Articles | Volume 12, issue 4
https://doi.org/10.5194/essd-12-3229-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-12-3229-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Development of a standard database of reference sites for validating global burned area products
Environmental Remote Sensing Research Group, Department of Geology,
Geography and the Environment, Universidad de Alcalá, Calle Colegios 2,
Alcalá de Henares, 28801, Spain
Melanie K. Vanderhoof
Geosciences and Environmental Change Science
Center, U.S. Geological Survey, P.O. Box 25046, DFC, MS980, Denver, CO 80225, United States
Dimitris Stavrakoudis
Laboratory of Forest Management and Remote Sensing, School of Forestry
and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 248,
54124 Thessaloniki, Greece
Ioannis Z. Gitas
Laboratory of Forest Management and Remote Sensing, School of Forestry
and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 248,
54124 Thessaloniki, Greece
Ekhi Roteta
Department of Mining and Metallurgical Engineering and Materials
Science, School of Engineering of Vitoria-Gasteiz, University of the Basque
Country UPV/EHU, Nieves Cano 12, Vitoria-Gasteiz, 01006, Spain
Marc Padilla
Centre for Landscape and Climate Research, Department of Geography,
University of Leicester, Leicester LEI 17RH, United Kingdom
Space Division, Starlab Barcelona, Avda. Tibidabo 47 bis,
Barcelona, 08035, Spain
Emilio Chuvieco
Environmental Remote Sensing Research Group, Department of Geology,
Geography and the Environment, Universidad de Alcalá, Calle Colegios 2,
Alcalá de Henares, 28801, Spain
Related authors
Magí Franquesa, Fergus Reig, Manuel Arretxea, Maria Adell-Michavila, Amar Halifa-Marín, Daniel Vilas, Santiago Beguería, and Sergio Martín Vicente-Serrano
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-351, https://doi.org/10.5194/essd-2024-351, 2025
Preprint under review for ESSD
Short summary
Short summary
Our study created a unique database that tracks vegetation health across Spain and the Balearic Islands from 1981 to now, updated every two weeks. By using satellite images from multiple sources, we provide accurate and consistent data that helps detect changes in vegetation due to factors like fires. This tool is crucial for farmers, environmental managers, and policymakers to monitor and protect plant life, ensuring better management of natural resources and agricultural productivity.
Joshua Lizundia-Loiola, Magí Franquesa, Martin Boettcher, Grit Kirches, M. Lucrecia Pettinari, and Emilio Chuvieco
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-399, https://doi.org/10.5194/essd-2020-399, 2021
Preprint withdrawn
Short summary
Short summary
The article presents the burned area product of the Copernicus Climate Change Service, called C3SBA10. It is the adaptation to Sentinel-3 OLCI data of the FireCCI51 global BA product. The paper shows how C3SBA10 is fully consistent with its predecessor, ensuring an uninterrupted provision of global burned area data from 2001 to present. The product is freely available in two monthly formats: in continental tiles at 300m spatial resolution, and globally at 0.25 degrees.
