Articles | Volume 14, issue 4
https://doi.org/10.5194/essd-14-2065-2022
https://doi.org/10.5194/essd-14-2065-2022
Data description paper
 | 
28 Apr 2022
Data description paper |  | 28 Apr 2022

High-resolution map of sugarcane cultivation in Brazil using a phenology-based method

Yi Zheng, Ana Cláudia dos Santos Luciano, Jie Dong, and Wenping Yuan

Related authors

Early-season mapping of winter wheat in China based on Landsat and Sentinel images
Jie Dong, Yangyang Fu, Jingjing Wang, Haifeng Tian, Shan Fu, Zheng Niu, Wei Han, Yi Zheng, Jianxi Huang, and Wenping Yuan
Earth Syst. Sci. Data, 12, 3081–3095, https://doi.org/10.5194/essd-12-3081-2020,https://doi.org/10.5194/essd-12-3081-2020, 2020
Short summary
Improved estimate of global gross primary production for reproducing its long-term variation, 1982–2017
Yi Zheng, Ruoque Shen, Yawen Wang, Xiangqian Li, Shuguang Liu, Shunlin Liang, Jing M. Chen, Weimin Ju, Li Zhang, and Wenping Yuan
Earth Syst. Sci. Data, 12, 2725–2746, https://doi.org/10.5194/essd-12-2725-2020,https://doi.org/10.5194/essd-12-2725-2020, 2020
Short summary

Related subject area

Land Cover and Land Use
A 100 m gridded population dataset of China's seventh census using ensemble learning and big geospatial data
Yuehong Chen, Congcong Xu, Yong Ge, Xiaoxiang Zhang, and Ya'nan Zhou
Earth Syst. Sci. Data, 16, 3705–3718, https://doi.org/10.5194/essd-16-3705-2024,https://doi.org/10.5194/essd-16-3705-2024, 2024
Short summary
Annual time-series 1 km maps of crop area and types in the conterminous US (CropAT-US): cropping diversity changes during 1850–2021
Shuchao Ye, Peiyu Cao, and Chaoqun Lu
Earth Syst. Sci. Data, 16, 3453–3470, https://doi.org/10.5194/essd-16-3453-2024,https://doi.org/10.5194/essd-16-3453-2024, 2024
Short summary
Retrieval of dominant methane (CH4) emission sources, the first high-resolution (1–2 m) dataset of storage tanks of China in 2000–2021
Fang Chen, Lei Wang, Yu Wang, Haiying Zhang, Ning Wang, Pengfei Ma, and Bo Yu
Earth Syst. Sci. Data, 16, 3369–3382, https://doi.org/10.5194/essd-16-3369-2024,https://doi.org/10.5194/essd-16-3369-2024, 2024
Short summary
A 10 m resolution land cover map of the Tibetan Plateau with detailed vegetation types
Xingyi Huang, Yuwei Yin, Luwei Feng, Xiaoye Tong, Xiaoxin Zhang, Jiangrong Li, and Feng Tian
Earth Syst. Sci. Data, 16, 3307–3332, https://doi.org/10.5194/essd-16-3307-2024,https://doi.org/10.5194/essd-16-3307-2024, 2024
Short summary
ChinaSoyArea10m: a dataset of soybean-planting areas with a spatial resolution of 10 m across China from 2017 to 2021
Qinghang Mei, Zhao Zhang, Jichong Han, Jie Song, Jinwei Dong, Huaqing Wu, Jialu Xu, and Fulu Tao
Earth Syst. Sci. Data, 16, 3213–3231, https://doi.org/10.5194/essd-16-3213-2024,https://doi.org/10.5194/essd-16-3213-2024, 2024
Short summary

Cited articles

Abdel-Rahman, E. M. and Ahmed, F. B.: The application of remote sensing techniques to sugarcane (Saccharum spp. hybrid) production: a review of the literature, Int. J. Remote Sens., 29, 3753–3767, https://doi.org/10.1080/01431160701874603, 2008. 
Adami, M., Theodor Rudorff, B. F., Freitas, R. M., Aguiar, D. A., Sugawara, L. M., and Mello, M. P.: Remote Sensing Time Series to Evaluate Direct Land Use Change of Recent Expanded Sugarcane Crop in Brazil, Sustainability, 4, 574–585, https://doi.org/10.3390/su4040574, 2012. 
Belgiu, M. and Csillik, O.: Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis, Remote Sens. Environ., 204, 509–523, https://doi.org/10.1016/j.rse.2017.10.005, 2018. 
Bendini, H. D. N., Fonseca, L. M. G., Schwieder, M., Korting, T. S., Rufin, P., Sanches, I. D. A., Leitao, P. J., and Hostert, P.: Detailed agricultural land classification in the Brazilian cerrado based on phenological information from dense satellite image time series, Int. J. Appl. Earth Obs., 82, 101872, https://doi.org/10.1016/j.jag.2019.05.005, 2019.  
Bordonal, R. D. O., Lal, R., Aguiar, D. A., de Figueiredo, E. B., Perillo, L. I., Adami, M., Theodor Rudorff, B. F., and La Scala, N.: Greenhouse gas balance from cultivation and direct land use change of recently established sugarcane (Saccharum officinarum) plantation in south-central Brazil, Renew. Sust. Energ. Rev., 52, 547–556, https://doi.org/10.1016/j.rser.2015.07.137, 2015. 
Download
Short summary
Brazil is the largest sugarcane producer. Sugarcane in Brazil can be harvested all year round. The flexible phenology makes it difficult to identify sugarcane in Brazil at a country scale. We developed a phenology-based method which can identify sugarcane with limited training data. The sugarcane maps for Brazil obtain high accuracy through comparison against field samples and statistical data. The maps can be used to monitor growing conditions and evaluate the feedback to climate of sugarcane.
Altmetrics
Final-revised paper
Preprint