Articles | Volume 13, issue 6
https://doi.org/10.5194/essd-13-3013-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-3013-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
AQ-Bench: a benchmark dataset for machine learning on global air quality metrics
Clara Betancourt
Jülich Supercomputing Centre, Jülich Research Centre, Wilhelm-Johnen-Straße, 52425 Jülich, Germany
Timo Stomberg
Jülich Supercomputing Centre, Jülich Research Centre, Wilhelm-Johnen-Straße, 52425 Jülich, Germany
Institute of Geodesy and Geoinformation, University of Bonn, Nußallee 17, 53115 Bonn, Germany
Ribana Roscher
Institute of Geodesy and Geoinformation, University of Bonn, Nußallee 17, 53115 Bonn, Germany
Martin G. Schultz
CORRESPONDING AUTHOR
Jülich Supercomputing Centre, Jülich Research Centre, Wilhelm-Johnen-Straße, 52425 Jülich, Germany
Scarlet Stadtler
Jülich Supercomputing Centre, Jülich Research Centre, Wilhelm-Johnen-Straße, 52425 Jülich, Germany
Related authors
Clara Betancourt, Timo T. Stomberg, Ann-Kathrin Edrich, Ankit Patnala, Martin G. Schultz, Ribana Roscher, Julia Kowalski, and Scarlet Stadtler
Geosci. Model Dev., 15, 4331–4354, https://doi.org/10.5194/gmd-15-4331-2022, https://doi.org/10.5194/gmd-15-4331-2022, 2022
Short summary
Short summary
Ozone is a toxic greenhouse gas with high spatial variability. We present a machine-learning-based ozone-mapping workflow generating a transparent and reliable product. Going beyond standard mapping methods, this work combines explainable machine learning with uncertainty assessment to increase the integrity of the produced map.
Clara Betancourt, Christoph Küppers, Tammarat Piansawan, Uta Sager, Andrea B. Hoyer, Heinz Kaminski, Gerhard Rapp, Astrid C. John, Miriam Küpper, Ulrich Quass, Thomas Kuhlbusch, Jochen Rudolph, Astrid Kiendler-Scharr, and Iulia Gensch
Atmos. Chem. Phys., 21, 5953–5964, https://doi.org/10.5194/acp-21-5953-2021, https://doi.org/10.5194/acp-21-5953-2021, 2021
Short summary
Short summary
For the first time, we included stable isotopes in the Lagrangian particle dispersion model FLEXPART to investigate firewood home heating aerosol. This is an innovative source apportionment methodology since comparison of stable isotope ratio model predictions with observations delivers quantitative understanding of atmospheric processes. The main outcome of this study is that the home heating aerosol in residential areas was not of remote origin.
Biplob Dey, Toke Due Sjøgren, Peeyush Khare, Georgios I. Gkatzelis, Yizhen Wu, Sindhu Vasireddy, Martin Schultz, Alexander Knohl, Riikka Rinnan, Thorsten Hohaus, and Eva Y. Pfannerstill
EGUsphere, https://doi.org/10.5194/egusphere-2025-3779, https://doi.org/10.5194/egusphere-2025-3779, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Trees release reactive gases that affect air quality and climate. We studied how these emissions from European beech and English oak change under realistic scenarios of combined and single heat and ozone stress. Heat increased emissions, while ozone reduced most of them. When stressors were combined, the effects were complex and varied by species. Machine learning identified key stress-related compounds. Our findings show that future tree stress may alter air quality and climate interactions.
Ramiyou Karim Mache, Sabine Schröder, Michael Langguth, Ankit Patnala, and Martin G. Schultz
EGUsphere, https://doi.org/10.5194/egusphere-2025-1399, https://doi.org/10.5194/egusphere-2025-1399, 2025
Short summary
Short summary
The TOAR-classifier model is a data-driven tool that allows for an objective classification of air quality measuring stations as urban, rural, or suburban. Such classification is important in the analysis of air pollutant trends and regional signatures. The model is employed in the second Tropospheric Ozone Assessment Report but can also be used in other research work.
