Articles | Volume 14, issue 6
https://doi.org/10.5194/essd-14-2639-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-2639-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Revisiting five decades of 234Th data: a comprehensive global oceanic compilation
Department of Applied Physics II, University of Sevilla, ETSIE, Av. Reina Mercedes 4, 41012 Seville, Spain
Department of Marine Chemistry and Geochemistry, Woods Hole
Oceanographic Institution, Clark Building 447, Woods Hole, MA 02543-1541,
USA
Ken O. Buesseler
Department of Marine Chemistry and Geochemistry, Woods Hole
Oceanographic Institution, Clark Building 447, Woods Hole, MA 02543-1541,
USA
María Villa-Alfageme
Department of Applied Physics II, University of Sevilla, ETSIE, Av. Reina Mercedes 4, 41012 Seville, Spain
Related authors
No articles found.
Brandon Stephens, Montserrat Roca-Martí, Amy Maas, Vinícius Amaral, Samantha Clevenger, Shawnee Traylor, Claudia Benitez-Nelson, Philip Boyd, Ken Buesseler, Craig Carlson, Nicolas Cassar, Margaret Estapa, Andrea Fassbender, Yibin Huang, Phoebe Lam, Olivier Marchal, Susanne Menden-Deuer, Nicola Paul, Alyson Santoro, David Siegel, and David Nicholson
EGUsphere, https://doi.org/10.5194/egusphere-2024-2251, https://doi.org/10.5194/egusphere-2024-2251, 2024
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
The ocean’s mesopelagic zone (MZ) plays a crucial role in the global carbon cycle. This study combines new and previously published measurements of organic carbon supply and demand collected in August 2018 for the MZ in the subarctic North Pacific Ocean. Supply was insufficient to meet demand in August, but supply entering into the MZ in the spring of 2018 could have met the August demand. Results suggest observations over seasonal time scales may help to close MZ carbon budgets.
E. E. Black and K. O. Buesseler
Biogeosciences, 11, 5123–5137, https://doi.org/10.5194/bg-11-5123-2014, https://doi.org/10.5194/bg-11-5123-2014, 2014
T. P. Guilderson, S. J. Tumey, T. A. Brown, and K. O. Buesseler
Biogeosciences, 11, 4839–4852, https://doi.org/10.5194/bg-11-4839-2014, https://doi.org/10.5194/bg-11-4839-2014, 2014
J. Kameník, H. Dulaiova, K.O. Buesseler, S. M. Pike, and K. Št'astná
Biogeosciences, 10, 6045–6052, https://doi.org/10.5194/bg-10-6045-2013, https://doi.org/10.5194/bg-10-6045-2013, 2013
M. L. Estapa, K. Buesseler, E. Boss, and G. Gerbi
Biogeosciences, 10, 5517–5531, https://doi.org/10.5194/bg-10-5517-2013, https://doi.org/10.5194/bg-10-5517-2013, 2013
P. P. Povinec, M. Aoyama, D. Biddulph, R. Breier, K. Buesseler, C. C. Chang, R. Golser, X. L. Hou, M. Ješkovský, A. J. T. Jull, J. Kaizer, M. Nakano, H. Nies, L. Palcsu, L. Papp, M. K. Pham, P. Steier, and L. Y. Zhang
Biogeosciences, 10, 5481–5496, https://doi.org/10.5194/bg-10-5481-2013, https://doi.org/10.5194/bg-10-5481-2013, 2013
I. I. Rypina, S. R. Jayne, S. Yoshida, A. M. Macdonald, E. Douglass, and K. Buesseler
Biogeosciences, 10, 4973–4990, https://doi.org/10.5194/bg-10-4973-2013, https://doi.org/10.5194/bg-10-4973-2013, 2013
N. Casacuberta, P. Masqué, J. Garcia-Orellana, R. Garcia-Tenorio, and K.O. Buesseler
Biogeosciences, 10, 3649–3659, https://doi.org/10.5194/bg-10-3649-2013, https://doi.org/10.5194/bg-10-3649-2013, 2013
M. A. Charette, C. F. Breier, P. B. Henderson, S. M. Pike, I. I. Rypina, S. R. Jayne, and K. O. Buesseler
Biogeosciences, 10, 2159–2167, https://doi.org/10.5194/bg-10-2159-2013, https://doi.org/10.5194/bg-10-2159-2013, 2013
Related subject area
Chemical oceanography
A machine-learning reconstruction of sea surface pCO2 in the North American Atlantic Coastal Ocean Margin from 1993 to 2021
A consistent ocean oxygen profile dataset with new quality control and bias assessment
CO2 and hydrography acquired by autonomous surface vehicles from the Atlantic Ocean to the Mediterranean Sea: data correction and validation
A 20-year (1998–2017) global sea surface dimethyl sulfide gridded dataset with daily resolution
High-resolution global shipping emission inventory by Shipping Emission Inventory Model (SEIM)
Distributions of in situ parameters, dissolved (in)organic carbon, and nutrients in the water column and pore waters of Arctic fjords (western Spitsbergen) during a melting season
Climatological distribution of ocean acidification variables along the North American ocean margins
A global monthly field of seawater pH over 3 decades: a machine learning approach
Updated climatological mean ΔfCO2 and net sea–air CO2 flux over the global open ocean regions
The annual update GLODAPv2.2023: the global interior ocean biogeochemical data product
Synthesis Product for Ocean Time Series (SPOTS) – a ship-based biogeochemical pilot
French coastal network for carbonate system monitoring: the CocoriCO2 dataset
A global database of dissolved organic matter (DOM) concentration measurements in coastal waters (CoastDOM v1)
A decade-long cruise time series (2008–2018) of physical and biogeochemical conditions in the southern Salish Sea, North America
A regional pCO2 climatology of the Baltic Sea from in situ pCO2 observations and a model-based extrapolation approach
A 12-year-long (2010–2021) hydrological and biogeochemical dataset in the Sicily Channel (Mediterranean Sea)
A decade of marine inorganic carbon chemistry observations in the northern Gulf of Alaska – insights into an environment in transition
A novel sea surface pCO2-product for the global coastal ocean resolving trends over 1982–2020
A high-resolution synthesis dataset for multistressor analyses along the US West Coast
CMEMS-LSCE: a global, 0.25°, monthly reconstruction of the surface ocean carbonate system
A synthesis of ocean total alkalinity and dissolved inorganic carbon measurements from 1993 to 2022: the SNAPO-CO2-v1 dataset
A year of transient tracers (chlorofluorocarbon 12 and sulfur hexafluoride), noble gases (helium and neon), and tritium in the Arctic Ocean from the MOSAiC expedition (2019–2020)
Database of nitrification and nitrifiers in the global ocean
GOBAI-O2: temporally and spatially resolved fields of ocean interior dissolved oxygen over nearly 2 decades
Spatiotemporal variability in pH and carbonate parameters on the Canadian Atlantic continental shelf between 2014 and 2022
Barium in seawater: dissolved distribution, relationship to silicon, and barite saturation state determined using machine learning
Global oceanic diazotroph database version 2 and elevated estimate of global oceanic N2 fixation
High-frequency, year-round time series of the carbonate chemistry in a high-Arctic fjord (Svalbard)
OceanSODA-UNEXE: a multi-year gridded Amazon and Congo River outflow surface ocean carbonate system dataset
Evaluating the transport of surface seawater from 1956 to 2021 using 137Cs deposited in the global ocean as a chemical tracer
Spatial reconstruction of long-term (2003–2020) sea surface pCO2 in the South China Sea using a machine-learning-based regression method aided by empirical orthogonal function analysis
OceanSODA-MDB: a standardised surface ocean carbonate system dataset for model–data intercomparisons
Hyperspectral reflectance dataset of pristine, weathered, and biofouled plastics
A database of marine macronutrient, temperature and salinity measurements made around the highly productive island of South Georgia, the Scotia Sea and the Antarctic Peninsula between 1980 and 2009
GLODAPv2.2022: the latest version of the global interior ocean biogeochemical data product
Oil slicks in the Gulf of Guinea – 10 years of Envisat Advanced Synthetic Aperture Radar observations
Third revision of the global surface seawater dimethyl sulfide climatology (DMS-Rev3)
The CISE-LOCEAN seawater isotopic database (1998–2021)
A monthly surface pCO2 product for the California Current Large Marine Ecosystem
Climatological distribution of dissolved inorganic nutrients in the western Mediterranean Sea (1981–2017)
An updated version of the global interior ocean biogeochemical data product, GLODAPv2.2021
Coastal Ocean Data Analysis Product in North America (CODAP-NA) – an internally consistent data product for discrete inorganic carbon, oxygen, and nutrients on the North American ocean margins
Feasibility of reconstructing the summer basin-scale sea surface partial pressure of carbon dioxide from sparse in situ observations over the South China Sea
OceanSODA-ETHZ: a global gridded data set of the surface ocean carbonate system for seasonal to decadal studies of ocean acidification
An updated version of the global interior ocean biogeochemical data product, GLODAPv2.2020
ARIOS: a database for ocean acidification assessment in the Iberian upwelling system (1976–2018)
A uniform pCO2 climatology combining open and coastal oceans
Dissolved inorganic nutrients in the western Mediterranean Sea (2004–2017)
A global monthly climatology of oceanic total dissolved inorganic carbon: a neural network approach
A 17-year dataset of surface water fugacity of CO2 along with calculated pH, aragonite saturation state and air–sea CO2 fluxes in the northern Caribbean Sea
Zelun Wu, Wenfang Lu, Alizée Roobaert, Luping Song, Xiao-Hai Yan, and Wei-Jun Cai
Earth Syst. Sci. Data, 17, 43–63, https://doi.org/10.5194/essd-17-43-2025, https://doi.org/10.5194/essd-17-43-2025, 2025
Short summary
Short summary
This study addresses the lack of comprehensive sea surface partial pressure of CO2 (pCO2) data in the North American Atlantic Coastal Ocean Margin (NAACOM) by developing the Reconstructed Coastal Acidification Database (ReCAD-NAACOM-pCO2). The product reconstructed sea surface pCO2 from 1993 to 2021 using machine-learning and environmental data, capturing seasonal cycles, regional variations, and long-term trends of pCO2 for coastal carbon research.
Viktor Gouretski, Lijing Cheng, Juan Du, Xiaogang Xing, Fei Chai, and Zhetao Tan
Earth Syst. Sci. Data, 16, 5503–5530, https://doi.org/10.5194/essd-16-5503-2024, https://doi.org/10.5194/essd-16-5503-2024, 2024
Short summary
Short summary
High-quality observations are crucial to understanding ocean oxygen changes and their impact on marine biota. We developed a quality control procedure to ensure the high quality of the heterogeneous ocean oxygen data archive and to prove data consistency. Oxygen data obtained by means of oxygen sensors on autonomous Argo floats were compared with reference data based on the chemical analysis, and estimates of the residual offsets were obtained.
Riccardo Martellucci, Michele Giani, Elena Mauri, Laurent Coppola, Melf Paulsen, Marine Fourrier, Sara Pensieri, Vanessa Cardin, Carlotta Dentico, Roberto Bozzano, Carolina Cantoni, Anna Lucchetta, Alfredo Izquierdo, Miguel Bruno, and Ingunn Skjelvan
Earth Syst. Sci. Data, 16, 5333–5356, https://doi.org/10.5194/essd-16-5333-2024, https://doi.org/10.5194/essd-16-5333-2024, 2024
Short summary
Short summary
As part of the ATL2MED demonstration experiment, two autonomous surface vehicles undertook a 9-month mission from the northeastern Atlantic to the Adriatic Sea. Biofouling affected the measurement of variables such as conductivity and dissolved oxygen. COVID-19 limited the availability of discrete samples for validation. We present correction methods for salinity and dissolved oxygen. We use model products to correct salinity and apply the Argo floats in-air correction method for oxygen
Shengqian Zhou, Ying Chen, Shan Huang, Xianda Gong, Guipeng Yang, Honghai Zhang, Hartmut Herrmann, Alfred Wiedensohler, Laurent Poulain, Yan Zhang, Fanghui Wang, Zongjun Xu, and Ke Yan
Earth Syst. Sci. Data, 16, 4267–4290, https://doi.org/10.5194/essd-16-4267-2024, https://doi.org/10.5194/essd-16-4267-2024, 2024
Short summary
Short summary
Dimethyl sulfide (DMS) is a crucial natural reactive gas in the global climate system due to its great contribution to aerosols and subsequent impact on clouds over remote oceans. Leveraging machine learning techniques, we constructed a long-term global sea surface DMS gridded dataset with daily resolution. Compared to previous datasets, our new dataset holds promise for improving atmospheric chemistry modeling and advancing our comprehension of the climate effects associated with oceanic DMS.
Wen Yi, Xiaotong Wang, Tingkun He, Huan Liu, Zhenyu Luo, Zhaofeng Lv, and Kebin He
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-258, https://doi.org/10.5194/essd-2024-258, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
This study presents a detailed global dataset on ship emissions, covering the years 2013 and 2016–2021, using advanced modeling techniques. The dataset includes emissions data for 4 types of greenhouse gases and 5 types of air pollutants. The data, available for research, offers valuable insights into ship emission spatiotemporal patterns by vessel type and age, providing a solid data foundation for fine-scale scientific research and shipping emission mitigation.
Seyed Reza Saghravani, Michael Ernst Böttcher, Wei-Li Hong, Karol Kuliński, Aivo Lepland, Arunima Sen, and Beata Szymczycha
Earth Syst. Sci. Data, 16, 3419–3431, https://doi.org/10.5194/essd-16-3419-2024, https://doi.org/10.5194/essd-16-3419-2024, 2024
Short summary
Short summary
A comprehensive study conducted in 2021 examined the distributions of dissolved nutrients and carbon in the western Spitsbergen fjords during the high-melting season. Significant spatial variability was observed in the water column and pore water concentrations of constituents, highlighting the unique biogeochemical characteristics of each fjord and their potential impact on ecosystem functioning and oceanographic processes.
Li-Qing Jiang, Tim P. Boyer, Christopher R. Paver, Hyelim Yoo, James R. Reagan, Simone R. Alin, Leticia Barbero, Brendan R. Carter, Richard A. Feely, and Rik Wanninkhof
Earth Syst. Sci. Data, 16, 3383–3390, https://doi.org/10.5194/essd-16-3383-2024, https://doi.org/10.5194/essd-16-3383-2024, 2024
Short summary
Short summary
In this paper, we unveil a data product featuring ten coastal ocean acidification variables. These indicators are provided on 1°×1° spatial grids at 14 standardized depth levels, ranging from the surface to a depth of 500 m, along the North American ocean margins.
Guorong Zhong, Xuegang Li, Jinming Song, Baoxiao Qu, Fan Wang, Yanjun Wang, Bin Zhang, Lijing Cheng, Jun Ma, Huamao Yuan, Liqin Duan, Ning Li, Qidong Wang, Jianwei Xing, and Jiajia Dai
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-151, https://doi.org/10.5194/essd-2024-151, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
The continuous uptake of atmospheric CO2 by the ocean leads to decreasing seawater pH, which is an ongoing threat to the marine ecosystem. The pH change was globally documented in the surface ocean but limited below the surface. Here, we present a monthly 1° gridded product of global seawater pH based on a machine learning method and real pH observations. The pH product covers the years 1992–2020 and depths of 0–2000 m.
Amanda R. Fay, David R. Munro, Galen A. McKinley, Denis Pierrot, Stewart C. Sutherland, Colm Sweeney, and Rik Wanninkhof
Earth Syst. Sci. Data, 16, 2123–2139, https://doi.org/10.5194/essd-16-2123-2024, https://doi.org/10.5194/essd-16-2123-2024, 2024
Short summary
Short summary
Presented here is a near-global monthly climatological estimate of the difference between atmosphere and ocean carbon dioxide concentrations. The ocean's ability to take up carbon, both now and in the future, is defined by this difference in concentrations. With over 30 million measurements of surface ocean carbon over the last 40 years and utilization of an extrapolation technique, a mean estimate of surface ocean ΔfCO2 is presented.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Marta Álvarez, Kumiko Azetsu-Scott, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Mario Hoppema, Matthew P. Humphreys, Masao Ishii, Emil Jeansson, Akihiko Murata, Jens Daniel Müller, Fiz F. Pérez, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Adam Ulfsbo, Anton Velo, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 16, 2047–2072, https://doi.org/10.5194/essd-16-2047-2024, https://doi.org/10.5194/essd-16-2047-2024, 2024
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2023 is the fifth update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality controlling, including systematic evaluation of measurement biases. This version contains data from 1108 hydrographic cruises covering the world's oceans from 1972 to 2021.
Nico Lange, Björn Fiedler, Marta Álvarez, Alice Benoit-Cattin, Heather Benway, Pier Luigi Buttigieg, Laurent Coppola, Kim Currie, Susana Flecha, Dana S. Gerlach, Makio Honda, I. Emma Huertas, Siv K. Lauvset, Frank Muller-Karger, Arne Körtzinger, Kevin M. O'Brien, Sólveig R. Ólafsdóttir, Fernando C. Pacheco, Digna Rueda-Roa, Ingunn Skjelvan, Masahide Wakita, Angelicque White, and Toste Tanhua
Earth Syst. Sci. Data, 16, 1901–1931, https://doi.org/10.5194/essd-16-1901-2024, https://doi.org/10.5194/essd-16-1901-2024, 2024
Short summary
Short summary
The Synthesis Product for Ocean Time Series (SPOTS) is a novel achievement expanding and complementing the biogeochemical data landscape by providing consistent and high-quality biogeochemical time-series data from 12 ship-based fixed time-series programs. SPOTS covers multiple unique marine environments and time-series ranges, including data from 1983 to 2021. All in all, it facilitates a variety of applications that benefit from the collective value of biogeochemical time-series observations.
Sébastien Petton, Fabrice Pernet, Valérian Le Roy, Matthias Huber, Sophie Martin, Éric Macé, Yann Bozec, Stéphane Loisel, Peggy Rimmelin-Maury, Émilie Grossteffan, Michel Repecaud, Loïc Quemener, Michael Retho, Soazig Manac'h, Mathias Papin, Philippe Pineau, Thomas Lacoue-Labarthe, Jonathan Deborde, Louis Costes, Pierre Polsenaere, Loïc Rigouin, Jérémy Benhamou, Laure Gouriou, Joséphine Lequeux, Nathalie Labourdette, Nicolas Savoye, Grégory Messiaen, Elodie Foucault, Vincent Ouisse, Marion Richard, Franck Lagarde, Florian Voron, Valentin Kempf, Sébastien Mas, Léa Giannecchini, Francesca Vidussi, Behzad Mostajir, Yann Leredde, Samir Alliouane, Jean-Pierre Gattuso, and Frédéric Gazeau
Earth Syst. Sci. Data, 16, 1667–1688, https://doi.org/10.5194/essd-16-1667-2024, https://doi.org/10.5194/essd-16-1667-2024, 2024
Short summary
Short summary
Our research highlights the concerning impact of rising carbon dioxide levels on coastal areas. To better understand these changes, we've established an observation network in France. By deploying pH sensors and other monitoring equipment at key coastal sites, we're gaining valuable insights into how various factors, such as freshwater inputs, tides, temperature, and biological processes, influence ocean pH.
