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Abstract. Sugarcane is the most important source of sugar, and its cultivation area has undergone rapid ex-
pansion, replacing other crops, pastures, and forests. Brazil is the world’s largest sugarcane producer and con-
tributed to approximately 38.6 % of the world’s total production in 2019. Sugarcane in Brazil can be harvested
from April to December in the south-central area and from September to April in the northeast area. The flexible
phenology and harvest conditions of sugarcane in Brazil make it difficult to identify the harvest area at state
to country scales. In this study, we developed a phenology-based method to identify the harvest area of sugar-
cane in Brazil by incorporating the multiple phenology conditions into a time-weighted dynamic time warping
method (TWDTW). Then, we produced annual 30 m spatial resolution sugarcane harvest maps (2016–2019) for
14 states in Brazil (over 98 % of the harvest area) based on the proposed method using Landsat-7, Landsat-8, and
Sentinel-2 optical data. The proposed method performed well in identifying sugarcane harvest area with limited
training sample data. Validations for the 2018 harvest year displayed high accuracy, with the user’s, producer’s,
and overall accuracies of 94.35 %, 87.04 %, and 91.47 % in Brazil, respectively. In addition, the identified har-
vest area of sugarcane exhibited good correlations with the agricultural statistical data provided by the Brazilian
Institute of Geography and Statistics (IBGE) at the municipality, microregion, and mesoregion levels. The 30 m
Brazil sugarcane harvest maps can be obtained at https://doi.org/10.6084/m9.figshare.14213909 (Zheng et al.,
2021).

1 Introduction

Sugarcane (Saccharum officinarum) is a semi-perennial crop
that can be cut multiple times throughout several years in
tropical and subtropical areas (Abdel-Rahman and Ahmed,
2008; Sindhu et al., 2016; Mulyono and Nadirah, 2017). Sug-
arcane is an important sugar and energy crop. Over 70 % of
world sugar comes from sugarcane (Brar et al., 2015; Iqbal
and Saleem, 2015). Sugarcane ethanol is an alternative en-
ergy source that can reduce CO2 emission resulting from
fossil fuel use (Bordonal et al., 2015; Jaiswal et al., 2017).
In addition, sugarcane leaves can be used as fodder and be

manufactured into paper and bioenergy (Leal et al., 2013).
Sugarcane accounts for approximately 20 % of global crop
production over the period from 2000–2018, and this value
is almost twice the share of maize, the second most produced
crop worldwide (FAOSTAT, 2020). Sugarcane has now be-
come a crop with high socio-economic importance for Brazil
and other producers, such as India, China, Thailand, Pak-
istan, the United States, and Australia (Monteiro et al., 2018).
Recently, sugarcane has undergone rapid expansion by occu-
pying the land of other crops, pastures, and forests (Adami
et al., 2012; Ferreira et al., 2015; Wachholz de Souza et al.,
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2017; Defante et al., 2018). The expansion of sugarcane pro-
duction areas can influence regional land cover use, water
use, greenhouse gas emission, soil carbon balance, and cli-
mate change (Loarie et al., 2011; Mello et al., 2014; Zhang
et al., 2015; Jaiswal et al., 2017). On the one hand, the re-
placement of other crops with sugarcane may directly affect
agriculture and food security (Mello et al., 2014; Jaiswal et
al., 2017). On the other hand, sugarcane expansion may in-
fluence the local climate by altering surface albedo and evap-
otranspiration (Loarie et al., 2011). Additionally, sugarcane
has a large water requirement and is often planted in areas
where water is limited; therefore, sugarcane expansion may
cause concerns about water security (Zhang et al., 2015).
Timely and accurate estimates of the distribution, harvest
area, and growing conditions of sugarcane are crucial for sus-
tainable sugarcane production and national food security.

Recently, single-date or time series moderate- to high-
resolution remote sensing optical data (e.g. Landsat,
Sentinel-2, SPOT, and CBERS) and synthetic aperture radar
(SAR) data (e.g. PALSAR and Sentinel-1) have been used for
crop mapping based on unsupervised and supervised clas-
sification methods (Lin et al., 2009; Johnson et al., 2014;
Li et al., 2015; Belgiu and Csillik, 2018). At present, the
most popular classification method is machine learning, such
as random forest (Zhou et al., 2015; Luciano et al., 2018,
2019; Wang et al., 2019), support vector machine (Johnson
et al., 2014; Zheng et al., 2015), and neural networks (Cai
et al., 2018). For sugarcane identification, Cechim Junior
et al. (2017) mapped the area of sugarcane in Paraná state
in Brazil based on supervised maximum likelihood classifi-
cation using Landsat/TM/OLI and IRS/LISS-3 images. De-
pending on the sugarcane maps from 2009–2014 generated
by the Canasat Project (Rudorff et al., 2010) as ground truth
sample data, a random forest classification model was cal-
ibrated at 10 sites located across São Paulo state and em-
ployed to the entire state in 2015, showing the ability to
create spatial and time generalization models (Luciano et
al., 2019). Jiang et al. (2019) identified sugarcane in Zhan-
jiang in China using machine learning methods and Sentinel-
1A/2 time series satellite data. However, these methods
strongly depend on extensive training samples, which are
time-consuming and labour-intensive to obtain at the state
and country scales (Dong et al., 2020a; Wang et al., 2020).
For example, the U.S. Department of Agriculture (USDA)
National Agricultural Statistics Service (NASS) produced
the 30 m resolution Cropland Data Layer (CDL) product us-
ing a decision tree classification method, and this approach
mainly relied on the large volume of USDA Common Land
Unit (CLU) data to establish training samples that are up-
dated annually (Boryan et al., 2011). Only in Nebraska did
the CDL product need more than 250 000 CLU records for
training the classification method.

