Articles | Volume 14, issue 4
Earth Syst. Sci. Data, 14, 2065–2080, 2022
Earth Syst. Sci. Data, 14, 2065–2080, 2022
Data description paper
28 Apr 2022
Data description paper | 28 Apr 2022

High-resolution map of sugarcane cultivation in Brazil using a phenology-based method

Yi Zheng et al.

Related authors

Early-season mapping of winter wheat in China based on Landsat and Sentinel images
Jie Dong, Yangyang Fu, Jingjing Wang, Haifeng Tian, Shan Fu, Zheng Niu, Wei Han, Yi Zheng, Jianxi Huang, and Wenping Yuan
Earth Syst. Sci. Data, 12, 3081–3095,,, 2020
Short summary
Improved estimate of global gross primary production for reproducing its long-term variation, 1982–2017
Yi Zheng, Ruoque Shen, Yawen Wang, Xiangqian Li, Shuguang Liu, Shunlin Liang, Jing M. Chen, Weimin Ju, Li Zhang, and Wenping Yuan
Earth Syst. Sci. Data, 12, 2725–2746,,, 2020
Short summary

Related subject area

Antroposphere – Land Cover and Land Use
GISD30: global 30 m impervious-surface dynamic dataset from 1985 to 2020 using time-series Landsat imagery on the Google Earth Engine platform
Xiao Zhang, Liangyun Liu, Tingting Zhao, Yuan Gao, Xidong Chen, and Jun Mi
Earth Syst. Sci. Data, 14, 1831–1856,,, 2022
Short summary
High-resolution land use and land cover dataset for regional climate modelling: a plant functional type map for Europe 2015
Vanessa Reinhart, Peter Hoffmann, Diana Rechid, Jürgen Böhner, and Benjamin Bechtel
Earth Syst. Sci. Data, 14, 1735–1794,,, 2022
Short summary
A national extent map of cropland and grassland for Switzerland based on Sentinel-2 data
Robert Pazúr, Nica Huber, Dominique Weber, Christian Ginzler, and Bronwyn Price
Earth Syst. Sci. Data, 14, 295–305,,, 2022
Short summary
Implementation of the CCDC algorithm to produce the LCMAP Collection 1.0 annual land surface change product
George Z. Xian, Kelcy Smith, Danika Wellington, Josephine Horton, Qiang Zhou, Congcong Li, Roger Auch, Jesslyn F. Brown, Zhe Zhu, and Ryan R. Reker
Earth Syst. Sci. Data, 14, 143–162,,, 2022
Short summary
Harmonized in situ datasets for agricultural land use mapping and monitoring in tropical countries
Audrey Jolivot, Valentine Lebourgeois, Louise Leroux, Mael Ameline, Valérie Andriamanga, Beatriz Bellón, Mathieu Castets, Arthur Crespin-Boucaud, Pierre Defourny, Santiana Diaz, Mohamadou Dieye, Stéphane Dupuy, Rodrigo Ferraz, Raffaele Gaetano, Marie Gely, Camille Jahel, Bertin Kabore, Camille Lelong, Guerric le Maire​​​​​​​, Danny Lo Seen, Martha Muthoni, Babacar Ndao, Terry Newby, Cecília Lira Melo de Oliveira Santos, Eloise Rasoamalala, Margareth Simoes, Ibrahima Thiaw, Alice Timmermans, Annelise Tran, and Agnès Bégué
Earth Syst. Sci. Data, 13, 5951–5967,,, 2021
Short summary

Cited articles

Abdel-Rahman, E. M. and Ahmed, F. B.: The application of remote sensing techniques to sugarcane (Saccharum spp. hybrid) production: a review of the literature, Int. J. Remote Sens., 29, 3753–3767,, 2008. 
Adami, M., Theodor Rudorff, B. F., Freitas, R. M., Aguiar, D. A., Sugawara, L. M., and Mello, M. P.: Remote Sensing Time Series to Evaluate Direct Land Use Change of Recent Expanded Sugarcane Crop in Brazil, Sustainability, 4, 574–585,, 2012. 
Belgiu, M. and Csillik, O.: Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis, Remote Sens. Environ., 204, 509–523,, 2018. 
Bendini, H. D. N., Fonseca, L. M. G., Schwieder, M., Korting, T. S., Rufin, P., Sanches, I. D. A., Leitao, P. J., and Hostert, P.: Detailed agricultural land classification in the Brazilian cerrado based on phenological information from dense satellite image time series, Int. J. Appl. Earth Obs., 82, 101872,, 2019.  
Bordonal, R. D. O., Lal, R., Aguiar, D. A., de Figueiredo, E. B., Perillo, L. I., Adami, M., Theodor Rudorff, B. F., and La Scala, N.: Greenhouse gas balance from cultivation and direct land use change of recently established sugarcane (Saccharum officinarum) plantation in south-central Brazil, Renew. Sust. Energ. Rev., 52, 547–556,, 2015. 
Short summary
Brazil is the largest sugarcane producer. Sugarcane in Brazil can be harvested all year round. The flexible phenology makes it difficult to identify sugarcane in Brazil at a country scale. We developed a phenology-based method which can identify sugarcane with limited training data. The sugarcane maps for Brazil obtain high accuracy through comparison against field samples and statistical data. The maps can be used to monitor growing conditions and evaluate the feedback to climate of sugarcane.