Christian Lønborg, Cátia Carreira, Gwenaël Abril, Susana Agustí, Valentina Amaral, Agneta Andersson, Javier Arístegui, Punyasloke Bhadury, Mariana B. Bif, Alberto V. Borges, Steven Bouillon, Maria Ll. Calleja, Luiz C. Cotovicz Jr., Stefano Cozzi, Maryló Doval, Carlos M. Duarte, Bradley Eyre, Cédric G. Fichot, E. Elena García-Martín, Alexandra Garzon-Garcia, Michele Giani, Rafael Gonçalves-Araujo, Renee Gruber, Dennis A. Hansell, Fuminori Hashihama, Ding He, Johnna M. Holding, William R. Hunter, J. Severino P. Ibánhez, Valeria Ibello, Shan Jiang, Guebuem Kim, Katja Klun, Piotr Kowalczuk, Atsushi Kubo, Choon-Weng Lee, Cláudia B. Lopes, Federica Maggioni, Paolo Magni, Celia Marrase, Patrick Martin, S. Leigh McCallister, Roisin McCallum, Patricia M. Medeiros, Xosé Anxelu G. Morán, Frank E. Muller-Karger, Allison Myers-Pigg, Marit Norli, Joanne M. Oakes, Helena Osterholz, Hyekyung Park, Maria Lund Paulsen, Judith A. Rosentreter, Jeff D. Ross, Digna Rueda-Roa, Chiara Santinelli, Yuan Shen, Eva Teira, Tinkara Tinta, Guenther Uher, Masahide Wakita, Nicholas Ward, Kenta Watanabe, Yu Xin, Youhei Yamashita, Liyang Yang, Jacob Yeo, Huamao Yuan, Qiang Zheng, and Xosé Antón Álvarez-Salgado
Earth Syst. Sci. Data, 16, 1107–1119, https://doi.org/10.5194/essd-16-1107-2024, https://doi.org/10.5194/essd-16-1107-2024, 2024
Short summary
Short summary
In this paper, we present the first edition of a global database compiling previously published and unpublished measurements of dissolved organic matter (DOM) collected in coastal waters (CoastDOM v1). Overall, the CoastDOM v1 dataset will be useful to identify global spatial and temporal patterns and to facilitate reuse in studies aimed at better characterizing local biogeochemical processes and identifying a baseline for modelling future changes in coastal waters.
Simone R. Alin, Jan A. Newton, Richard A. Feely, Dana Greeley, Beth Curry, Julian Herndon, and Mark Warner
Earth Syst. Sci. Data, 16, 837–865, https://doi.org/10.5194/essd-16-837-2024, https://doi.org/10.5194/essd-16-837-2024, 2024
Short summary
Short summary
The Salish cruise data product provides 2008–2018 oceanographic data from the southern Salish Sea and nearby coastal sampling stations. Temperature, salinity, oxygen, nutrient, and dissolved inorganic carbon measurements from 715 oceanographic profiles will facilitate further study of ocean acidification, hypoxia, and marine heatwave impacts in this region. Three subsets of the compiled datasets from 35 cruises are available with consistent formatting and multiple commonly used units.
Henry C. Bittig, Erik Jacobs, Thomas Neumann, and Gregor Rehder
Earth Syst. Sci. Data, 16, 753–773, https://doi.org/10.5194/essd-16-753-2024, https://doi.org/10.5194/essd-16-753-2024, 2024
Short summary
Short summary
We present a pCO2 climatology of the Baltic Sea using a new approach to extrapolate from individual observations to the entire Baltic Sea. The extrapolation approach uses (a) a model to inform on how data at one location are connected to data at other locations, together with (b) very accurate pCO2 observations from 2003 to 2021 as the base data. The climatology can be used e.g. to assess uptake and release of CO2 or to identify extreme events.
Francesco Placenti, Marco Torri, Katrin Schroeder, Mireno Borghini, Gabriella Cerrati, Angela Cuttitta, Vincenzo Tancredi, Carmelo Buscaino, and Bernardo Patti
Earth Syst. Sci. Data, 16, 743–752, https://doi.org/10.5194/essd-16-743-2024, https://doi.org/10.5194/essd-16-743-2024, 2024
Short summary
Short summary
Oceanographic surveys were conducted in the Strait of Sicily between 2010 and 2021. This paper provides a description of the time series of nutrients and hydrological data collected in this zone. The dataset fills an important gap in field observations of a crucial area where exchanges with the Mediterranean sub-basin take place, providing support for studies aimed at describing ongoing processes and at realizing reliable projections of the effects of these processes in the near future.
Natalie M. Monacci, Jessica N. Cross, Wiley Evans, Jeremy T. Mathis, and Hongjie Wang
Earth Syst. Sci. Data, 16, 647–665, https://doi.org/10.5194/essd-16-647-2024, https://doi.org/10.5194/essd-16-647-2024, 2024
Short summary
Short summary
As carbon dioxide is released into the air through human-generated activity, about one third dissolves into the surface water of oceans, lowering pH and increasing acidity. This is known as ocean acidification. We merged 10 years of ocean carbon data and made them publicly available for adaptation planning during a time of change. The data confirmed that Alaska is already experiencing the effects of ocean acidification due to naturally cold water, high productivity, and circulation patterns.
Alizée Roobaert, Pierre Regnier, Peter Landschützer, and Goulven G. Laruelle
Earth Syst. Sci. Data, 16, 421–441, https://doi.org/10.5194/essd-16-421-2024, https://doi.org/10.5194/essd-16-421-2024, 2024
Short summary
Short summary
The quantification of the coastal air–sea CO2 exchange (FCO2) has improved in recent years, but its multiannual variability remains unclear. This study, based on interpolated observations, reconstructs the longest global time series of coastal FCO2 (1982–2020). Results show the coastal ocean acts as a CO2 sink, with increasing intensity over time. This new coastal FCO2-product allows establishing regional carbon budgets and provides new constraints for closing the global carbon cycle.
Esther G. Kennedy, Meghan Zulian, Sara L. Hamilton, Tessa M. Hill, Manuel Delgado, Carina R. Fish, Brian Gaylord, Kristy J. Kroeker, Hannah M. Palmer, Aurora M. Ricart, Eric Sanford, Ana K. Spalding, Melissa Ward, Guadalupe Carrasco, Meredith Elliott, Genece V. Grisby, Evan Harris, Jaime Jahncke, Catherine N. Rocheleau, Sebastian Westerink, and Maddie I. Wilmot
Earth Syst. Sci. Data, 16, 219–243, https://doi.org/10.5194/essd-16-219-2024, https://doi.org/10.5194/essd-16-219-2024, 2024
Short summary
Short summary
We present a new synthesis of oceanographic observations along the US West Coast that has been optimized for multiparameter investigations of coastal warming, deoxygenation, and acidification risk. This synthesis includes both previously published and new observations, all of which have been consistently formatted and quality-controlled to facilitate high-resolution investigations of climate risks and consequences across a wide range of spatial and temporal scales.
Thi-Tuyet-Trang Chau, Marion Gehlen, Nicolas Metzl, and Frédéric Chevallier
Earth Syst. Sci. Data, 16, 121–160, https://doi.org/10.5194/essd-16-121-2024, https://doi.org/10.5194/essd-16-121-2024, 2024
Short summary
Short summary
CMEMS-LSCE leads as the first global observation-based reconstructions of six carbonate system variables for the years 1985–2021 at monthly and 0.25° resolutions. The high-resolution reconstructions outperform their 1° counterpart in reproducing horizontal and temporal gradients of observations over various oceanic regions to nearshore time series stations. New datasets can be exploited in numerous studies, including monitoring changes in ocean carbon uptake and ocean acidification.
Nicolas Metzl, Jonathan Fin, Claire Lo Monaco, Claude Mignon, Samir Alliouane, David Antoine, Guillaume Bourdin, Jacqueline Boutin, Yann Bozec, Pascal Conan, Laurent Coppola, Frédéric Diaz, Eric Douville, Xavier Durrieu de Madron, Jean-Pierre Gattuso, Frédéric Gazeau, Melek Golbol, Bruno Lansard, Dominique Lefèvre, Nathalie Lefèvre, Fabien Lombard, Férial Louanchi, Liliane Merlivat, Léa Olivier, Anne Petrenko, Sébastien Petton, Mireille Pujo-Pay, Christophe Rabouille, Gilles Reverdin, Céline Ridame, Aline Tribollet, Vincenzo Vellucci, Thibaut Wagener, and Cathy Wimart-Rousseau
Earth Syst. Sci. Data, 16, 89–120, https://doi.org/10.5194/essd-16-89-2024, https://doi.org/10.5194/essd-16-89-2024, 2024
Short summary
Short summary
This work presents a synthesis of 44 000 total alkalinity and dissolved inorganic carbon observations obtained between 1993 and 2022 in the Global Ocean and the Mediterranean Sea at the surface and in the water column. Seawater samples were measured using the same method and calibrated with international Certified Reference Material. We describe the data assemblage, quality control and some potential uses of this dataset.
Céline Heuzé, Oliver Huhn, Maren Walter, Natalia Sukhikh, Salar Karam, Wiebke Körtke, Myriel Vredenborg, Klaus Bulsiewicz, Jürgen Sültenfuß, Ying-Chih Fang, Christian Mertens, Benjamin Rabe, Sandra Tippenhauer, Jacob Allerholt, Hailun He, David Kuhlmey, Ivan Kuznetsov, and Maria Mallet
Earth Syst. Sci. Data, 15, 5517–5534, https://doi.org/10.5194/essd-15-5517-2023, https://doi.org/10.5194/essd-15-5517-2023, 2023
Short summary
Short summary
Gases dissolved in the ocean water not used by the ecosystem (or "passive tracers") are invaluable to track water over long distances and investigate the processes that modify its properties. Unfortunately, especially so in the ice-covered Arctic Ocean, such gas measurements are sparse. We here present a data set of several passive tracers (anthropogenic gases, noble gases and their isotopes) collected over the full ocean depth, weekly, during the 1-year drift in the Arctic during MOSAiC.
Weiyi Tang, Bess B. Ward, Michael Beman, Laura Bristow, Darren Clark, Sarah Fawcett, Claudia Frey, François Fripiat, Gerhard J. Herndl, Mhlangabezi Mdutyana, Fabien Paulot, Xuefeng Peng, Alyson E. Santoro, Takuhei Shiozaki, Eva Sintes, Charles Stock, Xin Sun, Xianhui S. Wan, Min N. Xu, and Yao Zhang
Earth Syst. Sci. Data, 15, 5039–5077, https://doi.org/10.5194/essd-15-5039-2023, https://doi.org/10.5194/essd-15-5039-2023, 2023
Short summary
Short summary
Nitrification and nitrifiers play an important role in marine nitrogen and carbon cycles by converting ammonium to nitrite and nitrate. Nitrification could affect microbial community structure, marine productivity, and the production of nitrous oxide – a powerful greenhouse gas. We introduce the newly constructed database of nitrification and nitrifiers in the marine water column and guide future research efforts in field observations and model development of nitrification.
Jonathan D. Sharp, Andrea J. Fassbender, Brendan R. Carter, Gregory C. Johnson, Cristina Schultz, and John P. Dunne
Earth Syst. Sci. Data, 15, 4481–4518, https://doi.org/10.5194/essd-15-4481-2023, https://doi.org/10.5194/essd-15-4481-2023, 2023
Short summary
Short summary
Dissolved oxygen content is a critical metric of ocean health. Recently, expanding fleets of autonomous platforms that measure oxygen in the ocean have produced a wealth of new data. We leverage machine learning to take advantage of this growing global dataset, producing a gridded data product of ocean interior dissolved oxygen at monthly resolution over nearly 2 decades. This work provides novel information for investigations of spatial, seasonal, and interannual variability in ocean oxygen.
Olivia Gibb, Frédéric Cyr, Kumiko Azetsu-Scott, Joël Chassé, Darlene Childs, Carrie-Ellen Gabriel, Peter S. Galbraith, Gary Maillet, Pierre Pepin, Stephen Punshon, and Michel Starr
Earth Syst. Sci. Data, 15, 4127–4162, https://doi.org/10.5194/essd-15-4127-2023, https://doi.org/10.5194/essd-15-4127-2023, 2023
Short summary
Short summary
The ocean absorbs large quantities of carbon dioxide (CO2) released into the atmosphere as a result of the burning of fossil fuels. This, in turn, causes ocean acidification, which poses a major threat to global ocean ecosystems. In this study, we compiled 9 years (2014–2022) of ocean carbonate data (i.e., ocean acidification parameters) collected in Atlantic Canada as part of the Atlantic Zone Monitoring Program.
Öykü Z. Mete, Adam V. Subhas, Heather H. Kim, Ann G. Dunlea, Laura M. Whitmore, Alan M. Shiller, Melissa Gilbert, William D. Leavitt, and Tristan J. Horner
Earth Syst. Sci. Data, 15, 4023–4045, https://doi.org/10.5194/essd-15-4023-2023, https://doi.org/10.5194/essd-15-4023-2023, 2023
Short summary
Short summary
We present results from a machine learning model that accurately predicts dissolved barium concentrations for the global ocean. Our results reveal that the whole-ocean barium inventory is significantly lower than previously thought and that the deep ocean below 1000 m is at equilibrium with respect to barite. The model output can be used for a number of applications, including intercomparison, interpolation, and identification of regions warranting additional investigation.
Zhibo Shao, Yangchun Xu, Hua Wang, Weicheng Luo, Lice Wang, Yuhong Huang, Nona Sheila R. Agawin, Ayaz Ahmed, Mar Benavides, Mikkel Bentzon-Tilia, Ilana Berman-Frank, Hugo Berthelot, Isabelle C. Biegala, Mariana B. Bif, Antonio Bode, Sophie Bonnet, Deborah A. Bronk, Mark V. Brown, Lisa Campbell, Douglas G. Capone, Edward J. Carpenter, Nicolas Cassar, Bonnie X. Chang, Dreux Chappell, Yuh-ling Lee Chen, Matthew J. Church, Francisco M. Cornejo-Castillo, Amália Maria Sacilotto Detoni, Scott C. Doney, Cecile Dupouy, Marta Estrada, Camila Fernandez, Bieito Fernández-Castro, Debany Fonseca-Batista, Rachel A. Foster, Ken Furuya, Nicole Garcia, Kanji Goto, Jesús Gago, Mary R. Gradoville, M. Robert Hamersley, Britt A. Henke, Cora Hörstmann, Amal Jayakumar, Zhibing Jiang, Shuh-Ji Kao, David M. Karl, Leila R. Kittu, Angela N. Knapp, Sanjeev Kumar, Julie LaRoche, Hongbin Liu, Jiaxing Liu, Caroline Lory, Carolin R. Löscher, Emilio Marañón, Lauren F. Messer, Matthew M. Mills, Wiebke Mohr, Pia H. Moisander, Claire Mahaffey, Robert Moore, Beatriz Mouriño-Carballido, Margaret R. Mulholland, Shin-ichiro Nakaoka, Joseph A. Needoba, Eric J. Raes, Eyal Rahav, Teodoro Ramírez-Cárdenas, Christian Furbo Reeder, Lasse Riemann, Virginie Riou, Julie C. Robidart, Vedula V. S. S. Sarma, Takuya Sato, Himanshu Saxena, Corday Selden, Justin R. Seymour, Dalin Shi, Takuhei Shiozaki, Arvind Singh, Rachel E. Sipler, Jun Sun, Koji Suzuki, Kazutaka Takahashi, Yehui Tan, Weiyi Tang, Jean-Éric Tremblay, Kendra Turk-Kubo, Zuozhu Wen, Angelicque E. White, Samuel T. Wilson, Takashi Yoshida, Jonathan P. Zehr, Run Zhang, Yao Zhang, and Ya-Wei Luo
Earth Syst. Sci. Data, 15, 3673–3709, https://doi.org/10.5194/essd-15-3673-2023, https://doi.org/10.5194/essd-15-3673-2023, 2023
Short summary
Short summary
N2 fixation by marine diazotrophs is an important bioavailable N source to the global ocean. This updated global oceanic diazotroph database increases the number of in situ measurements of N2 fixation rates, diazotrophic cell abundances, and nifH gene copy abundances by 184 %, 86 %, and 809 %, respectively. Using the updated database, the global marine N2 fixation rate is estimated at 223 ± 30 Tg N yr−1, which triplicates that using the original database.
Jean-Pierre Gattuso, Samir Alliouane, and Philipp Fischer
Earth Syst. Sci. Data, 15, 2809–2825, https://doi.org/10.5194/essd-15-2809-2023, https://doi.org/10.5194/essd-15-2809-2023, 2023
Short summary
Short summary
The Arctic Ocean is subject to high rates of ocean warming and acidification, with critical implications for marine organisms, ecosystems and the services they provide. We report here on the first high-frequency (1 h), multi-year (5 years) dataset of the carbonate system at a coastal site in a high-Arctic fjord (Kongsfjorden, Svalbard). This site is a significant sink for CO2 every month of the year (9 to 17 mol m-2 yr-1). The saturation state of aragonite can be as low as 1.3.
Richard P. Sims, Thomas M. Holding, Peter E. Land, Jean-Francois Piolle, Hannah L. Green, and Jamie D. Shutler
Earth Syst. Sci. Data, 15, 2499–2516, https://doi.org/10.5194/essd-15-2499-2023, https://doi.org/10.5194/essd-15-2499-2023, 2023
Short summary
Short summary
The flow of carbon between the land and ocean is poorly quantified with existing measurements. It is not clear how seasonality and long-term variability impact this flow of carbon. Here, we demonstrate how satellite observations can be used to create decadal time series of the inorganic carbonate system in the Amazon and Congo River outflows.
Yayoi Inomata and Michio Aoyama
Earth Syst. Sci. Data, 15, 1969–2007, https://doi.org/10.5194/essd-15-1969-2023, https://doi.org/10.5194/essd-15-1969-2023, 2023
Short summary
Short summary
The behavior of 137Cs in surface seawater in the global ocean was analyzed by using the HAMGlobal2021 database. Approximately 32 % of 137Cs existed in the surface seawater in 1970. The 137Cs released into the North Pacific Ocean by large-scale nuclear weapons tests was transported to the Indian Ocean and then the Atlantic Ocean on a 4–5 decadal timescale, whereas 137Cs released from nuclear reprocessing plants was transported northward to the Arctic Ocean on a decadal scale.
Zhixuan Wang, Guizhi Wang, Xianghui Guo, Yan Bai, Yi Xu, and Minhan Dai
Earth Syst. Sci. Data, 15, 1711–1731, https://doi.org/10.5194/essd-15-1711-2023, https://doi.org/10.5194/essd-15-1711-2023, 2023
Short summary
Short summary
We reconstructed monthly sea surface pCO2 data with a high spatial resolution in the South China Sea (SCS) from 2003 to 2020. We validate our reconstruction with three independent testing datasets and present a new method to assess the uncertainty of the data. The results strongly suggest that our reconstruction effectively captures the main features of the spatiotemporal patterns of pCO2 in the SCS. Using this dataset, we found that the SCS is overall a weak source of atmospheric CO2.