Yugo Kanaya, Roberto Sommariva, Alfonso Saiz-Lopez, Andrea Mazzeo, Theodore K. Koenig, Kaori Kawana, James E. Johnson, Aurélie Colomb, Pierre Tulet, Suzie Molloy, Ian E. Galbally, Rainer Volkamer, Anoop Mahajan, John W. Halfacre, Paul B. Shepson, Julia Schmale, Hélène Angot, Byron Blomquist, Matthew D. Shupe, Detlev Helmig, Junsu Gil, Meehye Lee, Sean C. Coburn, Ivan Ortega, Gao Chen, James Lee, Kenneth C. Aikin, David D. Parrish, John S. Holloway, Thomas B. Ryerson, Ilana B. Pollack, Eric J. Williams, Brian M. Lerner, Andrew J. Weinheimer, Teresa Campos, Frank M. Flocke, J. Ryan Spackman, Ilann Bourgeois, Jeff Peischl, Chelsea R. Thompson, Ralf M. Staebler, Amir A. Aliabadi, Wanmin Gong, Roeland Van Malderen, Anne M. Thompson, Ryan M. Stauffer, Debra E. Kollonige, Juan Carlos Gómez Martin, Masatomo Fujiwara, Katie Read, Matthew Rowlinson, Keiichi Sato, Junichi Kurokawa, Yoko Iwamoto, Fumikazu Taketani, Hisahiro Takashima, Monica Navarro Comas, Marios Panagi, and Martin G. Schultz
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-566, https://doi.org/10.5194/essd-2024-566, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
The first comprehensive dataset of tropospheric ozone over oceans/polar regions is presented, including 77 ship/buoy and 48 aircraft campaign observations (1977–2022, 0–5000 m altitude), supplemented by ozonesonde and surface data. Air masses isolated from land for 72+ hours are systematically selected as essentially oceanic. Among the 11 global regions, they show daytime decreases of 10–16% in the tropics, while near-zero depletions are rare, unlike in the Arctic, implying different mechanisms.
Sebastian H. M. Hickman, Makoto Kelp, Paul T. Griffiths, Kelsey Doerksen, Kazuyuki Miyazaki, Elyse A. Pennington, Gerbrand Koren, Fernando Iglesias-Suarez, Martin G. Schultz, Kai-Lan Chang, Owen R. Cooper, Alexander T. Archibald, Roberto Sommariva, David Carlson, Hantao Wang, J. Jason West, and Zhenze Liu
EGUsphere, https://doi.org/10.5194/egusphere-2024-3739, https://doi.org/10.5194/egusphere-2024-3739, 2025
Short summary
Short summary
Machine learning is being more widely used across environmental and climate science. This work reviews the use of machine learning in tropospheric ozone research, focusing on three main application areas in which significant progress has been made. Common challenges in using machine learning across the three areas are highlighted, and future directions for the field are indicated.
Hantao Wang, Kazuyuki Miyazaki, Haitong Zhe Sun, Zhen Qu, Xiang Liu, Antje Inness, Martin Schultz, Sabine Schröder, Marc Serre, and J. Jason West
EGUsphere, https://doi.org/10.5194/egusphere-2024-3723, https://doi.org/10.5194/egusphere-2024-3723, 2025
Short summary
Short summary
We compare six datasets of global ground-level ozone, developed using geostatistical, machine learning, or reanalysis methods. The datasets show important differences from one another in ozone magnitude, greater than 5 ppb, and trends, globally and regionally. Compared with measurements, performance varies among datasets, and most overestimate ozone, particularly at lower concentrations. These differences among datasets highlight uncertainties for applications to health and other impacts.
Bing Gong, Michael Langguth, Yan Ji, Amirpasha Mozaffari, Scarlet Stadtler, Karim Mache, and Martin G. Schultz
Geosci. Model Dev., 15, 8931–8956, https://doi.org/10.5194/gmd-15-8931-2022, https://doi.org/10.5194/gmd-15-8931-2022, 2022
Short summary
Short summary
Inspired by the success of deep learning in various domains, we test the applicability of video prediction methods by generative adversarial network (GAN)-based deep learning to predict the 2 m temperature over Europe. Our video prediction models have skill in predicting the diurnal cycle of 2 m temperature up to 12 h ahead. Complemented by probing the relevance of several model parameters, this study confirms the potential of deep learning in meteorological forecasting applications.
Felix Kleinert, Lukas H. Leufen, Aurelia Lupascu, Tim Butler, and Martin G. Schultz
Geosci. Model Dev., 15, 8913–8930, https://doi.org/10.5194/gmd-15-8913-2022, https://doi.org/10.5194/gmd-15-8913-2022, 2022
Short summary
Short summary
We examine the effects of spatially aggregated upstream information as input for a deep learning model forecasting near-surface ozone levels. Using aggregated data from one upstream sector (45°) improves the forecast by ~ 10 % for 4 prediction days. Three upstream sectors improve the forecasts by ~ 14 % on the first 2 d only. Our results serve as an orientation for other researchers or environmental agencies focusing on pointwise time-series predictions, for example, due to regulatory purposes.
Swantje Preuschmann, Tanja Blome, Knut Görl, Fiona Köhnke, Bettina Steuri, Juliane El Zohbi, Diana Rechid, Martin Schultz, Jianing Sun, and Daniela Jacob
Adv. Sci. Res., 19, 51–71, https://doi.org/10.5194/asr-19-51-2022, https://doi.org/10.5194/asr-19-51-2022, 2022
Short summary
Short summary
The main aspect of the paper is to obtain transferable principles for the development of digital knowledge transfer products. As such products are still unstandardised, the authors explored challenges and approaches for product developments. The authors report what they see as useful principles for developing digital knowledge transfer products, by describing the experience of developing the Net-Zero-2050 Web-Atlas and the "Bodenkohlenstoff-App".
