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Abstract. Land cover (LC) determines the energy exchange, water and carbon cycle between Earth’s spheres.
Accurate LC information is a fundamental parameter for the environment and climate studies. Considering that
the LC in China has been altered dramatically with the economic development in the past few decades, se-
quential and fine-scale LC monitoring is in urgent need. However, currently, fine-resolution annual LC dataset
produced by the observational images is generally unavailable for China due to the lack of sufficient training
samples and computational capabilities. To deal with this issue, we produced the first Landsat-derived annual
China land cover dataset (CLCD) on the Google Earth Engine (GEE) platform, which contains 30 m annual
LC and its dynamics in China from 1990 to 2019. We first collected the training samples by combining stable
samples extracted from China’s land-use/cover datasets (CLUDs) and visually interpreted samples from satellite
time-series data, Google Earth and Google Maps. Using 335 709 Landsat images on the GEE, several temporal
metrics were constructed and fed to the random forest classifier to obtain classification results. We then proposed
a post-processing method incorporating spatial–temporal filtering and logical reasoning to further improve the
spatial–temporal consistency of CLCD. Finally, the overall accuracy of CLCD reached 79.31 % based on 5463
visually interpreted samples. A further assessment based on 5131 third-party test samples showed that the overall
accuracy of CLCD outperforms that of MCD12Q1, ESACCI_LC, FROM_GLC and GlobeLand30. Besides, we
intercompared the CLCD with several Landsat-derived thematic products, which exhibited good consistencies
with the Global Forest Change, the Global Surface Water, and three impervious surface products. Based on the
CLCD, the trends and patterns of China’s LC changes during 1985 and 2019 were revealed, such as expan-
sion of impervious surface (+148.71 %) and water (+18.39 %), decrease in cropland (−4.85 %) and grassland
(−3.29 %), and increase in forest (+4.34 %). In general, CLCD reflected the rapid urbanization and a series of
ecological projects (e.g. Gain for Green) in China and revealed the anthropogenic implications on LC under the
condition of climate change, signifying its potential application in the global change research. The CLCD dataset
introduced in this article is freely available at https://doi.org/10.5281/zenodo.4417810 (Yang and Huang, 2021).

1 Introduction

Land cover (LC) is an essential component of the Earth sys-
tem and closely connects the biosphere, atmosphere and hy-
drosphere. It is usually divided into a range of hierarchi-
cal categories, each providing unique habitats and determin-
ing the energy exchange, water balances and carbon cycling
(Gómez et al., 2016; Houghton et al., 2012; Tang, 2020;

Wulder et al., 2018). LC is important for land surface pro-
cess simulation and is a key variable for environment and
ecology models (Schewe et al., 2019; Wulder et al., 2018).
In addition, as human settlements sprawled rapidly over the
past few decades (Goldewijk, 2001), more demands stressed
the terrestrial ecosystem goods and services (Friedl et al.,
2010). Consequently, anthropogenic activities have signifi-
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cant implications on LC, water cycling, air quality, food sup-
ply and biodiversity (Leng et al., 2015; Li et al., 2020a; Xiao
et al., 2018). Accurate and timely LC information is there-
fore immensely important for climate and environment stud-
ies (Herold et al., 2006; Yang et al., 2019), food security
(Yang et al., 2020b), sustainable development (Dewan and
Yamaguchi, 2009) and resource management (Goetz et al.,
2003).

Satellite remote-sensing promotes an efficient LC moni-
toring by gathering long-term and high-resolution Earth ob-
servation (EO) data through orbiting platforms. So far, there
have been a lot of studies focusing on LC mapping using
satellite data. For example, Sulla-Menashe et al. (2019) used
the STEP (System for Terrestrial Ecosystem Parameteriza-
tion) global training set and long-term Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) data to provide
annual LC maps that span 2001–2018 (MCD12Q1, 500 m).
Besides, the European Space Agency Climate Change Ini-
tiative (ESACCI) made an effort to monitor global LC
(ESACCI_LC, 300 m) based on multi-source EO data and
machine learning (Defourny et al., 2017). More recently,
Liu et al. (2020) produced an annual global LC product for
1982–2015 using 5 km GLASS (Global Land Surface Satel-
lite) data. Although these LC products have wide temporal
span, their spatial resolution is relatively coarse, which is not
sufficient for fine-scale LC monitoring. Furthermore, the un-
certainty inherent in LC maps from coarse-resolution data
may hinder our understanding on the time-series LC dynam-
ics (Sulla-Menashe et al., 2019).

Recently, the free availability and accessibility of high-
resolution EO data (e.g. Landsat) (Woodcock et al., 2008)
has enabled fine-scale LC monitoring at a large-scale. In a pi-
oneering effort, Gong et al. (2013) generated the first global
30 m LC map, FROM_GLC (finer resolution observation and
monitoring of global land cover), based on Landsat images
and 91 433 visually interpreted training samples. More re-
cently, Gong et al. (2019) used training samples derived from
the FROM_GLC and multi-temporal Sentinel-2 images to
produce a 10 m global LC map for 2017. More recently,
Zhang et al. (2020) combined the Global Spatial Temporal
Spectra Library and Landsat time series to map 30 global LC
types for 2015. However, due to the massive volume of data
and the difficulties in obtaining multi-temporal training sam-
ples, high-resolution annual or continuous time-series LC
products at large-scale have rarely been investigated in the
current literature. Specifically, Liu et al. (2014) generated a
30 m LC product (China’s land-use/cover datasets, CLUDs)
via human–computer interactive interpretation of Landsat
images, which documented LC of China from 1980s to 2015
at an interval of 5 years. However, annual LC information
is not available for CLUDs due to the tremendous workload
and intensive resources involved.

For the past few decades, rapid economic development and
population growth has brought about notable implications on
LC in China (Yao and Zhang, 2001). Meanwhile, China has

implemented a series of ecological projects since the 1980s,
such as Gain for Green and Red Lines of Cropland (a pol-
icy that China’s cropland should be no less than 120 mil-
lion hectares), which have played an important role in LC
changes (Lü et al., 2013; Yin and Yin, 2010). In addition,
the climate changes such as frequent precipitation extremes
and temperature fluctuations also influenced the LC change
of China (Lutz et al., 2014; Zhai et al., 1999). Besides, in the
recent decades, rapid urbanization has triggered significant
loss of cropland and water. In this context, an annual high-
resolution LC product would give us essential insights into
both anthropogenic influences and natural changes and help
policymakers to implement informed and sustainable man-
agement.