Peter Edward Land, Helen S. Findlay, Jamie D. Shutler, Jean-Francois Piolle, Richard Sims, Hannah Green, Vassilis Kitidis, Alexander Polukhin, and Irina I. Pipko
Earth Syst. Sci. Data, 15, 921–947, https://doi.org/10.5194/essd-15-921-2023, https://doi.org/10.5194/essd-15-921-2023, 2023
Short summary
Short summary
Measurements of the ocean’s carbonate system (e.g. CO2 and pH) have increased greatly in recent years, resulting in a need to combine these data with satellite measurements and model results, so they can be used to test predictions of how the ocean reacts to changes such as absorption of the CO2 emitted by humans. We show a method of combining data into regions of interest (100 km circles over a 10 d period) and apply it globally to produce a harmonised and easy-to-use data archive.
Giulia Leone, Ana I. Catarino, Liesbeth De Keukelaere, Mattias Bossaer, Els Knaeps, and Gert Everaert
Earth Syst. Sci. Data, 15, 745–752, https://doi.org/10.5194/essd-15-745-2023, https://doi.org/10.5194/essd-15-745-2023, 2023
Short summary
Short summary
This paper illustrates a dataset of hyperspectral reflectance measurements of macroplastics. Plastic samples consisted of pristine, artificially weathered, and biofouled plastic items and field plastic debris. Samples were measured in dry conditions and a subset of plastics in wet and submerged conditions. This dataset can be used to better understand plastic optical features when exposed to natural agents and to support the development of algorithms for monitoring environmental plastics.
Michael J. Whitehouse, Katharine R. Hendry, Geraint A. Tarling, Sally E. Thorpe, and Petra ten Hoopen
Earth Syst. Sci. Data, 15, 211–224, https://doi.org/10.5194/essd-15-211-2023, https://doi.org/10.5194/essd-15-211-2023, 2023
Short summary
Short summary
We present a database of Southern Ocean macronutrient, temperature and salinity measurements collected on 20 oceanographic cruises between 1980 and 2009. Vertical profiles and underway surface measurements were collected year-round as part of an integrated ecosystem study. Our data provide a novel view of biogeochemical cycling in biologically productive regions across a critical period in recent climate history and will contribute to a better understanding of the drivers of primary production.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Simone Alin, Marta Álvarez, Kumiko Azetsu-Scott, Leticia Barbero, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Mario Hoppema, Matthew P. Humphreys, Masao Ishii, Emil Jeansson, Li-Qing Jiang, Steve D. Jones, Claire Lo Monaco, Akihiko Murata, Jens Daniel Müller, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Adam Ulfsbo, Anton Velo, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 14, 5543–5572, https://doi.org/10.5194/essd-14-5543-2022, https://doi.org/10.5194/essd-14-5543-2022, 2022
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2022 is the fourth update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality controlling, including systematic evaluation of measurement biases. This version contains data from 1085 hydrographic cruises covering the world's oceans from 1972 to 2021.
Zhour Najoui, Nellya Amoussou, Serge Riazanoff, Guillaume Aurel, and Frédéric Frappart
Earth Syst. Sci. Data, 14, 4569–4588, https://doi.org/10.5194/essd-14-4569-2022, https://doi.org/10.5194/essd-14-4569-2022, 2022
Short summary
Short summary
Oil spills could have serious repercussions for both the marine environment and ecosystem. The Gulf of Guinea is a very active area with respect to maritime traffic as well as oil and gas exploitation (platforms). As a result, the region is subject to a large number of oil pollution events. This study aims to detect oil slicks in the Gulf of Guinea and analyse their spatial and temporal distribution using satellite data.
Shrivardhan Hulswar, Rafel Simó, Martí Galí, Thomas G. Bell, Arancha Lana, Swaleha Inamdar, Paul R. Halloran, George Manville, and Anoop Sharad Mahajan
Earth Syst. Sci. Data, 14, 2963–2987, https://doi.org/10.5194/essd-14-2963-2022, https://doi.org/10.5194/essd-14-2963-2022, 2022
Short summary
Short summary
The third climatological estimation of sea surface dimethyl sulfide (DMS) concentrations based on in situ measurements was created (DMS-Rev3). The update includes a much larger input dataset and includes improvements in the data unification, filtering, and smoothing algorithm. The DMS-Rev3 climatology provides more realistic monthly estimates of DMS, and shows significant regional differences compared to past climatologies.
Gilles Reverdin, Claire Waelbroeck, Catherine Pierre, Camille Akhoudas, Giovanni Aloisi, Marion Benetti, Bernard Bourlès, Magnus Danielsen, Jérôme Demange, Denis Diverrès, Jean-Claude Gascard, Marie-Noëlle Houssais, Hervé Le Goff, Pascale Lherminier, Claire Lo Monaco, Herlé Mercier, Nicolas Metzl, Simon Morisset, Aïcha Naamar, Thierry Reynaud, Jean-Baptiste Sallée, Virginie Thierry, Susan E. Hartman, Edward W. Mawji, Solveig Olafsdottir, Torsten Kanzow, Anton Velo, Antje Voelker, Igor Yashayaev, F. Alexander Haumann, Melanie J. Leng, Carol Arrowsmith, and Michael Meredith
Earth Syst. Sci. Data, 14, 2721–2735, https://doi.org/10.5194/essd-14-2721-2022, https://doi.org/10.5194/essd-14-2721-2022, 2022
Short summary
Short summary
The CISE-LOCEAN seawater stable isotope dataset has close to 8000 data entries. The δ18O and δD isotopic data measured at LOCEAN have uncertainties of at most 0.05 ‰ and 0.25 ‰, respectively. Some data were adjusted to correct for evaporation. The internal consistency indicates that the data can be used to investigate time and space variability to within 0.03 ‰ and 0.15 ‰ in δ18O–δD17; comparisons with data analyzed in other institutions suggest larger differences with other datasets.
Jonathan D. Sharp, Andrea J. Fassbender, Brendan R. Carter, Paige D. Lavin, and Adrienne J. Sutton
Earth Syst. Sci. Data, 14, 2081–2108, https://doi.org/10.5194/essd-14-2081-2022, https://doi.org/10.5194/essd-14-2081-2022, 2022
Short summary
Short summary
Oceanographers calculate the exchange of carbon between the ocean and atmosphere by comparing partial pressures of carbon dioxide (pCO2). Because seawater pCO2 is not measured everywhere at all times, interpolation schemes are required to fill observational gaps. We describe a monthly gap-filled dataset of pCO2 in the northeast Pacific Ocean off the west coast of North America created by machine-learning interpolation. This dataset is unique in its robust representation of coastal seasonality.
Malek Belgacem, Katrin Schroeder, Alexander Barth, Charles Troupin, Bruno Pavoni, Patrick Raimbault, Nicole Garcia, Mireno Borghini, and Jacopo Chiggiato
Earth Syst. Sci. Data, 13, 5915–5949, https://doi.org/10.5194/essd-13-5915-2021, https://doi.org/10.5194/essd-13-5915-2021, 2021
Short summary
Short summary
The Mediterranean Sea exhibits an anti-estuarine circulation, responsible for its low productivity. Understanding this peculiar character is still a challenge since there is no exact quantification of nutrient sinks and sources. Because nutrient in situ observations are generally infrequent and scattered in space and time, climatological mapping is often applied to sparse data in order to understand the biogeochemical state of the ocean. The dataset presented here partly addresses these issues.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Marta Álvarez, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Sara Jutterström, Steve D. Jones, Maren K. Karlsen, Claire Lo Monaco, Patrick Michaelis, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Anton Velo, Rik Wanninkhof, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 13, 5565–5589, https://doi.org/10.5194/essd-13-5565-2021, https://doi.org/10.5194/essd-13-5565-2021, 2021
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2021 is the third update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality control, including systematic evaluation of measurement biases. This version contains data from 989 hydrographic cruises covering the world's oceans from 1972 to 2020.
Li-Qing Jiang, Richard A. Feely, Rik Wanninkhof, Dana Greeley, Leticia Barbero, Simone Alin, Brendan R. Carter, Denis Pierrot, Charles Featherstone, James Hooper, Chris Melrose, Natalie Monacci, Jonathan D. Sharp, Shawn Shellito, Yuan-Yuan Xu, Alex Kozyr, Robert H. Byrne, Wei-Jun Cai, Jessica Cross, Gregory C. Johnson, Burke Hales, Chris Langdon, Jeremy Mathis, Joe Salisbury, and David W. Townsend
Earth Syst. Sci. Data, 13, 2777–2799, https://doi.org/10.5194/essd-13-2777-2021, https://doi.org/10.5194/essd-13-2777-2021, 2021
Short summary
Short summary
Coastal ecosystems account for most of the economic activities related to commercial and recreational fisheries and aquaculture industries, supporting about 90 % of the global fisheries yield and 80 % of known species of marine fish. Despite the large potential risks from ocean acidification (OA), internally consistent water column OA data products in the coastal ocean still do not exist. This paper is the first time we report a high quality OA data product in North America's coastal waters.
Guizhi Wang, Samuel S. P. Shen, Yao Chen, Yan Bai, Huan Qin, Zhixuan Wang, Baoshan Chen, Xianghui Guo, and Minhan Dai
Earth Syst. Sci. Data, 13, 1403–1417, https://doi.org/10.5194/essd-13-1403-2021, https://doi.org/10.5194/essd-13-1403-2021, 2021
Short summary
Short summary
This study reconstructs a complete field of summer sea surface partial pressure of CO2 (pCO2) over the South China Sea (SCS) with a 0.5° resolution in the period of 2000–2017 using the scattered underway pCO2 observations. The spectral optimal gridding method was used in this reconstruction with empirical orthogonal functions computed from remote sensing data. Our reconstructed data show that the rate of sea surface pCO2 increase in the SCS is 2.4 ± 0.8 µatm yr-1 during 2000–2017.
Luke Gregor and Nicolas Gruber
Earth Syst. Sci. Data, 13, 777–808, https://doi.org/10.5194/essd-13-777-2021, https://doi.org/10.5194/essd-13-777-2021, 2021
Short summary
Short summary
Ocean acidification (OA) has altered the ocean's carbonate chemistry, with consequences for marine life. Yet, no observation-based data set exists that permits us to study changes in OA. We fill this gap with a global data set of relevant surface ocean parameters over the period 1985–2018. This data set, OceanSODA-ETHZ, was created by using satellite and other data to extrapolate ship-based measurements of carbon dioxide and total alkalinity from which parameters for OA were computed.
Are Olsen, Nico Lange, Robert M. Key, Toste Tanhua, Henry C. Bittig, Alex Kozyr, Marta Álvarez, Kumiko Azetsu-Scott, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Sara Jutterström, Camilla S. Landa, Siv K. Lauvset, Patrick Michaelis, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Anton Velo, Rik Wanninkhof, and Ryan J. Woosley
Earth Syst. Sci. Data, 12, 3653–3678, https://doi.org/10.5194/essd-12-3653-2020, https://doi.org/10.5194/essd-12-3653-2020, 2020
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by chemical analysis of water bottle samples at scientific cruises. GLODAPv2.2020 is the second update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality control, including systematic evaluation of measurement biases. This version contains data from 946 hydrographic cruises covering the world's oceans from 1972 to 2019.
Xosé Antonio Padin, Antón Velo, and Fiz F. Pérez
Earth Syst. Sci. Data, 12, 2647–2663, https://doi.org/10.5194/essd-12-2647-2020, https://doi.org/10.5194/essd-12-2647-2020, 2020
Short summary
Short summary
The ARIOS (Acidification in the Rias and the Iberian Continental Shelf) database holds biogeochemical information from 3357 oceanographic stations, giving 17 653 discrete samples. This unique collection is a starting point for evaluating ocean acidification in the Iberian upwelling system, characterized by intense biogeochemical interactions as an observation-based analysis, or for use as inputs in a coupled physical–biogeochemical model to disentangle these interactions at the ecosystem level.
Peter Landschützer, Goulven G. Laruelle, Alizee Roobaert, and Pierre Regnier
Earth Syst. Sci. Data, 12, 2537–2553, https://doi.org/10.5194/essd-12-2537-2020, https://doi.org/10.5194/essd-12-2537-2020, 2020
Short summary
Short summary
In recent years, multiple estimates of the global air–sea CO2 flux emerged from upscaling shipboard pCO2 measurements. They are however limited to the open-ocean domain and do not consider the coastal ocean, i.e. a significant marine sink for CO2. We build towards an integrated pCO2 product that combines both the open-ocean and coastal-ocean domain and focus on the evaluation of the common overlap area of these products and how well the aquatic continuum is represented in the new climatology.
Malek Belgacem, Jacopo Chiggiato, Mireno Borghini, Bruno Pavoni, Gabriella Cerrati, Francesco Acri, Stefano Cozzi, Alberto Ribotti, Marta Álvarez, Siv K. Lauvset, and Katrin Schroeder
Earth Syst. Sci. Data, 12, 1985–2011, https://doi.org/10.5194/essd-12-1985-2020, https://doi.org/10.5194/essd-12-1985-2020, 2020
Short summary
Short summary
Long-term time series are a fundamental prerequisite to understanding and detecting climate shifts and trends. In marginal seas, such as the Mediterranean Sea, there are still monitoring gaps. An extensive dataset of dissolved inorganic nutrient profiles were collected between 2004 and 2017 in the western Mediterranean Sea to provide to the scientific community a publicly available, long-term, quality-controlled, internally consistent new database.
Daniel Broullón, Fiz F. Pérez, Antón Velo, Mario Hoppema, Are Olsen, Taro Takahashi, Robert M. Key, Toste Tanhua, J. Magdalena Santana-Casiano, and Alex Kozyr
Earth Syst. Sci. Data, 12, 1725–1743, https://doi.org/10.5194/essd-12-1725-2020, https://doi.org/10.5194/essd-12-1725-2020, 2020
Short summary
Short summary
This work offers a vision of the global ocean regarding the carbon cycle and the implications of ocean acidification through a climatology of a changing variable in the context of climate change: total dissolved inorganic carbon. The climatology was designed through artificial intelligence techniques to represent the mean state of the present ocean. It is very useful to introduce in models to evaluate the state of the ocean from different perspectives.
Rik Wanninkhof, Denis Pierrot, Kevin Sullivan, Leticia Barbero, and Joaquin Triñanes
Earth Syst. Sci. Data, 12, 1489–1509, https://doi.org/10.5194/essd-12-1489-2020, https://doi.org/10.5194/essd-12-1489-2020, 2020
Short summary
Short summary
This paper describes a 17-year dataset of over a million data points of automated partial pressure of CO2 (pCO2) measurements on large luxury cruise ships of Royal Caribbean Cruise Lines (RCCL). These data are used to provide trends of ocean acidification and air–sea CO2 fluxes. The effort was possible through a unique continuing industry (RCCL), academic (University of Miami) and governmental (NOAA) partnership.
Cited articles
Alkalay, R., Zlatkin, O., Katz, T., Herut, B., Halicz, L., Berman-Frank, I.,
and Weinstein, Y.: Carbon export and drivers in the southeastern Levantine
Basin, Deep-Sea Res. Pt. II, 171, 104713,
https://doi.org/10.1016/j.dsr2.2019.104713, 2020.
Amiel, D. and Cochran, J. K.: Terrestrial and marine POC fluxes derived
from234Th distributions and δ13C measurements on the Mackenzie
Shelf, J. Geophys. Res.-Ocean., 113, C03S06, https://doi.org/10.1029/2007JC004260,
2008.
Amiel, D., Cochran, J. K., and Hirschberg, D. J.: 234Th/238U disequilibrium
as an indicator of the seasonal export flux of particulate organic carbon in
the North Water, Deep-Sea Res. Pt. II, 49,
5191–5209, https://doi.org/10.1016/S0967-0645(02)00185-6, 2002.
Anand, S. S., Rengarajan, R., Sarma, V. V. S. S., Sudheer, A. K.,
Bhushan, R., and Singh, S. K.: Spatial variability of upper ocean POC export
in the Bay of Bengal and the Indian Ocean determined using particle-reactive
234Th, J. Geophys. Res.-Ocean., 122, 3753–3770,
https://doi.org/10.1002/2016JC012639, 2017a.
Anand, S. S., Rengarajan, R., Shenoy, D., Gauns, M., and Naqvi, S. W. A.:
POC export fluxes in the Arabian Sea and the Bay of Bengal: A simultaneous
234Th/238U and 210Po/210Pb study, Mar. Chem., 19820th January, 70–87,
https://doi.org/10.1016/j.marchem.2017.11.005, 2017b.
Anand, S. S., Rengarajan, R., and Sarma, V. V. S. S.: 234Th-Based Carbon
Export Flux Along the Indian GEOTRACES GI02 Section in the Arabian Sea and
the Indian Ocean, Global Biogeochem. Cycles, 32, 417–436,
https://doi.org/10.1002/2017GB005847, 2018.
Andersson, P. S., Wasserburg, G. J., Chen, J. H., Papanastassiou, D. A., and
Ingri, J.: 238U–234U and 232Th–230Th in the Baltic Sea and in river water,
Earth Planet. Sc. Lett., 130, 217–234,
https://doi.org/10.1016/0012-821X(94)00262-W, 1995.
Aono, T., Yamada, M., Kudo, I., Imai, K., Nojiri, Y., and Tsuda, A.: Export
fluxes of particulate organic carbon estimated from 234Th/238U
disequilibrium during the Subarctic Pacific Iron Experiment for Ecosystem
Dynamics Study (SEEDS 2001), Prog. Oceanogr., 64, 263–282,
https://doi.org/10.1016/j.pocean.2005.02.013, 2005.
Bacon, M. P. and Anderson, R. F.: Distribution of thorium isotopes between
dissolved and particulate forms in the deep sea, J. Geophys. Res., 87,
2045, https://doi.org/10.1029/jc087ic03p02045, 1982.
Bacon, M. P. and Rutgers van der Loeff, M. M.: Removal of thorium-234 by
scavenging in the bottom nepheloid layer of the ocean, Earth Planet. Sc. Lett., 92, 157–164, https://doi.org/10.1016/0012-821X(89)90043-5, 1989.
Bacon, M. P., Cochran, J. K., Hirschberg, D., Hammar, T. R., and Fleer, A.
P.: Export flux of carbon at the equator during the eqpac time-series
cruises estimated from 234Th measurements, Deep-Sea Res. Pt. II, 43, 1133–1153, https://doi.org/10.1016/0967-0645(96)00016-1, 1996.
Baker, C. A., Henson, S. A., Cavan, E. L., Giering, S. L. C., Yool, A.,
Gehlen, M., Belcher, A., Riley, J. S., Smith, H. E. K., and Sanders, R.:
Slow-sinking particulate organic carbon in the Atlantic Ocean: Magnitude,
flux, and potential controls, Global Biogeochem. Cycles, 31, 1051–1065,
https://doi.org/10.1002/2017GB005638, 2017.
Baskaran, M. and Santschi, P. H.: The role of particles and colloids in the
transport of radionuclides in coastal environments of Texas, Mar. Chem.,
43, 95–114, https://doi.org/10.1016/0304-4203(93)90218-D, 1993.