Phenology-based algorithms are also commonly used in
regional classification (Wardlow et al., 2007; Zhong et al.,
2014; Massey et al., 2017; Dong et al., 2020b). These meth-

ods have been proposed and developed based on the crop cal-
endar, for example, the germination, tillering, grand growth,
and ripening phases. Li et al. (2015) identified sugarcane on
the Leizhou Peninsula in China by comparing the polariza-
tion features (such as scattering angle and polarization en-
tropy) of sugarcane with those of other land use types in the
early, middle, and late tillering periods using TerraSAR-X
images. The result indicated that the tillering period is a suit-
able growing phase that can be used for sugarcane cultiva-
tion area mapping. Mulyono and Nadirah (2017) identified
sugarcane plantations in the Magetan district of East Java
province in Indonesia using a support vector machine and the
crop phenology profile of enhanced vegetation index (EVI)
time series derived from Landsat-8 images. Phenology-based
methods would be potential alternative approaches to iden-
tify crop cultivation areas at the country scale with a low
volume of training samples (Dong et al., 2020a). However,
these studies were developed based on several phenological
thresholds (e.g. green-up date, senescence date, and length of
growing season) of crops in different growing stages, which
need to be calibrated when extended to other regions or years.
Therefore, traditional phenology-based methods are still in-
sufficient to perform ideal mapping and may be limited by
multiple thresholds when applied to large scales, such as
country to continental scales.

Dynamic time warping (DTW) is an effective phenology-
based method in crop classification at large scales that com-
pares the differences in seasonal variations in the vegetation
index of a target crop with those of other crop types and nat-
ural vegetation. The original DTW method was developed
for speech recognition and then employed for phenology-
based classification using time series satellite images (Sakoe
and Chiba, 1978; Petitjean et al., 2012; Petitjean and We-
ber, 2014). However, the DTW neglects the temporal ranges
when searching the best alignment between two time se-
ries. Maus et al. (2016) proposed a time-weighted ver-
sion of the DTW method (TWDTW) by adding a temporal
weight that accounts for the seasonality of crops into the
DTW method to balance shape matching and phenological
changes. The TWDTW method performed well in identify-
ing winter wheat, crops, and forest with limited training data
(Maus et al., 2016; Belgiu and Csillik, 2018; Manabe et al.,
2018; Dong et al., 2020a).

Brazil is the world’s largest sugarcane production country
and contributed to 37.6 % of the world’s total harvest area in
2019, followed by India (18.9 %), Thailand (6.9 %), China
(5.3 %), Pakistan (3.9 %), and Mexico (3.9 %) (FAOSTAT,
2020). Sugarcane in Brazil is mainly located in the south-
central and northeast areas. Sugarcane is a semi-perennial
crop. Its life cycle begins with the planting of a stem cutting
and grows for approximately 12 months or 12–18 months
depending on the season, variety, and region of planting
(Rudorff et al., 2010). Generally, in the south-central area,
sugarcane can be harvested from April to December, with
a harvesting season spanning 9 months. In the northeast ar-
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eas, sugarcane can be harvested from September to April in
the next year with a harvesting season spanning 8 months.
The flexible phenology and harvest conditions of sugarcane
in Brazil make it difficult to identify the harvest area at large
scales, particularly at state to country scales. In this study,
based on Landsat and Sentinel-2 satellite data, we proposed
a phenology-based method by incorporating multiple pheno-
logical conditions of sugarcane into the TWDTW method to
automatically identify the harvest area of sugarcane in Brazil
at a spatial resolution of 30 m from 2016 to 2019.

2 Data and methods

2.1 Study area

In Brazil, sugarcane is mainly located in the south-central
and northeast regions, particularly in the state of São Paulo.
In our study, we mapped the harvest area of sugarcane in
14 states in Brazil, including São Paulo (SP, accounting for
55.1 % of the harvest area in Brazil), Goiás (GO, 9.5 %), Mi-
nas Gerais (MG, 9.2 %), Mato Grosso do Sul (MS, 6.8 %),
Paraná (PR, 6.1 %), Mato Grosso (MT, 2.8 %), Bahia (BA,
0.7 %), Rio de Janeiro (RJ, 0.5 %), and Espírito Santo (ES,
0.4 %) in south-central Brazil, and Alagoas (AL, 2.8 %), Per-
nambuco (PE, 2.4 %), Paraíba (PB, 1.0 %), Rio Grande do
Norte (RN, 0.6 %), and Sergipe (SE, 0.4 %) in northeast
Brazil (Fig. 1). The mapped areas constitute over 98 % of
the Brazilian sugarcane harvest area.