Clara Betancourt, Timo T. Stomberg, Ann-Kathrin Edrich, Ankit Patnala, Martin G. Schultz, Ribana Roscher, Julia Kowalski, and Scarlet Stadtler
Geosci. Model Dev., 15, 4331–4354, https://doi.org/10.5194/gmd-15-4331-2022, https://doi.org/10.5194/gmd-15-4331-2022, 2022
Short summary
Short summary
Ozone is a toxic greenhouse gas with high spatial variability. We present a machine-learning-based ozone-mapping workflow generating a transparent and reliable product. Going beyond standard mapping methods, this work combines explainable machine learning with uncertainty assessment to increase the integrity of the produced map.
T. Stomberg, I. Weber, M. Schmitt, and R. Roscher
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-3-2021, 317–324, https://doi.org/10.5194/isprs-annals-V-3-2021-317-2021, https://doi.org/10.5194/isprs-annals-V-3-2021-317-2021, 2021
Clara Betancourt, Christoph Küppers, Tammarat Piansawan, Uta Sager, Andrea B. Hoyer, Heinz Kaminski, Gerhard Rapp, Astrid C. John, Miriam Küpper, Ulrich Quass, Thomas Kuhlbusch, Jochen Rudolph, Astrid Kiendler-Scharr, and Iulia Gensch
Atmos. Chem. Phys., 21, 5953–5964, https://doi.org/10.5194/acp-21-5953-2021, https://doi.org/10.5194/acp-21-5953-2021, 2021
Short summary
Short summary
For the first time, we included stable isotopes in the Lagrangian particle dispersion model FLEXPART to investigate firewood home heating aerosol. This is an innovative source apportionment methodology since comparison of stable isotope ratio model predictions with observations delivers quantitative understanding of atmospheric processes. The main outcome of this study is that the home heating aerosol in residential areas was not of remote origin.
Lukas Hubert Leufen, Felix Kleinert, and Martin G. Schultz
Geosci. Model Dev., 14, 1553–1574, https://doi.org/10.5194/gmd-14-1553-2021, https://doi.org/10.5194/gmd-14-1553-2021, 2021
Short summary
Short summary
MLAir provides a coherent end-to-end structure for a typical time series analysis workflow using machine learning (ML). MLAir is adaptable to a wide range of ML use cases, focusing in particular on deep learning. The user has a free hand with the ML model itself and can select from different methods during preprocessing, training, and postprocessing. MLAir offers tools to track the experiment conduction, documents necessary ML parameters, and creates a variety of publication-ready plots.
Felix Kleinert, Lukas H. Leufen, and Martin G. Schultz
Geosci. Model Dev., 14, 1–25, https://doi.org/10.5194/gmd-14-1-2021, https://doi.org/10.5194/gmd-14-1-2021, 2021
Short summary
Short summary
With IntelliO3-ts v1.0, we present an artificial neural network as a new forecasting model for daily aggregated near-surface ozone concentrations with a lead time of up to 4 d. We used measurement and reanalysis data from more than 300 German monitoring stations to train, fine tune, and test the model. We show that the model outperforms standard reference models like persistence models and demonstrate that IntelliO3-ts outperforms climatological reference models for the first 2 d.
Cited articles
Amante, C. and Eakins, B. W.: ETOPO1 arc-minute global relief model:
procedures, data sources and analysis, Tech. rep., NOAA National Geophysical
Data Center, available at: https://repository.library.noaa.gov/view/noaa/1163/noaa_1163_DS1.pdf (last access: 21 June 2021), 2009. a
Amodei, D., Ananthanarayanan, S., Anubhai, R., Bai, J., Battenberg, E., Case,
C., Casper, J., Catanzaro, B., Cheng, Q., Chen, G., Chen, J., Chen, J., Chen,
Z., Chrzanowski, M., Coates, A., Diamos, G., Ding, K., Du, N., Elsen, E.,
Engel, J., Fang, W., Fan, L., Fougner, C., Gao, L., Gong, C., Hannun, A.,
Han, T., Johannes, L., Jiang, B., Ju, C., Jun, B., LeGresley, P., Lin, L.,
Liu, J., Liu, Y., Li, W., Li, X., Ma, D., Narang, S., Ng, A., Ozair, S.,
Peng, Y., Prenger, R., Qian, S., Quan, Z., Raiman, J., Rao, V., Satheesh, S.,
Seetapun, D., Sengupta, S., Srinet, K., Sriram, A., Tang, H., Tang, L., Wang,
C., Wang, J., Wang, K., Wang, Y., Wang, Z., Wang, Z., Wu, S., Wei, L., Xiao,
B., Xie, W., Xie, Y., Yogatama, D., Yuan, B., Zhan, J., and Zhu, Z.: Deep
Speech 2: End-to-End Speech Recognition in English and Mandarin, arXiv [preprint], arXiv:1512.02595, pp. 173–182, 8 December 2015. a
Benkovitz, C. M., Scholtz, M. T., Pacyna, J., Tarrasón, L., Dignon, J.,
Voldner, E. C., Spiro, P. A., Logan, J. A., and Graedel, T.: Global gridded
inventories of anthropogenic emissions of sulfur and nitrogen, J.