In summary, high-resolution annual LC maps for China
are still absent. To address this issue, in this research, we pro-
duce the annual China land cover dataset (CLCD), which to
the best of our knowledge is the first Landsat-derived annual
LC product of China from 1990 to 2019. To achieve this, we
first automatically derived samples from CLUDs and incor-
porated them with our visually interpreted samples to obtain
multi-temporal training samples. On the other hand, in recent
years, the Google Earth Engine has empowered a paradigm
shift from traditional per-scene analysis to per-pixel analy-
sis, which enables us to obtain large-scale pixel-wise im-
age composites (Azzari and Lobell, 2017). Therefore, us-
ing all available Landsat images (335 709) on the GEE, we
calculated a set of spectral, phenological and topographical
metrics via pixel-wise temporal composite. Subsequently, we
generated CLCD by combining multi-temporal training sam-
ples, Landsat-derived temporal metrics and a random forest
(RF) classifier. Besides, to enable the LC change monitor-
ing backdate to 1985, we generated a LC map for 1985 as
a supplement to the CLCD. Lastly, a spatial–temporal post-
processing method involving the spatial–temporal filter and
logical reasoning was proposed to ensure the consistency of
CLCD. The accuracy of CLCD was validated by two open-
source test sets and a visually interpreted test set. In addition,
we performed inter-comparison with thematic-class products
(i.e. water, forest and impervious surface) to better reflect the
quality of CLCD. Based on CLCD, we further analysed the
trend of LC changes and conversions in China over the past
four decades.

2 Data

2.1 Satellite data

Landsat satellites have been collecting 30 m EO data since
the launch of Landsat 5 in 1984, which has been widely rec-
ognized as ideal data sources for high-resolution and large-
scale LC monitoring. Thus, based on all available Landsat
surface reflectance (SR) data on the GEE, we calculated in-
put features including spectrum, phenology and topography.
Clouds and cloud shadows in the SR data were identified
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and removed by the CFmask algorithm (Zhu and Wood-
cock, 2012). The systematic atmospheric and terrain correc-
tion have been conducted for Landsat SR data from all the
sensors, i.e. the Thematic Mapper (TM), the Enhanced The-
matic Mapper Plus (ETM+) and the Operational Land Im-
ager (OLI), by the United States Geological Survey (USGS).
However, given the inconsistent band widths between differ-
ent Landsat sensors, we used only Landsat 8 OLI data for the
CLCD after 2013 and combined TM and ETM+ data before
2013 in view of the good spectral consistency between the
two sensors (Micijevic et al., 2016). Due to the uneven spa-
tial coverage of Landsat 5 data in China before 1990 (Pekel
et al., 2016), we used all images captured before 1990 to gen-
erate the CLCD for the nominal year of 1985 and the CLCD
after 1990 was produced annually.

In addition, slope and aspect were computed from the
Shuttle Radar Topography Mission (SRTM) data to better
reflect topographic changes and detect the LCs growing on
steep slopes. Geographic coordinates (i.e. latitude and longi-
tude) were also selected as input data, considering that the
distribution of LCs is related to their geographic location.

2.2 China’s land-use/cover datasets

China’s land-use/cover datasets (CLUDs) documented de-
tailed LC in China for 1980s, 1990, 1995, 2000, 2005, 2010
and 2015. CLUDs were produced by human–computer inter-
action interpretation of Landsat images, consisting of 6 level-
1 classes (cropland, forest, grassland, water, built-up area and
barren) and 25 level-2 classes (Liu et al., 2003, 2014). As-
sessed via field survey, the overall accuracy of CLUDs was
reported to be higher than 94.3 % for level-1 classes and more
than 91.2 % for level-2 classes (Liu et al., 2014). Although
CLUDs were provided at a 5-year interval, its unchanged
area can be used as potential training samples. In this study,
we therefore proposed to automatically collect training sam-
ples via CLUDs data for our 30 m annual LC mapping.

2.3 Third-party validation samples

In addition to the visually interpreted test samples (see
Sect. 3.5), we employed two third-party test sample sets to
comprehensively validate the quality of CLCD. The first was
Geo-Wiki (Fritz et al., 2017), which was a crowdsourced test
set covering 10 major LCs (Table S1). Based on the qual-
ity flag, we selected 3000 “sure” and “quite sure” Geo-Wiki
samples located in China. The other was the Global Land
Cover Validation Sample Set (GLCVSS) (Zhao et al., 2014),
which followed a random sampling strategy to ensure even
distribution of test samples at a global scale. The classifica-
tion system of the GLCVSS was the same with FROM_GLC
(Table S1). We selected 2131 GLCVSS samples covering
China to assess the accuracy of CLCD.

2.4 Existing annual LC products

We intercompared the CLCD with the MCD12Q1 and
ESACCI_LC to better reflect its quality. The MODIS land
cover product (MCD12Q1) in Collection 6 was obtained us-
ing a supervised classification method (Sulla-Menashe et al.,
2019), which provided global LC from 2001 to 2018 at 500 m
resolution. Considering the comparability with the CLCD,
the International Geosphere-Biosphere Programme (IGBP)
layer in MCD12Q1 was selected and remapped to the CLCD
classification system (Table S1). The ESACCI_LC was pro-
duced via the GlobCover unsupervised classification chain
and multi-source EO data (Bontemps et al., 2013), which
documented 300 m global LC during 1992–2018. Likewise,
we remapped the class label of ESACCI_LC (Table S1) to
facilitate the inter-comparison.

3 Method

This study was aimed at developing the CLCD dataset, and
the processing chain included generation of training and test
samples, construction of annual input features, classifica-
tion and spatial–temporal consistency check, and accuracy
assessment and product inter-comparison (Fig. 1). The pro-
cedure was implemented on the GEE platform, which en-
abled us to perform pixel-wise analysis and freed us from
data download and management (Gorelick et al., 2017). Pub-
lic data on the GEE, such as Landsat and MODIS, provided
long-term Earth observations that helped us composite tem-
poral metrics and collect samples for training and validation.
Finally, the accuracy of CLCD was evaluated by the visually
interpreted independent samples and the third-party test sam-
ples. In particular, we intercompared CLCD with the current
state-of-the-art 30 m thematic products including impervious
surface area (ISA), surface water and forest to comprehen-
sively assess the quality of CLCD.