Baskaran, M., Santschi, P. H., Benoit, G., and Honeyman, B. D.: Scavenging of
thorium isotopes by colloids in seawater of the Gulf of Mexico, Geochim.
Cosmochim. Ac., 56, 3375–3388, https://doi.org/10.1016/0016-7037(92)90385-V, 1992.
Baskaran, M., Santschi, P. H., Guo, L., Bianchi, T. S., and Lambert, C.:
234Th:238U disequilibria in the Gulf of Mexico: The importance of organic
matter and particle concentration, Cont. Shelf Res., 16, 353–380,
https://doi.org/10.1016/0278-4343(95)00016-T, 1996.
Baskaran, M., Swarzenski, P. W., and Porcelli, D.: Role of colloidal material
in the removal of 234Th in the Canada basin of the Arctic Ocean, Deep-Sea Res.
Pt. I, 50, 1353–1373,
https://doi.org/10.1016/S0967-0637(03)00140-7, 2003.
Baumann, M. S., Moran, S. B., Lomas, M. W., Kelly, R. P., and Bell, D. W.:
Seasonal decoupling of particulate organic carbon export and net primary
production in relation to sea-ice at the shelf break of the eastern Bering
Sea: Implications for off-shelf carbon export, J. Geophys. Res.-Ocean.,
118, 5504–5522, https://doi.org/10.1002/jgrc.20366, 2013.
Benitez-Nelson, C., Buesseler, K. O., Karl, D. M., and Andrews, J.: A
time-series study of particulate matter export in the North Pacific
Subtropical Gyre based on 234Th: 238U disequilibrium, Deep-Sea Res. Pt. I, 48, 2595–2611, https://doi.org/10.1016/S0967-0637(01)00032-2,
2001.
Benitez-Nelson, C. R. and Moore, W. S.: Future applications of 234Th in
aquatic ecosystems, Mar. Chem., 100, 163–165,
https://doi.org/10.1016/j.marchem.2005.10.010, 2006.
Benitez-Nelson, C. R., Buesseler, K. O., and Crossin, G.: Upper ocean carbon
export, horizontal transport, and vertical eddy diffusitivity in the
southwestern Gulf of Maine, Cont. Shelf Res., 20, 707–736,
https://doi.org/10.1016/S0278-4343(99)00093-X, 2000.
Benitez-Nelson, C. R., Buesseler, K. O., Rutgers van der Loeff, M., Andrews, J.,
Ball, L., Crossin, G., and Charette, M. A.: Testing a new small-volume
technique for determining 234Th in seawater, J. Radioanal. Nucl. Chem.,
248, 795–799, https://doi.org/10.1023/A:1010621618652, 2001.
Bhat, S. G., Krishnaswamy, S., Lal, D., Rama, and Moore, W. S.: 234Th/238U
ratios in the ocean, Earth Planet. Sc. Lett., 5, 483–491,
https://doi.org/10.1016/s0012-821x(68)80083-4, 1969.
Bishop, J. K. B., Edmond, J. M., Ketten, D. R., Bacon, M. P., and Silker, W.
B.: The chemistry, biology, and vertical flux of particulate matter from the
upper 400 m of the equatorial Atlantic Ocean, Deep-Sea Res., 24, 511–548,
https://doi.org/10.1016/0146-6291(77)90526-4, 1977.
Black, E. E., Buesseler, K. O., Pike, S. M., and Lam, P. J.: 234Th as a
tracer of particulate export and remineralization in the southeastern
tropical Pacific, Mar. Chem., 201, 35–50,
https://doi.org/10.1016/j.marchem.2017.06.009, 2018.
Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A., and Weber, T.:
Multi-faceted particle pumps drive carbon sequestration in the ocean,
Nature, 568, 327–335, https://doi.org/10.1038/s41586-019-1098-2, 2019.
Brew, H. S., Moran, S. B., Lomas, M. W., and Burd, A. B.: Plankton community
composition, organic carbon and thorium-234 particle size distributions, and
particle export in the Sargasso sea, J. Mar. Res., 67, 845–868,
https://doi.org/10.1357/002224009792006124, 2009.
Briggs, N., Dall'Olmo, G., and Claustre, H.: Major role of particle
fragmentation in regulating biological sequestration of CO2 by the oceans,
Science, 367, 791–793, https://doi.org/10.1126/science.aay1790, 2020.
Broecker, W. S. and Peng, T. H.: Tracers in the Sea, Eldigio Press,
Palisades, New York, 1982.
Bruland, K. W. and Coale, K. H.: Surface Water 234Th/238U Disequilibria:
Spatial and Temporal Variations of Scavenging Rates within the Pacific
Ocean, in: Dynamic Processes in the Chemistry of the Upper Ocean, pp.
159–172, Springer US, Boston, MA, 1986.
Buesseler, K., Ball, L., Andrews, J., Benitez-Nelson, C., Belastock, R.,
Chai, F., and Chao, Y.: Upper ocean export of particulate organic carbon in
the Arabian Sea derived from thorium-234, Deep-Sea Res. Pt. II, 45, 2461–2487, https://doi.org/10.1016/S0967-0645(98)80022-2, 1998.
Buesseler, K. O. and Boyd, P. W.: Shedding light on processes that control
particle export and flux attenuation in the twilight zone of the open ocean,
Limnol. Oceanogr., 54, 1210–1232, https://doi.org/10.4319/lo.2009.54.4.1210, 2009.
Buesseler, K. O., Bacon, M. P., Cochran, K. J., and Livingston, H. D.:
Carbon and nitrogen export during the JGOFS North Atlantic Bloom experiment
estimated from 234Th: 238U disequilibria, Deep-Sea Res. Pt. I, 39, 1115–1137, https://doi.org/10.1016/0198-0149(92)90060-7, 1992.
Buesseler, K. O., Michaels, A. F., Siegel, D. A., and Knap, A. H.: A three
dimensional time-dependent approach to calibrating sediment trap fluxes,
Global Biogeochem. Cycles, 8, 179–193, https://doi.org/10.1029/94GB00207, 1994.
Buesseler, K. O., Andrews, J. A., Hartman, M. C., Belastock, R., and Chai,
F.: Regional estimates of the export flux of particulate organic carbon
derived from thorium-234 during the JGOFS EqPac program, Deep-Sea Res. Pt. II,
42, 777–804, https://doi.org/10.1016/0967-0645(95)00043-P, 1995.
Buesseler, K. O., Steinberg, D. K., Michaels, A. F., Johnson, R. J.,
Andrews, J. E., Valdes, J. R., and Price, J. F.: A comparison of the quantity
and composition of material caught in a neutrally buoyant versus
surface-tethered sediment trap, Deep-Sea Res. Pt. I,
47, 277–294, https://doi.org/10.1016/S0967-0637(99)00056-4, 2000.
Buesseler, K. O., Ball, L., Andrews, J., Cochran, J. K., Hirschberg, D. J.,
Bacon, M. P., Fleer, A., and Brzezinski, M.: Upper ocean export of
particulate organic carbon and biogenic silica in the Southern Ocean along
170∘ W, Deep-Sea Res. Pt. II, 48,
4275–4297, https://doi.org/10.1016/S0967-0645(01)00089-3, 2001a.
Buesseler, K. O., Benitez-Nelson, C., Rutgers van der Loeff, M., Andrews,
J., Ball, L., Crossin, G., and Charette, M. A.: An intercomparison of small-
and large-volume techniques for thorium-234 in seawater, Mar. Chem., 74,
15–28, https://doi.org/10.1016/S0304-4203(00)00092-X, 2001b.
Buesseler, K. O., Andrews, J. E., Pike, S. M., Charette, M. A., Goldson, L.
E., Brzezinski, M. A., and Lance, V. P.: Particle export during the Southern
Ocean Iron Experiment (SOFeX), Limnol. Oceanogr., 50, 311–327,
https://doi.org/10.4319/lo.2005.50.1.0311, 2005.
Buesseler, K. O., Benitez-Nelson, C. R., Moran, S. B., Burd, A., Charette,
M., Cochran, J. K., Coppola, L., Fisher, N. S., Fowler, S. W., Gardner, W.
D., Guo, L. D., Gustafsson, Ö., Lamborg, C., Masque, P., Miquel, J. C.,
Passow, U., Santschi, P. H., Savoye, N., Stewart, G., and Trull, T.: An
assessment of particulate organic carbon to thorium-234 ratios in the ocean
and their impact on the application of 234Th as a POC flux proxy, Mar.
Chem., 100, 213–233, https://doi.org/10.1016/j.marchem.2005.10.013,
2006.
Buesseler, K. O., Lamborg, C., Cai, P., Escoube, R., Johnson, R., Pike, S.,
Masque, P., McGillicuddy, D., and Verdeny, E.: Particle fluxes associated
with mesoscale eddies in the Sargasso Sea, Deep-Sea Res. Pt. II, 55, 1426–1444, https://doi.org/10.1016/j.dsr2.2008.02.007, 2008.
Buesseler, K. O., Pike, S., Maiti, K., Lamborg, C. H., Siegel, D. A., and
Trull, T. W.: Thorium-234 as a tracer of spatial, temporal and vertical
variability in particle flux in the North Pacific, Deep-Sea Res. Pt. I, 56, 1143–1167, https://doi.org/10.1016/j.dsr.2009.04.001, 2009.
Buesseler, K. O., McDonnell, A. M. P., Schofield, O. M. E., Steinberg, D. K.,
and Ducklow, H. W.: High particle export over the continental shelf of the
west Antarctic Peninsula, Geophys. Res. Lett., 37, L22606,
https://doi.org/10.1029/2010GL045448, 2010.
Buesseler, K. O., Benitez-Nelson, C. R., Roca-Martí, M., Wyatt, A. M.,
Resplandy, L., Clevenger, S. J., Drysdale, J. A., Estapa, M. L., Pike, S.,
and Umhau, B. P.: High-resolution spatial and temporal measurements of
particulate organic carbon flux using thorium-234 in the northeast Pacific
Ocean during the EXport Processes in the Ocean from RemoTe Sensing field
campaign, Elem. Sci. Anthr., 8, 030, https://doi.org/10.1525/elementa.030, 2020a.
Buesseler, K. O., Boyd, P. W., Black, E. E., and Siegel, D. A.: Metrics that
matter for assessing the ocean biological carbon pump, Proc. Natl. Acad.
Sci. USA, 117, 9679–9687, https://doi.org/10.1073/pnas.1918114117, 2020b.
Cai, P., Huang, Y., Chen, M., Liu, G., and Qiu, Y.: Export of particulate
organic carbon estimated from 234Th-238U disequilibria and its temporal
variation in the South China Sea, Chinese Sci. Bull., 46, 1722–1726,
https://doi.org/10.1007/bf02900660, 2001.
Cai, P., Huang, Y., Chen, M., Guo, L., Liu, G., and Qiu, Y.: New production
based on 228Ra-derived nutrient budgets and thorium-estimated POC export at
the intercalibration station in the South China Sea, Deep-Sea Res. Pt. I, 49, 53–66, https://doi.org/10.1016/S0967-0637(01)00040-1, 2002.
Cai, P., Dai, M., Chen, W., Tang, T., and Zhou, K.: On the importance of the
decay of 234Th in determining size-fractionated C/234Th ratio on marine
particles, Geophys. Res. Lett., 33, L23602, https://doi.org/10.1029/2006GL027792,
2006a.
Cai, P., Dai, M., Lv, D., and Chen, W.: An improvement in the small-volume
technique for determining thorium-234 in seawater, Mar. Chem., 100, 282–288, https://doi.org/10.1016/j.marchem.2005.10.016, 2006b.
Cai, P., Dai, M., Lv, D., and Chen, W.: How accurate are 234Th measurements
in seawater based on the MnO2-impregnated cartridge technique?,
Geochemistry, Geophys. Geosyst., 7, Q03020, https://doi.org/10.1029/2005GC001104,
2006c.
Cai, P., Chen, W., Dai, M., Wan, Z., Wang, D., Li, Q., Tang, T., and Lv, D.:
A high-resolution study of particle export in the southern South China sea
based on 234Th:238U disequilibrium, J. Geophys. Res.-Ocean., 113, C04019,
https://doi.org/10.1029/2007JC004268, 2008.
Cai, P., Rutgers van der Loeff, M., Stimac, I., Nöthig, E. M., Lepore,
K., and Moran, S. B.: Low export flux of particulate organic carbon in the
central Arctic Ocean as revealed by 234Th:238U disequilibrium, J. Geophys.
Res.-Ocean., 115, C10037, https://doi.org/10.1029/2009JC005595, 2010.
Cai, P., Zhao, D., Wang, L., Huang, B., and Dai, M.: Role of particle stock
and phytoplankton community structure in regulating particulate organic
carbon export in a large marginal sea, J. Geophys. Res.-Ocean., 120,
2063–2095, https://doi.org/10.1002/2014JC010432, 2015.
Cavan, E. L., Trimmer, M., Shelley, F., and Sanders, R.: Remineralization of
particulate organic carbon in an ocean oxygen minimum zone, Nat. Commun., 8,
14847, https://doi.org/10.1038/ncomms14847, 2017.
Ceballos-Romero, E., Le Moigne, F. A. C., Henson, S., Marsay, C. M.,
Sanders, R. J., García-Tenorio, R., and Villa-Alfageme, M.: Influence of
bloom dynamics on Particle Export Efficiency in the North Atlantic: a
comparative study of radioanalytical techniques and sediment traps, Mar.
Chem., 186, 198–210, https://doi.org/10.1016/j.marchem.2016.10.001, 2016.
Ceballos-Romero, E., De Soto, F., Le Moigne, F. A. C., García-Tenorio,
R., and Villa-Alfageme, M.: 234 Th-Derived Particle Fluxes and Seasonal
Variability: When Is the SS Assumption Reliable? Insights From a Novel
Approach for Carbon Flux Simulation, Geophys. Res. Lett., 45,
13414–13426, https://doi.org/10.1029/2018GL079968, 2018.
Ceballos-Romero, E., Buesseler, K. O., Muñoz-Nevado, C., and
Villa-Alfageme, M.: More than 50 years of Th-234 data: a comprehensive
global oceanic compilation, PANGAEA,
https://doi.org/10.1594/PANGAEA.918125, 2021.
Charette, M. A.: Thorium isotope data summaries from R/V Yuzhmorgeologiya,
RVIB Nathaniel B. Palmer AMLR2006-Leg1, NBP0606 in the Southern Ocean from
January to August 2006 (Ant2006 project, BWZ project), Bco-Dmo, https://www.bco-dmo.org/dataset/3086/data (last access: 1 June 2022), 2009.
Charette, M. A. and Buesseler, K. O.: Does iron fertilization lead to rapid
carbon export in the Southern Ocean?, Geochem. Geophys. Geosyst.,
1, 2000GC000069, https://doi.org/10.1029/2000GC000069, 2000.
Charette, M. A. and Moran, S. B.: Rates of particle scavenging and
particulate organic carbon export estimated using 234Th as a tracer in the
subtropical and equatorial Atlantic Ocean, Deep-Sea Res. Pt. II, 46, 885–906, https://doi.org/10.1016/S0967-0645(99)00006-5, 1999.
Charette, M. A., Bradley Moran, S., and Bishop, J. K. B.: 234Th as a tracer
of particulate organic carbon export in the subarctic northeast Pacific
Ocean, Deep-Sea Res. Pt. II, 46, 2833–2861,
https://doi.org/10.1016/S0967-0645(99)00085-5, 1999.
Charette, M. A., Moran, S. B., Pike, S. M., and Smith, J. N.: Investigating
the carbon cycle in the Gulf of Maine using the natural tracer thorium 234,
J. Geophys. Res.-Ocean., 106, 11553–11579, https://doi.org/10.1029/1999jc000277,
2001.
Chen, J. H., Lawrence Edwards, R., and Wasserburg, G. J.: 238U, 234U and
232Th in seawater, Earth Planet. Sc. Lett., 80, 241–251,
https://doi.org/10.1016/0012-821X(86)90108-1, 1986.
Chen, M., Huang, Y., Cai, P., and Guo, L.: Particulate organic carbon export
fluxes in the Canada Basin and Bering Sea as derived from 234Th/238U
disequilibria, Arctic, 56, 32–44, https://doi.org/10.14430/arctic600, 2003.
Chen, W., Cai, P., Dai, M., and Wei, J.: 234Th/238U disequilibrium and
particulate organic carbon export in the northern South China Sea, J.
Oceanogr., 64, 417–428, https://doi.org/10.1007/s10872-008-0035-z, 2008.
Clegg, S. L. and Whitfield, M.: A generalized model for the scavenging of
trace metals in the open ocean-I. Particle cycling, Deep-Sea Res. Pt. I, 37, 809–832, https://doi.org/10.1016/0198-0149(90)90008-J,
1990.
Clevenger, S. J., Benitez-Nelson, C. R., Drysdale, J., Pike, S.,
Puigcorbé, V., and Buesseler, K. O.: Review of the analysis of 234Th in
small volume (2–4 L) seawater samples: improvements and recommendations, J.
Radioanal. Nucl. Chem., 329, 1–13, https://doi.org/10.1007/s10967-021-07772-2, 2021.
Coale, K. H. and Bruland, K. W.: 234Th:238U disequilibria within the
California Current, Limnol. Oceanogr., 30, 22–33,
https://doi.org/10.4319/lo.1985.30.1.0022, 1985.
Coale, K. H. and Bruland, K. W.: Oceanic stratified euphotic zone as
elucidated by 234Th: 238U disequilibria, Limnol. Oceanogr., 32, 189–200,
https://doi.org/10.4319/lo.1987.32.1.0189, 1987.
Cochran, J. K. and Masqué, P.: Short-lived U/Th series radionuclides in
the ocean: Tracers for scavenging rates, export fluxes and particle
dynamics, Rev. Mineral. Geochem., 52, 461–492, https://doi.org/10.2113/0520461,
2003.
Cochran, J. K., Barnes, C., Achman, D., and Hirschberg, D. J.:
Thorium-234/uranium-238 disequilibrium as an indicator of scavenging rates
and particulate organic carbon fluxes in the Northeast Water Polynya,
Greenland, J. Geophys. Res., 100, 4399–4410, https://doi.org/10.1029/94JC01954,
1995.
Cochran, J. K., Buesseler, K. O., Bacon, M. P., Wang, H. W., Hirschberg, D.
J., Ball, L., Andrews, J., Crossin, G., and Fleer, A.: Short-lived thorium
isotopes (234Th, 228Th) as indicators of poc export and particle cycling in
the ross sea, southern ocean, Deep-Sea Res. Pt. II,
47, 3451–3490, https://doi.org/10.1016/S0967-0645(00)00075-8, 2000.
Cochran, J., Buesseler, K. O., Bacon, M. P., and Livingston, H. D.:
Thorium isotopes as indicators of particle dynamics in the upper ocean:
results from the JGOFS North Atlantic Bloom experiment, Deep-Sea Res. Pt. I,
40, 1569–1595, https://doi.org/10.1016/0967-0637(93)90017-W, 1993.
