Articles | Volume 12, issue 4
https://doi.org/10.5194/essd-12-2665-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-12-2665-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Hyperspectral longwave infrared reflectance spectra of naturally dried algae, anthropogenic plastics, sands and shells
Shungudzemwoyo P. Garaba
CORRESPONDING AUTHOR
Marine Sensor Systems Group, Institute for Chemistry and Biology of
the Marine Environment, Carl von Ossietzky University of Oldenburg,
Schleusenstraße 1, Wilhelmshaven 26382, Germany
Tomás Acuña-Ruz
Laboratory for Analysis of the Biosphere (LAB), University of Chile,
Av. Santa Rosa 11315, La Pintana, Santiago, Chile
Cristian B. Mattar
Laboratory of Geosciences (Geolab), University of Aysén, Obispo
Vielmo 62, Coyhaique, Chile
Related authors
Ashley Ohall, Kelsey Bisson, Shungudzemwoyo Garaba, and Sara Rivero-Calle
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-342, https://doi.org/10.5194/essd-2025-342, 2025
Preprint under review for ESSD
Short summary
Short summary
Marine debris poses a growing threat to the environment. Monitoring from remote sensing is promising but there are limitations due to the diversity of marine debris. The open-access MADLib collection, with 24889 hyperspectral reflectances from 3032 diverse debris samples, is anticipated to support algorithm and sensor development based on well-curated representative spectra of marine debris. We also discuss gaps and propose improved metadata schemes for expanding the living MADLIB collection.
Robin V. F. de Vries, Shungudzemwoyo P. Garaba, and Sarah-Jeanne Royer
Earth Syst. Sci. Data, 15, 5575–5596, https://doi.org/10.5194/essd-15-5575-2023, https://doi.org/10.5194/essd-15-5575-2023, 2023
Short summary
Short summary
We present a high-quality dataset of hyperspectral point and multipixel reflectance observations of virgin, ocean-harvested, and biofouled multipurpose plastics. Biofouling and a submerged scenario of the dataset further extend the variability in open-access spectral reference libraries that are important in algorithm development with relevance to remote sensing use cases.
Shungudzemwoyo P. Garaba, Michelle Albinus, Guido Bonthond, Sabine Flöder, Mario L. M. Miranda, Sven Rohde, Joanne Y. L. Yong, and Jochen Wollschläger
Earth Syst. Sci. Data, 15, 4163–4179, https://doi.org/10.5194/essd-15-4163-2023, https://doi.org/10.5194/essd-15-4163-2023, 2023
Short summary
Short summary
These high-quality data document a harmful algal bloom dominated by Nodularia spumigena, a cyanobacterium that has been recurring in waters around the world, using advanced water observation technologies. We also showcase the benefits of experiments of opportunity and the issues with obtaining synoptic spatio-temporal data for monitoring water quality. The dataset can be leveraged to gain more knowledge on related blooms, develop detection algorithms and optimize future monitoring efforts.
Els Knaeps, Sindy Sterckx, Gert Strackx, Johan Mijnendonckx, Mehrdad Moshtaghi, Shungudzemwoyo P. Garaba, and Dieter Meire
Earth Syst. Sci. Data, 13, 713–730, https://doi.org/10.5194/essd-13-713-2021, https://doi.org/10.5194/essd-13-713-2021, 2021
Short summary
Short summary
This paper describes a dataset consisting of 47 hyperspectral-reflectance measurements of plastic litter samples. The plastic litter samples include virgin and real samples. They were measured in dry conditions, and a selection of the samples were also measured in wet conditions and submerged in a water tank. The dataset can be used to better understand the effect of water absorption on the plastics and develop algorithms to detect and characterize marine plastics.
Ashley Ohall, Kelsey Bisson, Shungudzemwoyo Garaba, and Sara Rivero-Calle
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-342, https://doi.org/10.5194/essd-2025-342, 2025
Preprint under review for ESSD
Short summary
Short summary
Marine debris poses a growing threat to the environment. Monitoring from remote sensing is promising but there are limitations due to the diversity of marine debris. The open-access MADLib collection, with 24889 hyperspectral reflectances from 3032 diverse debris samples, is anticipated to support algorithm and sensor development based on well-curated representative spectra of marine debris. We also discuss gaps and propose improved metadata schemes for expanding the living MADLIB collection.