3.1 Classification system

Considering the LC distribution in China (Liu et al., 2018),
we defined a classification system including nine major LCs:
cropland, forest, shrub, grassland, water, snow and ice, bar-
ren, impervious, and wetland. This classification system is
similar to that of FROM_GLC (Gong et al., 2013) and can
be conveniently remapped to the FAO (Food and Agriculture
Organization) and IGBP systems.

3.2 Input features

The input features to the RF classifier were calculated in
terms of spectrum, spectral index, phenology and geographic
location (Table 1). Firstly, based on all available Landsat SR
within a target year, we calculated the 50th percentile value
for each spectral band. Given that spectral indexes can effec-
tively enhance the difference among different LCs (Li et al.,
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Figure 1. The flow chart to generate the CLCD (annual China land cover dataset).

2019), we computed eight spectral indexes to improve the
discrimination ability of LC (Table 1). The spectral indexes
were mainly constructed by two short-wave infrared (SWIR)
bands (e.g. band 5 and 7 for Landsat 5), since SWIR bands
have better capability of atmospheric transmission. Besides,
as suggested by Li et al., (2020b), to better distinguish be-
tween vegetation and non-vegetation, the spectral values of
Landsat images corresponding to the maximum NDVI (nor-
malized difference vegetation index) (Tucker, 1979) were in-
cluded in the spectral features (e.g. Blue_NDVIMax in Ta-
ble 1), and these spectral values were also used to calculate
the aforementioned spectral indexes. Considering the spec-
tral features of different LCs (e.g. vegetation, water) varied
throughout the year, we also calculated the standard devia-
tion of these spectral indexes, e.g. NDVI, MNDWI (modified
normalized difference water index) (Xu, 2006) and NDBI
(normalized difference built-up index) (Zha et al., 2003), to
further highlight the phenological information. In summary,
36 features were obtained, including 12 spectral bands, 16
normalized spectral indices, 3 temporal statistics, 3 topo-
graphic features and 2 geographical coordinates (Table 1).
This approach of using all available images enabled us to
(1) reduce the dimension of input features while preserv-
ing temporal information and (2) minimize the effects from
clouds, shadows or other disturbance.

3.3 Training sample generation

In the case of supervised large-scale LC mapping, accu-
rate and adequate training samples are immensely essential
(Foody and Arora, 1997; Foody and Mathur, 2004). Usually,
the strategies of training sample collection for a large-scale
mapping task include (1) visually interpreted samples and
(2) samples automatically derived from existing LC products

(Zhang et al., 2021). The visual interpretation method can ob-
tain high-quality samples but require intensive human labour,
whereas the automatic sample extraction via existing LC
products has the potential for generating a mass of randomly
distributed samples, but the sample quality is related to the
products used (Jokar Arsanjani et al., 2016; Wessels et al.,
2016). Accordingly, the aforementioned two methods were
both used to collect training samples in this study. Firstly,
given that CLUDs yielded an overall accuracy over 90 % and
has been used in a number of studies (Liu et al., 2014), it
was considered as a source of training samples. Specifically,
we selected the regions with stable LC throughout all periods
of CLUDs (i.e. 1980s, 1990, 1995, 2000, 2005, 2010, 2015)
to further ensure the reliability of samples. In such a way,
we obtained a candidate sample pool of China. Then, the
study area was divided into 1665 hexagons with 0.5◦ sides
(Fig. 2a), and 20 points were randomly generated within each
grid to ensure their spatial distribution and diversity. Finally,
a total of 27 000 training samples were randomly selected.

Gong et al. (2019) has demonstrated that it is possible to
use training samples of circa 2015 to classify the LC map
of 2017. However, given that CLUDs were not available af-
ter 2015, we manually interpreted 2200 unchanged sites over
the entire study period (i.e. 1985–2019) to further ensure the
accuracy of the long time-series products. For manual inter-
pretation, we referred to Google Earth high-resolution im-
ages, MODIS EVI (enhanced vegetation index) and NDVI
time series, and Landsat images and their NDVI time series.
Specifically, we first checked the Landsat NDVI time series
(1985–2019) and the MODIS EVI/NDVI time series (2001–
2019) for a candidate sample site. If its NDVI time-series
curves were stable (Fig. 3a), the site was regarded as un-
changed, and its LC label was then determined via Google
Earth images and Landsat images. In particular, for the sites
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Table 1. The explanatory table of features used for CLCD mapping∗.

Type Features Description Resolution Dimension Source

Spectrum Red, green, blue, NIR,
SWIR1 & SWIR2;
Blue_NDVIMax,
Green_NDVIMax,
Red_NDVIMax,
NIR_NDVIMax,
SWIR1_NDVIMax,
SWIR2_NDVIMax;

50th percentile value of surface reflectance derived
from all available images within a study period, and
surface reflectance of the Landsat image with the
maximum NDVI

30 m 6× 2 Landsat

Spectral in-
dices

Index1, Index2, Index3,
Index4, Index5, Index6,
Index7, Index8;
Index1_NDVIMax,
Index2_NDVIMax,
Index3_NDVIMax,
Index4_ NDVIMax,
Index5_NDVIMax,
Index6_NDVIMax,
Index7_NDVIMax,
Index8_ NDVIMax;

Normalized indices derived from the corresponding
spectral bands. The indices are calculated as
Index1= (SWIR2−NIR) / (SWIR2+ NIR);
Index2= (SWIR2− red) / (SWIR2+ red);
Index3= (SWIR2− green) / (SWIR2+ green);
Index4= (SWIR2−SWIR1) / (SWIR2+SWIR1);
Index5= (SWIR1−NIR) / (SWIR1+NIR);
Index6= (SWIR1− red) / (SWIR1+ red);
Index7= (SWIR1− green) / (SWIR1+ green);
Index8= (NIR− red) / (NIR+ red)

30 m 8× 2 Landsat

Temporal
statistics

NDVI_StdDev,
MNDWI_StdDev,
NDBI_StdDev;

Standard deviation of NDVI, MNDWI and NDBI 30 m 3 Landsat

Topography Elevation, slope and as-
pect

Slope and aspect calculated from the SRTM elevation 30 m 3 SRTM

Location Latitude and longitude Longitude and latitude at each pixel 30 m 2 N/A

∗ Red, green, blue, NIR, SWIR1 and SWIR2 represent the Landsat data in visible band, near-infrared band and short-wave band, respectively. NDVI, MNDWI and NDBI are
abbreviations for the normalized difference vegetation index, the modified normalized difference water index and the normalized difference built-up index, respectively.