2.2 Datasets

2.2.1 Satellite data

In this study, all the available Landsat-7, Landsat-8, and
Sentinel-2 reflectance data from July 2015 to February 2020
were used to generate 16 d composite 30 m normalized dif-
ference vegetation index (NDVI) series at the Google Earth
Engine (GEE) platform. Landsat-7 and Landsat-8 data had a
30 m spatial resolution and a 16 d temporal resolution. The
quality band BQA was used to remove pixels contaminated
by clouds. The Sentinel-2 data had a 10 m spatial resolution
and a 5 d temporal resolution. The quality band QA60 was
used to remove pixels contaminated by clouds. NDVI was
computed using the reflectance data from the near-infrared
band (ρNIR) and red band (ρRED):

NDVI=
ρNIR− ρRED

ρNIR+ ρRED
. (1)

The cloud-free frequencies of the 16 d composite NDVI in a
year for each pixel are shown in Fig. 2. For 2018 and 2019,
most of the pixels had more than 20 good observations. For
2016 and 2017, the pixels with more than 20 good obser-
vations were fewer, while most of the pixels had more than
18 good observations (Fig. 2). To reconstruct the near-real-
time temporal profile of the 16 d NDVI, we filled the gaps

in NDVI time series using a linear interpolation method and
then filtered the NDVI curves.

2.2.2 Sample data

The sample data used for calibration and validation in this
study were mainly obtained based on the high-resolution
images from Google Earth. We selected the samples for
sugarcane and non-sugarcane according to the following
rules. First, we selected the samples for sugarcane or non-
sugarcane using visual interpretations according to colour
and textures of the images from Google Earth. As shown in
Fig. 3a, sugarcane exhibits unique colour and textures on the
high-resolution images from Google Earth. Sugarcane has
coarser surface than most of the crops and smoother surface
than forest or trees in the growing season, which can be used
to separate sugarcane from these types. Second, we cross-
checked and confirmed each of these samples using its NDVI
time series. Sugarcane has a long life cycle ranging from 12
to 18 months (Rudorff et al., 2010), which is longer than most
crops (Fig. 3b). And the sharply decreased NDVI in sugar-
cane harvest period can separate sugarcane from forest and
pasture (Fig. 3b). We only used the samples which can sat-
isfy the above two criteria. Finally, we collected in total 2909
samples with 1393 for sugarcane and 1516 for non-sugarcane
in the year 2018 (Fig. 1).

2.2.3 Agricultural statistical data

The agricultural statistical data for the sugarcane harvest
area were derived from the Municipal Agricultural Produc-
tion (PAM) provided by the Brazilian Institute of Geography
and Statistics (Instituto Brasileiro de Geografia e Estatística
– IBGE; https://www.ibge.gov.br, last access: 10 May 2020).
The PAM was carried out yearly across the entire country
with the statistical data at the Brazil, major region, federa-
tion unit, mesoregion, microregion, and municipality levels.
It provides information related to the plant area and harvest
area, production and average yield, and average price in the
reference year for 64 agricultural products. In our study, we
used the harvest area from 14 major sugarcane planted states
at the federation unit, mesoregion, microregion, and munici-
pality levels from 2016 to 2018 (the boundary lines of these
regions are shown in Fig. 4).

2.3 Methods

In this study, we employed a phenology-based method,
namely the TWDTW method, to identify the harvest area of
sugarcane in Brazil. The workflow was as follows: (1) pre-
processing of the satellite dataset (i.e. Landsat-7, Landsat-8,
and Sentinel-2) to obtain the 16 d composite NDVI series,
including low-quality data removal (e.g. the elimination of
clouds, cloud shadows, and Landsat 7 ETM+ Scan Line Cor-
rector (SLC-off) gaps), NDVI compositing, NDVI gap fill-
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Figure 1. Study areas in Brazil for sugarcane harvest area identification, including nine states in south-central Brazil (i.e. São Paulo, Goiás,
Minas Gerais, Mato Grosso do Sul, Paraná, Mato Grosso, Bahia, Rio de Janeiro, and Espírito Santo) and five states in northeast Brazil (i.e.
Alagoas, Pernambuco, Paraíba, Rio Grande do Norte, and Sergipe), which account for over 98 % of the sugarcane harvest area in Brazil. The
dots represent the samples used for validation. The administrative boundary data were derived from the Brazilian Institute of Geography and
Statistics (Instituto Brasileiro de Geografia e Estatística – IBGE; http://www.ibge.gov.br, last access: 4 May 2020).

ing, and data filtering; (2) extraction of the standard NDVI
curves of sugarcane in Brazil; (3) model development and
sugarcane harvest area identification in Brazil based on the
TWDTW method; and (4) assessment of the mapping accu-
racy of the Brazil sugarcane harvest area.