Robin V. F. de Vries, Shungudzemwoyo P. Garaba, and Sarah-Jeanne Royer
Earth Syst. Sci. Data, 15, 5575–5596, https://doi.org/10.5194/essd-15-5575-2023, https://doi.org/10.5194/essd-15-5575-2023, 2023
Short summary
Short summary
We present a high-quality dataset of hyperspectral point and multipixel reflectance observations of virgin, ocean-harvested, and biofouled multipurpose plastics. Biofouling and a submerged scenario of the dataset further extend the variability in open-access spectral reference libraries that are important in algorithm development with relevance to remote sensing use cases.
Shungudzemwoyo P. Garaba, Michelle Albinus, Guido Bonthond, Sabine Flöder, Mario L. M. Miranda, Sven Rohde, Joanne Y. L. Yong, and Jochen Wollschläger
Earth Syst. Sci. Data, 15, 4163–4179, https://doi.org/10.5194/essd-15-4163-2023, https://doi.org/10.5194/essd-15-4163-2023, 2023
Short summary
Short summary
These high-quality data document a harmful algal bloom dominated by Nodularia spumigena, a cyanobacterium that has been recurring in waters around the world, using advanced water observation technologies. We also showcase the benefits of experiments of opportunity and the issues with obtaining synoptic spatio-temporal data for monitoring water quality. The dataset can be leveraged to gain more knowledge on related blooms, develop detection algorithms and optimize future monitoring efforts.
Els Knaeps, Sindy Sterckx, Gert Strackx, Johan Mijnendonckx, Mehrdad Moshtaghi, Shungudzemwoyo P. Garaba, and Dieter Meire
Earth Syst. Sci. Data, 13, 713–730, https://doi.org/10.5194/essd-13-713-2021, https://doi.org/10.5194/essd-13-713-2021, 2021
Short summary
Short summary
This paper describes a dataset consisting of 47 hyperspectral-reflectance measurements of plastic litter samples. The plastic litter samples include virgin and real samples. They were measured in dry conditions, and a selection of the samples were also measured in wet conditions and submerged in a water tank. The dataset can be used to better understand the effect of water absorption on the plastics and develop algorithms to detect and characterize marine plastics.
Cited articles
Acuña-Ruz, T. and Mattar, B. C.: Thermal infrared spectral database of
marine litter debris in Archipelago of Chiloé, Chile, PANGAEA,
https://doi.org/10.1594/PANGAEA.919536, 2020.
Acuña-Ruz, T., Uribe, D., Taylor, R., Amézquita, L., Guzmán, M.
C., Merrill, J., Martínez, P., Voisin, L., and Mattar, B. C.:
Anthropogenic marine debris over beaches: Spectral characterization for
remote sensing applications, Remote Sens. Environ., 217, 309–322,
https://doi.org/10.1016/j.rse.2018.08.008, 2018.
Becker, F., Ngai, W., and Stoll, M. P.: An active method for measuring
thermal infrared effective emissivities: Implications and perspectives for
remote sensing, Adv. Space Res., 1, 193–210,
https://doi.org/10.1016/0273-1177(81)90394-X, 1981.
Cuyler, L. C., Wiulsrød, R., and Øritsland, N. A.: Thermal infrared
radiation from free living whales, Mar. Mammal Sci., 8, 120–134,
https://doi.org/10.1111/j.1748-7692.1992.tb00371.x, 1992.
Dierssen, H. M. and Garaba, S. P.: Bright Oceans: Spectral Differentiation
of Whitecaps, Sea Ice, Plastics, and Other Flotsam, in: Recent Advances in
the Study of Oceanic Whitecaps: Twixt Wind and Waves, edited by: Vlahos, P.
and Monahan, E. C., Springer International Publishing, Cham, 197–208, 2020.
FAO: National Aquaculture Sector Overview. Visión General del Sector
Acuícola Nacional – Chile, Food and Agriculture Organization of the
United Nations, FAO Fisheries and Aquaculture Department, National
Aquaculture Sector Overview Fact Sheets, edited by: Norambuena, R. and
González, L., Rome, Italy, 12 pp., 2005.
G20: Annex to G20 Leaders Declaration: G20 Action Plan on Marine Litter, G20
Summit 2017, Hamburg, Germany, 7–8 July 2017.
Garaba, S. P. and Dierssen, H. M.: An airborne remote sensing case study of
synthetic hydrocarbon detection using short wave infrared absorption
features identified from marine-harvested macro- and microplastics, Remote
Sens. Environ., 205, 224–235, https://doi.org/10.1016/j.rse.2017.11.023, 2018.