Figure 2. Spatial distribution of visually interpreted training and test samples. The proportions of each land cover class were shown in the
inner graphs.
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Figure 3. An example of auxiliary data used to interpret the training samples, including Landsat NDVI time series, MODIS NDVI and EVI
time series, Landsat images, Google Earth images, and Google Maps photos. The red dot represents a sample site located at 42.541067◦ N,
117.146569◦ E.

where Google Maps photos or photo spheres were available,
these photos were also used to interpret the LC labels. Taking
the red dot in Fig. 3 for instance, its NDVI time-series fea-
tures were stable (Fig. 3a), signifying that it was unchanged
and was hence regarded as a potential sample site. It is dif-
ficult to determine whether it is bare soil or withered grass-
land even in high-resolution Google Earth images, owing to
the sample point’s relatively smooth texture. In this case, by
courtesy of the Google Maps photo sphere, we were able to
interpret the actual LC label (i.e. grassland) (Fig. 3b). In to-
tal, we selected and interpreted 2200 sites, accounting for
18 000 Landsat pixels. Combined with the aforementioned
automatically generated training samples from the CLUDs,
we finally collected 45 000 training samples in total (Fig. 2a),
which were used in the annual classifications.

3.4 Classification and spatial–temporal consistency

The random forest (RF) classifier is commonly used for
large-scale LC mapping (e.g. Belgiu and Drăgu, 2016; Zhang
and Roy, 2017; Zhang et al., 2020) due to a number of advan-
tages, such as the ability to handle high-dimensional data, the
tolerance to sample errors and the robustness to missing data
(Bauer and Kohavi, 1999; Wulder et al., 2018). Therefore,
RF classifier was used to generate the CLCD. The number of
trees was set to 200 (Liu et al., 2020a). Based on the train-
ing samples, classifiers were trained by input features con-
structed via Landsat SR from the target year as well as two

adjacent years, and the preliminary classification results were
obtained by the trained RF classifiers.

To further ensure the accuracy and reliability of the
classification results, we proposed a spatial–temporal post-
processing method, consisting of a spatial–temporal filter
and logical reasoning, to refine the time-series mapping re-
sults. This method leveraged spatial–temporal context as
well as the prior knowledge to suppress the illogical LC con-
versions. Such errors were usually induced by misclassifica-
tions (Wehmann and Liu, 2015). Firstly, the spatial–temporal
filter was carried out within a 3×3×3 spatial–temporal win-
dow (Li et al., 2015). Specifically, for pixel i with a LC label
Li,t in year t , if the label of i in pervious year (i.e. Li,t−1) was
not equal to Li,t , a LC conversion may take place. In this sit-
uation, we further checked the spatial–temporal consistency
probability Pi,t of pixel i using the following equation:

Pi,t =
1
N

[∑t+2
t

∑x+1
x−1

∑y+1
y−1

I (Li,t = Lj )
]
, (1)

where Lj denotes the LC label for pixels in the current
window and N represents the total number of pixels (i.e.
N = 27). I (Li,t = Lj ) is the indicator function, i.e. I = 1
if Li,t equals to Lj and I = 0 otherwise. Besides, x and y

indicate the location of i. A higher Pi,t value signifies the LC
conversion, but a lower Pi,t value may correspond to a classi-
fication error. Here we set a simple rule to check whether the
LC change takes place: if the value of Pi,t is greater than 0.5,
the label of the pixel in year t is considered changed. A value
of Pi,t less than 0.5 corresponds to an incorrect classification,
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and hence the label of this pixel is actually not changed. In
such a case, Li,t should be corrected as Li,t−1. In addition,
the CLCD followed the assumption that a LC change should
last for more than 2 years (Defourny et al., 2017).

On the other hand, we defined a logical reasoning method
via a transition matrix (Table S2) to suppress illogical LC
conversions. For example, it is not likely for a pixel to change
from barren to cropland within a year. The matrix was in-
spired by He et al. (2017), but was modified according to the
LC changes in China over the past four decades. For instance,
China has built many reservoirs in the past 30 years (Li et al.,
2018), leading to a mass of cropland covered by water. Thus,
conversion from cropland to water should be considered.

3.5 Accuracy assessment

In order to assess the accuracy of CLCD, three independent
test sets covering the whole China were used: (1) two third-
party test sets (i.e. Geo-Wiki and GLCVSS) and (2) a visu-
ally interpreted test set (5463 in total) for seven years (i.e.
2017, 2012, 2007, 2002, 1997, 1992, 1985), with each year
containing around 750 samples. To ensure their random dis-
tribution, the visually interpreted points were sampled fol-
lowing the same sampling strategy as the training sample se-
lection (Fig. 2b). Likewise, the Google Earth images, Land-
sat images and MODIS EVI time series were used for the
interpretation. The spatial distribution of the visually inter-
preted test samples was shown in Fig. 2, where the bars repre-
sented the proportions of each LC for different years. Finally,
the accuracy of CLCD was assessed by confusion matrixes,
including producer’s accuracy (PA), user’s accuracy (UA),
overall accuracy (OA) and F1 score. The F1 score conveys
the balance between PA and UA and is calculated as

F1= 2
PA×UA

(PA+UA)
× 100%. (2)

3.6 Datasets inter-comparison

In addition to the existing annual LC products (i.e.
MCD12Q1 and ESACCI_LC), the CLCD was also compared
with several Landsat-derived thematic datasets for more
comprehensive quality evaluation. Specifically, with respect
to some dynamic LCs (i.e. impervious surfaces, forests and
surface water), we intercompared the CLCD with the Global
Forest Change (GFC) (Hansen et al., 2013), Global Impervi-
ous Surface Area (GISA) (Xin et al., 2021), Global Artificial
Impervious Area (GAIA) (Gong et al., 2020), Global An-
nual Urban Dynamics (GAUD) (Liu et al., 2020b) and the
Global Surface Water (GSW) (Pekel et al., 2016) datasets.
For the GSW dataset, over 3 million Landsat images were
used to map global surface water from 1985 to 2015, with PA
more than 95 % and UA over 99 % (Pekel et al., 2016). The
GFC data depicted global forest changes from 2000 to 2013
using 30 m Landsat data (Hansen et al., 2013). The GISA,

GAIA and GAUD were Landsat-derived annual ISA (or ur-
ban) products for periods 1972–2019, 1985–2018 and 1985–
2015, respectively. Specifically, as suggested by Zhang et al.,
(2020), the aforementioned thematic products were aggre-
gated within the spatial grid of 0.05◦× 0.05◦ to obtain the
area fraction and the scatterplot and linear regression with
the correlation coefficient (R2) and root mean square error
(RMSE) quantitative metrics, which were used to demon-
strate their agreement.