2.3.1 Time-weighted dynamic time warping (TWDTW)
method

TWDTW is a time-weighted version of the DTW method for
land use and land cover classification (Belgiu and Csillik,
2018; Dong et al., 2020a). The DTW works by comparing
the similarity between two sequences, such as the unknown
sequence (Y ) and target sequence (X), through warping the
unknown sequence (Y ) to search for their optimal path and
obtain their minimum distance, namely the similarity (dis-
similarity) (Petitjean et al., 2012; Petitjean and Weber, 2014).
The TWDTW method adds a temporal cost accounting for
the phase difference between the two time series to the min-

imum distance (Maus et al., 2016). The TWDTW algorithm
includes three steps in land use classification and identifi-
cation: (1) generate the standard curve of a selected index
(e.g. NDVI) for several crops or a single crop (e.g. sugar-
cane), based on time series images and field sample training
data; (2) find the best alignment, and generate the dissimilar-
ities (TWDTW distances) between unknown curves of NDVI
time series (i.e. the NDVI curves of the unknown pixels) and
the standard NDVI curve of sugarcane; (3) identify the un-
known pixels based on the TWDTW distance; in this process
pixels with low distance indicate high similarity and a high
probability of being associated with the specified class (i.e.
sugarcane).

2.3.2 Employing the TWDTW method for sugarcane
mapping

The workflow for employing the TWDTW method for sug-
arcane harvest area mapping is shown in Fig. 5. The growing
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Figure 2. Times of good observations for the 16 d composite satellite data over a year. Left: number of good observations in 2018. Right:
area percentages of the number of good observations for each state from 2016–2019. The administrative boundary data were obtained from
the IBGE.

period of sugarcane can be separated into four phases: the
germination, tillering, grand growth, and ripening, and the
NDVI values vary in different growing phases (Fig. 6).

1. Germination phase. Sugarcane begins to germinate ap-
proximately 15–30 d after planting. The NDVI starts to
increase in this period.

2. Tillering phase. The tillering phase starts after approx-
imately 2 months of germination, and tillers emerge
from the base of the mother shoot to form 5–10 stalks.
The NDVI increases quickly in this period.

3. Grand growth phase. This phase spans a period of ap-
proximately 4–10 months after planting. The NDVI
peaks during this period.

4. Ripening and harvesting phase. In this phase, the NDVI
starts to decrease, and the moisture content in sugarcane
drastically drops.

From planting until the first cut, the crop is called planted
sugarcane, and the growth cycle lasts between 12 and
18 months depending on the season, variety, and region of
planting. After the first harvest, ratoon sugarcane is har-
vested yearly with a normal cycle of 12 months for a pe-
riod of approximately 5 to 7 years or more (Rudorff et
al., 2010). Although planted sugarcane and ratoon sugar-
cane have different-length growing cycles, they share sim-

ilar NDVI curves from the grand growth to harvest phases
(red symbols in Fig. 6), which can be used as the stan-
dard seasonal curve for harvest area mapping. In Fig. 6, the
standard NDVI curves for sugarcane were generated by ran-
domly selecting 50 sugarcane samples across Brazil from the
field data in 2018 (Sect. 2.2.2) and calculating their aver-
aged NDVI values in the same growing period. The standard
NDVI curves were produced as follows: (1) randomly select-
ing 50 sugarcane samples across Brazil from the samples,
(2) extracting their NDVI curves from the 16 d composited
NDVI time series in the 2018/2019 crop year, (3) adjusting
the timeline of each NDVI curve by moving forward or back
to ensure all the 50 NDVI curves are generally in the same
growing period, and (4) calculating their averaged NDVI val-
ues to obtain the standard NDVI curves (Fig. 6).

Sugarcane in Brazil covers an extensive harvesting pe-
riod (Rudorff et al., 2010). In the south-central area (includ-
ing São Paulo, Goiás, Minas Gerais, Mato Grosso do Sul,
Paraná, Mato Grosso, Bahia, Rio de Janeiro, and Espírito
Santo), sugarcane is often harvested from April to December,
with a harvesting season spanning 9 months. In the northeast
area (including Alagoas, Pernambuco, Paraíba, Rio Grande
do Norte, and Sergipe), sugarcane is harvested from Septem-
ber to April in the next year, with a harvesting season span-
ning 8 months. According to the phenology of sugarcane in
the south-central and northeast areas, Fig. 7 shows the possi-
ble standard NDVI curves (these NDVI curves were repeated
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Figure 3. Examples of the (a) colour and textures on the high-resolution images from © Google Earth and (b) time series of NDVI for
different vegetation.

Figure 4. The administrative boundaries for (a) municipalities, (b) microregions, and (c) mesoregions. The boundary lines at the municipality
and state levels were downloaded directly from the IBGE, and we aggregated the municipalities into microregions and mesoregions according
to the regions in PAM denoted by the IBGE.

from the standard NDVI curve for sugarcane, as denoted by
the red symbols and line in Fig. 6) for sugarcane in south-
central and northeast Brazil. In this study, we incorporate the
flexible phenological and harvest conditions of sugarcane in
Brazil into the TWDTW method as follows.