Douglas I. Kelley, Chantelle Burton, Francesca Di Giuseppe, Matthew W. Jones, Maria L. F. Barbosa, Esther Brambleby, Joe R. McNorton, Zhongwei Liu, Anna S. I. Bradley, Katie Blackford, Eleanor Burke, Andrew Ciavarella, Enza Di Tomaso, Jonathan Eden, Igor José M. Ferreira, Lukas Fiedler, Andrew J. Hartley, Theodore R. Keeping, Seppe Lampe, Anna Lombardi, Guilherme Mataveli, Yuquan Qu, Patrícia S. Silva, Fiona R. Spuler, Carmen B. Steinmann, Miguel Ángel Torres-Vázquez, Renata Veiga, Dave van Wees, Jakob B. Wessel, Emily Wright, Bibiana Bilbao, Mathieu Bourbonnais, Gao Cong, Carlos M. Di Bella, Kebonye Dintwe, Victoria M. Donovan, Sarah Harris, Elena A. Kukavskaya, Brigitte N’Dri, Cristina Santín, Galia Selaya, Johan Sjöström, John Abatzoglou, Niels Andela, Rachel Carmenta, Emilio Chuvieco, Louis Giglio, Douglas S. Hamilton, Stijn Hantson, Sarah Meier, Mark Parrington, Mojtaba Sadegh, Jesus San-Miguel-Ayanz, Fernando Sedano, Marco Turco, Guido R. van der Werf, Sander Veraverbeke, Liana O. Anderson, Hamish Clarke, Paulo M. Fernandes, and Crystal A. Kolden
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-483, https://doi.org/10.5194/essd-2025-483, 2025
Preprint under review for ESSD
Short summary
Short summary
The second State of Wildfires report examines extreme wildfire events from 2024 to early 2025. It analyses key regional events in Southern California, Northeast Amazonia, Pantanal-Chiquitano, and the Congo Basin, assessing their drivers, predictability, and attributing them to climate change and land use. Seasonal outlooks and decadal projections are provided. Climate change greatly increased the likelihood of these fires, and without strong mitigation, such events will become more frequent.
Magí Franquesa, Fergus Reig, Manuel Arretxea, Maria Adell-Michavila, Amar Halifa-Marín, Daniel Vilas, Santiago Beguería, and Sergio Martín Vicente-Serrano
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-351, https://doi.org/10.5194/essd-2024-351, 2025
Preprint under review for ESSD
Short summary
Short summary
Our study created a unique database that tracks vegetation health across Spain and the Balearic Islands from 1981 to now, updated every two weeks. By using satellite images from multiple sources, we provide accurate and consistent data that helps detect changes in vegetation due to factors like fires. This tool is crucial for farmers, environmental managers, and policymakers to monitor and protect plant life, ensuring better management of natural resources and agricultural productivity.
Pere Joan Gelabert, Adrián Jiménez-Ruano, Clara Ochoa, Fermín Alcasena, Johan Sjöström, Christopher Marrs, Luís Mário Ribeiro, Palaiologos Palaiologou, Carmen Bentué Martínez, Emilio Chuvieco, Cristina Vega-Garcia, and Marcos Rodrigues
EGUsphere, https://doi.org/10.5194/egusphere-2025-143, https://doi.org/10.5194/egusphere-2025-143, 2025
Short summary
Short summary
Wildfires threaten ecosystems and communities across Europe. Our study developed models to predict where and why these ignitions occur in different European environments. We found that weather anomalies and human factors, like proximity to urban areas and roads, are key drivers. Using Machine Learning our models achieved strong predictive accuracy. These insights help design better wildfire prevention strategies, ensuring safer landscapes and communities as fire risks grow with climate change.
Melanie K. Vanderhoof, Peter Nieuwlandt, Heather E. Golden, Charles R. Lane, Jay R. Christensen, William Keenan, and Wayana Dolan
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-298, https://doi.org/10.5194/hess-2024-298, 2024
Preprint withdrawn
Short summary
Short summary
Streamflow signatures can help characterize a watershed’s response to meteorological conditions. We explored if surface water storage-related variables, which are typically excluded from streamflow signature analyses, may help explain spatial variability in streamflow signatures. We found that remotely sensed surface water storage extent and duration were correlated with and explained a portion of the variability in many of the hydrologic signatures across the 72 streamflow gages.