4 Results and discussion

4.1 Accuracy assessment of CLCD

Based on all available Landsat SR data on the GEE, we
generated the annual China land cover dataset (CLCD).
The accuracy of CLCD was first assessed via visu-
ally interpreted independent samples (Tables S3–S9).
Overall, the accuracy of CLCD was stable and satis-
factory (76.45 % < OA < 82.51 %), with average OA of
79.30 %± 1.99 % (Fig. 5i). For each category, water
achieved the highest average F1 score (87.06 %± 7.07 %),
followed by the forest (85.49 %± 1.30 %), snow/ice
(83.51 %± 7.99 %) and barren (81.85 %± 4.15 %) classes.
The accuracy was relatively high for grassland and imper-
vious area, with a mean F1 score over 72 %. In addition,
CLCD outperformed MCD12Q1 and ESACCI_LC in terms
of OA in all the years (Tables S10–S19). For the LCs with a
relatively large proportion in area, such as cropland, forest
and grassland, CLCD also exhibited better and more stable
F1 scores with respect to the MCD12Q1 and ESACCI_LC
(Fig. 5).

To better validate the accuracy of CLCD, we used the
Geo-Wiki samples to intercompare the CLCD, FROM_GLC,
MCD12Q1 and ESACCI_LC. The first global 30 m LC
data were from FROM_GLC (Gong et al., 2013). Here we
adopted its second-generation product, which was gener-
ated using Landsat images acquired from 2013 to 2015 (Li
et al., 2017). Overall, the CLCD possessed a better OA of
54.57 % against the ESACCI_LC (50.87 %), the MCD12Q1
(51.97 %) and the FROM_GLC (49.23 %), respectively (Ta-
bles S20–S23). Specifically, CLCD achieved better accuracy
than FROM_GLC in most LCs and showed similar perfor-
mance for the impervious area (Table 2).

We also compared the accuracy of different products (i.e.
CLCD, GlobeLand30, MCD12Q1 and ESACCI_LC) using
the GLCVSS sample set. In particular, GlobeLand30 was
also included for comparison to our CLCD. GlobeLand30
was a 30 m global LC dataset for 2001 and 2010, pro-
duced using a pixel–object-knowledge approach (Chen et al.,
2015). We used GlobeLand30 in the year of 2010 for the
comparison. It was found that the CLCD obtained the highest
accuracy of 65.64 %, outperforming ESACCI_LC (57.16 %),
the MCD12Q1 (61.66 %) and GlobeLand30 (63.12 %), re-
spectively (Tables S24–S27). Although the UA or PA of
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Figure 4. Annual China land cover dataset (CLCD) for 1985, 1999, 2009 and 2019.

Table 2. Comparison of mapping accuracy based on Geo-Wiki test samples for ESACCI_LC, MCD12Q1, FROM_GLC and CLCD∗.

Geo-Wiki

Cropland Forest Shrub Grassland Water Snow/ice Barren Impervious OA (%)

CLCD PA (%) 73.66 72.68 43.48 15.95 37.84 80.95 56.96 48.96 54.57

UA (%) 77.73 85.24 2.82 48.28 63.64 18.89 8.91 66.20

F1 (%) 75.64 78.46 5.30 23.98 47.46 30.63 15.41 56.29

MCD12Q1 PA (%) 79.16 67.58 16.67 15.37 50.00 100 52.34 57.89 51.97

UA (%) 64.56 87.22 0.28 51.72 36.36 7.78 13.27 61.97

F1 (%) 71.12 76.15 0.55 23.70 42.10 14.44 21.17 59.86

ESACCI_LC PA (%) 54.66 79.07 0.00 15.54 53.57 85.71 61.54 75.00 50.87

UA (%) 86.56 69.05 0.00 43.79 68.18 13.33 7.92 67.61

F1(%) 67.01 73.72 0.00 22.94 60.00 23.07 14.03 71.11

FROM_GLC PA (%) 73.56 64.46 13.89 14.40 23.21 77.78 62.41 62.50 49.23

UA (%) 48.75 81.50 1.41 45.17 59.09 7.78 34.85 49.30

F1 (%) 58.64 71.99 2.56 21.84 33.33 14.15 44.73 55.12

∗ PA, UA and OA are abbreviations for the producer’s accuracy, user’s accuracy and overall accuracy respectively. The F1 represents the harmonic mean of the PA and
the UA.
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Figure 5. F1 score and overall accuracy for ESACCI_LC, MCD12Q1 and CLCD based on visually interpreted test samples.

CLCD did not always outperform that of other products,
CLCD achieved the highest F1 scores in nearly all the LCs
(Table 3).

We calculated the confusion matrix for CLCD without
spatial–temporal filtering. It was indicated that the overall
accuracy of CLCD without the spatial–temporal filtering was
dropped by 0.71 compared to that with spatial–temporal fil-
tering (Tables S28 and S29). This showed the effectiveness
of our proposed post-processing method.

In summary, CLCD achieved higher OA with respect
to the existing LC products (i.e. MCD12Q1, ESACCI_LC,
FROM_GLC and GlobeLand30), based on the visually in-
terpreted and third-party samples. In addition, the tempo-
ral coverage of CLCD spans 35 years (1985–2019), which
exceeds the ESACCI_LC (1992–2018) and the MCD12Q1
(2001–2018).

Figure 6. The correlation coefficients of the ISA fraction between
CLCD and three thematic datasets for each year. ISA fraction was
aggregated within the 0.05◦ by 0.05◦ spatial grid.

4.2 Inter-comparison with existing 30 m thematic
products

4.2.1 Comparison with ISA

The impervious surface area (ISA), as the consequence of ur-
banization, has rapidly sprawled in the past few decades and
had significant implications on regional ecological changes
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Table 3. Comparison of mapping accuracy based on GLCVSS (Global Land Cover Validation Sample Set) test samples for ESACCI_LC,
MCD12Q1, GlobeLand30 and CLCD∗.