1. Calculate the dissimilarities (TWDTW distances). For
each year from 2016–2019, we calculated all the “dis-

tance” values for each unknown pixel by comparing its
NDVI time series with the standard NDVI curves of
sugarcane (Fig. 7) based on the TWDTW method. In
this process, we can obtain 13 distance values corre-
sponding to the 13 standard NDVI curves in Fig. 7 for
each pixel, and we selected the minimum value of the
distance as the final distance value for each pixel.
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Figure 5. The workflow by employing the TWDTW method for
sugarcane harvest area mapping.

Figure 6. Growing stages of sugarcane and the respective NDVI
changes. The grey and red symbols represent the NDVI curve for
the planted sugarcane with a 12–18-month cycle, and the blue and
red symbols represent the NDVI curve for the ratoon sugarcane with
a 12-month cycle. The growing stages of the 12-month cycle sug-
arcane (germination, tillering, grand growth, and ripening) are la-
belled in the figure.

2. Remove the influence of other vegetation with similar
NDVI changes to sugarcane harvesting period, such as
the Brazilian Cerrado biomes and pasture. In the Brazil-
ian Cerrado, some vegetation types (such as grassland,
shrubland, woodland, and deciduous forest) exhibited
low NDVI values from the end of the drought season
to the beginning of the rainy season (August to Octo-
ber), which is similar to the sugarcane harvesting prac-
tice. However, the “difference” in NDVI between the
growing season and non-growing season for these veg-
etation types was lower than that for sugarcane (Fer-
reira and Huete, 2004; Mueller et al., 2015). There-
fore, we used the NDVI difference as another supple-
ment criterion to further separate sugarcane from the
aforementioned vegetation types across the states re-
lated to the Brazilian Cerrado (i.e. São Paulo, Goiás,
Minas Gerais, Mato Grosso do Sul, Mato Grosso, and

Bahia). The difference between the maximum NDVI
value in sugarcane growing season (NDVImax: mean
value of the two maximum NDVI in the growing sea-
son) and the minimum NDVI value in sugarcane non-
growing season (NDVImin: mean value of the two min-
imum NDVI in the non-growing season) was calculated
for each pixel in these states (Fig. 7). From the statistics
of 50 randomly selected sugarcane samples, we found
the difference for sugarcane is mostly greater than 0.31.
Therefore, we set the pixels with values of difference
less than 0.31 as non-sugarcane. Additionally, pasture,
which has similar temporal–spectral behaviour to sug-
arcane (Xavier et al., 2006), was further removed using
the pasture maps (overall accuracy of 87 %) produced
by Parente et al. (2017). Across all the 14 studied states,
pixels consecutively labelled as pasture on the pasture
maps from 2016 to 2019 were set as non-sugarcane.

3. Identify sugarcane harvest area to produce the sugar-
cane maps. We used the agricultural statistical harvest
area for sugarcane at the state level to determine the dis-
tance threshold. A pixel with a distance value lower than
the distance threshold was considered a “sugarcane”
pixel, and the total area of all sugarcane pixels should
be equal to the statistical harvest area of sugarcane in
the investigated state. In our study, municipalities with
small areas of planted sugarcane (less than 1000 ha or
less than 1 % of the total sugarcane area in the inves-
tigated state) were identified separately to improve the
identification accuracy of the entire investigated state.

2.3.3 Accuracy assessment

In this study, we first assessed the identification accuracy
using the selected sugarcane and non-sugarcane samples
based on the high-resolution images from Google Earth
(Sect. 2.2.2). The producer’s accuracy (PA), user’s accuracy
(UA), and overall accuracy (OA) were used for validation.
The producer’s accuracy (PA) is the percentage of surveyed
reference samples correctly identified as the target class; the
user’s accuracy (UA) is the percentage of surveyed reference
samples identified as the target class on the classification map
actually confirmed by field surveys; and the overall accu-
racy (OA) is the ratio of correctly classified samples to all
the samples. Additionally, we calculated the sugarcane har-
vest area on the map in different administrative regions and
compared them with agricultural statistical data at the munic-
ipality, microregion, and mesoregion levels. The coefficient
of determination (R2) and RMAE (relative mean absolute er-
ror) between the statistical harvest area and the estimated har-
vest area were adopted to assess the map accuracy. The MAE
(mean absolute error) can be expressed as

MAE=
1
n

∑n

i=1

∣∣∣Si − Ŝi∣∣∣ , (2)
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Table 1. Confusion matrix of the sugarcane harvest map for the 14 states in Brazil in 2018.