Matthew W. Jones, Douglas I. Kelley, Chantelle A. Burton, Francesca Di Giuseppe, Maria Lucia F. Barbosa, Esther Brambleby, Andrew J. Hartley, Anna Lombardi, Guilherme Mataveli, Joe R. McNorton, Fiona R. Spuler, Jakob B. Wessel, John T. Abatzoglou, Liana O. Anderson, Niels Andela, Sally Archibald, Dolors Armenteras, Eleanor Burke, Rachel Carmenta, Emilio Chuvieco, Hamish Clarke, Stefan H. Doerr, Paulo M. Fernandes, Louis Giglio, Douglas S. Hamilton, Stijn Hantson, Sarah Harris, Piyush Jain, Crystal A. Kolden, Tiina Kurvits, Seppe Lampe, Sarah Meier, Stacey New, Mark Parrington, Morgane M. G. Perron, Yuquan Qu, Natasha S. Ribeiro, Bambang H. Saharjo, Jesus San-Miguel-Ayanz, Jacquelyn K. Shuman, Veerachai Tanpipat, Guido R. van der Werf, Sander Veraverbeke, and Gavriil Xanthopoulos
Earth Syst. Sci. Data, 16, 3601–3685, https://doi.org/10.5194/essd-16-3601-2024, https://doi.org/10.5194/essd-16-3601-2024, 2024
Short summary
Short summary
This inaugural State of Wildfires report catalogues extreme fires of the 2023–2024 fire season. For key events, we analyse their predictability and drivers and attribute them to climate change and land use. We provide a seasonal outlook and decadal projections. Key anomalies occurred in Canada, Greece, and western Amazonia, with other high-impact events catalogued worldwide. Climate change significantly increased the likelihood of extreme fires, and mitigation is required to lessen future risk.
Melanie K. Vanderhoof, Peter Nieuwlandt, Heather E. Golden, Charles R. Lane, Jay R. Christensen, Will Keenan, and Wayana Dolan
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-119, https://doi.org/10.5194/hess-2024-119, 2024
Manuscript not accepted for further review
Short summary
Short summary
Streamflow signatures can help characterize a watershed’s response to rainfall and snowmelt events. We explored if surface water storage-related variables, which are typically excluded from streamflow signature analyses, may help explain the variability in streamflow signatures. We found that remotely sensed surface water storage watershed location and hydroperiod were correlated with or explained a portion of the variability in hydrologic signatures across 72 streamflow gages.
Elena Aragoneses, Mariano García, Michele Salis, Luís M. Ribeiro, and Emilio Chuvieco
Earth Syst. Sci. Data, 15, 1287–1315, https://doi.org/10.5194/essd-15-1287-2023, https://doi.org/10.5194/essd-15-1287-2023, 2023
Short summary
Short summary
We present a new hierarchical fuel classification system with a total of 85 fuels that is useful for preventing fire risk at different spatial scales. Based on this, we developed a European fuel map (1 km resolution) using land cover datasets, biogeographic datasets, and bioclimatic modelling. We validated the map by comparing it to high-resolution data, obtaining high overall accuracy. Finally, we developed a crosswalk for standard fuel models as a first assignment of fuel parameters.
Fátima Arrogante-Funes, Inmaculada Aguado, and Emilio Chuvieco
Nat. Hazards Earth Syst. Sci., 22, 2981–3003, https://doi.org/10.5194/nhess-22-2981-2022, https://doi.org/10.5194/nhess-22-2981-2022, 2022
Short summary
Short summary
We show that ecological value might be reduced by 50 % due to fire perturbation in ecosystems that have not developed in the presence of fire and/or that present changes in the fire regime. The biomes most affected are tropical and subtropical forests, tundra, and mangroves. Integration of biotic and abiotic fire regime and regeneration factors resulted in a powerful way to map ecological vulnerability to fire and develop assessments to generate adaptation plans of management in forest masses.
Joshua Lizundia-Loiola, Magí Franquesa, Martin Boettcher, Grit Kirches, M. Lucrecia Pettinari, and Emilio Chuvieco
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-399, https://doi.org/10.5194/essd-2020-399, 2021
Preprint withdrawn
Short summary
Short summary
The article presents the burned area product of the Copernicus Climate Change Service, called C3SBA10. It is the adaptation to Sentinel-3 OLCI data of the FireCCI51 global BA product. The paper shows how C3SBA10 is fully consistent with its predecessor, ensuring an uninterrupted provision of global burned area data from 2001 to present. The product is freely available in two monthly formats: in continental tiles at 300m spatial resolution, and globally at 0.25 degrees.
