details
of each component are given in the following sections.

3.1 Data preprocessing

We implemented the data preprocessing step in the GEE plat-
form. First, we used the quality layer in the Landsat sur-
face reflectance data to remove clouds and shadows. Thus,
all available clear-sky pixels can be used to enrich the Land-
sat observations. Second, we excluded non-maize areas us-
ing the maize map, which can significantly reduce the com-
putational requirement. Third, we calculated the EVI indica-
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Figure 4. Illustration of mapping long-term mean phenology of spring maize (a) and summer maize (b). The blue shaded areas represent the
growing period of maize. All acronyms are as follows: g: the EVI amplitude of spring maize; g1 and g2 are the EVI amplitudes of green-up
and green-down segments, respectively; a1 and a2 are the EVI amplitudes of the first and second cycles, respectively; DOY: day of year.

Figure 5. Illustration of detecting annual variabilities of phenological indicators (taking the spring maize as an example). The blue shaded
areas represent the growth period of maize. In addition, green and orange shaded areas indicate the reasonable change range of v3 and
maturity. The solid and empty circles are long-term and year-specific enhanced vegetation index (EVI) observations. The definitions of all
the acronyms are as follows: EOP: end of peak; SOP: start of peak.

tor using Eq. (1) to minimize the impact of soil and clouds;
meanwhile, it is sensitive to vegetation growth and dormancy
(Huang et al., 2019a; Li et al., 2019).

EVI=G×
NIR−RED

NIR+C1×RED−C2×BLUE+L
, (1)

where NIR, RED, and BLUE represent surface reflectance of
the corresponding spectral bands in Landsat. The parameters
G, L, C1, C2 were used to correct the disturbance of aerosols
and soil background, as suggested with values of 2.5 (G), 1
(L), 6 (C1), and 7.5 (C2) in Huang et al. (2019a).

3.2 Long-term mean phenological indicators

We derived the long-term mean maize phenological indica-
tors including v3 and maturity. First. we sorted all available
EVI observations according to the day of the year (DOY) and
fitted the annual crop cycle using the harmonic model (Eq. 2).
Compared with other fitting approaches, the harmonic model
can easily delineate multiple seasonal cycles of crops within
1 year, with clear physical meaning for each parameter (de

Beurs and Henebry, 2010; Chen et al., 2018; Lee et al., 2020).

f (t)= a0+ a1
t

T
+

∑n

i=1

(
bi cos

(
i

2πt
T

)
+ ci sin

(
i

2πt
T

))
, (2)

where f (t) is the fitted EVI value, t is the Julian date of a par-
ticular observation, and T is the maximum value of the time
variable, bi and ci are coefficients for intra-annual change of
the EVI time series data, a1 and a0 represent the slope and
intercept of EVI change among different seasonal cycles, n
represents the maximum number of harmonic components,
and it needs to be calibrated according to different situations.
Considering the double crop (winter wheat-summer maize
rotation system) and the planting patterns of winter wheat
(planted in autumn of the first year and harvested in the sec-
ond year), we set n as 6 due to the good fitting performance
in our study after trial and error tests using multiple sites in
different regions.

Then, we identified spring and summer maize according
to the cycles of the fitted curve (Fig. 4). Spring and summer
maize can be identified using the information of EVI cycles.
For instance, summer maize always has two crop cycles, no-
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Figure 6. Performance of the harmonic model in fitting the time series data of EVI. Cases numbered 1–4, and 5–8 represent the spring and
summer maize, respectively. The blue points are the original EVI series of red dots in the center of © Google Earth images, and the red points
are the fitted series.

tably different from spring maize, with only one cycle. To
identify maize with different cycles, we calculated the deriva-
tive of the fitted harmonic model and identified the peaks of
these cycles. When the EVI peak value before the maize part
exceeded 40 % of the maximum EVI value of the maize cycle
(Gray et al., 2019; Wu et al., 2010), we regarded it as double
cropping, and the second part of it is summer maize (Fig. 4b);
otherwise, it is a single crop (i.e., spring maize) (Fig. 4a).