GLCVSS

Cropland Forest Shrub Grassland Water Snow/ice Barren Impervious OA (%)

CLCD PA (%) 64.52 79.47 0.00 33.83 72.73 94.44 91.26 64.29 65.46
UA (%) 78.43 88.65 0.00 72.70 64.00 21.25 53.29 52.94
F1 (%) 70.80 83.81 0.00 46.17 68.09 34.69 67.29 58.07

MCD12Q1 PA (%) 61.76 69.74 0.00 32.26 88.89 72.73 88.93 45.45 61.66
UA (%) 58.82 84.34 0.00 70.92 32.00 10.00 59.33 29.41
F1 (%) 60.25 76.35 0.00 44.35 47.06 17.58 71.18 35.71

ESACCI_LC PA (%) 46.82 81.54 18.18 28.36 80.00 85.71 92.76 71.43 57.16
UA (%) 84.59 68.30 2.50 62.06 48.00 15.00 46.44 39.22
F1(%) 60.28 74.34 4.40 38.93 60.00 25.53 61.89 50.64

GlobeLand30 PA (%) 62.33 79.80 15.38 32.67 100 75.00 89.71 62.79 63.12
UA (%) 79.27 77.30 2.50 75.18 40.00 18.75 53.83 52.94
F1 (%) 69.79 78.53 4.30 45.55 57.14 30.00 67.29 57.45

∗ PA, UA and OA are abbreviations for the producer’s accuracy, user’s accuracy and overall accuracy respectively. The F1 represents the harmonic mean of the PA and
UA.

(Goldewijk, 2001). In view of the fast urbanization in China,
the accuracy of CLCD can be validated by the accuracy
of ISA. Thereby, we compared the ISA of CLCD (CLCD-
ISA) with the existing well-known 30 m annual ISA prod-
ucts (i.e. GISA, GAUD, GAIA). We first calculated ISA frac-
tions within the 0.05◦× 0.05◦ spatial grid for each year and
estimated the correlation coefficients between CLCD-ISA
and the three thematic datasets to quantitatively demonstrate
their agreement. Overall, the CLCD-ISA showed good con-
sistency with the existing ISA products (0.51 < R2 < 0.83),
indicating the reliability of our CLCD products (Fig. 6).
Although good agreement has been found between CLCD-
ISA and other products in most years, the correlation be-
tween CLCD-ISA and GAUD in 1995 was only 0.53. This
was probably subject to the underestimations of villages in
GAUD during early years since GAUD focused on the ur-
ban areas. It can be seen in Fig. 7 that CLCD-ISA and GISA
were generally similar, while GAIA and GAUD had a little
omission over the North China Plain where villages gather.

4.2.2 Comparison with forest change

We further compared the forest in CLCD (CLCD-forest)
with the Global Forest Change (GFC) data from Hansen et
al. (2013) to demonstrate the accuracy of CLCD. The GFC
data (v1.7) included forest cover as fraction (2000), for-
est gain (2001–2019 as total) and year of forest loss. Since
the year of forest gain was unavailable, we selected the ar-
eas with forest cover greater than 30 % as forest to obtain
the 2000 and 2019 forest map, as suggested by Taubert et
al. (2018). Based on the above forest maps, the forest frac-
tion was aggregated within the 0.05◦× 0.05◦ spatial grid. It
was found that CLCD-forest showed relatively high agree-

ment with the GFC (0.84 < R2 < 0.87), signifying the reli-
ability of CLCD. Additionally, as can be seen in the Fig. 9,
the spatial distribution of CLCD-forest was generally similar
to the GFC data.

4.2.3 Comparison with surface water

Surface water in China has changed dramatically over the
past decades due to comprehensive implications of human
activities and climate changes (Lutz et al., 2014; Yang et
al., 2020a). Therefore we assessed the quality of the CLCD
dataset through inter-comparison of the Global Surface Wa-
ter (GSW) (Pekel et al., 2016). The GSW (v1.2) data were the
first 30 m dataset that documented the monthly persistence
and existence of surface water from 1985 to 2018. It should
be noted that CLCD used the annual median reflectance (i.e.
50th percentile), and hence its water extent (CLCD-water)
was close to the average annual water extent. The GSW, on
the other hand, had a denser temporal sequence (monthly).
Accordingly, to facilitate the inter-comparison, we obtained
GSW average annual water extent based on the intra-annual
water occurrence (Yang et al., 2020a). In this manner, we se-
lected GSW and CLCD-water in 1995, 2005 and 2015, and
we calculated the water fraction of the two datasets within
the 0.05◦× 0.05◦ spatial grid. As demonstrated in Fig. 10,
the high consistency (0.86 < R2 < 0.96) was achieved with
two products, indicating the reliability of CLCD.

To better explain the difference of two products in de-
picting water dynamics, we counted the number of water
occurrences from 1985 to 2018. A higher occurrence sig-
nifies permanent water, while a lower occurrence indicates
seasonal or new permanent water. As shown in Fig. 11, the
CLCD-water extent was closely similar to the GSW water
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Figure 7. Comparison between different ISA products over the North China Plain, with close-up maps located in Langfang city
(39.526545◦ N, 116.703692◦ E).

Figure 8. Scatterplots of forest fraction between the CLCD and
GFC in 2000 and 2019. Forest fraction was aggregated within the
0.05◦ by 0.05◦ spatial grid.

extent, which again demonstrated the reliability of CLCD.
However, we noted that GSW captured more seasonal water
(Fig. 11b and d). This was expected, as GSW had a denser
temporal sequence (monthly) than CLCD (annual). Conse-
quently, it is difficult for CLCD to capture short-term fluctu-
ations (e.g. flooding). However, long-term changes caused by
anthropogenic activities, such as reservoir construction, were
accurately observed by CLCD (Fig. 11a and c).