E. Roteta and P. Oliva
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W12-2020, 337–342, https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-337-2020, https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-337-2020, 2020
Cited articles
Alonso-Canas, I. and Chuvieco, E.: Global burned area mapping from
ENVISAT-MERIS and MODIS active fire data, Remote Sens. Environ.,
163, 140–152, https://doi.org/10.1016/j.rse.2015.03.011, 2015.
Bastarrika, A., Chuvieco, E., and Martín, M. P.: Mapping burned areas
from Landsat TM/ETM+ data with a two-phase algorithm: Balancing omission
and commission errors, Remote Sens. Environ., 115, 1003–1012,
https://doi.org/10.1016/j.rse.2010.12.005, 2011.
Bastarrika, A., Alvarado, M., Artano, K., Martinez, M., Mesanza-Moraza, A.,
Leyre, T., Ramo, R., and Chuvieco, E.: BAMS: A Tool for Supervised Burned
Area Mapping Using Landsat Data, Remote Sensing, 6, 12360–12380,
https://doi.org/10.3390/rs61212360, 2014.
Boschetti, L. and Roy, D. P.: Defining a fire year for reporting and
analysis of global interannual fire variability, J. Geophys.
Res.-Biogeo., 113, https://doi.org/10.1029/2008JG000686, 2008.
Boschetti, L., Stehman, S. V., and Roy, D. P.: A stratified random sampling
design in space and time for regional to global scale burned area product
validation, Remote Sens. Environ., 186, 465–478,
https://doi.org/10.1016/j.rse.2016.09.016, 2016.
Boschetti, L., Roy, D. P., Giglio, L., Huang, H., Zubkova, M., and Humber,
M. L.: Global validation of the collection 6 MODIS burned area product,
Remote Sens. Environ., 235, 111490,
https://doi.org/10.1016/j.rse.2019.111490, 2019.
CEOS Working Group on Calibration and Validation – Land Product Validation
Subgroup, available at: http://lpvs.gsfc.nasa.gov/ (last access: 3 December 2020), 2012.
Chuvieco, E., Opazo, S., Sione, W., Del Valle, H., Anaya, J., Di Bella, C.,
Cruz, I., Manzo, L., López, G., Mari, N., González-Alonso, F.,
Morelli, F., Setzer, A., Csiszar, I., Kanpandegi, J. A., Bastarrika, A., and
Libonati, R.: Global burned-land estimation in Latin America using MODIS
composite data, Ecol. Appl., 18, 64–79, https://doi.org/10.1890/06-2148.1,
2008.
Chuvieco, E., Lizundia-Loiola, J., Pettinari, M. L., Ramo, R., Padilla, M., Tansey, K., Mouillot, F., Laurent, P., Storm, T., Heil, A., and Plummer, S.: Generation and analysis of a new global burned area product based on MODIS 250 m reflectance bands and thermal anomalies, Earth Syst. Sci. Data, 10, 2015–2031, https://doi.org/10.5194/essd-10-2015-2018, 2018.
Chuvieco, E., Mouillot, F., van der Werf, G. R., San Miguel, J., Tanasse,
M., Koutsias, N., García, M., Yebra, M., Padilla, M., Gitas, I., Heil,
A., Hawbaker, T. J., and Giglio, L.: Historical background and current
developments for mapping burned area from satellite Earth observation,
Remote Sens. Environ., 225, 45-64,
https://doi.org/10.1016/j.rse.2019.02.013, 2019.
Cohen, W. B., Yang, Z., and Kennedy, R.: Detecting trends in forest
disturbance and recovery using yearly Landsat time series: 2.
TimeSync—Tools for calibration and validation, Remote Sens.
Environ., 114, 2911–2924, https://doi.org/10.1016/j.rse.2010.07.010,
2010.