State Reference Map Producer’s User’s Overall
accuracy accuracy accuracy

Sugarcane Non-sugarcane

South-central São Paulo (SP) Sugarcane 259 24 91.52 % 94.53 %
94.46 %

Non-sugarcane 15 406 96.44 % 94.42 %

Goiás (GO) Sugarcane 171 18 90.48 % 93.96 %
93.38 %

Non-sugarcane 11 238 95.58 % 92.97 %

Minas Gerais (MG) Sugarcane 92 17 84.40 % 92.00 %
87.37 %

Non-sugarcane 8 81 91.01 % 82.65 %

Mato Grosso do Sul (MS) Sugarcane 81 9 90.00 % 97.59 %
94.44 %

Non-sugarcane 2 106 98.15 % 92.17 %

Paraná (PR) Sugarcane 77 16 82.80 % 90.59 %
91.84 %

Non-sugarcane 8 193 96.02 % 92.34 %

Mato Grosso (MT) Sugarcane 79 19 80.61 % 94.05 %
87.88 %

Non-sugarcane 5 95 95.00 % 83.33 %

Bahia (BA) Sugarcane 56 11 83.58 % 98.25 %
89.29 %

Non-sugarcane 1 44 97.78 % 80.00 %

Rio de Janeiro (RJ) Sugarcane 76 8 90.48 % 97.44 %
92.65 %

Non-sugarcane 2 50 96.15 % 86.21 %

Espírito Santo (ES) Sugarcane 61 11 84.72 % 96.83 %
88.50 %

Non-sugarcane 2 39 95.12 % 78.00 %

Northeast Alagoas (AL) Sugarcane 53 8 86.89 % 96.36 %
90.29 %

Non-sugarcane 2 40 95.24 % 83.33 %

Pernambuco (PE) Sugarcane 52 9 85.25 % 94.55 %
89.09 %

Non-sugarcane 3 46 93.88 % 83.64 %

Paraíba (PB) Sugarcane 43 12 78.18 % 91.49 %
83.51 %

Non-sugarcane 4 38 90.48 % 76.00 %

Rio Grande do Norte (RN) Sugarcane 40 5 88.89 % 86.96 %
87.50 %

Non-sugarcane 6 37 86.05 % 88.10 %

Sergipe (SE) Sugarcane 29 7 80.56 % 96.67 %
88.57 %

Non-sugarcane 1 33 97.06 % 82.50 %

where Si and Ŝi are the statistical area and identified area for
the ith administrative region, respectively. n is the number of
the administrative regions with valid statistical data. RMAE
is the value of MAE relative to the mean value of the statisti-
cal area for all the n administrative regions:

RMAE=
MAE∑n
i=1Si/n

. (3)

3 Results

Annual cultivation maps of sugarcane in the 14 states of
Brazil from 2016 to 2019 were produced using the TWDTW
method (taking 2018 as an example in Fig. 8). The val-
idation demonstrated good performance of the proposed

method in identifying sugarcane harvest area in 2018. To
show the detailed information of the sugarcane maps pro-
duced in our study, we selected four typical areas in differ-
ent states to zoom in on and compared the related sugar-
cane maps with high-resolution images from Google Earth
(Fig. 9). In general, the sugarcane maps captured the de-
lineation of fields well, despite some noise. What is more,
the sugarcane maps can exhibit detailed information, such
as small parcels, roads, and ridges between the fields. Based
on the 2859 samples derived from Google Earth in 2018,
the user’s, producer’s, and overall accuracies were 94.35 %,
87.07 %, and 91.47 % in Brazil, respectively. The perfor-
mance of the method varied by state and region. For all
the 14 studied states, the overall accuracy (OA) varied from
83.51 % to 94.46 %, with the user’s accuracy (UA) ranging
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Figure 7. Seasonal changes in the NDVI series for sugarcane in south-central and northeast Brazil. The grey areas are the periods used
to calculate the difference between the maximum NDVI value in the growing season (NDVImax) and the minimum NDVI value in the
non-growing season (NDVImin).

Figure 8. Sugarcane harvest map for the 14 studied states in Brazil
in 2018. The administrative boundary data were obtained from the
IBGE.

from 86.96 % to 98.25 % and producer’s accuracy (PA) rang-
ing from 78.18 % to 91.52 % for sugarcane and the user’s
accuracy (UA) ranging from 76.00 % to 94.42 % and pro-
ducer’s accuracy (PA) ranging from 86.05 % to 98.15 % for
non-sugarcane (Table 1). São Paulo, the state with the largest
planted area of sugarcane (accounting for over 50 % of the
sugarcane in Brazil), displayed high user’s, producer’s, and
overall accuracies of 94.53 %, 91.52 %, and 94.46 %, respec-
tively. Goiás, the state with the second-largest planted area
of sugarcane (accounting for approximately 10 % of the sug-
arcane in Brazil), had high user’s, producer’s, and overall ac-
curacies of 93.96 %, 90.48 %, and 93.38 %, respectively. All
the investigated states exhibited overall accuracy (OA) over
83 % (Table 1).

Additionally, the proposed method can accurately estimate
the sugarcane harvest area compared with the agricultural
statistical data at different administrative levels. The esti-
mated harvest area of sugarcane in 2018 exhibited good cor-
relations with the agricultural statistical area data derived
from PAM at the municipality, microregion, and mesore-
gion levels. The coefficients of determination (R2) were
0.88 (N = 3637), 0.96 (N = 369), and 0.99 (N = 87) at
the municipality, microregion, and mesoregion levels, re-
spectively, and the respective RMAEs were 34.0 % (MAE=
0.09× 104 ha), 20.5 % (MAE= 0.55× 104 ha), and 13.7 %
(MAE= 1.55× 104 ha) (Fig. 10). The performance was bet-
ter when the validated regions were aggregated to larger ar-
eas, namely the accuracy from low to high was at the munic-
ipality, microregion, and mesoregion levels.