Garaba, S. P. and Dierssen, H. M.: Hyperspectral ultraviolet to shortwave infrared characteristics of marine-harvested, washed-ashore and virgin plastics, Earth Syst. Sci. Data, 12, 77–86, https://doi.org/10.5194/essd-12-77-2020, 2020.
Garaba, S. P. and Zielinski, O.: Comparison of remote sensing reflectance
from above-water and in-water measurements west of Greenland, Labrador Sea,
Denmark Strait, and west of Iceland, Opt. Express, 21, 15938–15950,
https://doi.org/10.1364/OE.21.015938, 2013.
Garaba, S. P., Voß, D., Wollschläger, J., and Zielinski, O.: Modern
approaches to shipborne ocean color remote sensing, Appl. Optics, 54,
3602–3612, https://doi.org/10.1364/AO.54.003602, 2015.
Garaba, S. P., Aitken, J., Slat, B., Dierssen, H. M., Lebreton, L.,
Zielinski, O., and Reisser, J.: Sensing ocean plastics with an airborne
hyperspectral shortwave infrared imager, Environ. Sci. Technol., 52,
11699–11707, https://doi.org/10.1021/acs.est.8b02855, 2018.
GESAMP: Sources, fate and effects of microplastics in the marine
environment: a global assessment.
(IMO/FAO/UNESCO-IOC/UNIDO/WMO/IAEA/UN/UNEP/UNDP Joint Group of Experts on
the Scientific Aspects of Marine Environmental Protection), GESAMP Report
and Studies No. 90, Report and Studies GESAMP No. 90, edited by: Kershaw, P.
J., International Maritime Organization, London, UK, 96 pp., 2015.
Goddijn-Murphy, L. and Dufaur, J.: Proof of concept for a model of light
reflectance of plastics floating on natural waters, Mar. Pollut. Bull., 135,
1145–1157, https://doi.org/10.1016/j.marpolbul.2018.08.044, 2018.
Goddijn-Murphy, L. and Williamson, B.: On thermal infrared remote sensing
of plastic pollution in natural waters, Remote Sens.-Basel, 11, 2159,
https://doi.org/10.3390/rs11182159, 2019.
Gómez, V., Pozo, K., Nuñez, D., Přibylová, P., Audy, O.,
Baini, M., Fossi, M. C., and Klánová, J.: Marine plastic debris in
Central Chile: Characterization and abundance of macroplastics and burden of
persistent organic pollutants (POPs), Mar. Pollut. Bull., 152, 110881,
https://doi.org/10.1016/j.marpolbul.2019.110881, 2020.
Huguenin, R. L. and Jones, J. L.: Intelligent information extraction from
reflectance spectra: Absorption band positions, J. Geophys. Res.-Sol.
Ea., 91, 9585–9598, https://doi.org/10.1029/JB091iB09p09585, 1986.
Hulley, G. C. and Hook, S. J.: A new methodology for cloud detection and
classification with ASTER data, Geophys. Res. Lett., 35, L16812,
https://doi.org/10.1029/2008gl034644, 2008.
Hulley, G. C., Hook, S. J., and Baldridge, A. M.: Investigating the effects
of soil moisture on thermal infrared land surface temperature and emissivity
using satellite retrievals and laboratory measurements, Remote Sens.
Environ., 114, 1480–1493, https://doi.org/10.1016/j.rse.2010.02.002, 2010.
Kerekes, J. P., Strackerjan, K.-E., and Salvaggio, C.: Spectral reflectance
and emissivity of man-made surfaces contaminated with environmental effects,
Opt. Eng., 47, 106201, https://doi.org/10.1117/1.3000433, 2008.
Kotthaus, S., Smith, T. E. L., Wooster, M. J., and Grimmond, C. S. B.:
Derivation of an urban materials spectral library through emittance and
reflectance spectroscopy, ISPRS J. Photogramm. Remote Sens., 94,
194–212, https://doi.org/10.1016/j.isprsjprs.2014.05.005, 2014.
Kuenzer, C. and Dech, S.: Thermal infrared remote sensing, in: Remote
sensing and digital image processing, edited by: van der Meer, F. D. and
Jarocińska, A., 17, Springer, the Netherlands, 2013.
Laakso, K., Turner, D. J., Rivard, B., and Sánchez-Azofeifa, A.: The
long-wave infrared (8–12 µm) spectral features of selected rare earth
element – Bearing carbonate, phosphate and silicate minerals, Int. J. Appl.
Earth Obs. Geoinformation, 76, 77–83, https://doi.org/10.1016/j.jag.2018.11.005, 2019.