Eidenshink, J. C., Schwind, B., Brewer, K., Zhu, Z.-L., Quayle, B., and
Howard, S. M.: A project for monitoring trends in burn severity, Fire
Ecology, 3, 3–21, https://doi.org/10.4996/fireecology.0301003, 2007.
Franquesa, M., Vanderhoof, M. K., Stavrakoudis, D., Gitas, I., Roteta, E.,
Padilla, M., and Chuvieco, E.: BARD: a global and regional validation burned
area database, V.4.0, e-cienciaDatos, https://doi.org/10.21950/BBQQU7, 2020.
Gallego, F. J.: Stratified sampling of satellite images with a systematic
grid of points, ISPRS J. Photogramm., 59,
369–376, https://doi.org/10.1016/j.isprsjprs.2005.10.001, 2005.
Giglio, L., Loboda, T., Roy, D. P., Quayle, B., and Justice, C. O.: An
active-fire based burned area mapping algorithm for the MODIS sensor, Remote
Sens. Environ., 113, 408–420,
https://doi.org/10.1016/j.rse.2008.10.006, 2009.
Giglio, L., Randerson, J. T., van der Werf, G. R., Kasibhatla, P. S., Collatz, G. J., Morton, D. C., and DeFries, R. S.: Assessing variability and long-term trends in burned area by merging multiple satellite fire products, Biogeosciences, 7, 1171–1186, https://doi.org/10.5194/bg-7-1171-2010, 2010.
Giglio, L., Boschetti, L., Roy, D. P., Humber, M. L., and Justice, C. O.:
The Collection 6 MODIS burned area mapping algorithm and product, Remote
Sens. Environ., 217, 72–85,
https://doi.org/10.1016/j.rse.2018.08.005, 2018.
Grégoire, J. M., Tansey, K., and Silva, J.: The GBA2000 initiative:
developing a global burnt area database from SPOT-VEGETATION imagery, Int.
J. Remote Sens., 24, 1369–1376,
https://doi.org/10.1080/0143116021000044850, 2003.
Hawbaker, T. J., Vanderhoof, M. K., Beal, Y. J., Takacs, J. D., Schmidt, G.
L., Falgout, J. T., Williams, B., Fairaux, N. M., Caldwell, M. K., Picotte,
J. J., Howard, S. M., Stitt, S., and Dwyer, J. L.: Mapping burned areas
using dense time-series of Landsat data, Remote Sens. Environ., 198,
504–522, https://doi.org/10.1016/j.rse.2017.06.027, 2017.
Hawbaker, T. J., Vanderhoof, M. K., Schmidt, G. L., Beal, Y.-J., Picotte, J.
J., Takacs, J. D., Falgout, J. T., and Dwyer, J. L.: The Landsat Burned Area
algorithm and products for the conterminous United States, Remote Sens.
Environ., 244, 1–24, https://doi.org/10.1016/j.rse.2020.111801, 2020.
Homer, C., Dewitz, J., Yang, L., Jin, S., Danielson, P., Xian, G., Coulston,
J., Herold, N., Wickham, J., and Megown, K.: Completion of the 2011 National
Land Cover Database for the Conterminous United States – Representing a
Decade of Land Cover Change Information, Photogramm. Eng.
Rem. S., 81, 346–354,
2015.
Humber, M. L., Boschetti, L., Giglio, L., and Justice, C. O.: Spatial and
temporal intercomparison of four global burned area products, Int. J. Digit.
Earth, 12, 460–484, https://doi.org/10.1080/17538947.2018.1433727, 2019.
Kennedy, R. E., Yang, Z., and Cohen, W. B.: Detecting trends in forest
disturbance and recovery using yearly Landsat time series: 1.
LandTrendr – Temporal segmentation algorithms, Remote Sens.
Environ., 114, 2897–2910, https://doi.org/10.1016/j.rse.2010.07.008,
2010.