Cochran, J. K., Miquel, J. C., Armstrong, R., Fowler, S. W., Masqué, P.,
Gasser, B., Hirschberg, D., Szlosek, J., Rodriguez y Baena, A. M., Verdeny,
E., and Stewart, G. M.: Time-series measurements of 234Th in water column and
sediment trap samples from the northwestern Mediterranean Sea, Deep-Sea Res. Pt. II, 56, 1487–1501,
https://doi.org/10.1016/j.dsr2.2008.12.034, 2009.
Cole, H., Henson, S., Martin, A., and Yool, A.: Mind the gap: The impact of
missing data on the calculation of phytoplankton phenology metrics, J.
Geophys. Res.-Ocean., 117, C08030, https://doi.org/10.1029/2012JC008249, 2012.
Coppola, L., Roy-Barman, M., Wassmann, P., Mulsow, S., and Jeandel, C.:
Calibration of sediment traps and particulate organic carbon export using
234Th in the Barents Sea, Mar. Chem., 80, 11–26,
https://doi.org/10.1016/S0304-4203(02)00071-3, 2002.
Coppola, L., Roy-Barman, M., Mulsow, S., Povinec, P., and Jeandel, C.: Low
particulate organic carbon export in the frontal zone of the Southern Ocean
(Indian sector) revealed by 234Th, Deep-Sea Res. Pt. I,
52, 51–68, https://doi.org/10.1016/j.dsr.2004.07.020, 2005.
Coppola, L., Roy-Barman, M., Mulsow, S., Povinec, P., and Jeandel, C.:
Thorium isotopes as tracers of particles dynamics and deep water circulation
in the Indian sector of the Southern Ocean (ANTARES IV), Mar. Chem., 100, 299–313, https://doi.org/10.1016/j.marchem.2005.10.019, 2006.
Cutter, G., Andersson, P., Codispoti, L., Croot, P., Francois, R., Lohan, M.,
and Rutgers van der Loeff, M.: Sampling and sample-handling protocols for
GEOTRACES cruises. GEOTRACES cookbook,
http://www.geotraces.org/images/stories/documents/intercalibration/Cookbook_v2.pdf (last access: 1 June 2022), 2014.
Cutter, G. A., Andersson, P., Codispoti, L., Croot, P., Place, P., Hoe, T.,
Kingdom, U., Francois, R., Sciences, O., Lohan, M., Circus, D., and Obata,
H.: Sampling and Sample-handling Protocols for GEOTRACES Cruises, GEOTRACES
Community Pract., December, 2010.
Cutter, G. A., Casciotti, K., Croot, P. L., Geibert, W., Heimbürger,
L.-E., Lohan, M., Planquette, H., and van de Flierdt, T.: Sampling and
Sample-handling Protocols for GEOTRACES Cruises. Version 3, August 2017.,
GEOTRACES Community Pract., August, 139 pp. & Appendices,
http://www.geotraces.org/images/stories/documents/intercalibration/Cookbook.pdf (last access: 1 June 2022),
2017.
Dai, M. H. and Benitez-Nelson, C. R.: Colloidal organic carbon and 234Th in
the Gulf of Maine, Mar. Chem., 74, 181–196,
https://doi.org/10.1016/S0304-4203(01)00012-3, 2001.
Davidson, P., Kenyon, J., Nicholson, D., and Buesseler, K.: An
Observationally Constrained, 234Th-Derived Global POC Flux Model, in: An
Observationally Constrained, 234Th-Derived Global POC Flux Model,
Goldschmidt conference 2021 (virtual), 4–9 July 2021, https://conf.goldschmidt.info/goldschmidt/2021/goldschmidt/2021/meetingapp.cgi/Paper/8027 (last access: 7 June 2021), 2021.
Delanghe, D., Bard, E., and Hamelin, B.: New TIMS constraints on the
uranium-238 and uranium-234 in seawaters from the main ocean basins and the
Mediterranean Sea, Mar. Chem., 80, 79–93,
https://doi.org/10.1016/S0304-4203(02)00100-7, 2002.
De La Rocha, C. L. and Passow, U.: Factors influencing the sinking of POC
and the efficiency of the biological carbon pump, Deep-Sea Res. Pt. II, 54, 639–658, https://doi.org/10.1016/j.dsr2.2007.01.004, 2007.
Dominik, J., Schuler, C., and Santschi, P. H.: Residence times of 234Th and
7Be in Lake Geneva, Earth Planet. Sc. Lett., 93, 345–358,
https://doi.org/10.1016/0012-821X(89)90034-4, 1989.
Dunne, J. P. and Murray, J. W.: Sensitivity of 234Th export to physical
processes in the central equatorial Pacific, Deep-Sea Res. Pt. I, 46, 831–854, https://doi.org/10.1016/S0967-0637(98)00098-3, 1999.
Dunne, J. P., Murray, J. W., Young, J., Balistrieri, L. S., and Bishop, J.:
234Th and particle cycling in the central equatorial Pacific, Deep-Sea Res. Pt. II, 44, 2049–2083,
https://doi.org/10.1016/S0967-0645(97)00063-5, 1997.
Eppley, R. W.: New production: history, methods, problems, in: Productivity of the Ocean: Present and Past, edited by: Berger, W. H., Smetacek, V. S., and Wefer, G., Wiley & Sons, New York, 85–97, https://doi.org/10.1126/science.247.4944.865, 1989.
Eppley, R. W. and Peterson, B. J.: Particulate organic matter flux and
planktonic new production in the deep ocean, Nature, 282, 677–680,
https://doi.org/10.1038/282677a0, 1979.
Estapa, M. L., Siegel, D. A., Buesseler, K. O., Stanley, R. H. R., Lomas, M.
W., and Nelson, N. B.: Decoupling of net community and export production on
submesoscales in the Sargasso Sea, Global Biogeochem. Cycles, 29,
1266–1282, https://doi.org/10.1002/2014GB004913, 2015.
Evangeliou, N., Florou, H., and Scoullos, M.: POC and particulate 234Th
export fluxes estimated using 234Th/238U disequilibrium in an enclosed
Eastern Mediterranean region (Saronikos Gulf and Elefsis Bay, Greece) in
seasonal scale, Geochim. Cosmochim. Ac., 75, 5367–5388,
https://doi.org/10.1016/j.gca.2011.04.005, 2011.
Evangeliou, N., Florou, H., and Psomiadou, C.: Size-fractionated particulate
organic carbon (poc) export fluxes estimated using 234Th-238U disequilibria
in the saronikos gulf (greece) during winter bloom, Fresenius
Environmental Bulletin, 22, 1951–1961, 2013.
Foster, J. M. and Shimmield, G. B.: 234Th as a tracer of particle flux and
POC export in the northern North Sea during a coccolithophore bloom, Deep-Sea Res. Pt. II, 49, 2965–2977,
https://doi.org/10.1016/S0967-0645(02)00066-8, 2002.
Freeland, H.: A short history of Ocean Station Papa and Line P, Prog.
Oceanogr., 75, 120–125, https://doi.org/10.1016/j.pocean.2007.08.005, 2007.
Friedrich, J. and Rutgers van der Loeff, M. M.: A two-tracer (210Po-234Th)
approach to distinguish organic carbon and biogenic silica export flux in
the Antarctic Circumpolar Current, Deep-Sea Res. Pt. I,
49, 101–120, https://doi.org/10.1016/S0967-0637(01)00045-0, 2002.
Frignani, M., Courp, T., Cochran, J. K., Hirschberg, D., and Vitoria I
Codina, L.: Scavenging rates and particle characteristics in and near the
Lacaze-Duthiers submarine canyon, northwest Mediterranean, Cont. Shelf Res.,
22, 2175–2190, https://doi.org/10.1016/S0278-4343(02)00078-X, 2002.
GEOTRACES Intermediate Data Product Group: The GEOTRACES Intermediate Data
Product 2021 (IDP2021), NERC EDS Br. Oceanogr. Data Cent. NOC,
https://doi.org/10.5285/cf2d9ba9-d51d-3b7c-e053-8486abc0f5fd, 2021.
Giuliani, S., Radakovitch, O., Frignani, M., and Bellucci, L. G.: Short time
scale variations of 234Th/238U disequilibrium related to mesoscale
variability on the continental slope of the Gulf of Lions (France), Mar.
Chem., 106, 403–418, https://doi.org/10.1016/j.marchem.2007.03.007, 2007.
Gulin, S. B.: Seasonal changes of 234Th scavenging in surface water across
the western Black Sea: An implication of the cyclonic circulation patterns,
J. Environ. Radioact., 51, 335–347, https://doi.org/10.1016/S0265-931X(00)00079-5,
2000.
Guo, L., Hung, C. C., Santschi, P. H., and Walsh, I. D.: 234Th scavenging and
its relationship to acid polysaccharide abundance in the Gulf of Mexico,
Mar. Chem., 78, 103–119, https://doi.org/10.1016/S0304-4203(02)00012-9, 2002.
Gustafsson, Ö. and Andersson, P. S.: 234Th-derived surface export fluxes
of POC from the Northern Barents Sea and the Eurasian sector of the Central
Arctic Ocean, Deep-Sea Res. Pt. I, 68, 1–11,
https://doi.org/10.1016/j.dsr.2012.05.014, 2012.
Gustafsson, Ö., Gschwend, P. M., and Buesseler, K. O.: Settling removal
rates of PCBs into the northwestern Atlantic derived from 238U-234Th
desquilibria, Environ. Sci. Technol., 31, 3544–3550,
https://doi.org/10.1021/es970299u, 1997a.
Gustafsson, Ö., Gschwend, P. M., and Buesseler, K. O.: Using 234Th
disequilibria to estimate the vertical removal rates of polycyclic aromatic
hydrocarbons from the surface ocean, Mar. Chem., 57, 11–23,
https://doi.org/10.1016/S0304-4203(97)00011-X, 1997b.
Gustafsson, Ö., Buesseler, K. O., Geyer, W. R., Moran, S. B., and
Gschwend, P. M.: An assessment of the relative importance of horizontal and
vertical transport of particle-reactive chemicals in the coastal ocean,
Cont. Shelf Res., 18, 805–829, https://doi.org/10.1016/S0278-4343(98)00015-6, 1998.
Gustafsson, Ö., Andersson, P., Roos, P., Kukulska, Z., Broman, D.,
Larsson, U., Hajdu, S., and Ingri, J.: Evaluation of the collection
efficiency of upper ocean sub-photic-layer sediment traps: A 24-month in
situ calibration in the open Baltic Sea using 234Th, Limnol. Oceanogr.
Methods, 2, 62–74, https://doi.org/10.4319/lom.2004.2.62, 2004.
Gustafsson, Ö., Larsson, J., Andersson, P., and Ingri, J.: The POC /234Th
ratio of settling particles isolated using split flow-thin cell
fractionation (SPLITT), Mar. Chem., 100, 314–322,
https://doi.org/10.1016/j.marchem.2005.10.018, 2006.
Hall, I. R., Schmidt, S., McCave, I. N., and Reyss, J. L.: Particulate matter
distribution and 234Th/238U disequilibrium along the Northern Iberian
Margin: Implications for particulate organic carbon export, Deep-Sea Res. Pt. I, 47, 557–582, https://doi.org/10.1016/S0967-0637(99)00065-5,
2000.
Haskell, W. Z., Berelson, W. M., Hammond, D. E., and Capone, D. G.: Particle
sinking dynamics and POC fluxes in the Eastern Tropical South Pacific based
on 234Th budgets and sediment trap deployments, Deep-Sea Res. Pt. I, 81, 1–13, https://doi.org/10.1016/j.dsr.2013.07.001, 2013.
Haskell, W. Z., Prokopenko, M. G., Hammond, D. E., Stanley, R. H. R.,
Berelson, W. M., Baronas, J. J., Fleming, J. C., and Aluwihare, L.: An
organic carbon budget for coastal Southern California determined by
estimates of vertical nutrient flux, net community production and export,
Deep-Sea Res. Pt. I, 116, 49–76,
https://doi.org/10.1016/j.dsr.2016.07.003, 2016.
Henson, S., Laufkötter, C., Leung, S., Giering, S., Palevsky, H., and
Cavan, E.: Uncertain response of ocean biological carbon export in a
changing world, ESSOAR, https://doi.org/10.1002/ESSOAR.10507873.1, 2021.
Hernes, P. J., Peterson, M. L., Murray, J. W., Wakeham, S. G., Lee, C., and
Hedges, J. I.: Particulate carbon and nitrogen fluxes and compositions in
the central equatorial Pacific, Deep-Sea Res. Pt. I,
48, 1999–2023, https://doi.org/10.1016/S0967-0637(00)00115-1, 2001.
Huh, C.-A. and Beasley, T. M.: Profiles of dissolved and particulate thorium
isotopes in the water column of coastal Southern California, Earth Planet. Sc. Lett., 85, 1–10, https://doi.org/10.1016/0012-821X(87)90016-1, 1987.
Huh, C.-A. and Prahl, F. G.: Role of colloids in upper ocean
biogeochemistry in the northeast Pacific Ocean elucidated from 238U-234Th
disequilibria, Limnol. Oceanogr., 40, 528–532,
https://doi.org/10.4319/lo.1995.40.3.0528, 1995.
Hung, C.-C. and Gong, G.-C.: POC/234Th ratios in particles collected in
sediment traps in the northern South China Sea, Estuar. Coast. Shelf Sci.,
88, 303–310, https://doi.org/10.1016/j.ecss.2010.04.008, 2010.
Hung, C. C. and Gong, G. C.: Export flux of POC in the main stream of the
Kuroshio, Geophys. Res. Lett., 34, L18606, https://doi.org/10.1029/2007GL030236,
2007.
Hung, C. C., Guo, L., Roberts, K. A., and Santschi, P. H.: Upper ocean carbon
flux determined by the 234Th approach and sediment traps using
size-fractionated POC and 234Yj data from the Gulf of Mexico, Geochem. J.,
38, 601–611, https://doi.org/10.2343/geochemj.38.601, 2004.
Hung, C. C., Xu, C., Santschi, P. H., Zhang, S. J., Schwehr, K. A., Quigg,
A., Guo, L., Gong, G. C., Pinckney, J. L., Long, R. A., and Wei, C. L.:
Comparative evaluation of sediment trap and 234Th-derived POC fluxes from
the upper oligotrophic waters of the Gulf of Mexico and the subtropical
northwestern Pacific Ocean, Mar. Chem., 121, 132–144,
https://doi.org/10.1016/j.marchem.2010.03.011, 2010.
Hung, C. C., Gong, G. C., and Santschi, P. H.: 234Th in different size
classes of sediment trap collected particles from the Northwestern Pacific
Ocean, Geochim. Cosmochim. Ac., 91, 60–74, https://doi.org/10.1016/j.gca.2012.05.017,
2012.
Jacquet, S. H. M., Lam, P. J., Trull, T., and Dehairs, F.: Carbon export
production in the subantarctic zone and polar front zone south of Tasmania,
Deep-Sea Res. Pt. II, 58, 2277–2292,
https://doi.org/10.1016/j.dsr2.2011.05.035, 2011.
JGOFS-INDIA: Thorium 234 measured on water bottle samples during Sagar Kanya cruise SK121, PANGAEA, https://doi.org/10.1594/PANGAEA.807500, 2013.
Jijesh, J. J., Shivashankar, Susmitha, M., Bhanu, M., and Sindhanakeri, P.:
Development of a CTD sensor subsystem for oceanographic application, in
RTEICT 2017 - 2nd IEEE International Conference on Recent Trends in
Electronics, Information and Communication Technology, Proceedings, IEEE,
2018, 1487–1492, 2017.
Kaufman, A., Li, Y. H., and Turekian, K. K.: The removal rates of 234Th and
228Th from waters of the New York Bight, Earth Planet. Sc. Lett., 54,
385–392, https://doi.org/10.1016/0012-821X(81)90054-6, 1981.
Kawakami, H.: Scavenging of 210Po and 234Th by particulate organic carbon in
the surface layer of the northwestern North Pacific Ocean, Far East J. Ocean
Res., 2, 67–82,
2009.
Kawakami, H.: 234Th and POC dataset in the North Pacific in 2002–2008, Japan
Agency Mar. Sci. Technol..
http://www.jamstec.go.jp/res/ress/kawakami/234Th.html (last access: 1 June 2022), 2012.
Kawakami, H. and Honda, M. C.: Time-series observation of POC fluxes
estimated from 234Th in the northwestern North Pacific, Deep-Sea Res. Pt. I, 54, 1070–1090, https://doi.org/10.1016/j.dsr.2007.04.005, 2007.
Kawakami, H., Yang, Y. L., Honda, M. C., and Kusakabe, M.: Particulate
organic carbon fluxes estimated from 234Th deficiency in winters and springs
in the northwestern North Pacific, Geochem. J., 38, 581–592,
https://doi.org/10.2343/geochemj.38.581, 2004.
Kawakami, H., Honda, M. C., Matsumoto, K., Fujiki, T., and Watanabe, S.:
East-west distribution of POC fluxes estimated from 234Th in the northern
North Pacific in autumn, J. Oceanogr., 66, 71–83,
https://doi.org/10.1007/s10872-010-0006-z, 2010.
Kawakami, H., Honda, M. C., Matsumoto, K., Wakita, M., Kitamura, M., Fujiki,
T., and Watanabe, S.: POC fluxes estimated from 234Th in late spring–early
summer in the western subarctic North Pacific, J. Oceanogr., 71,
311–324, https://doi.org/10.1007/s10872-015-0290-8, 2015.
Kershaw, P. and Young, A.: Scavenging of 234Th in the Eastern Irish Sea, J.
Environ. Radioact., 6, 1–23, https://doi.org/10.1016/0265-931X(88)90064-1, 1988.
Kersten, M., Thomsen, S., Priebsch, W.. and Garbe-Schönberg, C. D.:
Scavenging and particle residence times determined from 234Th/238U
disequilibria in the coastal waters of Mecklenburg Bay, Appl. Geochem.,
13, 339–347, https://doi.org/10.1016/S0883-2927(97)00103-0, 1998.
Khatiwala, S., Visbeck, M., and Cane, M. A.: Accelerated simulation of
passive tracers in ocean circulation models, Ocean Model., 9, 51–69,
https://doi.org/10.1016/j.ocemod.2004.04.002, 2005.
Kim, D., Choi, M. S., Oh, H. Y., Song, Y. H., Noh, J. H., and Kim, K. H.:
Seasonal export fluxes of particulate organic carbon from 234Th/238U
disequilibrium measurements in the Ulleung Basin1 (Tsushima Basin) of the
East Sea1 (Sea of Japan), J. Oceanogr., 67, 577–588,
https://doi.org/10.1007/s10872-011-0058-8, 2011.
Kim, G. and Church, T. M.: Seasonal biogeochemical fluxes of 234Th and 210Po
in the upper Sargasson Sea: Influence from atmosphere iron deposition,
Global Biogeochem. Cycles, 15, 651–661, https://doi.org/10.1029/2000GB001313, 2001.
Knauss, K. G., Ku, T. L., and Moore, W. S.: Radium and thorium isotopes in
the surface waters of the East Pacific and coastal Southern California,
Earth Planet. Sc. Lett., 39, 235–249, https://doi.org/10.1016/0012-821X(78)90199-1,
1978.