Finally, we adopted the dynamic threshold approach to de-
rive the v3 and maturity dates from the green-up and green-
down segments (shadowed blue areas in Fig. 4). These two
segments were derived from the cycle of maize growth, sep-
arated by the point with peak values of EVI. Given that the
EVI amplitudes of green-up and green-down are different for
the spring (g in Fig. 4a) and summer maize (g1 and g2 in
Fig. 4b), we determined the v3 and maturity dates according
to their EVI amplitudes accordingly. For the spring maize,
the v3 and maturity dates were defined as the dates with 10 %
EVI amplitude (g in Fig. 4a) during the green-up segment
and 50 % EVI amplitude (g in Fig. 4a) during the green-down
segment (Huang et al., 2019a), respectively. Similarly, for the
summer maize, the EVI amplitude during the green-up and
green-down segments was referred to g1 and g2 in Fig. 4b to
determine v3 and maturity, respectively.

3.3 Annual dynamics of phenological indicators

We adopted a similar approach to Li et al. (2017) to esti-
mate the annual dynamics of phenological indicators. First,
we adopted a self-adjusting strategy to determine the rational
range of EVIs during the green-up and green-down periods
(shaded areas in Fig. 5). These ranges were determined us-
ing the derived long-term mean curve, and they can be used
to filter outliers in individual years. Then, we measured the
difference in dates when the EVI in a specific year reaches
the same magnitude as its long-term mean (Fig. 5). The mean
value of the date difference between the observations and the
long-term mean was adopted as the annual variability of phe-
nological indicators.

4 Results and discussion

4.1 Performance of the harmonic model

The harmonic model can easily delineate the seasonal dy-
namics of EVI for spring and summer maize. Spring maize
belongs to the single cropping type and has one rotation cy-
cle. In contrast, summer maize is mainly distributed in the
double cropping system area (i.e., the second rotation cycle is
summer maize). These crop growth cycles can be detected by
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the EVI time series data from Landsat observations (Fig. 6).
The fitting performance from the harmonic model suggests
that the fitted line can easily delineate the growth phase of
crops across different regions and types.

4.2 Comparison with records from the AMS

The derived long-term mean maize phenological indicators
from Landsat observations are consistent with the records
from the AMS (Fig. 7). We compared results derived from
Landsat and AMS from 2001 to 2010, during which period
the AMS observations can be maximally used. Due to the
lack of accurate locations of observed crops in AMS (i.e.,
only station locations), we measured the uncertainties of phe-
nological indicators of maize within the range of 5 km to the
station. The adopted approach performed well in extracting
summer maize phenology. The correlations of v3 and matu-
rity dates of summer maize are 0.60 and 0.80, respectively
(Fig. 7c–d). Besides, the RMSE of v3 and maturity dates are
5.20 d and 6.38 d, respectively. Nevertheless, the correlation
of derived maturity dates of spring maize and corresponding
records from AMS is relatively low, likely attributed to the
discrepancies in the definitions between remotely sensed re-
sults and AMS. For instance, the v3 phase in AMS is defined
as the date when the third leaf is exposed from the second
leaf sheath, and the maturity is defined as the date when the
dry weight of maize grains first reaches the maximum, more
than 80 % of the outer bracts of the plants turn yellow, and
the filaments become dry (Li et al., 2021). These definitions
in AMS are challenging to measure from remote sensing, and
they are slightly different in terms of their definitions.

The annual dynamics of derived phenological indicators
(i.e., v3 and maturity) also agree well with the AMS obser-
vations (Fig. 8). The comparison of annual results is similar
to that of the long-term mean phenology. In general, the an-
nual dynamics of phenological indicators in summer maize
are better than that of spring maize (especially at maturity
phases), and this finding is consistent with previous studies
(Huang et al., 2019a). The correlations of phenological indi-
cators (i.e., v3 and maturity) of summer maize derived from
Landsat and AMS are 0.34 and 0.59, respectively and for
spring maize, the correlations of v3 and maturity indicators
from the two datasets are 0.51 and 0.16. The difference be-
tween these two datasets is mainly attributed to (1) lack of
accurate locations of the crop in the AMS data, (2) the crop
planting patterns may be altered over the years (Fig. 9) and
(3) different definitions.