Lizundia-Loiola, J., Otón, G., Ramo, R., and Chuvieco, E.: A
spatio-temporal active-fire clustering approach for global burned area
mapping at 250 m from MODIS data, Remote Sens. Environ., 236,
111493, https://doi.org/10.1016/j.rse.2019.111493, 2020.
Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., and
Wulder, M. A.: Good practices for estimating area and assessing accuracy of
land change, Remote Sens. Environ., 148, 42–57,
https://doi.org/10.1016/j.rse.2014.02.015, 2014.
Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell,
G. V. N., Underwood, E. C., D'Amico, J. A., Itoua, I., Strand, H. E.,
Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y.,
Lamoreux, J. F., Wettengel, W. W., Hedao, P., and Kassem, K. R.: Terrestrial
Ecoregions of the World: A New Map of Life on EarthA new global map of
terrestrial ecoregions provides an innovative tool for conserving
biodiversity, BioScience, 51, 933–938,
https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2, 2001.
Padilla, M., Stehman, S. V., and Chuvieco, E.: Validation of the 2008
MODIS-MCD45 global burned area product using stratified random sampling,
Remote Sens. Environ., 144, 187–196,
https://doi.org/10.1016/j.rse.2014.01.008, 2014.
Padilla, M., Stehman, S. V., Ramo, R., Corti, D., Hantson, S., Oliva, P.,
Alonso-Canas, I., Bradley, A. V., Tansey, K., Mota, B., Pereira, J. M., and
Chuvieco, E.: Comparing the accuracies of remote sensing global burned area
products using stratified random sampling and estimation, Remote Sens.
Environ., 160, 114–121, https://doi.org/10.1016/j.rse.2015.01.005, 2015.
Padilla, M., Olofsson, P., Stehman, S. V., Tansey, K., and Chuvieco, E.:
Stratification and sample allocation for reference burned area data, Remote
Sens. Environ., 203, 240–255,
https://doi.org/10.1016/j.rse.2017.06.041, 2017.
Padilla, M., Wheeler, J., and Tansey, K.: ESA CCI ECV Fire Disturbance:
D4.1.1. Product Validation Report, version 2.1. Tech. Rep., available at:
https://climate.esa.int/media/documents/Fire_cci_D4.1.1_PVR_v2.1_jpIZiU7.pdf (last access: 3 December 2020), 2018.
Plummer, S., Arino, O., Simon, M., and Steffen, W.: Establishing A Earth
Observation Product Service For The Terrestrial Carbon Community: The
Globcarbon Initiative, Mitig. Adapt. Strat. Gl., 11, 97–111, https://doi.org/10.1007/s11027-006-1012-8, 2006.
Roteta, E., Bastarrika, A., Padilla, M., Storm, T., and Chuvieco, E.:
Development of a Sentinel-2 burned area algorithm: Generation of a small
fire database for sub-Saharan Africa, Remote Sens. Environ., 222,
1–17, https://doi.org/10.1016/j.rse.2018.12.011, 2019.
Roy, D. P. and Boschetti, L.: Southern Africa validation of the MODIS,
L3JRC, and GlobCarbon burned-area products, IEEE T. Geosci.
Remote, 47, 1032–1044,
https://doi.org/10.1109/TGRS.2008.2009000, 2009.
Roy, D. P., Frost, P. G. H., Justice, C. O., Landmann, T., Le Roux, J. L.,
Gumbo, K., Makungwa, S., Dunham, K., Du Toit, R., Mhwandagara, K., Zacarias,
A., Tacheba, B., Dube, O. P., Pereira, J. M. C., Mushove, P., Morisette, J.
T., Santhana Vannan, S. K., and Davies, D.: The Southern Africa Fire Network
(SAFNet) regional burned-area product-validation protocol, Int. J. Remote
Sens., 26, 4265-4-292, https://doi.org/10.1080/01431160500113096, 2005.
