Articles | Volume 13, issue 8
Earth Syst. Sci. Data, 13, 3907–3925, 2021
https://doi.org/10.5194/essd-13-3907-2021
Earth Syst. Sci. Data, 13, 3907–3925, 2021
https://doi.org/10.5194/essd-13-3907-2021
Data description paper
11 Aug 2021
Data description paper | 11 Aug 2021

The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019

Jie Yang and Xin Huang

Related authors

Mapping 10-m global impervious surface area (GISA-10m) using multi-source geospatial data
Xin Huang, Jie Yang, Wenrui Wang, and Zhengrong Liu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-458,https://doi.org/10.5194/essd-2021-458, 2022
Preprint under review for ESSD
Short summary

Related subject area

Data, Algorithms, and Models
HomogWS-se: a century-long homogenized dataset of near-surface wind speed observations since 1925 rescued in Sweden
Chunlüe Zhou, Cesar Azorin-Molina, Erik Engström, Lorenzo Minola, Lennart Wern, Sverker Hellström, Jessika Lönn, and Deliang Chen
Earth Syst. Sci. Data, 14, 2167–2177, https://doi.org/10.5194/essd-14-2167-2022,https://doi.org/10.5194/essd-14-2167-2022, 2022
Short summary
Mapping long-term and high-resolution global gridded photosynthetically active radiation using the ISCCP H-series cloud product and reanalysis data
Wenjun Tang, Jun Qin, Kun Yang, Yaozhi Jiang, and Weihao Pan
Earth Syst. Sci. Data, 14, 2007–2019, https://doi.org/10.5194/essd-14-2007-2022,https://doi.org/10.5194/essd-14-2007-2022, 2022
Short summary
Description of the China global Merged Surface Temperature version 2.0
Wenbin Sun, Yang Yang, Liya Chao, Wenjie Dong, Boyin Huang, Phil Jones, and Qingxiang Li
Earth Syst. Sci. Data, 14, 1677–1693, https://doi.org/10.5194/essd-14-1677-2022,https://doi.org/10.5194/essd-14-1677-2022, 2022
Short summary
TimeSpec4LULC: a global multispectral time series database for training LULC mapping models with machine learning
Rohaifa Khaldi, Domingo Alcaraz-Segura, Emilio Guirado, Yassir Benhammou, Abdellatif El Afia, Francisco Herrera, and Siham Tabik
Earth Syst. Sci. Data, 14, 1377–1411, https://doi.org/10.5194/essd-14-1377-2022,https://doi.org/10.5194/essd-14-1377-2022, 2022
Short summary
Hyperspectral reflectance spectra of floating matters derived from Hyperspectral Imager for the Coastal Ocean (HICO) observations
Chuanmin Hu
Earth Syst. Sci. Data, 14, 1183–1192, https://doi.org/10.5194/essd-14-1183-2022,https://doi.org/10.5194/essd-14-1183-2022, 2022
Short summary

Cited articles

Azzari, G. and Lobell, D. B.: Landsat-based classification in the cloud: An opportunity for a paradigm shift in land cover monitoring, Remote Sens. Environ., 202, 64–74, https://doi.org/10.1016/j.rse.2017.05.025, 2017. 
Bauer, E. and Kohavi, R.: Empirical comparison of voting classification algorithms: bagging, boosting, and variants, Mach. Learn., 36, 105–139, https://doi.org/10.1023/a:1007515423169, 1999. 
Belgiu, M. and Drăgu, L.: Random forest in remote sensing: A review of applications and future directions, ISPRS J. Photogramm. Remote Sens., 114, 24–31, https://doi.org/10.1016/j.isprsjprs.2016.01.011, 2016. 
Bontemps, S., Defourny, P., Radoux, J., Van Bogaert, E., Lamarche, C., Achard, F., Mayaux, P., Boettcher, M., Brockmann, C., Kirches, G., Zülkhe, M., Kalogirou, V., and Arino, O.: Consistent global land cover maps for climate modeling communities: Current achievements of the ESA's land cover CCI, in: ESA Living Planet Symposium, vol. 2013, 9–13, available at: https://ftp.space.dtu.dk/pub/Ioana/papers/s274_2bont.pdf (last access: 6 August 2021), 2013. 
Chen, J., Chen, J., Liao, A., Cao, X., Chen, L., Chen, X., He, C., Han, G., Peng, S., Lu, M., Zhang, W., Tong, X., and Mills, J.: Global land cover mapping at 30 m resolution: A POK-based operational approach, ISPRS J. Photogramm. Remote Sens., 103, 7–27, https://doi.org/10.1016/j.isprsjprs.2014.09.002, 2015. 
Download
Short summary
We produce the 30 m annual China land cover dataset (CLCD), with an accuracy reaching 79.31 %. Trends and patterns of land cover changes during 1985 and 2019 were revealed, such as expansion of impervious surface (+148.71 %) and water (+18.39 %), decrease in cropland (−4.85 %) and increase in forest (+4.34 %). The CLCD generally reflected the rapid urbanization and a series of ecological projects in China and revealed the anthropogenic implications on LC under the condition of climate change.