Geophys. Res.-Atmos., 101, 29239–29253,
https://doi.org/10.1029/96JD00126, 1996. a
Brasseur, G., Orlando, J. J., and Tyndall, G. S. (Eds.): Atmospheric chemistry
and global change, 3 edn., Oxford University Press, Oxford, UK, 1999. a
Breiman, L.: Random forests, Mach. Learn., 45, 5–32,
https://doi.org/10.1023/A:1010933404324, 2001. a
Caselli, M., Trizio, L., de Gennaro, G., and Ielpo, P.: A Simple
Feedforward Neural Network for the PM10 Forecasting: Comparison
with a Radial Basis Function Network and a Multivariate Linear
Regression Model, Water Air Soil Poll., 201, 365–377,
https://doi.org/10.1007/s11270-008-9950-2, 2009. a
Chang, K.-L., Petropavlovskikh, I., Copper, O. R., Schultz, M. G., and Wang,
T.: Regional trend analysis of surface ozone observations from monitoring
networks in eastern North America, Europe and East Asia, Elem. Sci. Anth., 5, 50, https://doi.org/10.1525/elementa.243, 2017. a, b
Chollet, F. et al.: Keras, available at: https://keras.io (last access: 21 June 2021), 2015. a
CIESIN: Gridded Population of the World, Version 3 (GPWv3): Population Count
Grid, Center for International Earth Science Information Network – CIESIN –
Columbia University, United Nations Food and Agriculture Programme – FAO, and
Centro Internacional de Agricultura Tropical – CIAT, Palisades, NY: NASA
Socioeconomic Data and Applications Center (SEDAC),
https://doi.org/10.7927/H4639MPP, 2005. a
Comrie, A. C.: Comparing Neural Networks and Regression Models for
Ozone Forecasting, J. Air Waste Manage.,
47, 653–663, https://doi.org/10.1080/10473289.1997.10463925, 1997. a
Cooper, O. R., Parrish, D. D., Ziemke, J., Balashov, N. V., Cupeiro, M.,
Galbally, I. E., Gilge, S., Horowitz, L., Jensen, N. R., Lamarque, J.-F.,
Naik, V., Oltmans, S. J., Schwab, J., Shindell, D. T., Thompson, A. M.,
Thouret, V., Wang, Y., and Zbinden, R. M.: Global distribution and trends of
tropospheric ozone: An observation-based review, Elementa: Science of the
Anthropocene, 2, 29, https://doi.org/10.12952/journal.elementa.000029, 2014. a
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L.: ImageNet:
A Large-Scale Hierarchical Image Database, in: 2009 IEEE Conference on
Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009, pp. 248–255,
https://doi.org/10.1109/CVPR.2009.5206848, 2009. a
Duboue, P.: The Art of Feature Engineering: Essentials for Machine Learning, 1 edn.,
Cambridge University Press, Cambridge, UK, https://doi.org/10.1017/9781108671682, 2020. a
Ebert-Uphoff, I., Thompson, D. R., Demir, I., Gel, Y. R., Karpatne, A.,
Guereque, M., Kumar, V., Cabral-Cano, E., and Smyth, P.: A vision for the
development of benchmarks to bridge geoscience and data science, in:
Proceedings of the 7th International Workshop on Climate Informatics,
Boulder, CL, USA, 20–22 September 2017, 2017. a, b
Elkamel, A., Abdul-Wahab, S., Bouhamra, W., and Alper, E.: Measurement and
prediction of ozone levels around a heavily industrialized area: a neural
network approach, Adv. Environ. Res., 5, 47–59,
https://doi.org/10.1016/S1093-0191(00)00042-3, 2001. a
Emberson, L., Ashmore, M., Cambridge, H., Simpson, D., and Tuovinen, J.-P.:
Modelling stomatal ozone flux across Europe, Environ. Pollut., 109,
403–413, https://doi.org/10.1016/S0269-7491(00)00043-9, 2000. a
Field, R., Goldstone, M., Lester, J., and Perry, R.: The sources and behaviour
of tropospheric anthropogenic volatile hydrocarbons, Atmos. Environ. A-Gen., 26, 2983–2996, https://doi.org/10.1016/0960-1686(92)90290-2,
1992. a
Fleming, Z. L., Doherty, R. M., Von Schneidemesser, E., Malley, C. S., Cooper,
O. R., Pinto, J. P., Colette, A., Xu, X., Simpson, D., Schultz, M. G.,
Lefohn, A. S., Hamad, S., Moolla, R., Solberg, S., and Feng, Z.: Tropospheric