Krishnaswami, S., Lal, D., Somayajulu, B. L. K., Weiss, R. F., and Craig, H.:
Large-volume in-situ filtration of deep Pacific waters: Mineralogical and
radioisotope studies, Earth Planet. Sc. Lett., 32, 420–429,
https://doi.org/10.1016/0012-821X(76)90082-0, 1976.
Ku, T. L., Knauss, K. G., and Mathieu, G. G.: Uranium in open ocean:
concentration and isotopic composition, Deep-Sea Res., 24, 1005–1017,
https://doi.org/10.1016/0146-6291(77)90571-9, 1977.
Kuptsov, V. M., Lisitzin, A. P., and Shevchenko, V. P.: Th-234 as an
Indicator of Particulate Fluxes in the Kara Sea, Okeanologiya, 34,
759–765, 1994.
Kwon, E. Y., Primeau, F., and Sarmiento, J. L.: The impact of
remineralization depth on the air-sea carbon balance, Nat. Geosci., 2,
630–635, https://doi.org/10.1038/ngeo612, 2009.
Lalande, C., Lepore, K., Cooper, L. W., Grebmeier, J. M., and Moran, S. B.:
Export fluxes of particulate organic carbon in the Chukchi Sea: A
comparative study using 234Th/238U disequilibria and drifting sediment
traps, Mar. Chem., 103, 185–196, https://doi.org/10.1016/j.marchem.2006.07.004,
2007.
Lalande, C., Moran, S. B., Wassmann, P., Grebmeier, J. M., and Cooper, L. W.:
234Th-derived particulate organic carbon fluxes in the northern Barents Sea
with comparison to drifting sediment trap fluxes, J. Mar. Syst., 73,
103–113, https://doi.org/10.1016/j.jmarsys.2007.09.004, 2008.
Lamborg, C. H., Buesseler, K. O., Valdes, J., Bertrand, C. H., Bidigare, R.,
Manganini, S., Pike, S., Steinberg, D., Trull, T., and Wilson, S.: The flux
of bio- and lithogenic material associated with sinking particles in the
mesopelagic “twilight zone” of the northwest and North Central Pacific
Ocean, Deep-Sea Res. Pt. II, 55, 1540–1563,
https://doi.org/10.1016/j.dsr2.2008.04.011, 2008.
Lampitt, R. S., Boorman, B., Brown, L., Lucas, M., Salter, I., Sanders, R.,
Saw, K., Seeyave, S., Thomalla, S. J., and Turnewitsch, R.: Particle export
from the euphotic zone: Estimates using a novel drifting sediment trap,
234Th and new production, Deep-Sea Res. Pt. I, 55,
1484–1502, https://doi.org/10.1016/j.dsr.2008.07.002, 2008.
Langone, L., Frignani, M., Cochran, J. K., and Ravaioli, M.: Scavenging
processes and export fluxes close to a retreating seasonal ice margin (Ross
Sea, Antartica), Water, Air, Soil Pollut., 99, 705–715,
https://doi.org/10.1007/bf02406910, 1997.
Laodong, G., Santschi, P. H., and Baskaran, M.: Interactions of thorium
isotopes with colloidal organic matter in oceanic environments, Colloids
Surfaces A Physicochem. Eng. Asp., 120, 255–271,
https://doi.org/10.1016/S0927-7757(96)03723-5, 1997.
Le Borgne, R. and Rodier, M.: Net zooplankton and the biological pump: A
comparison between the oligotrophic and mesotrophic equatorial Pacific,
Deep-Sea Res. Pt. II, 44, 2003–2023,
https://doi.org/10.1016/S0967-0645(97)00034-9, 1997.
Lee, T., Barg, E., and Lal, D.: Studies of vertical mixing in the Southern
California Bight with cosmogenic radionuclides 32P and 7Be, Limnol.
Oceanogr., 36, 1044–1052, https://doi.org/10.4319/lo.1991.36.5.1044, 1991.
Le Gland, G., Aumont, O., and Mémery, L.: An Estimate of Thorium 234
Partition Coefficients Through Global Inverse Modeling, J. Geophys. Res.-Ocean., 124, 3575–3606, https://doi.org/10.1029/2018JC014668, 2019.
Lemaitre, N.: Multi-proxy approach (234Th, Baxs) of export and
remineralisation fluxes of carbon and biogenic elements associated ith the
oceanic biological pump, PhD dissertation, Joint PhD with Université de
Bretagne Occidentale, Brest, France, Brussels, France, https://we.vub.ac.be/en/phd-nolwenn-lemaitre (last access: 1 June 2022), 2017.
Lemaitre, N., Planquette, H., Dehairs, F., van der Merwe, P., Bowie, A. R.,
Trull, T. W., Laurenceau-Cornec, E. C., Davies, D., Bollinger, C., Le Goff,
M., Grossteffan, E., and Planchon, F.: Impact of the natural Fe-fertilization
on the magnitude, stoichiometry and efficiency of particulate biogenic
silica, nitrogen and iron export fluxes, Deep-Sea Res. Pt. I, 117, 11–27, https://doi.org/10.1016/j.dsr.2016.09.002, 2016.
Lemaitre, N., Planchon, F., Planquette, H., Dehairs, F., Fonseca-Batista, D., Roukaerts, A., Deman, F., Tang, Y., Mariez, C., and Sarthou, G.: High variability of particulate organic carbon export along the North Atlantic GEOTRACES section GA01 as deduced from 234Th fluxes, Biogeosciences, 15, 6417–6437, https://doi.org/10.5194/bg-15-6417-2018, 2018.
Lemaitre, N., Planquette, H., Dehairs, F., Planchon, F., Sarthou, G.,
Gallinari, M., Roig, S., Jeandel, C., and Castrillejo, M.: Particulate Trace
Element Export in the North Atlantic (GEOTRACES GA01 Transect, GEOVIDE
Cruise), ACS Earth Sp. Chem., 4, 2185–2204,
https://doi.org/10.1021/acsearthspacechem.0c00045, 2020.
Le Moigne, F. A. C., Henson, S. A., Sanders, R. J., and Madsen, E.: Global database of surface ocean particulate organic carbon export fluxes diagnosed from the 234Th technique, Earth Syst. Sci. Data, 5, 295–304, https://doi.org/10.5194/essd-5-295-2013, 2013a.
Le Moigne, F. A. C., Villa-Alfageme, M., Sanders, R. J., Marsay, C., Henson,
S., and García-Tenorio, R.: Export of organic carbon and biominerals
derived from 234Th and 210Po at the Porcupine Abyssal Plain, Deep-Sea Res. Pt
I, 72, 88–101, https://doi.org/10.1016/j.dsr.2012.10.010, 2013b.
Le Moigne, F. A. C., Pabortsava, K., Marcinko, C. L. J., Martin, P., and
Sanders, R. J.: Where is mineral ballast important for surface export of
particulate organic carbon in the ocean', Geophys. Res. Lett., 41,
8460–8468, https://doi.org/10.1002/2014GL061678, 2014.
Le Moigne, F. A. C., Poulton, A. J., Henson, S. A., Daniels, C. J., Fragoso,
G. M., Mitchell, E., Richier, S., Russell, B. C., Smith, H. E. K., Tarling,
G. A., Young, J. R., and Zubkov, M.: Carbon export efficiency and
phytoplankton community composition in the Atlantic sector of the Arctic
Ocean, J. Geophys. Res.-Ocean., 120, 3896–3912,
https://doi.org/10.1002/2015JC010700, 2015.
Le Moigne, F. A. C., Henson, S. A., Cavan, E., Georges, C., Pabortsava, K.,
Achterberg, E. P., Ceballos-Romero, E., Zubkov, M., and Sanders, R. J.: What
causes the inverse relationship between primary production and export
efficiency in the Southern Ocean?, Geophys. Res. Lett., 43, 4457–4466,
https://doi.org/10.1002/2016GL068480, 2016.
Lepore, K. and Moran, S. B.: Seasonal changes in thorium scavenging and
particle aggregation in the western Arctic Ocean, Deep-Sea Res. Pt. I, 54, 919–938, https://doi.org/10.1016/j.dsr.2007.03.001, 2007.
Lepore, K., Moran, S. B., Grebmeier, J. M., Cooper, L. W., Lalande, C.,
Maslowski, W., Hill, V., Bates, N. R., Hansell, D. A., Mathis, J. T., and
Kelly, R. P.: Seasonal and interannual changes in particulate organic carbon
export and deposition in the Chukchi Sea, J. Geophys. Res.-Ocean., 112,
C10024, https://doi.org/10.1029/2006JC003555, 2007.
Lepore, K., Moran, S. B., Burd, A. B., Jackson, G. A., Smith, J. N., Kelly,
R. P., Kaberi, H., Stavrakakis, S., and Assimakopoulou, G.: Sediment trap and
in-situ pump size-fractionated POC/234Th ratios in the Mediterranean Sea and
Northwest Atlantic: Implications for POC export, Deep Sea Res. Pt. I, 56, 599–613, https://doi.org/10.1016/j.dsr.2008.11.004, 2009.
Le Quéré, C., Raupach, M. R., Canadell, J. G., Marland, G., Bopp,
L., Ciais, P., Conway, T. J., Doney, S. C., Feely, R. A., Foster, P.,
Friedlingstein, P., Gurney, K., Houghton, R. A., House, J. I., Huntingford,
C., Levy, P. E., Lomas, M. R., Majkut, J., Metzl, N., Ometto, J. P., Peters,
G. P., Prentice, I. C., Randerson, J. T., Running, S. W., Sarmiento, J. L.,
Schuster, U., Sitch, S., Takahashi, T., Viovy, N., Van Der Werf, G. R., and
Woodward, F. I.: Trends in the sources and sinks of carbon dioxide, Nat.
Geosci., 2, 831–836, https://doi.org/10.1038/ngeo689, 2009.
Luo, Y.: Applications of U-decay series isotopes to studying the meridional overturning circulation and particle dynamics in the ocean, University of British Columbia, https://doi.org/10.14288/1.0073792, 2013.
Luo, Y., Miller, L. A., De Baere, B., Soon, M., and Francois, R.: POC fluxes
measured by sediment traps and 234Th:238U disequilibrium in Saanich Inlet,
British Columbia, Mar. Chem., 162, 19–29,
https://doi.org/10.1016/j.marchem.2014.03.001, 2014.
Ma, Q., Chen, M., Qiu, Y., and Li, Y.: Regional estimates of POC export flux
derived from thorium-234 in the western Arctic Ocean, Acta Oceanol. Sin.,
24, 97–108, 2005.
Maiti, K., Benitez-Nelson, C. R., Rii, Y., and Bidigare, R.: The influence of
a mature cyclonic eddy on particle export in the lee of Hawaii, Deep-Sea Res. Pt. II, 55, 1445–1460,
https://doi.org/10.1016/j.dsr2.2008.02.008, 2008.
Maiti, K., Benitez-Nelson, C. R., and Buesseler, K. O.: Insights into
particle formation and remineralization using the short-lived radionuclide,
Thoruim-234, Geophys. Res. Lett., 37, L15608,
https://doi.org/10.1029/2010GL044063, 2010.
Maiti, K., Buesseler, K. O., Pike, S. M., Benitez-Nelson, C., Cai, P., Chen,
W., Cochran, K., Dai, M., Dehairs, F., Gasser, B., Kelly, R. P., Masque, P.,
Miller, L. A., Miquel, J. C., Moran, B. B., Morris, P. J., Peine, F.,
Planchon, F., Renfro, A. A., Rutgers van der Loeff, M., Santschi, P. H.,
Turnewitsch, R., Waples, J. T., and Xu, C.: Intercalibration studies of
short-lived thorium-234 in the water column and marine particles, Limnol.
Oceanogr. Methods, 10, 631–644, https://doi.org/10.4319/lom.2012.10.631,
2012.
Maiti, K., Bosu, S., D'Sa, E. J., Adhikari, P. L., Sutor, M., and Longnecker,
K.: Export fluxes in northern Gulf of Mexico – Comparative evaluation of
direct, indirect and satellite-based estimates, Mar. Chem., 184, 60–77,
https://doi.org/10.1016/j.marchem.2016.06.001, 2016.
Mann, D. R., Surpreant, L. D., and Casso, S. A.: In situ chemisorption of
transuranics from seawater, Nucl. Instruments Methods Phys. Res., 223,
235–238, https://doi.org/10.1016/0167-5087(84)90653-7, 1984.
Martin, P., Lampitt, R. S., Jane Perry, M., Sanders, R., Lee, C., and
D'Asaro, E.: Export and mesopelagic particle flux during a North Atlantic
spring diatom bloom, Deep-Sea Res. Pt. I, 58, 338–349,
https://doi.org/10.1016/j.dsr.2011.01.006, 2011.
Martin, P., Rutgers van der Loeff, M., Cassar, N., Vandromme, P., D'Ovidio, F.,
Stemmann, L., Rengarajan, R., Soares, M., González, H. E., Ebersbach,
F., Lampitt, R. S., Sanders, R., Barnett, B. A., Smetacek, V., and Naqvi, S.
W. A.: Iron fertilization enhanced net community production but not downward
particle flux during the Southern Ocean iron fertilization experiment
LOHAFEX, Global Biogeochem. Cycles, 27, 871–881, https://doi.org/10.1002/gbc.20077,
2013.
Matsumoto, E.: 234Th238U radioactive disequilibrium in the surface layer of
the ocean, Geochim. Cosmochim. Ac., 39, 205–212,
https://doi.org/10.1016/0016-7037(75)90172-6, 1975.
McKee, B. A., DeMaster, D. J., and Nittrouer, C. A.: The use of 234T h238
disequilibrium to examine the fate of particle-reactive species on the
Yangtze continental shelf, Earth Planet. Sc. Lett., 68, 431–442,
https://doi.org/10.1016/0012-821X(84)90128-6, 1984.
McKee, B. A., DeMaster, D. J., and Nittrouer, C. A.: Temporal variability in
the partitioning of thorium between dissolved and particulate phases on the
Amazon shelf: implications for the scavenging of particle-reactive species,
Cont. Shelf Res., 6, 87–106, https://doi.org/10.1016/0278-4343(86)90055-5, 1986.
Minagawa, M. and Tsunogai, S.: Removal of 234Th from a coastal sea: Funka
Bay, Japan, Earth Planet. Sc. Lett., 47, 51–64,
https://doi.org/10.1016/0012-821X(80)90103-X, 1980.
Moore, W. S.: Review of the geosecs project, Nucl. Instruments Methods Phys.
Res., 223, 459–465, https://doi.org/10.1016/0167-5087(84)90692-6, 1984.
Moran, S. B. and Buesseler, K. O.: Short residence time of colloids in the
upper ocean estimated from 238U-234Th disequilibria, Nature, 359,
221–223, https://doi.org/10.1038/359221a0, 1992.
Moran, S. B. and Buesseler, K. O.: Size-fractionated 234Th in continental
shelf waters off New England: Implications for the role of colloids in
oceanic trace metal scavenging, J. Mar. Res., 51, 893–922,
https://doi.org/10.1357/0022240933223936, 1993.
Moran, S. B. and Moore, R. M.: The distribution of colloidal aluminum and
organic carbon in coastal and open ocean waters off Nova Scotia, Geochim.
Cosmochim. Ac., 53, 2519–2527, https://doi.org/10.1016/0016-7037(89)90125-7, 1989.
Moran, S. B. and Smith, J. N.: 234Th as a tracer of scavenging and particle
export in the Beaufort Sea, Cont. Shelf Res., 20, 153–167,
https://doi.org/10.1016/S0278-4343(99)00065-5, 2000.
Moran, S. B., Ellis, K. M., and Smith, J. N.: 234Th/238U disequilibrium in
the central Arctic Ocean: Implications for particulate organic carbon
export, Deep-Sea Res. Pt. II, 44, 1593–1606,
https://doi.org/10.1016/S0967-0645(97)00049-0, 1997.
Moran, S. B., Weinstein, S. E., Edmonds, H. N., Smith, J. N., Kelly, R. P.,
Pilson, M. E. Q., and Harrison, W. G.: Does 234Th/238U disequilibrium provide
an accurate record of the export flux of particulate organic carbon from the
upper ocean?, Limnol. Oceanogr., 48, 1018–1029,
https://doi.org/10.4319/lo.2003.48.3.1018, 2003.
Moran, S. B., Kelly, R. P., Hagstrom, K., Smith, J. N., Grebmeier, J. M.,
Cooper, L. W., Cota, G. F., Walsh, J. J., Bates, N. R., Hansell, D. A.,
Maslowski, W., Nelson, R. P., and Mulsow, S.: Seasonal changes in POC export
flux in the Chukchi Sea and implications for water column-benthic coupling
in Arctic shelves, Deep-Sea Res. Pt. II, 52,
3427–3451, https://doi.org/10.1016/j.dsr2.2005.09.011, 2005.
Moran, S. B., Lomas, M. W., Kelly, R. P., Gradinger, R., Iken, K., and
Mathis, J. T.: Seasonal succession of net primary productivity, particulate
organic carbon export, and autotrophic community composition in the eastern
Bering Sea, Deep-Sea Res. Pt. II, 65–70, 84–97,
https://doi.org/10.1016/j.dsr2.2012.02.011, 2012.
Morris, P. J., Sanders, R., Turnewitsch, R., and Thomalla, S.: 234Th-derived
particulate organic carbon export from an island-induced phytoplankton bloom
in the Southern Ocean, Deep-Sea Res. Pt. II, 54,
2208–2232, https://doi.org/10.1016/j.dsr2.2007.06.002, 2007.
Murray, J. W., Downs, J. N., Strom, S., Wei, C. L., and Jannasch, H. W.:
Nutrient assimilation, export production and 234Th scavenging in the eastern
equatorial Pacific, Deep-Sea Res. Pt. I, 36,
1471–1489, https://doi.org/10.1016/0198-0149(89)90052-6, 1989.
Murray, J. W., Young, J., Newton, J., Dunne, J., Chapin, T., Paul, B., and
McCarthy, J. J.: Export flux of particulate organic carbon from the central
equatorial pacific determined using a combined drifting trap- 234Th
approach, Deep-Sea Res. Pt. II, 43, 1095–1132,
https://doi.org/10.1016/0967-0645(96)00036-7, 1996.
Murray, J. W., Paul, B., Dunne, J. P., and Chapin, T.: 234Th, 210Pb, 210Po
and stable Pb in the central equatorial Pacific: Tracers for particle
cycling, Deep-Sea Res. Pt. I, 52, 2109–2139,
https://doi.org/10.1016/j.dsr.2005.06.016, 2005.
Niskin, S. J.: A water sampler for microbiological studies, Deep. Res.
Oceanogr. Abstr., 9, 501–503, https://doi.org/10.1016/0011-7471(62)90101-8,
1962.
Niven, S. E. H., Kepkay, P. E., and Boraie, A.: Colloidal organic carbon and
colloidal 234Th dynamics during a coastal phytoplankton bloom, Deep-Sea Res. Pt. II, 42, 257–273, https://doi.org/10.1016/0967-0645(95)00014-H, 1995.