Lebreton, L., Slat, B., Ferrari, F., Sainte-Rose, B., Aitken, J., Marthouse,
R., Hajbane, S., Cunsolo, S., Schwarz, A., Levivier, A., Noble, K.,
Debeljak, P., Maral, H., Schoeneich-Argent, R., Brambini, R., and Reisser,
J.: Evidence that the Great Pacific Garbage Patch is rapidly accumulating
plastic, Sci. Rep.-UK, 8, 4666, https://doi.org/10.1038/s41598-018-22939-w, 2018.
Liutkus, A.: Scale-space peak picking: Inria, Speech Processing Team,
available at: https://hal.inria.fr/hal-01103123 (last access: 4 November 2020), Inria
Nancy – Grand Est, Villers-lès-Nancy, France, 2015.
Martínez-Vicente, V., Clark, J. R., Corradi, P., Aliani, S., Arias, M.,
Bochow, M., Bonnery, G., Cole, M., Cózar, A., Donnelly, R.,
Echevarría, F., Galgani, F., Garaba, S. P., Goddijn-Murphy, L.,
Lebreton, L., Leslie, H. A., Lindeque, P. K., Maximenko, N., Martin-Lauzer,
F.-R., Moller, D., Murphy, P., Palombi, L., Raimondi, V., Reisser, J.,
Romero, L., Simis, S. G. H., Sterckx, S., Thompson, R. C., Topouzelis, K.
N., van Sebille, E., Veiga, J. M., and Vethaak, A. D.: Measuring marine
plastic debris from space: Initial assessment of observation requirements,
Remote Sens.-Basel, 11, 2443, https://doi.org/10.3390/rs11202443, 2019.
Maximenko, N., Arvesen, J., Asner, G., Carlton, J., Castrence, M.,
Centurioni, L., Chao, Y., Chapman, J., Chirayath, V., Corradi, P., Crowley,
M., Dierssen, H. M., Dohan, K., Eriksen, M., Galgani, F., Garaba, S. P.,
Goni, G., Griffin, D., Hafner, J., Hardesty, D., Isobe, A., Jacobs, G.,
Kamachi, M., Kataoka, T., Kubota, M., Law, K. L., Lebreton, L., Leslie, H.
A., Lumpkin, R., Mace, T. H., Mallos, N., McGillivary, P. A., Moller, D.,
Morrow, R., Moy, K. V., Murray, C. C., Potemra, J., Richardson, P.,
Robberson, B., Thompson, R., van Sebille, E., and Woodring, D.: Remote
sensing of marine debris to study dynamics, balances and trends, Community
White Paper Produced at the Workshop on Mission Concepts for Marine Debris
Sensing, NASA workshop on mission concepts for marine debris sensing, University of Hawaai at Manoa, 22 pp., 19–21 January 2016.
Meerdink, S. K., Hook, S. J., Roberts, D. A., and Abbott, E. A.: The
ECOSTRESS spectral library version 1.0, Remote Sens. Environ., 230, 111196,
https://doi.org/10.1016/j.rse.2019.05.015, 2019.
Nicodemus, F. E.: Directional Reflectance and Emissivity of an Opaque
Surface, Appl. Optics, 4, 767-775, https://doi.org/10.1364/AO.4.000767, 1965.
Pozo, K., Gomez, V., Torres, M., Vera, L., Nuñez, D., Oyarzún, P.,
Mendoza, G., Clarke, B., Fossi, M. C., Baini, M., Přibylová, P., and
Klánová, J.: Presence and characterization of microplastics in fish
of commercial importance from the Biobío region in central Chile, Mar.
Pollut. Bull., 140, 315–319, https://doi.org/10.1016/j.marpolbul.2019.01.025, 2019.
Salisbury, J. W., Walter, L. S., and Vergo, N.: Mid-infrared (2.1-25 um)
spectra of minerals; first edition, U. S. Geological Survey, Open-File
Report, https://doi.org/10.3133/ofr87263, 1987.
Salisbury, J. W., D'Aria, D. M., and Sabins, F. F.: Thermal infrared remote
sensing of crude oil slicks, Remote Sens. Environ., 45, 225–231,
https://doi.org/10.1016/0034-4257(93)90044-X, 1993.
Schodlok, M. C., Whitbourn, L., Huntington, J., Mason, P., Green, A.,
Berman, M., Coward, D., Connor, P., Wright, W., Jolivet, M., and Martinez,
R.: HyLogger-3, a visible to shortwave and thermal infrared reflectance
spectrometer system for drill core logging: functional description, Aust. J.