Ozone Assessment Report: Present-day ozone distribution and trends relevant
to human health, Elem. Sci. Anth., 6, 12, https://doi.org/10.1525/elementa.273, 2018. a
Gaudel, A., Cooper, O. R., Ancellet, G., Barret, B., Boynard, A., Burrows,
J. P., Clerbaux, C., Coheur, P. F., Cuesta, J., Cuevas, E., Doniki, S.,
Dufour, G., Ebojie, F., Foret, G., Garcia, O., Granados Muños, M. J.,
Hannigan, J. W., Hase, F., Huang, G., Hassler, B., Hurtmans, D., Jaffe, D.,
Jones, N., Kalabokas, P., Kerridge, B., Kulawik, S. S., Latter, B., Leblanc,
T., Le Flochmoën, E., Lin, W., Liu, J., Liu, X., Mahieu, E.,
McClure-Begley, A., Neu, J. L., Osman, M., Palm, M., Petetin, H.,
Petropavlovskikh, I., Querel, R., Rahpoe, N., Rozanov, A., Schultz, M. G.,
Schwab, J., Siddans, R., Smale, D., Steinbacher, M., Tanimoto, H., Tarasick,
D. W., Thouret, V., Thompson, A. M., Trickl, T., Weatherhead, E., Wespes, C.,
Worden, H. M., Vigouroux, C., Xu, X., Zeng, G., and Ziemke, J.: Tropospheric
Ozone Assessment Report: Present-day distribution and trends of tropospheric
ozone relevant to climate and global atmospheric chemistry model evaluation,
Elem. Sci. Anth., 6, 39, https://doi.org/10.1525/elementa.291, 2018. a
Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y.: Deep learning, 1 edn., MIT press Cambridge, Cambridge, UK, 2016. a
He, H. and Garcia, E. A.: Learning from Imbalanced Data, IEEE Transactions
on Knowledge and Data Engineering, 21, 1263–1284,
https://doi.org/10.1109/TKDE.2008.239, 2009. a
Jacob, D. J.: Heterogeneous chemistry and tropospheric ozone, Atmos.
Environ., 34, 2131–2159,
https://doi.org/10.1016/S1352-2310(99)00462-8, 2000. a
Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Dentener, F., Muntean, M., Pouliot, G., Keating, T., Zhang, Q., Kurokawa, J., Wankmüller, R., Denier van der Gon, H., Kuenen, J. J. P., Klimont, Z., Frost, G., Darras, S., Koffi, B., and Li, M.: HTAP_v2.2: a mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution, Atmos. Chem. Phys., 15, 11411–11432, https://doi.org/10.5194/acp-15-11411-2015, 2015. a
Kaiser, A., Scheifinger, H., Spangl, W., Weiss, A., Gilge, S., Fricke, W.,
Ries, L., Cemas, D., and Jesenovec, B.: Transport of nitrogen oxides, carbon
monoxide and ozone to the alpine global atmosphere watch stations
Jungfraujoch (Switzerland), Zugspitze and Hohenpeißenberg (Germany),
Sonnblick (Austria) and Mt. Krvavec (Slovenia), Atmos. Environ., 41,
9273–9287, https://doi.org/10.1016/j.atmosenv.2007.09.027, 2007. a
Kelp, M. M., Jacob, D. J., Kutz, J. N., Marshall, J. D., and Tessum, C. W.:
Toward Stable, General Machine-Learned Models of the Atmospheric Chemical
System, J. Geophys. Res.-Atmos., 125, e2020JD032759,
https://doi.org/10.1029/2020JD032759, 2020. a
Kierdorf, J., Garcke, J., Behley, J., Cheeseman, T., and Roscher, R.: What
Identifies a Whale by its Fluke? on the Benefit of Interpretable Machine
Learning for Whale Identification, ISPRS Annals of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, 2, 1005–1012, 2020. a
Kleinert, F., Leufen, L. H., and Schultz, M. G.: IntelliO3-ts v1.0: a neural network approach to predict near-surface ozone concentrations in Germany, Geosci. Model Dev., 14, 1–25, https://doi.org/10.5194/gmd-14-1-2021, 2021. a
Koffi, B., Dentener, F., Janssens-Maenhout, G., Guizzardi, D., Crippa, M.,
Diehl, T., Galmarini, S., and Solazzo, E.: Hemispheric Transport Air
Pollution (HTAP): Specification of the HTAP2 experiments – Ensuring harmonized
modelling, Tech. rep., EUR 28255 EN, Luxembourg: Publications Office of the
European Union, 2016. a
Krizhevsky, A., Sutskever, I., and Hinton, G. E.: ImageNet Classification with
Deep Convolutional Neural Networks, in: Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012. Proceedings of a meeting held December 3–6, 2012, Lake Tahoe, Nevada, United States,