4.3 Comparison with PhenoCam data

Using the phenology mapping approach in this study, we ob-
served a good agreement between Landsat derived and Phe-
noCam derived phenological indicators (Fig. 10). We chose
the United States (US) because no PhenoCam data are avail-
able in China. The same approach adopted in China for crop

Figure 7. Comparison of long-term mean phenological indicators
derived from Landsat (satellites) and AMS (in situ). The error bars
of the x- and y-axes represent uncertainty (i.e., one standard de-
viation) of multi-year phenological indicators and the mean pheno-
logical indicators within a certain extent (5 km) of the AMS, respec-
tively. (a)–(b) and (c)–(d) represent results from spring and summer
maize, respectively.

Figure 8. Comparison of annual dynamics of derived phenological
indicators from Landsat data and AMS observations from 2001 to
2010, including v3 and maturity of spring (a–b) and summer (c–d)
maize.
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Figure 9. Cases with a significant change in crop planting patterns. The blue ellipses indicate identified anomalies of EVI observations. We
can note that the red dots are all located in the plots from the © Google Earth images.

phenological indicator mapping was used in the US with
agriculture sites where PhenoCam data are accessible. Thus,
the feasibility of our approach can be evaluated. The phe-
nology dataset provided by Richardson et al. (2018) is ex-
tracted from continuous observations of vegetation growth
collected by digital cameras. PhenoCam sites in Fig. 10 are
mainly distributed in agriculture ecosystems, with records
spanning from 2015 to 2018. Definitions of phenological
indicators from Landsat and PhenoCam are consistent, i.e.,
definitions of transition_10 and transition_50 date when VI
series data crossed 10 % and 50 % of the green chromatic
coordinate index (Richardson et al., 2018). The correlations
of v3 and maturity dates from Landsat and PhenoCam are
0.74 and 0.63, respectively, with the root mean square error
(RMSE) of 7.61 (v3) and 7.11 (maturity) days. Observations
from these two datasets are located around the 1 : 1 line, sug-
gesting the adopted mapping approach of phenology from
satellite data can well match the in situ observations. Possible
reasons behind explaining their difference can be attributed
to (1) different vegetation indices used (i.e., EVI and GCC)
and (2) the scale effect caused by the data sources.

4.4 Comparison with MODIS phenology dataset

The derived phenological indicators from Landsat and
MODIS have a consistent temporal trend (Fig. 11). The

MODIS phenology product (MCD12Q2) provides multiple
phenological indicators (e.g., mid-green-down). For areas
with two vegetation cycles, we selected the phenological in-
dicators of the second cycle (summer maize) for compar-
ison. In the green-down segment of each crop cycle, the
MCD12Q2 product provides three phenological indicators,
i.e., dormancy, mid-green-down, and senescence, defined as
90 %, 50 %, and 10 % of the segment EVI2 amplitude in
a specific cycle, respectively. We selected the mid-green-
down indicator in the MODIS phenology product to com-
pare in this study because it has the same definition as the
maturity date in Landsat-derived results. We aggregated the
fine-resolution maize data to the same resolution as MODIS
and only kept those relatively pure pixels (maize pixels ac-
counting for more than 50 % of them) for comparison. We
found the temporal trends of derived phenological indicators
of spring and summer maize from Landsat images are con-
sistent with those derived from MODIS data in most years
(Fig. 11b). Our approach can easily capture the crop growth
phase dynamics (i.e., delay and advancement). The magni-
tude difference between maturity date derived from Landsat
observations and mid-green-down derived from MCD12Q2
is within 3 days in most years. Different data sources and fit-
ting methods (i.e., spline fit was used in MCD12Q2) likely
cause discrepancies between the two phenology datasets.
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Figure 10. Selected PhenoCam sites in agriculture ecosystems (a). The annual v3 (b) and maturity (c) dates were compared between the
Landsat, and PhenoCam derived results from 2015 to 2018. The base map is provided by ESRI (https://www.arcgis.com/apps/mapviewer/
index.html, last access: 13 August 2021).