Earth Sci., 63, 929–940, 2016.
Sobrino, J. A., Mattar, C., Pardo, P., Jiménez-Muñoz, J. C., Hook,
S. J., Baldridge, A., and Ibañez, R.: Soil emissivity and reflectance
spectra measurements, Appl. Optics, 48, 3664–3670, https://doi.org/10.1364/AO.48.003664,
2009.
Thevenon, F., Carroll, C., and Sousa, J. (Eds.): Plastic debris in the
ocean: The characterization of marine plastics and their environmental
impacts, situation analysis report, International Union for Conservation of
Nature, Gland, Switzerland, 52 pp., 2014.
Thiel, M., Hinojosa, I. A., Miranda, L., Pantoja, J. F., Rivadeneira, M. M.,
and Vásquez, N.: Anthropogenic marine debris in the coastal environment:
A multi-year comparison between coastal waters and local shores, Mar.
Pollut. Bull., 71, 307–316, https://doi.org/10.1016/j.marpolbul.2013.01.005, 2013.
Topouzelis, K., Papakonstantinou, A., and Garaba, S. P.: Detection of
floating plastics from satellite and unmanned aerial systems (Plastic Litter
Project 2018), Int. J. Appl. Earth Obs. Geoinformation, 79, 175–183,
https://doi.org/10.1016/j.jag.2019.03.011, 2019.
Urbina, M. A., Luna-Jorquera, G., Thiel, M., Acuña-Ruz, T., Amenábar
Cristi, M. A., Andrade, C., Ahrendt, C., Castillo, C., Chevallier, A.,
Cornejo-D'Ottone, M., Correa-Araneda, F., Duarte, C., Fernández, C.,
Galbán-Malagón, C., Godoy, C., González-Aravena, M., I. A., H.,
Jorquera, A., Kiessling, T., Lardies, M. A., Lenzi, J., C., M. B., Munizaga,
M., Olguín-Campillay, N., Perez-Venegas, D. J., Portflitt-Toro, M.,
Pozo, K., Pulgar, J., and Vargas, E.: A country's response to tackling
plastic pollution in aquatic ecosystems: The Chilean way, Aquat. Conserv.:
Mar. Freshw. Ecosyst., 1–22, https://doi.org/10.1002/aqc.3469, 2020.
van Sebille, E., Aliani, S., Law, K. L., Maximenko, N., Alsina, J. M.,
Bagaev, A., Bergmann, M., Chapron, B., Chubarenko, I., Cózar, A.,
Delandmeter, P., Egger, M., Fox-Kemper, B., Garaba, S. P., Goddijn-Murphy,
L., Hardesty, B. D., Hoffman, M. J., Isobe, A., Jongedijk, C. E., Kaandorp,
M. L. A., Khatmullina, L., Koelmans, A. A., Kukulka, T., Laufkötter, C.,
Lebreton, L., Lobelle, D., Maes, C., Martinez-Vicente, V., Morales Maqueda,
M. A., Poulain-Zarcos, M., Rodríguez, E., Ryan, P. G., Shanks, A. L.,
Shim, W. J., Suaria, G., Thiel, M., van den Bremer, T. S., and Wichmann, D.:
The physical oceanography of the transport of floating marine debris, Environ. Res. Lett., 15,
023003, https://doi.org/10.1088/1748-9326/ab6d7d, 2020.
Werner, S., Budziak, A., van Franeker, J., Galgani, F., Hanke, G., Maes, T.,
Matiddi, M., Nilsson, P., Oosterbaan, L., Priestland, E., Thompson, R.,
Veiga, J., and Vlachogianni, T.: Harm caused by marine litter, MSFD GES TG
Marine Litter – Thematic Report, JRC Technical report (EUR 28317 EN),
Publications Office of the European Union, Luxembourg, 92 pp.,
https://doi.org/10.2788/690366, 2016.
Short summary
Technologies to support detection and tracking of plastic litter in aquatic environments capable of repeated observations at a wide-area scale have been getting increased interest from scientists and stakeholders. We report findings about thermal infrared optical properties of naturally dried samples of algae, sands, sea shells and synthetic plastics obtained in Chile. Diagnostic features of the dataset are foreseen to contribute towards research relevant in thermal infrared sensing of plastics.
Technologies to support detection and tracking of plastic litter in aquatic environments capable...
Altmetrics
Final-revised paper
Preprint