The correlations between the agricultural statistical and
the estimated harvest areas varied by state and region. At the
municipality level, the coefficient of determination (R2) be-
tween the agricultural statistical and the estimated harvest ar-
eas ranged from 0.62 to 0.98 in south-central Brazil and from
0.85 to 0.89 in northeast Brazil (Figs. 11–12); the RMAE
ranged from 18.8 % to 64.5 % in south-central Brazil and
from 38.8 % to 53.2 % in northeast Brazil (Figs. 11; 13). At
the microregion level, the R2 between the agricultural sta-
tistical and the estimated harvest areas ranged from 0.67 to
1 in south-central Brazil and from 0.70 to 1 in northeast
Brazil (Fig. 12); the RMAE ranged from 14.2 % to 60.5 %
in south-central Brazil and from 7.7 % to 46.6 % in northeast
Brazil (Fig. 13). At the mesoregion level, the R2 between the
agricultural statistical and the estimated harvest areas ranged
from 0.43 to 1 in south-central Brazil and from 0.99 to 1
in northeast Brazil (Fig. 12); the RMAE ranged from 1.7 %
to 58.1 % in south-central Brazil and from 3.1 % to 22.6 %
in northeast Brazil (Fig. 13). Validation at all three levels
showed high performance, with high R2 and slope close to
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Figure 9. Zoomed-in view of (a1)–(d1) high-resolution images from © Google Earth and (a2)–(d2) presence (red) and absence (white) of
sugarcane on the harvest maps in 2018 for the typical area A–D in Fig. 8.

Figure 10. Comparisons between the agricultural statistical harvest area and the estimated harvest area of sugarcane at the municipality,
microregion, and mesoregion levels in Brazil in 2018. “N” and “mean” represent the number and mean value of all the valid statistical data
in each figure, respectively.

1. In general, Mato Grosso and Bahia in the northern part
of south-central Brazil and Sergipe in the southern part of
northeastern Brazil displayed lower R2 and higher RMAE
values (Figs. 11–13). The performance for São Paulo and
Goiás was higher than that for most other states, except Rio
de Janeiro (Figs. 11–13). Finally, we assessed the capability
of the method and standard seasonal changes in NDVI (i.e.
standard NDVI curves) acquired from a single year (2018)
to apply them to other years (2016 and 2017). Results indi-

cated the R2 and RMAE values for the period of 2016–2018
changed little in most states (Figs. 12–13).

4 Discussion

As the largest global producer of sugarcane, Brazil con-
tributed to approximately 38.6 % of the world’s sugarcane
production in 2019 and played an important role in retaining
the global demand for sugarcane (FAOSTAT, 2020). The cul-
tivation area of sugarcane in Brazil has increased by approx-
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Figure 11. Comparisons between the agricultural statistical harvest area and the estimated harvest area of sugarcane at the municipality level
for the 14 states in 2018. “N” and “mean” represent the number and mean value of all the valid statistical data in each figure, respectively.

imately 11 % over the past 10 years according to census data
(FAOSTAT, 2020), which indicated substantial land cover
changes and important feedback to regional climate systems
(Loarie et al., 2011; Mello et al., 2014; Jaiswal et al., 2017).
The first harvest area map of sugarcane in Brazil at a 30 m
spatial resolution was generated only for São Paulo state for
the 2003/2004 crop year based on an automatic image classi-
fication method (Rudorff et al., 2005). Subsequently, the cul-
tivation map of sugarcane was updated using visual/manual
image interpretation through 2013, and the coverage of the
map extended from São Paulo state to a total of eight states
in the south-central region of Brazil, accounting for 88 % of
the sugarcane cultivation area in Brazil, as reported by the
Canasat Project (Rudorff et al., 2010). Souza et al. (2020) re-
constructed annual land use and land cover information at a
30 m spatial resolution from 1985–2017 for Brazil based on

the random forest method and Landsat data trained by plenty
of samples selected from existing land cover maps, which
provides the cultivation map of sugarcane belonging to a sub-
class of agriculture (the producer’s and user’s accuracies for
agriculture were 83.3 % and of 81.3 %, respectively). How-
ever, these prevailing methods strongly require a large vol-
ume of training samples, which makes it difficult to update
annually at large scales.