Roy, D. P., Boschetti, L., Justice, C. O., and Ju, J.: The collection 5
MODIS burned area product – Global evaluation by comparison with the MODIS
active fire product, Remote Sens. Environ., 112, 3690–3707,
https://doi.org/10.1016/j.rse.2008.05.013, 2008.
Simon, M., Plummer, S., Fierens, F., Hoelzemann, J. J., and Arino, O.: Burnt
area detection at global scale using ATSR-2: The GLOBSCAR products and their
qualification, J. Geophys. Res.-Atmos., 109,
https://doi.org/10.1029/2003JD003622, 2004.
Stehman, S. V.: Statistical rigor and practical utility in thematic map
accuracy assessment, Photogramm. Eng. Rem. S., 67,
727–734, 2001.
Stehman, S. V.: Sampling designs for accuracy assessment of land cover, Int.
J. Remote Sens., 30, 5243–5272, https://doi.org/10.1080/01431160903131000,
2009.
Stehman, S. V. and Foody, G. M.: Key issues in rigorous accuracy assessment
of land cover products, Remote Sens. Environ., 231, 111199,
https://doi.org/10.1016/j.rse.2019.05.018, 2019.
Stehman, S. V., Olofsson, P., Woodcock, C. E., Herold, M., and Friedl, M.
A.: A global land-cover validation data set, II: augmenting a stratified
sampling design to estimate accuracy by region and land-cover class, Int. J.
Remote Sens., 33, 6975–6993, https://doi.org/10.1080/01431161.2012.695092,
2012.
Tansey, K., Grégoire, J. M., Stroppiana, D., Sousa, A., Silva, J.,
Pereira, J. M., Boschetti, L., Maggi, M., Brivio, P. A., and Fraser, R.:
Vegetation burning in the year 2000: Global burned area estimates from SPOT
VEGETATION data, J. Geophys. Res.-Atmos., 109,
https://doi.org/10.1029/2003JD003598, 2004.
Tansey, K., Grégoire, J. M., Defourny, P., Leigh, R., Pekel, J. F.,
Bogaert, E., and Bartholomé, E.: A new, global, multi-annual
(2000–2007) burnt area product at 1 km resolution, Geophys. Res.
Lett., 35, 1–6, https://doi.org/10.1029/2007gl031567, 2008.
Tompoulidou, M., Stefanidou, A., Grigoriadis, D., Dragozi, E., Stavrakoudis,
D., and Gitas, I.: The Greek National Observatory of Forest Fires (NOFFi),
Fourth International Conference on Remote Sensing and Geoinformation of the
Environment, SPIE, https://doi.org/10.1117/12.2240560, 2016.
Vanderhoof, M. K., Fairaux, N., Beal, Y.-J. G., and Hawbaker, T. J.:
Validation of the USGS Landsat Burned Area Essential Climate Variable
(BAECV) across the conterminous United States, Remote Sens.
Environ., 198, 393–406, https://doi.org/10.1016/j.rse.2017.06.025, 2017.
Vanderhoof, M. K., Fairaux, N. M., Beal, Y.-J. G., and Hawbaker, T. J.: Data
Release for the validation of the USGS Landsat Burned Area Product across
the conterminous U.S. (ver. 2.0, May 2020), U.S. Geological Survey data
release, https://doi.org/10.5066/F7T151VX, 2020.
Zhu, Z. and Woodcock, C. E.: Automated cloud, cloud shadow, and snow
detection in multitemporal Landsat data: An algorithm designed specifically
for monitoring land cover change, Remote Sens. Environ., 152,
217–234, https://doi.org/10.1016/j.rse.2014.06.012, 2014.
Short summary
The article presents a database of reference sites for the validation of burned area products. We have compiled 2661 reference files from different international projects. The paper describes the methods used to generate and standardize the data. The Burned Area Reference Data (BARD) is publicly available and will facilitate the arduous task of validating burned area algorithms.
The article presents a database of reference sites for the validation of burned area products....
Altmetrics
Final-revised paper
Preprint