https://doi.org/10.1145/3065386, pp. 1097–1105, 2012. a
Krotkov, N. A., McLinden, C. A., Li, C., Lamsal, L. N., Celarier, E. A., Marchenko, S. V., Swartz, W. H., Bucsela, E. J., Joiner, J., Duncan, B. N., Boersma, K. F., Veefkind, J. P., Levelt, P. F., Fioletov, V. E., Dickerson, R. R., He, H., Lu, Z., and Streets, D. G.: Aura OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2015, Atmos. Chem. Phys., 16, 4605–4629, https://doi.org/10.5194/acp-16-4605-2016, 2016. a
LeCun, Y., Cortes, C., and Burges, C. J.: MNIST handwritten digit database,
available at: http://yann.lecun.com/exdb/mnist/ (last access: 21 June 2021), 2010. a
Lefohn, A. S., Malley, C. S., Smith, L., Wells, B., Hazucha, M., Simon, H.,
Naik, V., Mills, G., Schultz, M. G., Paoletti, E., De Marco, A., Xu, X.,
Zhang, L., Wang, T., Neufeld, H. S., Musselman, R. C., Tarasick, D., Brauer,
M., Feng, Z., Tang, H., Kobayashi, K., Sicard, P., Solberg, S., and Gerosa,
G.: Tropospheric ozone assessment report: Global ozone metrics for climate
change, human health, and crop/ecosystem research, Elem. Sci. Anth., 6, 27,
https://doi.org/10.1525/elementa.279, 2018. a, b
Luhar, A. K., Woodhouse, M. T., and Galbally, I. E.: A revised global ozone dry deposition estimate based on a new two-layer parameterisation for air–sea exchange and the multi-year MACC composition reanalysis, Atmos. Chem. Phys., 18, 4329–4348, https://doi.org/10.5194/acp-18-4329-2018, 2018. a
Mills, G., Hayes, F., Simpson, D., Emberson, L., Norris, D., Harmens, H., and
Büker, P.: Evidence of widespread effects of ozone on crops and (semi-)
natural vegetation in Europe (1990–2006) in relation to AOT40-and flux-based
risk maps, Glob. Change Biol., 17, 592–613, 2011. a
Mills, G., Pleijel, H., Malley, C. S., Sinha, B., Cooper, O. R., Schultz,
M. G., Neufeld, H. S., Simpson, D., Sharps, K., Feng, Z., Gerosa, G.,
Harmens, H., Kobayashi, K., Saxena, P., Paoletti, E., Sinha, V., and Xu, X.:
Tropospheric Ozone Assessment Report: Present-day tropospheric ozone
distribution and trends relevant to vegetation, Elem. Sci. Anth., 6, 47,
https://doi.org/10.1525/elementa.302, 2018. a
Monks, P. S., Archibald, A. T., Colette, A., Cooper, O., Coyle, M., Derwent, R., Fowler, D., Granier, C., Law, K. S., Mills, G. E., Stevenson, D. S., Tarasova, O., Thouret, V., von Schneidemesser, E., Sommariva, R., Wild, O., and Williams, M. L.: Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer, Atmos. Chem. Phys., 15, 8889–8973, https://doi.org/10.5194/acp-15-8889-2015, 2015. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.:
Scikit-learn: Machine Learning in Python, J. Mach. Learn.
Res., 12, 2825–2830,
available at: https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf (last access: 21 June 2021),
2011. a
Porter, W. C., Heald, C. L., Cooley, D., and Russell, B.: Investigating the observed sensitivities of air-quality extremes to meteorological drivers via quantile regression, Atmos. Chem. Phys., 15, 10349–10366, https://doi.org/10.5194/acp-15-10349-2015, 2015. a
Rasp, S., Dueben, P. D., Scher, S., Weyn, J. A., Mouatadid, S., and Thuerey,
N.: WeatherBench: A benchmark dataset for data-driven weather forecasting,
J. Adv. Model. Earth Sy., 12, e2020MS002203,
https://doi.org/10.1029/2020MS002203, 2020. a
Roscher, R., Bohn, B., Duarte, M. F., and Garcke, J.: Explainable machine
learning for scientific insights and discoveries, IEEE Access, 8,
42200–42216, https://doi.org/10.1109/ACCESS.2020.2976199, 2020. a
Sayeed, A., Choi, Y., Eslami, E., Lops, Y., Roy, A., and Jung, J.: Using a deep
convolutional neural network to predict 2017 ozone concentrations, 24 hours
in advance, Neural Networks, 121, 396–408,
https://doi.org/10.1016/j.neunet.2019.09.033, 2020. a