In this study, we proposed a phenology-based sugarcane
classification method by incorporating multiple phenologi-
cal conditions of sugarcane into the TWDTW method. Then,
we identified the harvest area of sugarcane with a spatial
resolution of 30 m in Brazil from 2016 to 2019 using 16 d
composite NDVI series derived from Landsat-7, Landsat-
8, and Sentinel-2 data. Our proposed method can automat-
ically identify the sugarcane areas with limited training data
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Figure 12. Comparisons between the agricultural statistical harvest area and the estimated harvest area of sugarcane (R2 and slope) at the
(a–b) municipality, (c–d) microregion, and (e–f) mesoregion levels from 2016–2018.

and needs only one standard NDVI curve (Fig. 6) for all
the 14 sugarcane planted states in Brazil. Validations against
field sample data and agricultural statistical area data showed
that the generated sugarcane harvest maps had high accu-
racy. For example, validations for 2018 displayed the user’s,
producer’s, and overall accuracies of 94.35 %, 87.07 %, and
91.47 % in Brazil, respectively.

Although our method can effectively and accurately iden-
tify the sugarcane harvest area from the regional to national
or continental scales, there are still several potential uncer-
tainties in the identification process. First, because of the
quality of the processed NDVI series, the speckle “salt-and-
pepper” effect/noise exist in some areas of the harvest map.
According to the map statistics in 2018, sugarcane patches
with only 1 pixel account for 0.7 % (São Paulo) to 9.1 %
(Espírito Santo) of the sugarcane area (Fig. 14). In the fu-
ture, the object-based identification by segmenting images
into homogeneous objects, instead of the pixel-based method
used in our study, may alleviate the salt-and-pepper effect
and improve the identification performance (Belgiu and Csil-
lik, 2018).

Second, the identification accuracy for Bahia state was
lower than that for other states. Because of the different har-
vest seasons in south-central and northeast Brazil, we iden-

tified sugarcane in the south-central and northeast areas us-
ing different phenological characteristics and standard curve
combinations (Fig. 7). Bahia is a transition state between
south-central and northeast Brazil. Namely, sugarcane in
southern Bahia has a harvest season similar to that in south-
central Brazil, and sugarcane in northern Bahia has a harvest
season similar to that in northeast Brazil. In our study, we
treated Bahia as a state in south-central Brazil with a harvest
season from April to December (Fig. 7), which may intro-
duce errors to the identification in the northern part of Bahia.

Third, Mato Grosso state exhibited a lower R2 and higher
RMAE than other states when comparing the identified sug-
arcane harvest area with the agricultural statistical sugar-
cane harvest area. Two major biomes are located in Mato
Grosso, including the humid tropical forests of the Amazon
in the north and the heterogeneous Cerrado area (a tropi-
cal savanna) in the south-central part of the state (Kastens
et al., 2017). In Mato Grosso, sugarcane may be misclassi-
fied with some kinds of grassland, grazing areas, or seasonal
forest, which exhibit phenological changes similar to those
of sugarcane (Mueller et al., 2015; Bendini et al., 2019). The
NDVI values of these vegetation types decrease between Au-
gust and October (from the end of the drought season to the
beginning of the rainy season) and increase thereafter (Fer-
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Figure 13. Comparisons between the agricultural statistical harvest area and the estimated harvest area of sugarcane (MAE and RMAE) at
the (a–b) municipality, (c–d) microregion, and (e–f) mesoregion levels from 2016–2018.

Figure 14. Statistics for patches with different pixel numbers in the sugarcane harvest map for the 14 states in Brazil in 2018.

reira and Huete, 2004), which is quite similar to that in the
harvesting stage of sugarcane, resulting in misclassification
with the sugarcane harvested from August to October. In our
study, we used the difference between the maximum NDVI
value in the growing season and the minimum NDVI value
in the non-growing season (see method in Sect. 2.3.2) to al-
leviate the misclassification at some extent because the dif-
ference for the above-mentioned vegetation types is gener-
ally lower than that for sugarcane (Ferreira and Huete, 2004).

In the future, incorporating more complex spectral-temporal
variability metrics, such as the combination of more spectral
information instead of NDVI and a longer time window with
several harvest seasons instead of one harvest season, may
help improve model performance (Mueller et al., 2015).
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5 Data availability

The 30 m Brazil sugarcane harvest area
dataset from 2016–2019 is available at
https://doi.org/10.6084/m9.figshare.14213909 (Zheng et
al., 2021). The dataset is provided in .tif format with pixel
values of 1 for sugarcane and 0 for non-sugarcane.

6 Conclusions

Brazil is the world’s largest sugarcane producer and con-
tributes to approximately 38.6 % of total global sugarcane
production. Based on the available Landsat-7, Landsat-8, and
Sentinel-2 optical images, we produced sugarcane harvest
maps with a 30 m spatial resolution (2016–2019) by incor-
porating multiple phenological conditions of sugarcane in
Brazil into the TWDTW method. The proposed method can
automatically identify sugarcane harvest area with limited
training sample data. Based on 2859 samples derived from
Google Earth, the validation experiment reflected high ac-
curacy across the 14 sugarcane planted states in Brazil in
2018, with the user’s, producer’s, and overall accuracies of
94.35 %, 87.07 %, and 91.47 %, respectively. Additionally,
the identified harvest area of sugarcane exhibited a good
correlation with the agricultural statistical area data derived
from PAM at the municipality, microregion, and mesoregion
levels. The maps can be used to monitor the harvest area and
yield of sugarcane and evaluate the feedback of sugarcane to
regional climate.
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