4.3 LC dynamics in China 1985–2019

4.3.1 General temporal trend

Based on the CLCD generated in this study, we analysed the
LC changes in China from 1985–2019 (Fig. 12). The im-
pervious area has unprecedentedly sprawled over the past
35 years, with more than 24.5 million ha in 2019, which was

increased by 1.5 times relatively to that in 1985. In terms
of change in magnitude, the impervious area also exceeded
the rest, with 46.56 % more than the second-ranked for-
est. The area of surface water increased by 2.37 million ha,
78.40 % of which occurred after 1995 when the development
of hydropower was proposed by the Ninth Five-Year Plan
of China (Li et al., 2018). The increasing reservoirs result-
ing from dam construction are one of the reasons that ac-
counted for the surface water extension (Yang et al., 2020a).
Although northeast and northwest China have undergone ex-
tensive reclamation to feed the growing population, crop-
land has generally decreased. In particular, 4.57 % of crop-
land was lost during 1985–2010, but it should be empha-
sized that only 0.03 % was lost after the implementation
of Red Lines of Cropland in 2010 (Xie et al., 2018). Due
to a series of afforestation policies in China, such as the
Three-North Shelterbelt project started in the 1980s and the
Gain for Green project initialized after 2000, the forest had
increased by 4.34 % (10.02 million ha) from 1985 to 2019
(Fig. 12b). The shrub decreased by 2.59 million ha, with sim-
ilar decrease trends found with ESACCI_LC (Fig. 12c and
Liu et al., 2020a). The barren class increased slightly by
0.80 % from 1985 to 2000 but decreased by 2.62 % from
2000 to 2019. The decrease in the barren class may be related
to the ecological project Returning Grazing Land to Grass-
land after 2003 (Xiong et al., 2016). In contrast, grassland
decreased by 2.15 % (6.23 million ha) before 2000 but only
1.16 % (3.28 million ha) from 2000 to 2019 thanks to the im-
plementation of grassland conservation policies such as the
Gain for Green after 2000 (Li et al., 2017). The wetland de-
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Figure 9. Example of 2019 forest maps for CLCD and GFC located at the Lesser Khingan Mountains (47.703792◦ N, 129.388820◦ E).

Figure 10. Scatterplots of surface water fraction between CLCD and GSW in 1995, 2005 and 2015, respectively. Water fraction was
aggregated within the 0.05◦ by 0.05◦ spatial grid.

creased by 0.92 million ha, 91.3 % of which occurred before
2000, which was likely attributed to the extensive reclama-
tion that occurred in the Sanjiang Plain of northeast China
before 2000 (Zhang et al., 2010, 2009).

Compared with ESACCI_LC and MCD12Q1, CLCD
showed generally similar trends. However, it should be no-
ticed that the CLCD detected more surface water and imper-
vious area with respect to two coarse-resolution LC products
(Fig. 12). This was attributed to the discernible resolution
(30 m) of Landsat data, which allow better delineation of rel-
atively small LC patches. Therefore, the 30 m CLCD data are
more applicable in the fine-scale environment and land sur-
face process simulation.

4.3.2 LC conversion patterns

In addition to depicting the temporal trends, CLCD data
can further reveal LC conversions, which are also impor-
tant to global change studies. Therefore, we analysed the
major LC conversions in China from 1985–2019 (Table 5).
Overall, cropland loss accounted for the highest proportion
among all conversions (33.50 %), followed by the grassland
loss (29.55 %). The main conversion directions of cropland

were the impervious area (32.03 %) and forest (35.07 %),
reflecting the unprecedented urbanization process in China
(Fig. 13b and i) and the Gain for Green project (Fig. 13h),
respectively. Grassland (38.35 %) and forest (46.79 %) were
the main sources converted to cropland (Table 4), indicat-
ing the reclamation in the northeast (Fig. 13c) and northwest
China (Fig. 13g and e), respectively. Meanwhile, the inter-
conversion between barren and grassland was also found (Liu
et al., 2020a). Additionally, afforestation was also a major
cause (25.72 %) of grassland loss. A total of 84.36 % of the
impervious area gain came from cropland, which can be seen
in Fig. 4 (e.g. North China Plain and eastern China). A total
of 17.3 % of the water gain stemmed from the barren and
grassland classes (e.g. Fig. 13a), which were closely asso-
ciated with the rapid lake expansion in the Tibetan Plateau.
The accelerated glacier melts and increased precipitation ex-
panded those lakes (Lutz et al., 2014; Song et al., 2014). It
was noteworthy that about 4 % of the impervious area origi-
nated from water (Fig. 13a), while 48.11 % of the water loss
was induced by the reclamation, which has been a common
phenomenon in the middle and lower Yangtze drainage re-
gion (Du et al., 2011). Lake shrinkage caused by the recla-
mation and urban sprawl in such regions has triggered some
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Figure 11. Annual water occurrence (1985–2018) derived from water extent of CLCD and GSW, with close-up maps located in Nierji
Dam (a, c) and Poyang Lake (b, d).

Figure 12. Temporal changes in area of different land covers in China from 1985 to 2019.

problems concerning the water resource management and
flood relief (Hou et al., 2020; Xie et al., 2017). In particu-
lar, Fig. 13j demonstrated the conversion of barren to grass-
land in the Mu Us Desert of Yulin city, where green area
has increased significantly over the past few decades due to

several ecological restoration projects implemented by the
government (Wang et al., 2020; Xiu et al., 2018). Overall,
the CLCD shows great potential to reveal the human impact
on LC changes under the condition of climate change and
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Table 4. Ratio (%) of land cover conversions from 1985 to 2019.

2019

Cropland Forest Shrub Grassland Water Snow Barren Impervious Wetland

1985 Cropland – 11.75 0.25 8.97 1.66 0 0.14 10.73 0
Forest 11.87 – 0.82 0.38 0.06 0 0 0.42 0
Shrub 0.57 2.47 – 0.54 0 0 0 0 0
Grassland 9.73 7.6 0.33 – 0.78 0.21 10.22 0.68 0.04
Water 0.89 0.11 0 0.14 – 0.01 0.18 0.52 0
Snow 0 0.02 0 0.41 0.14 – 1.33 0 0
Barren 1.58 0.01 0 11.06 0.95 0.94 – 0.36 0
Impervious 0.06 0 0 0 0.23 0 0.01 – 0
Wetland 0.67 0.07 0 0.06 0.01 0 0 0.01 –

also demonstrates the promising applications in environment
change studies.