Schmitz, S., Towers, S., Villena, G., Caseiro, A., Wegener, R., Klemp, D., Langer, I., Meier, F., and von Schneidemesser, E.: Unraveling a black box: An open-source methodology for the field calibration of small air quality sensors, Atmos. Meas. Tech. Discuss. [preprint], https://doi.org/10.5194/amt-2020-489, in review, 2021. a
Schraudner, M., Langebartels, C., and Sandermann, H.: Changes in the
biochemical status of plant cells induced by the environmental pollutant
ozone, Physiol. Plantarum, 100, 274–280,
https://doi.org/10.1111/j.1399-3054.1997.tb04783.x, 1997. a
Schultz, M. G., Jacob, D. J., Wang, Y., Logan, J. A., Atlas, E. L., Blake,
D. R., Blake, N. J., Bradshaw, J. D., Browell, E. V., Fenn, M. A., Flocke F., Gregory, G. L., Heikes, B. G., Sachse, G. W., Sandholm, S. T., Shetter, R. E., Singh, H. B., and Talbot, R. W.: On
the origin of tropospheric ozone and NOx over the tropical South Pacific,
J. Geophys. Res.-Atmos., 104, 5829–5843,
https://doi.org/10.1029/98JD02309, 1999. a
Schultz, M. G., Schröder, S., Lyapina, O., Cooper, O., Galbally, I.,
Petropavlovskikh, I., Von Schneidemesser, E., Tanimoto, H., Elshorbany, Y.,
Naja, M., Seguel, R., Dauert, U., Eckhardt, P., Feigenspahn, S., Fiebig, M.,
Hjellbrekke, A.-G., Hong, Y.-D., Christian Kjeld, P., Koide, H., Lear, G.,
Tarasick, D., Ueno, M., Wallasch, M., Baumgardner, D., Chuang, M.-T.,
Gillett, R., Lee, M., Molloy, S., Moolla, R., Wang, T., Sharps, K., Adame,
J. A., Ancellet, G., Apadula, F., Artaxo, P., Barlasina, M., Bogucka, M.,
Bonasoni, P., Chang, L., Colomb, A., Cuevas, E., Cupeiro, M., Degorska, A.,
Ding, A., Fröhlich, M., Frolova, M., Gadhavi, H., Gheusi, F., Gilge, S.,
Gonzalez, M. Y., Gros, V., Hamad, S. H., Helmig, D., Henriques, D.,
Hermansen, O., Holla, R., Huber, J., Im, U., Jaffe, D. A., Komala, N.,
Kubistin, D., Lam, K.-S., Laurila, T., Lee, H., Levy, I., Mazzoleni, C.,
Mazzoleni, L., McClure-Begley, A., Mohamad, M., Murovic, M., Navarro-Comas,
M., Nicodim, F., Parrish, D., Read, K. A., Reid, N., Ries, L., Saxena, P.,
Schwab, J. J., Scorgie, Y., Senik, I., Simmonds, P., Sinha, V., Skorokhod,
A., Spain, G., Spangl, W., Spoor, R., Springston, S. R., Steer, K.,
Steinbacher, M., Suharguniyawan, E., Torre, P., Trickl, T., Weili, L.,
Weller, R., Xu, X., Xue, L., and Zhiqiang, M.: Tropospheric Ozone Assessment
Report: Database and Metrics Data of Global Surface Ozone Observations, Elem.
Sci. Anth., 5, 58, https://doi.org/10.1525/elementa.244, 2017. a, b, c, d, e, f, g, h, i
Schultz M. G., Betancourt C., Gong B., Kleinert F., Langguth M., Leufen L. H., Mozaffari A., and Stadtler S.: Can deep learning beat numerical weather prediction?, Philos. T. R. Soc. A., 379, 20200097, https://doi.org/10.1098/rsta.2020.0097, 2021. a, b
Sillman, S.: The relation between ozone, NOx and hydrocarbons in urban and
polluted rural environments, Atmos. Environ., 33, 1821–1845, 1999. a
Silva, S. J., Heald, C. L., Ravela, S., Mammarella, I., and Munger, J. W.: A
Deep Learning Parameterization for Ozone Dry Deposition
Velocities, Geophys. Res. Lett., 46, 983–989,
https://doi.org/10.1029/2018GL081049, 2019. a
Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche,
G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M.,
Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., and Hassabis, D.: Mastering the game of Go with deep neural networks and tree search,
Nature, 529, 484–489, https://doi.org/10.1038/nature16961, 2016. a
Simpson, D., Winiwarter, W., Börjesson, G., Cinderby, S., Ferreiro, A.,
Guenther, A., Hewitt, C. N., Janson, R., Khalil, M. A. K., Owen, S., Pierce, T. E., Puxbaum, H., Shearer, M., Skiba, U., Steinbrecher, R., Tarrasón, L., and Öquist, M. G.:
Inventorying emissions from nature in Europe, J. Geophys.