Not, C., Brown, K., Ghaleb, B., and Hillaire-Marcel, C.: Conservative
behavior of uranium vs. salinity in Arctic sea ice and brine, Mar. Chem.,
130–131, 33–39, https://doi.org/10.1016/j.marchem.2011.12.005, 2012.
Nozaki, Y., Horibe, Y., and Tsubota, H.: The water column distributions of
thorium isotopes in the western North Pacific, Earth Planet. Sc. Lett.,
54, 203–216, https://doi.org/10.1016/0012-821X(81)90004-2, 1981.
Owens, S. A.: Advances in measurements of particle cycling and fluxes in the
ocean, Massachusetts Institute of Technology, http://hdl.handle.net/1721.1/79284, 2013.
Owens, S. A., Buesseler, K. O., and Sims, K. W. W.: Re-evaluating the
238U-salinity relationship in seawater: Implications for the 238U-234Th
disequilibrium method, Mar. Chem., 127, 31–39,
https://doi.org/10.1016/j.marchem.2011.07.005, 2011.
Owens, S. A., Pike, S., and Buesseler, K. O.: Thorium-234 as a tracer of
particle dynamics and upper ocean export in the Atlantic Ocean, Deep-Sea Res. Pt. II, 116, 42–59,
https://doi.org/10.1016/j.dsr2.2014.11.010, 2015.
Pabortsava, K.: Downward particle export and sequestration fluxes in the
oligotrophic Atlantic Ocean, University of Southampton, https://eprints.soton.ac.uk/372493/ (last access: 1 June 2022), 2014.
Pates, J. M. and Muir, G. K. P.: U-salinity relationships in the
Mediterranean: Implications for 234Th:238U particle flux studies, Mar.
Chem., 106, 530–545, https://doi.org/10.1016/j.marchem.2007.05.006, 2007.
Pike, S. M., Buesseler, K. O., Andrews, J., and Savoye, N.: Quantification of
234Th recovery in small volume sea water samples by inductively coupled
plasma-mass spectrometry, J. Radioanal. Nucl. Chem., 263, 355–360,
https://doi.org/10.1007/s10967-005-0062-9, 2005.
Planchon, F., Cavagna, A.-J., Cardinal, D., André, L., and Dehairs, F.: Late summer particulate organic carbon export and twilight zone remineralisation in the Atlantic sector of the Southern Ocean, Biogeosciences, 10, 803–820, https://doi.org/10.5194/bg-10-803-2013, 2013.
Planchon, F., Ballas, D., Cavagna, A.-J., Bowie, A. R., Davies, D., Trull, T., Laurenceau-Cornec, E. C., Van Der Merwe, P., and Dehairs, F.: Carbon export in the naturally iron-fertilized Kerguelen area of the Southern Ocean based on the 234Th approach, Biogeosciences, 12, 3831–3848, https://doi.org/10.5194/bg-12-3831-2015, 2015.
Porcelli, D., Andersson, P. S., Baskaran, M., and Wasserburg, G. J.:
Transport of U- And Th-series nuclides in a Baltic Shield watershed and the
Baltic Sea, Geochim. Cosmochim. Ac., 65, 2439–2459,
https://doi.org/10.1016/S0016-7037(01)00610-X, 2001.
Puigcorbé, V.: Global database of oceanic particulate organic carbon to particulate 234Th ratios, PANGAEA, https://doi.org/10.1594/PANGAEA.911424, 2019.
Puigcorbé, V., Benitez-Nelson, C. R., Masqué, P., Verdeny, E.,
White, A. E., Popp, B. N., Prahl, F. G., and Lam, P. J.: Small phytoplankton
drive high summertime carbon and nutrient export in the Gulf of California
and Eastern Tropical North Pacific, Global Biogeochem. Cycles, 29,
1309–1332, https://doi.org/10.1002/2015GB005134, 2015.
Puigcorbé, V., Roca-Martí, M., Masqué, P., Benitez-Nelson, C.,
Rutgers van der Loeff, M., Bracher, A., and Moreau, S.: Latitudinal
distributions of particulate carbon export across the North Western Atlantic
Ocean, Deep-Sea Res. Pt. I, 129, 116–130,
https://doi.org/10.1016/j.dsr.2017.08.016, 2017a.
Puigcorbé, V., Roca-Martí, M., Masqué, P., Benitez-Nelson, C.
R., Rutgers van der Loeff, M., Laglera, L. M., Bracher, A., Cheah, W., Strass,
V. H., Hoppema, M., Santos-Echeandía, J., Hunt, B. P. V., Pakhomov, E.
A., and Klaas, C.: Particulate organic carbon export across the Antarctic
Circumpolar Current at 10∘ E: Differences between north and south
of the Antarctic Polar Front, Deep-Sea Res. Pt. II, 138,
86–101, https://doi.org/10.1016/j.dsr2.2016.05.016, 2017b.
Puigcorbé, V., Masqué, P., and Le Moigne, F. A. C.: Global database of ratios of particulate organic carbon to thorium-234 in the ocean: improving estimates of the biological carbon pump, Earth Syst. Sci. Data, 12, 1267–1285, https://doi.org/10.5194/essd-12-1267-2020, 2020.
Radakovitch, O., Frignani, M., Giuliani, S., and Montanari, R.: Temporal
variations of dissolved and particulate 234Th at a coastal station of the
northern Adriatic Sea, Estuar. Coast. Shelf Sci., 58, 813–824,
https://doi.org/10.1016/S0272-7714(03)00187-2, 2003.
Resplandy, L., Martin, A. P., Le Moigne, F., Martin, P., Aquilina, A.,
Mémery, L., Lévy, M., and Sanders, R.: How does dynamical spatial
variability impact 234Th-derived estimates of organic export?, Deep-Sea Res. Pt. I, 68, 24–45, https://doi.org/10.1016/j.dsr.2012.05.015,
2012.
Roca-Martí, M., Puigcorbé, Iversen, V., Hvitfeldt, M.,
Rutgers van der Loeff, M. M., Klaas, C., Cheah, W., Bracher, A., and
Masqué, P.: Thorium-234, POC and PON fluxes during POLARSTERN cruise
ANT-XXVIII/3, January–March 2012, Pangaea, https://doi.org/10.1594/PANGAEA.848823, 2015.
Roca-Martí, M., Puigcorbé, V., Rutgers van der Loeff, M. M.,
Katlein, C., Fernández-Méndez, M., Peeken, I., and Masqué, P.:
Carbon export fluxes and export efficiency in the central Arctic during the
record sea-ice minimum in 2012: a joint 234Th/238U and study, J.
Geophys. Res.-Ocean., 121, 5030–5049, https://doi.org/10.1002/2016JC011816, 2016.
Roca-Martí, M., Puigcorbé, V., Iversen, M. H., Rutgers van der Loeff, M., Klaas, C., Cheah, W., Bracher, A., and Masqué, P.: High particulate
organic carbon export during the decline of a vast diatom bloom in the
Atlantic sector of the Southern Ocean, Deep-Sea Res. Pt. II, 138, 102–115, https://doi.org/10.1016/j.dsr2.2015.12.007, 2017.
Rodriguez y Baena, A. M., Metian, M., Teyssié, J. L., De Broyer, C., and
Warnau, M.: Experimental evidence for 234Th bioaccumulation in three
Antarctic crustaceans: Potential implications for particle flux studies,
Mar. Chem., 100, 354–365,
https://doi.org/10.1016/j.marchem.2005.10.022, 2006.
Rodriguez y Baena, A. M., Boudjenoun, R., Fowler, S. W., Miquel, J. C.,
Masqué, P., Sanchez-Cabeza, J. A., and Warnau, M.: 234Th-based carbon
export during an ice-edge bloom: Sea-ice algae as a likely bias in data
interpretation, Earth Planet. Sc. Lett., 269, 596–604,
https://doi.org/10.1016/j.epsl.2008.03.020, 2008.
Rosengard, S. Z., Lam, P. J., Balch, W. M., Auro, M. E., Pike, S., Drapeau, D., and Bowler, B.: Carbon export and transfer to depth across the Southern Ocean Great Calcite Belt, Biogeosciences, 12, 3953–3971, https://doi.org/10.5194/bg-12-3953-2015, 2015.
Rumyantseva, A., Henson, S., Martin, A., Thompson, A. F., Damerell, G. M.,
Kaiser, J., and Heywood, K. J.: Phytoplankton spring bloom initiation: The
impact of atmospheric forcing and light in the temperate North Atlantic
Ocean, Prog. Oceanogr., 178, 102202, https://doi.org/10.1016/j.pocean.2019.102202, 2019.
Rutgers van der Loeff, M. and Vöge, I.: Thorium 234/Uranium 238 activity
ratios measured on water bottle samples during POLARSTERN cruise ANT-XVIII/2
(EisenEx), PANGAEA, https://doi.org/10.1594/PANGAEA.127229, 2003.
Rutgers van der Loeff, M. M.: Manual determination of Thorium 234 and Uranium
238 during cruise ANT-XXIII/3, PANGAEA,
https://doi.org/10.1594/PANGAEA.614765, 2007a.
Rutgers van der Loeff, M. M.: Manual determination of Thorium 234 and Uranium 238 in surface water during cruise ANT-XXIII/3, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, PANGAEA, https://doi.org/10.1594/PANGAEA.615832, 2007b.
Rutgers van der Loeff, M. M. and Berger, G. W.: Scavenging and particle
flux: seasonal and regional variations in the Southern Ocean (Atlantic
sector), Mar. Chem., 35, 553–567, https://doi.org/10.1016/S0304-4203(09)90042-1,
1991.
Rutgers van der Loeff, M. M. and Moore, W. S.: Determination of natural
radioactive tracers, in Methods of Seawater Analysis: Third, Completely
Revised and Extended Edition, pp. 365–397, Wiley-VCH Verlag GmbH, Weinheim,
Germany, 1999.
Rutgers van der Loeff, M. M., Friedrich, J., and Bathmann, U. V.: Carbon
export during the Spring Bloom at the Antarctic Polar Front, determined with
the natural tracer 234Th, Deep-Sea Res. Pt. II, 44,
457–478, https://doi.org/10.1016/S0967-0645(96)00067-7, 1997.
Rutgers van der Loeff, M. M., Buesseler, K., Bathmann, U., Hense, I., and
Andrews, J.: Comparison of carbon and opal export rates between summer and
spring bloom periods in the region of the Antarctic Polar Front, SE
Atlantic, Deep-Sea Res. Pt. II, 49, 3849–3869,
https://doi.org/10.1016/S0967-0645(02)00114-5, 2002a.
Rutgers van der Loeff, M. M., Meyer, R., Rudels, B., and Rachor, E.:
Resuspension and particle transport in the benthic nepheloid layer in and
near Fram Strait in relation to faunal abundances and 234Th depletion, Deep-Sea Res. Pt. I, 49, 1941–1958,
https://doi.org/10.1016/S0967-0637(02)00113-9, 2002b.
Rutgers van der Loeff, M., Sarin, M. M., Baskaran, M., Benitez-Nelson, C.,
Buesseler, K. O., Charette, M., Dai, M., Gustafsson, Ö., Masque, P.,
Morris, P. J., Orlandini, K., Rodriguez y Baena, A., Savoye, N., Schmidt,
S., Turnewitsch, R., Vöge, I., and Waples, J. T.: A review of present
techniques and methodological advances in analyzing 234Th in aquatic
systems, Mar. Chem., 100, 190–212,
https://doi.org/10.1016/j.marchem.2005.10.012, 2006.
Rutgers van der Loeff, M. M., Cai, P. H., Stimac, I., Bracher, A.,
Middag, R., Klunder, M. B., and van Heuven, S. M. A. C.: 234Th in surface
waters: Distribution of particle export flux across the Antarctic
Circumpolar Current and in the Weddell Sea during the GEOTRACES expedition
ZERO and DRAKE, Deep-Sea Res. Pt. II, 58,
2749–2766, https://doi.org/10.1016/j.dsr2.2011.02.004, 2011.
Saba, G. K., Burd, A. B., Dunne, J. P., Hernández-León, S., Martin,
A. H., Rose, K. A., Salisbury, J., Steinberg, D. K., Trueman, C. N., Wilson,
R. W., and Wilson, S. E.: Toward a better understanding of fish-based
contribution to ocean carbon flux, Limnol. Oceanogr., 66, 1639–1664,
https://doi.org/10.1002/lno.11709, 2021.
Sanders, R., Morris, P. J., Poulton, A. J., Stinchcombe, M. C.,
Charalampopoulou, A., Lucas, M. I., and Thomalla, S. J.: Does a ballast
effect occur in the surface ocean?, Geophys. Res. Lett., 37, L08602,
https://doi.org/10.1029/2010GL042574, 2010.
Sanders, R., Henson, S. A., Koski, M., De La Rocha, C. L., Painter, S. C.,
Poulton, A. J., Riley, J., Salihoglu, B., Visser, A., Yool, A., Bellerby, R.,
and Martin, A. P.: The Biological Carbon Pump in the North Atlantic, Prog.
Oceanogr., 129, 200–218, https://doi.org/10.1016/j.pocean.2014.05.005, 2014.
Santschi, P. H., Li, Y. H., and Bell, J.: Natural radionuclides in the water
of Narragansett Bay, Earth Planet. Sc. Lett., 45, 201–213,
https://doi.org/10.1016/0012-821X(79)90121-3, 1979.
Santschi, P. H., Adler, D., Amdurer, M., Li, Y. H., and Bell, J. J.: Thorium
isotopes as analogues for “particle-reactive” pollutants in coastal marine
environments, Earth Planet. Sc. Lett., 47, 327–335,
https://doi.org/10.1016/0012-821X(80)90019-9, 1980.
Santschi, P. H., Guo, L., Baskaran, M., Trumbore, S., Southon, J., Bianchi,
T. S., Honeyman, B., and Cifuentes, L.: Isotopic evidence for the
contemporary origin of high-molecular weight organic matter in oceanic
environments, Geochim. Cosmochim. Ac., 59, 625–631,
https://doi.org/10.1016/0016-7037(94)00378-Y, 1995.
Santschi, P. H., Guo, L., Walsh, I. D., Quigley, M. S., and Baskaran, M.:
Boundary exchange and scavenging of radionuclides in continental margin
waters of the Middle Atlantic Bight: Implications for organic carbon fluxes,
Cont. Shelf Res., 19, 609–636, https://doi.org/10.1016/S0278-4343(98)00103-4, 1999.
Santschi, P. H., Hung, C. C., Schultz, G., Alvarado-Quiroz, N., Guo, L.,
Pinckney, J., and Walsh, I.: Control of acid polysaccharide production and
234Th and POC export fluxes by marine organisms, Geophys. Res. Lett., 30,
2–5, https://doi.org/10.1029/2002GL016046, 2003.
Sarin, M. M., Bhushan, R., Rengarajan, R., and Yadav, D. N.: Simultaneous
determination of 238U series nuclides in waters of Arabian Sea and Bay of
Bengal, Indian J. Mar. Sci., 21, 121–127, 1992.
Sarin, M. M., Krishnaswami, S., Ramesh, R., and Somayajulu, B. L. K.: 238U
decay series nuclides in the northeastern Arabian Sea: Scavenging rates and
cycling processes, Cont. Shelf Res., 14, 251–265,
https://doi.org/10.1016/0278-4343(94)90015-9, 1994a.
Sarin, M. M., Rengarajan, R., and Somayajulu, B. L. K.: Natural radionuclides
in the Arabian Sea and Bay of Bengal: Distribution and evaluation of
particle scavenging processes, Proc. Indian Acad. Sci. – Earth Planet. Sci.,
103, 211–235, https://doi.org/10.1007/BF02839537, 1994b.
Sarin, M. M., Rengarajan, R., and Ramaswamy, V.: 234Th scavenging and
particle export fluxes from the upper 100 m of the Arabian Sea, Curr. Sci.,
71, 888–893, 1996.
Savoye, N., Buesseler, K. O., Cardinal, D., and Dehairs, F.: 234Th deficit
and excess in the Southern Ocean during spring 2001: Particle export and
remineralization, Geophys. Res. Lett., 31, L12301,
https://doi.org/10.1029/2004GL019744, 2004.
Savoye, N., Benitez-Nelson, C., Burd, A. B., Cochran, J. K., Charette, M.,
Buesseler, K. O., Jackson, G. A., Roy-Barman, M., Schmidt, S., and Elskens,
M.: 234Th sorption and export models in the water column: A review, Mar.
Chem., 100, 234–249, https://doi.org/10.1016/j.marchem.2005.10.014,
2006.
Savoye, N., Trull, T. W., Jacquet, S. H. M., Navez, J., and Dehairs, F.:
234Th-based export fluxes during a natural iron fertilization experiment in
the Southern Ocean (KEOPS), Deep-Sea Res. Pt. II,
55, 841–855, https://doi.org/10.1016/j.dsr2.2007.12.036, 2008.
Schmidt, S.: Impact of the Mediterranean Outflow Water on particle dynamics
in intermediate waters of the Northeast Atlantic, as revealed by 234Th and
228Th, Mar. Chem., 100, 289–298,
https://doi.org/10.1016/j.marchem.2005.10.017, 2006.
Schmidt, S., Reyss, J. L., Nguyen, H. V., and Buat-Ménard, P.: 234Th
cycling in the upper water column of the northwestern Mediterranean Sea,
Glob. Planet. Change, 3, 25–33, https://doi.org/10.1016/0921-8181(90)90053-F,
1990.
Schmidt, S., Nival, P., Reyss, J. L., Baker, M., and Buat-Menard, P.:
Relation between 234Th scavenging and zooplankton biomass in Mediterranean
surface waters, Oceanol. Acta, 15, 227–231, 1992.
Schmidt, S., Andersen, V., Belviso, S., and Marty, J. C.: Strong seasonality
in particle dynamics of north-western Mediterranean surface waters as
revealed by 234Th/238U, Deep-Sea Res. Pt. I, 49,
1507–1518, https://doi.org/10.1016/S0967-0637(02)00039-0, 2002a.
Schmidt, S., Chou, L., and Hall, I. R.: Particle residence times in surface
waters over the north-western Iberian Margin: Comparison of pre-upwelling
and winter periods, J. Mar. Syst., 32, 3–11,
https://doi.org/10.1016/S0924-7963(02)00027-1, 2002b.
Schmidt, S., Goutx, M., Raimbault, P., Garcia, N., Guibert, P., and Andersen, V.: Th measured particle export from surface waters in north-western Mediterranean: comparison of spring and autumn periods, Biogeosciences Discuss., 6, 143–161, https://doi.org/10.5194/bgd-6-143-2009, 2009.
Schmidt, S., Harlay, J., Borges, A. V., Groom, S., Delille, B., Roevros, N.,
Christodoulou, S., and Chou, L.: Particle export during a bloom of Emiliania
huxleyi in the North-West European continental margin, J. Mar. Syst.,
109–110, S182–S190, https://doi.org/10.1016/j.jmarsys.2011.12.005, 2013.
Shaw, T. J., Smith, K. L., Hexel, C. R., Dudgeon, R., Sherman, A. D.,
Vernet, M., and Kaufmann, R. S.: 234Th-Based Carbon Export around
Free-Drifting Icebergs in the Southern Ocean, Deep-Sea Res. Pt. II, 58, 1384–1391, https://doi.org/10.1016/j.dsr2.2010.11.019, 2011.