In addition, it is worth noting that there is a high correla-
tion of the maturity dates derived from Landsat and MODIS
(Fig. 11c).

Phenological indicators derived from Landsat observa-
tions also have a close spatial pattern to the MODIS phenol-
ogy product but more spatial details (Fig. 12). For example,
there is a noticeable advancement of maturity in 2018 and
a delay in 2015 (red boxes in Fig. 12), and these variations
are successfully captured by the two phenology datasets. Be-
sides, we can note that Landsat-derived phenological indi-
cators (e.g., maturity) depict the difference in crop growth
stages with more spatial details compared to the MODIS phe-
nology product.

4.5 Analysis with climate data

Summer maize has a higher requirement for hydrothermal
conditions (especially for temperature) than spring maize
(Fig. 13). The Northeast China Plain and Huang-Huai-Hai
Plain (Fig. 1b) are the two largest maize-producing areas in
China, about 60 % of spring maize is grown in the Northeast
China Plain (Fig. 13b), and more than 80 % of summer maize
is distributed in the Huang-Huai-Hai Plain (Fig. 13c). In ad-
dition, we used the monthly mean air temperature and the
total precipitation from May to October (Peng et al., 2019)
in the study area for analyses from 2011 to 2020. Overall,

the mean total precipitation and mean temperature change
range within the spring maize planting areas are larger than
in the summer maize. Meanwhile, summer maize growing
areas are mainly distributed in high-temperature areas (i.e.,
above 20 ◦C). These results suggest that summer maize has a
higher requirement for hydrothermal conditions than spring
maize.

We observed a noticeable difference in the temporal trends
of the derived maize phenological indicators before and after
2000 (Fig. 14). The temporal trends of derived phenologi-
cal indicators, including v3 and maturity date of spring and
summer maize before and after 2000, are notably different.
For climate variables, the temperature within maize plant-
ing areas has a steeper upward trend (the slope is more than
0.5 ◦C per decade) before 2000 than after 2000. The mean to-
tal precipitation shows different trends before and after 2000.
It is worth noting that the precipitation within the spring
maize producing area has a diverse and sharper tendency
compared with that of the summer maize grown area. For
phenological indicators, the changes in spring maize phenol-
ogy are mainly concentrated in the segments after 2000. The
v3 date is advanced (−0.37 d yr−1), and the maturity date is
delayed (0.38 d yr−1). The v3 and maturity indicators of sum-
mer maize have an advanced tendency before 2000, while
the maturity date is delayed after 2000. The annual dynam-
ics of maize phenological indicators may be partly attributed
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Figure 11. Representative cases of phenology comparison between MODIS and Landsat-derived results. Selected cases of maize (including
the raw © Google Earth images and the distribution of maize) are displayed in (a), with the comparison of their temporal trends (b) and
corrections (c). Cases 1–2 are the spring maize, and case 3 is the summer maize. Each scene represents a 1.5 km× 1.5 km square. Note that
solid lines represent the mean phenology at the regional scale, and the shadowed areas represent the range from 25th to 75th quantiles of
maturity date derived from Landsat.

Figure 12. Comparison of the Landsat derived maturity date and
the MODIS derived mid-green-down date from 2011 to 2018. The
selected scene is case 1 in Fig. 11. Red boxes are highlighted regions
where these two products have a noticeable difference.

to the rising temperature and annual variations of total pre-
cipitation. In this research, we did not consider the impact of
other factors (such as photoperiod and genotype of maize) on
the variations of maize phenology and the response of maize
phenology and growth season duration to climate change was
also not comprehensively considered.