Res.-Atmos., 104, 8113–8152, https://doi.org/10.1029/98JD02747, 1999. a
Tarasick, D., Galbally, I. E., Cooper, O. R., Schultz, M. G., Ancellet, G.,
Leblanc, T., Wallington, T. J., Ziemke, J., Liu, X., Steinbacher, M.,
Staehelin, J., Vigouroux, C., Hannigan, J. W., García, O., Foret, G., Zanis,
P., Weatherhead, E., Petropavlovskikh, I., Worden, H., Osman, M., Liu, J.,
Chang, K.-L., Gaudel, A., Lin, M., Granados-Muñoz, M., Thompson, A. M.,
Oltmans, S. J., Cuesta, J., Dufour, G., Thouret, V., Hassler, B., Trickl, T.,
and Neu, J. L.: Tropospheric Ozone Assessment Report: Tropospheric ozone from
1877 to 2016, observed levels, trends and uncertainties, Elem. Sci. Anth., 7,
39, https://doi.org/10.1525/elementa.376, 2019. a
Veldkamp, E. and Keller, M.: Fertilizer-induced nitric oxide emissions from
agricultural soils, Nutr. Cycl. Agroecosys., 48, 69–77,
https://doi.org/10.1023/A:1009725319290, 1997. a
Wagstaff, K.: Machine learning that matters, arXiv [preprint],
arXiv:1206.4656, 18 June 2012. a
Wang, S., Ma, Y., Wang, Z., Wang, L., Chi, X., Ding, A., Yao, M., Li, Y., Li, Q., Wu, M., Zhang, L., Xiao, Y., and Zhang, Y.: Mobile monitoring of urban air quality at high spatial resolution by low-cost sensors: impacts of COVID-19 pandemic lockdown, Atmos. Chem. Phys., 21, 7199–7215, https://doi.org/10.5194/acp-21-7199-2021, 2021. a
Wang, Y., Choi, Y., Zeng, T., Davis, D., Buhr, M., Huey, L. G., and Neff, W.:
Assessing the photochemical impact of snow NOx emissions over Antarctica
during ANTCI 2003, Atmos. Environ., 41, 3944–3958,
https://doi.org/10.1016/j.atmosenv.2007.01.056, 2007. a
Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F.,
and Tian, D.: The Generic Mapping Tools Version 6, Geochem. Geophy.
Geosy., 20, 5556–5564, https://doi.org/10.1029/2019GC008515, 2019. a
Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M.,
Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne, P. E.,
Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O.,
Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray, A. J.,
Groth, P., Goble, C., Grethe, J. S., Heringa, J., ’t Hoen, P. A. C., Hooft,
R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons, A.,
Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R.,
Sansone, S.-A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz,
M. A., Thompson, M., van der Lei, J., van Mulligen, E., Velterop, J.,
Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., and Mons, B.:
The FAIR Guiding Principles for scientific data management and stewardship,
Scientific Data, 3, 160018, https://doi.org/10.1038/sdata.2016.18, 2016.
a
Wise, E. K. and Comrie, A. C.: Extending the Kolmogorov–Zurbenko filter:
application to ozone, particulate matter, and meteorological trends, J. Air Waste Manage., 55, 1208–1216,
https://doi.org/10.1080/10473289.2005.10464718, 2005. a
Xu, J., Ma, J. Z., Zhang, X. L., Xu, X. B., Xu, X. F., Lin, W. L., Wang, Y., Meng, W., and Ma, Z. Q.: Measurements of ozone and its precursors in Beijing during summertime: impact of urban plumes on ozone pollution in downwind rural areas, Atmos. Chem. Phys., 11, 12241–12252, https://doi.org/10.5194/acp-11-12241-2011, 2011. a
Xu, X., Lin, W., Xu, W., Jin, J., Wang, Y., Zhang, G., Zhang, X., Ma, Z., Dong,
Y., Ma, Q., Yu, D., Li, Z., Wang, D., and Zhao, H.: Tropospheric Ozone
Assessment Report: Long-term changes of regional ozone in China: implications
for human health and ecosystem impacts, Elem. Sci. Anth., 8, 13,
https://doi.org/10.1525/elementa.409, 2020. a
Yi, J. and Prybutok, V. R.: A neural network model forecasting for prediction
of daily maximum ozone concentration in an industrialized urban area,
Environ. Pollut., 92, 349–357, 1996. a
Young, P. J., Naik, V., Fiore, A. M., Gaudel, A., Guo, J., Lin, M. Y., Neu,
J. L., Parrish, D. D., Rieder, H. E., Schnell, J. L., Tilmes, S., Wild, O.,
Zhang, L., Ziemke, J. R., Brandt, J., Delcloo, A., Doherty, R. M., Geels, C.,
Hegglin, M. I., Hu, L., Im, U., Kumar, R., Luhar, A., Murray, L., Plummer,
D., Rodriguez, J., Saiz-Lopez, A., Schultz, M. G., Woodhouse, M. T., and
Zeng, G.: Tropospheric Ozone Assessment Report: Assessment of global-scale
model performance for global and regional ozone distributions, variability,
and trends, Elem. Sci. Anth., 6, 10, https://doi.org/10.1525/elementa.265, 2018. a
Zhang, Y. and Yang, Q.: A survey on multi-task learning, arXiv [preprint],
arXiv:1707.08114, 25 July 2017. a
Short summary
With the AQ-Bench dataset, we contribute to shared data usage and machine learning methods in the field of environmental science. The AQ-Bench dataset contains air quality data and metadata from more than 5500 air quality observation stations all over the world. The dataset offers a low-threshold entrance to machine learning on a real-world environmental dataset. AQ-Bench thus provides a blueprint for environmental benchmark datasets.
With the AQ-Bench dataset, we contribute to shared data usage and machine learning methods in...
Altmetrics
Final-revised paper
Preprint