4.4 Limitations and future work

CLCD enables fine-scale annual LC monitoring over China
by combining long-term 30 m Landsat archive and cloud-
based geospatial analysis platform. One of the major limi-
tations to CLCD is the uneven spatial and temporal cover-
age of Landsat 5. As the only operational platform prior to
1999, Landsat 5 had no on-board storage and lost its relay
capability in 1992 (Wulder et al., 2016). Thus, data trans-
mission was limited to the line of sight of the international
receiving stations (Loveland and Dwyer, 2012). Courtesy of
the Landsat Global Archive Consolidation (LGAC) initiative
(Wulder et al., 2016), old acquisitions performed by these
international receiving stations were continuously recovered
to an accessible global archive. Moreover, Landsat 5 fol-
lowed a commercial pre-order acquisition plan before 1990,
which further limited its availability before 1990 (Loveland
and Dwyer, 2012; Pekel et al., 2016). The year of the first
Landsat 5 acquisition in China varies significantly. For in-
stance, the images were generally available over northern
China around 1986 but were not available in the northwest
until 1988 (Fig. S1). Therefore, we used all Landsat SR cap-
tured before 1990 to generate the CLCD of 1985 to minimize
the influence induced by the availability of Landsat 5. As
the Landsat archive enriches through the commissioned plat-
forms (i.e. Landsat 7 and 8) and the LGAC, we will be able to
extend the temporal coverage of the CLCD. In addition, the
Multispectral Scanner System (MSS) on board Landsat 1–5
provides four spectral bands at 60 m spatial resolution. Thus,
future attempts would backdate the LC monitoring to 1970s
by incorporating Landsat MSS. On the other hand, there
are multiple sources of data from platforms orbiting con-
currently with the Landsat satellites. These data can be fur-
ther employed to update and strengthen the CLCD, such as
the Sentinel-2 satellites equipped with red-edge bands (20 m)
and the Sentinel-1 satellites (10 m) that measure the dielec-

tric properties and roughness. The overarching objective of
this research, however, is to generate a long-term annual LC
dataset for China. To this aim, Landsat images are more ap-
propriate due to their fine spatial resolution and long-term
time span.

5 Data availability

The CLCD product generated in this study is available in the
public domain at https://doi.org/10.5281/zenodo.4417810
(Yang and Huang, 2021). The CLUDs were provided
by the Resource and Environment Science and Data
Center (available at https://www.resdc.cn/DOI/doi.aspx?
DOIid=54, last access: 6 August 2021). Landsat SR,
SRTM, GSW(v1.2), GFC(v1.7) and MCD12Q1 were ac-
quired from the Google Earth Engine (available at http:
//code.earthengine.google.com, last access: 6 August 2021).
ESACCI_LC was provided by the European Space Agency
climate office (available at http://climate.esa.int/en/projects/
land-cover, last access: 6 August 2021). Geo-Wiki test sam-
ples were obtained from the reference campaign (avail-
able at https://doi.org/10.1594/PANGAEA.869680, Fritz et
al., 2016). The GlobeLand30 and GAUD were downloaded
from the website of the National Geomatics Center of
China (available at http://www.globallandcover.com/, last ac-
cess: 6 August 2021) and Sun Yat-sen University (available
at https://doi.org/10.6084/m9.figshare.11513178.v1, Huang,
2020). FROM_GLC, GLCVSS and GAIA were assessed
from the Tsinghua University (available at http://data.ess.
tsinghua.edu.cn, last access: 6 August 2021). The GISA was
provided by the Institute of Remote Sensing Information Pro-
cessing at Wuhan University (available at http://irsip.whu.
edu.cn, last access: 6 August 2021).

6 Conclusion

LC is a fundamental parameter for environment and climate
change studies. Rapid economic and population growth in
China over the past few decades has tremendously altered
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Figure 13. Typical land cover changes and conversions observed in China from 1985 to 2019: (a) lake shrinkage in Wuhan city
(30.543703◦ N, 114.296992◦ E); (b) cropland loss due to the urbanization in Shanghai city (31.214542◦ N, 121.490796◦ E); (c) defor-
estation induced by reclamation in northeast China (49.627007◦ N, 125.029041◦ E); and (d) bare land converted to grassland in the
Qira oasis, located at the southern fringe of the Taklamakan Desert (36.237807◦ N, 81.215592◦ E). The illustration is of Landsat im-
ages with false-colour combination (red: NIR, green: red, blue: green) to enhance the grassland; (e) grassland loss due to the reclama-
tion in northwest China (43.575843◦ N, 80.987817◦ E); (f) Siling Co Lake (also known as Siling Lake) expansion in the Tibetan Plateau
(31.793826◦ N, 89.057216◦ E); (g) reclamation in the Aksu Prefecture (40.593062◦ N, 81.048109◦ E); (h) afforestation in Yunnan Province
(26.518645◦ N, 103.613297◦ E); (i) expansion of Chengdu city (30.666955◦ N, 104.068452◦ E); (j) grassland gain in the Mu Us Desert,
Yulin city (38.509526◦ N, 109.660052◦ E).

its land cover (LC). Therefore, sequential and fine-resolution
LC monitoring of China is important to implement informed
and sustainable management. While the LC monitoring via
satellites is increasingly recognized, fine-resolution annual
LC and its dynamics in China via the remote sensing ap-
proach have rarely been investigated in the current liter-
ature. Therefore, to better understand the LC changes in
China, we generated the first Landsat-derived annual China

land cover dataset (CLCD) from 1990–2019 based on the
GEE platform. The CLCD has higher spatial resolution and
longer temporal coverage with regard to the existing annual
LC products (i.e. MCD12Q1 and ESACCI_LC). The over-
all accuracy of CLCD reached 79.31 % based on 5463 in-
dependent test samples. In addition, assessment using 5131
third-party validation samples showed that the overall accu-
racy of CLCD exceeded that of MCD12Q1, ESACCI_LC,
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FROM_GLC and GlobeLand30. The accuracy and reliability
of CLCD was further validated by comparison with Landsat-
derived thematic datasets. The CLCD-based dynamic analy-
sis revealed temporal trends and patterns of LC conversions
in China, such as expansion of impervious surface and wa-
ter, cropland reduction, forest increment, and grassland loss.
We also found several significant LC conversions, such as the
conversion of cropland to forest and the impervious, barren
loss induced by grassland gain, grassland loss caused by the
reclamation and afforestation, and water loss resulting from
cropland sprawl, signifying the rapid urbanization as well as
a series of ecological projects in China.

Annual LC information is important for environmental and
climate change studies. The CLCD provides a fine-scale view
of LC and its long-term changes in China at 30 m resolution.
As there are increasing environment and climate modelling
studies using the annual LC dataset, CLCD can provide an
important reference for national or regional modelling stud-
ies. The CLCD, combined with other data (e.g. water cycle
data), will allow for more comprehensive characterization of
environment and climate changes.
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