5 Data availability

This dataset provides the annual dynamics of maize phe-
nological indicators with a fine spatial resolution (30 m)
and a long temporal span (1985–2020) in China. The ex-
tracted phenology indicators include v3 (the date when
the third leaf is fully expanded) and maturity (when the
dry weight of maize grains first reaches the maximum).
The format of this dataset is GeoTiff, with a spatial ref-
erence of WGS84. Each file in this dataset is named
based on phenological indicators, start year, end year, and
province. We divided the maize phenology into three parts:
1985–2000, 2001–2010, and 2011–2020 (Table 1). We in-
cluded 17 provinces in our study, i.e., Beijing, Tianjin,
Hebei, Henan, Shanxi, Shaanxi, Shandong, Hubei, Anhui,
Jiangsu, Inner Mongolia, Ningxia, Gansu, Xinjiang, Hei-
longjiang, Jilin, and Liaoning. The derived annual maize
phenology data in China from 1985 to 2020 are available
at https://doi.org/10.6084/m9.figshare.16437054 (Niu et al.,
2021).
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Figure 13. The spatial distribution of maize across the study area (a) and pixel values represent the coverage of maize in 1 km and (b) and
(c) indicate the coverage of spring and summer maize. Additionally, we also provided the proportion of maize in major agricultural zones.
The mean temperature and mean annual total precipitation during the growing period of the crop (from May to October) from 2011 to 2020
are presented in (d) and (e). (f) and (g) show the kernel density curves of the mean temperature and mean annual total precipitation in the
study area. The abbreviations are as follows: NCP: Northeast China Plain; LP: Loess Plateau; Nor: northern arid and semiarid region; HHH:
Huang-Huai-Hai Plain; MLYP: middle-lower Yangtze Plain.

Table 1. Detailed band information in each formation.

Band name Year Content Range

Band1 Start year

Maize phenology 1–365
Band2 Start year+ 1
. . . . . .
Band N-1 End year

Band N Maize type
1 – Spring maize,
2 – Summer maize

Note: The range of phenology was set between 1 and 366 for leap years.

6 Conclusions

In this study, we generated the first annual maize phenology
product with a fine spatial resolution (30 m) and a long tem-
poral span (1985–2020) in China, using all available Land-
sat images on the GEE platform. First, we extracted long-
term mean phenological indicators (including v3 and ma-
turity) from multi-year Landsat observations using the har-
monic model. Second, we identified the annual dynamics of
phenological indicators by measuring the difference of dates
when the EVI in specific years equals the fitted value.

The maize phenology product derived from Landsat data
agrees with the commonly used phenology dataset. Our de-

rived maize phenology datasets consistently meet the in situ
observations from the AMS and the PhenoCam phenology
network. In addition, the phenology dataset in this study has
similar temporal trends and can provide more spatial details
than the MODIS phenology product. Furthermore, we ob-
served a noticeable difference in the temporal trend of maize
phenology before and after 2000, which is likely attributable
to increasing temperature and annual variations of precipita-
tion.

The extracted maize phenology dataset has great implica-
tions for crop field management and studies of the response
of maize phenology to the changing environment. There are
noticeable differences in crop growth due to diverse local cli-
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Figure 14. Temporal trends of phenological indicators (i.e., v3, maturity) and climate variables (i.e., mean temperature and mean total
precipitation) during the growing period (from May to October), from 1985 to 2020. Two segments (i.e., 1985–2000 and 2001–2020) were
independently fitted due to their distinct difference in temporal trends. We provide the temporal trend of variables across the study area and
the interannual variations within different major agricultural zones.

mates, soil properties, and anthropogenic activities (such as
sowing dates). The derived phenology product with a fine
spatial resolution can delineate the difference and provide
corresponding information to improve the field management
and yield estimation (Zeng et al., 2020; Bolton and Friedl,
2013). In addition, this phenology product can also be used to
investigate the response of crop phenology to global warming
(Badeck et al., 2004; Niu et al., 2021). However, this study
does not consider land cover changes (e.g., urban expansion
and planting system change), which needs to be further in-
vestigated. For example, the maize distribution was regarded
as consistent in our study over the past decades.
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