Shimmield, G. B., Ritchie, G. D., and Fileman, T. W.: The impact of marginal
ice zone processes on the distribution of 21OPb, 21OPo and 234Th and
implications for new production in the Bellingshausen Sea, Antarctica, Deep-Sea Res. Pt. II, 42, 1313–1335, https://doi.org/10.1016/0967-0645(95)00071-W, 1995.
Smith, K. J., León Vintró, L., Mitchell, P. I., Bally De Bois, P.,
and Boust, D.: Uranium-thorium disequilibrium in north-east Atlantic waters,
J. Environ. Radioactiv., 74, 199–210, 2004.
Smoak, J. M., Moore, W. S., Thunell, R. C., and Shaw, T. J.: Comparison of
234Th, 228Th, and 210Pb fluxes with fluxes of major sediment components in
the Guaymas Basin, Gulf of California, Mar. Chem., 65, 177–194,
https://doi.org/10.1016/S0304-4203(98)00095-4, 1999.
Smoak, J. M., Benitez-Nelson, C., Moore, W. S., Thunell, R. C., Astor, Y.,
and Muller-Karger, F.: Radionuclide fluxes and particle scavenging in
Cariaco Basin, Cont. Shelf Res., 24, 1451–1463,
https://doi.org/10.1016/j.csr.2004.05.005, 2004.
Somayajulu, B. L. K., Rengarajan, R., and Jani, R. A.: Geochemical cycling in
the Hooghly estuary, India, Mar. Chem., 79, 171–183,
https://doi.org/10.1016/S0304-4203(02)00062-2, 2002.
Speicher, E. A., Moran, S. B., Burd, A. B., Delfanti, R., Kaberi, H., Kelly,
R. P., Papucci, C., Smith, J. N., Stavrakakis, S., Torricelli, L., and
Zervakis, V.: Particulate organic carbon export fluxes and size-fractionated
POC/234Th ratios in the Ligurian, Tyrrhenian and Aegean Seas, Deep-Sea Res.
Pt. I, 53, 1810–1830,
https://doi.org/10.1016/j.dsr.2006.08.005, 2006.
Steinberg, D. K. and Landry, M. R.: Zooplankton and the Ocean Carbon Cycle,
Ann. Rev. Mar. Sci., 9, 413–444,
https://doi.org/10.1146/annurev-marine-010814-015924, 2017.
Stewart, G., Cochran, J. K., Miquel, J. C., Masqué, P., Szlosek, J.,
Rodriguez y Baena, A. M., Fowler, S. W., Gasser, B., and Hirschberg, D. J.:
Comparing POC export from 234Th/238U and 210Po/210Pb disequilibria with
estimates from sediment traps in the northwest Mediterranean, Deep-Sea Res. Pt. I, 54, 1549–1570,
https://doi.org/10.1016/j.dsr.2007.06.005, 2007.
Stewart, G., Moran, S. B., Lomas, M. W., and Kelly, R. P.: Direct comparison
of 210Po, 234Th and POC particle-size distributions and export fluxes at the
Bermuda Atlantic Time-series Study (BATS) site, J. Environ. Radioact.,
102, 479–489, https://doi.org/10.1016/j.jenvrad.2010.09.011, 2011.
Stukel, M. and California Current Ecosystem LTER: Total Thorium-234 (Th-234) taken from discrete water column samples collected during CCE Process Cruises (2006–2017). ver 4, Environmental Data Initiative, https://doi.org/10.6073/pasta/f124cdffb311eaf778519c873314ffdc, 2019.
Stukel, M. R., Landry, M. R., Benitez-Nelson, C. R., and Goericke, R.:
Trophic cycling and carbon export relationships in the California current
ecosystem, Limnol. Oceanogr., 56, 1866–1878,
https://doi.org/10.4319/lo.2011.56.5.1866, 2011.
Stukel, M. R., Ohman, M. D., Benitez-Nelson, C. R., and Landry, M. R.:
Contributions of mesozooplankton to vertical carbon export in a coastal
upwelling system, Mar. Ecol. Prog. Ser., 491, 47–65, https://doi.org/10.3354/meps10453,
2013.
Stukel, M. R., Kahru, M., Benitez-Nelson, C. R., Décima, M., Goericke,
R., Landry, M. R., and Ohman, M. D.: Using Lagrangian-based process studies
to test satellite algorithms of vertical carbon flux in the eastern North
Pacific Ocean, J. Geophys. Res.-Ocean., 120, 7208–7222,
https://doi.org/10.1002/2015JC011264, 2015.
Stukel, M. R., Benitez-Nelson, C. R., Decima, M., Taylor, A. G., Buchwald,
C., and Landry, M. R.: The biological pump in the Costa Rica Dome: An
open-ocean upwelling system with high new production and low export, J.
Plankton Res., 38, 348–365, https://doi.org/10.1093/plankt/fbv097, 2016.
Stukel, M. R., Aluwihare, L. I., Barbeau, K. A., Chekalyuk, A. M., Goericke,
R., Miller, A. J., Ohman, M. D., Ruacho, A., Song, H., Stephens, B. M., and
Landry, M. R.: Mesoscale ocean fronts enhance carbon export due to
gravitational sinking and subduction, Proc. Natl. Acad. Sci. USA,
114, 1252–1257, https://doi.org/10.1073/pnas.1609435114, 2017.
Stukel, M. R., Kelly, T. B., Aluwihare, L. I., Barbeau, K. A., Goericke, R.,
Krause, J. W., Landry, M. R., and Ohman, M. D.: The Carbon:234Thorium ratios
of sinking particles in the California current ecosystem 1: relationships
with plankton ecosystem dynamics, Mar. Chem., 212, 1–15,
https://doi.org/10.1016/j.marchem.2019.01.003, 2019.
Stumm, W.: Chemical interaction in particle separation, Environ. Sci.
Technol., 11, 1066–1070, https://doi.org/10.1021/es60135a010, 1977.
Sweeney, E. N., McGillicuddy, D. J., and Buesseler, K. O.: Biogeochemical
impacts due to mesoscale eddy activity in the Sargasso Sea as measured at
the Bermuda Atlantic Time-series Study (BATS), Deep-Sea Res. Pt. II, 50, 3017–3039, https://doi.org/10.1016/j.dsr2.2003.07.008, 2003.
Szlosek, J., Cochran, J. K., Miquel, J. C., Masqué, P., Armstrong, R.
A., Fowler, S. W., Gasser, B., and Hirschberg, D. J.: Particulate organic
carbon–234Th relationships in particles separated by settling velocity in
the northwest Mediterranean Sea, Deep-Sea Res. Pt. II,
56, 1519–1532, https://doi.org/10.1016/j.dsr2.2008.12.017, 2009.
Tanaka, N., Takeda, Y., and Tsunogai, S.: Biological effect on removal of
Th-234, Po-210 and Pb-210 from surface water in Funka Bay, Japan, Geochim.
Cosmochim. Ac., 47, 1783–1790, https://doi.org/10.1016/0016-7037(83)90026-1, 1983.
Thomalla, S., Turnewitsch, R., Lucas, M., and Poulton, A.: Particulate
organic carbon export from the North and South Atlantic gyres: The
234Th/238U disequilibrium approach, Deep-Sea Res. Pt. II,
53, 1629–1648, https://doi.org/10.1016/j.dsr2.2006.05.018, 2006.
Thomalla, S. J.: Particulate organic carbon and mineral export from the North and South Atlantic gyres: the 234Th 238U disequilibrium approach, University of Cape Town, 2007.
Thomalla, S. J., Poulton, A. J., Sanders, R., Turnewitsch, R., Holligan, P.
M., and Lucas, M. I.: Variable export fluxes and efficiencies for calcite,
opal, and organic carbon in the Atlantic Ocean: A ballast effect in action?,
Global Biogeochem. Cycles, 22, GB1010, https://doi.org/10.1029/2007GB002982,
2008.
Thomalla, S. J., Racault, M. F., Swart, S., and Monteiro, P. M. S.:
High-resolution view of the spring bloom initiation and net community
production in the Subantarctic Southern Ocean using glider data, ICES J.
Mar. Sci., 72, 1999–2020, https://doi.org/10.1093/icesjms/fsv105, 2015.
Thunell, R. C., Moore, W. S., Dymond, J., and Pilskaln, C. H.: Elemental and
isotopic fluxes in the Southern California Bight: a time-series sediment
trap study in the San Pedro Basin, J. Geophys. Res., 99, 875–889,
https://doi.org/10.1029/93JC02377, 1994.
Trimble, S. M. and Baskaran, M.: The role of suspended particulate matter in
234Th scavenging and 234Th-derived export fluxes of POC in the Canada Basin
of the Arctic Ocean, Mar. Chem., 96, 1–19,
https://doi.org/10.1016/j.marchem.2004.10.003, 2005.
Trimble, S. M., Baskaran, M., and Porcelli, D.: Scavenging of thorium
isotopes in the Canada Basin of the Arctic Ocean, Earth Planet. Sc. Lett.,
222, 915–932, https://doi.org/10.1016/j.epsl.2004.03.027, 2004.
Tsunogai, S., Minagawa, M., and Minagwa, M.: Vertical flux of organic
materials estimated from Th-234 in the ocean., Jt. Oceanogr. Assem., 13–24,
156, 1976.
Tsunogai, S., Taguchi, K., and Harada, K.: Seasonal variation in the
difference between observed and calculated particulate fluxes of Th-234 in
Funka Bay, Japan, J. Oceanogr. Soc. Japan, 42, 91–98,
https://doi.org/10.1007/BF02109095, 1986.
Turekian, K. K.: The fate of metals in the oceans, Geochim. Cosmochim. Ac.,
41, 1139–1144, https://doi.org/10.1016/0016-7037(77)90109-0, 1977.
Turner, J. T.: Zooplankton fecal pellets, marine snow and sinking
phytoplankton blooms, Aquat. Microb. Ecol., 27, 57–102,
https://doi.org/10.3354/ame027057, 2002.
Turnewitsch, R.: Thorium 234 in bottom water at station M42/2_411-8, Pangaea, https://doi.org/10.1594/PANGAEA.58833, 2001.
Turnewitsch, R. and Springer, B. M.: Do bottom mixed layers influence 234Th
dynamics in the abyssal near-bottom water column?, Deep-Sea Res. Pt. I, 48, 1279–1307, https://doi.org/10.1016/S0967-0637(00)00104-7,
2001.
Turnewitsch, R., Reyss, J. L., Nycander, J., Waniek, J. J., and Lampitt, R.
S.: Internal tides and sediment dynamics in the deep sea-Evidence from
radioactive 234Th/238U disequilibria, Deep-Sea Res. Pt. I,
55, 1727–1747, https://doi.org/10.1016/j.dsr.2008.07.008, 2008.
Turnewitsch, R., Dumont, M., Kiriakoulakis, K., Legg, S., Mohn, C., Peine,
F., and Wolff, G.: Tidal influence on particulate organic carbon export
fluxes around a tall seamount, Prog. Oceanogr., 149, 189–213,
https://doi.org/10.1016/j.pocean.2016.10.009, 2016.
Umhau, B. P., Benitez-Nelson, C. R., Close, H. G., Hannides, C. C. S.,
Motta, L., Popp, B. N., Blum, J. D.. and Drazen, J. C.: Seasonal and spatial
changes in carbon and nitrogen fluxes estimated using 234Th:238U
disequilibria in the North Pacific tropical and subtropical gyre, Mar.
Chem., 217, 103705, https://doi.org/10.1016/j.marchem.2019.103705, 2019.
Usbeck, R., Rutgers van der Loeff, M., Hoppema, M.. and Schlitzer, R.:
Shallow remineralization in the Weddell Gyre, Geochem. Geophys.
Geosyst., 3, 1–18, https://doi.org/10.1029/2001gc000182, 2002.
Villa-Alfageme, M., de Soto, F. C., Ceballos, E., Giering, S. L. C., Le
Moigne, F. A. C., Henson, S., Mas, J. L., and Sanders, R. J.: Geographical,
seasonal, and depth variation in sinking particle speeds in the North
Atlantic, Geophys. Res. Lett., 43, 8609–8616, https://doi.org/10.1002/2016GL069233,
2016.
Villa-Alfageme, M., Briggs, N., Ceballos-Romero, E., de Soto, F., Manno, C.,
and Giering, S. L.: Seasonal variations of sinking velocities in Austral diatom blooms: Lessons learned from COMICS I, Deep-Sea Res. Pt. II,
in review, 2021.
Volk, T. and Hoffert, M. I.: Ocean carbon pumps: analysis of relative
strengths and efficiencies in ocean-driven atmospheric CO2 changes., in The
carbon cycle and atmospheric CO, American Geophysical Union, 99–110,
1985.
Waples, J. T., Orlandini, K. A., Edgington, D. N. and Klump, J. V.: Seasonal
and spatial dynamics of 234Th/238U disequilibria in southern Lake Michigan,
J. Geophys. Res.-Ocean., 109, C10S06, https://doi.org/10.1029/2003JC002204, 2004.
Waples, J. T., Benitez-Nelson, C., Savoye, N., Rutgers van der Loeff, M.,
Baskaran, M. and Gustafsson, Ö.: An introduction to the application and
future use of 234Th in aquatic systems, Mar. Chem., 100,
166–189, https://doi.org/10.1016/j.marchem.2005.10.011, 2006.
Wei, C. L. and Hung, C. C.: Particle scavenging in the upper water column
off Mindoro Island, Philippine: 234Th/238U disequilibria, Estuar. Coast.
Shelf Sci., 46, 351–358, https://doi.org/10.1006/ecss.1997.0297, 1998.
Wei, C.-L. and Murray, J. W.: 234Th/238U disequilibria in the Black Sea,
Deep-Sea Res. Pt. I, S855–S873,
https://doi.org/10.1016/s0198-0149(10)80013-5, 1991.
Wei, C. L. and Murray, J. W.: Temporal variations of 234Th activity in the
water column of Dabob Bay: Particle scavenging, Limnol. Oceanogr., 37,
296–314, https://doi.org/10.4319/lo.1992.37.2.0296, 1992.
Wei, C.-L., Chou, L., Tsai, J., Wen, L., and Pai, S.: Comparative
Geochemistry of 234Th, 210Pb, and 210Po: A Case Study in the Hung-Tsai
Trough off Southwestern Taiwan, Terr. Atmos. Ocean. Sci., 20, 411,
https://doi.org/10.3319/TAO.2008.01.09.01(Oc), 2009.
Wei, C.-L., Lin, S.-Y., Sheu, D. D.-D., Chou, W.-C., Yi, M.-C., Santschi, P. H., and Wen, L.-S.: Particle-reactive radionuclides (234Th, 210Pb, 210Po) as tracers for the estimation of export production in the South China Sea, Biogeosciences, 8, 3793–3808, https://doi.org/10.5194/bg-8-3793-2011, 2011.
Weinstein, S. E. and Moran, S. B.: Vertical flux of particulate Al, Fe, Pb,
and Ba from the upper ocean estimated from 234Th/238U disequilibria, Deep-Sea Res. Pt. I, 52, 1477–1488,
https://doi.org/10.1016/j.dsr.2005.03.008, 2005.
Xie, R. C., Le Moigne, F. A. C., Rapp, I., Lüdke, J., Gasser, B., Dengler, M., Liebetrau, V., and Achterberg, E. P.: Effects of 238U variability and physical transport on water column 234Th downward fluxes in the coastal upwelling system off Peru, Biogeosciences, 17, 4919–4936, https://doi.org/10.5194/bg-17-4919-2020, 2020.
Xu, C., Santschi, P. H., Hung, C. C., Zhang, S., Schwehr, K. A., Roberts, K.
A., Guo, L., Gong, G. C., Quigg, A., Long, R. A., Pinckney, J. L., Duan, S.,
Amon, R., and Wei, C. L.: Controls of 234Th removal from the oligotrophic
ocean by polyuronic acids and modification by microbial activity, Mar.
Chem., 123, 111–126, https://doi.org/10.1016/j.marchem.2010.10.005, 2011.
Yang, Y., Han, X., and Kusakabe, M.: POC fluxes from euphotic zone estimated
from234Th deficiency in winter in the northwestern North Pacific Ocean, Acta
Oceanol. Sin., 23, 135–148, 2004.
Yebra, L., Herrera, I., Mercado, J. M., Cortés, D., Gómez-Jakobsen,
F., Alonso, A., Sánchez, A., Salles, S., and Valcárcel-Pérez, N.:
Zooplankton production and carbon export flux in the western Alboran Sea
gyre (SW Mediterranean), Prog. Oceanogr., 167, 64–77,
https://doi.org/10.1016/j.pocean.2018.07.009, 2018.
Yool, A., Martin, A. P., Fernández, C., and Clark, D. R.: The
significance of nitrification for oceanic new production, Nature, 447,
999–1002, https://doi.org/10.1038/nature05885, 2007.
Yu, W., Chen, L., Cheng, J., He, J., Yin, M., and Zeng, Z.: 234Th-derived
particulate organic carbon export flux in the western Arctic Ocean, Chinese
J. Oceanol. Limnol., 28, 1146–1151, https://doi.org/10.1007/s00343-010-9933-1, 2010.
Yu, W., He, J., Li, Y., Lin, W., and Chen, L.: Particulate organic carbon
export fluxes and validation of steady state model of 234Th export in the
Chukchi Sea, Deep-Sea Res. Pt. II, 81–84, 63–71,
https://doi.org/10.1016/j.dsr2.2012.03.003, 2012.
Zhou, K., Nodder, S. D., Dai, M., and Hall, J. A.: Insignificant enhancement of export flux in the highly productive subtropical front, east of New Zealand: a high resolution study of particle export fluxes based on 234Th: 238U disequilibria, Biogeosciences, 9, 973–992, https://doi.org/10.5194/bg-9-973-2012, 2012.
Zhou, K., Dai, M., Kao, S. J., Wang, L., Xiu, P., Chai, F., Tian, J., and
Liu, Y.: Apparent enhancement of 234Th-based particle export associated with
anticyclonic eddies, Earth Planet. Sc. Lett., 381, 198–209,
https://doi.org/10.1016/j.epsl.2013.07.039, 2013.
Zhou, K., Maiti, K., Dai, M., Kao, S. J., and Buesseler, K.: Does adsorption
of dissolved organic carbon and thorium onto membrane filters affect the
carbon to thorium ratios, a primary parameter in estimating export carbon
flux?, Mar. Chem., 184, 1–10, https://doi.org/10.1016/j.marchem.2016.06.004, 2016.
Short summary
Thorium-234 is widely used for studying the removal rate of material on sinking particles from the upper ocean and for determining the downward flux of carbon. In this study, we present a compilation of the 50 years of 234Th measurements in the ocean and provide a broad overview of the character of the datasets. This provides a valuable resource useful to better understand and quantify how the contemporary oceanic carbon uptake functions and how it will change in future.
Thorium-234 is widely used for studying the removal rate of material on sinking particles from...
Altmetrics
Final-revised paper
Preprint