Articles | Volume 11, issue 3
Earth Syst. Sci. Data, 11, 1385–1409, 2019
https://doi.org/10.5194/essd-11-1385-2019
Earth Syst. Sci. Data, 11, 1385–1409, 2019
https://doi.org/10.5194/essd-11-1385-2019

Review article 11 Sep 2019

Review article | 11 Sep 2019

The spatial allocation of population: a review of large-scale gridded population data products and their fitness for use

Stefan Leyk et al.

Related authors

Supervised learning for automated feature selection in road network generalization
Izabela Karsznia, Albert Adolf, and Stefan Leyk
Abstr. Int. Cartogr. Assoc., 3, 139, https://doi.org/10.5194/ica-abs-3-139-2021,https://doi.org/10.5194/ica-abs-3-139-2021, 2021
Towards the large-scale extraction of historical land cover information from historical maps
Johannes H. Uhl, Stefan Leyk, Weiwei Duan, Zekun Li, Basel Shbita, Yao-Yi Chiang, and Craig A. Knoblock
Abstr. Int. Cartogr. Assoc., 3, 297, https://doi.org/10.5194/ica-abs-3-297-2021,https://doi.org/10.5194/ica-abs-3-297-2021, 2021
Fine-grained, spatiotemporal datasets measuring 200 years of land development in the United States
Johannes H. Uhl, Stefan Leyk, Caitlin M. McShane, Anna E. Braswell, Dylan S. Connor, and Deborah Balk
Earth Syst. Sci. Data, 13, 119–153, https://doi.org/10.5194/essd-13-119-2021,https://doi.org/10.5194/essd-13-119-2021, 2021
Short summary
Estimating changes in urban land and urban population using refined areal interpolation techniques
Hamidreza Zoraghein and Stefan Leyk
Proc. Int. Cartogr. Assoc., 1, 130, https://doi.org/10.5194/ica-proc-1-130-2018,https://doi.org/10.5194/ica-proc-1-130-2018, 2018

Related subject area

Data, Algorithms, and Models
Estimating population and urban areas at risk of coastal hazards, 1990–2015: how data choices matter
Kytt MacManus, Deborah Balk, Hasim Engin, Gordon McGranahan, and Rya Inman
Earth Syst. Sci. Data, 13, 5747–5801, https://doi.org/10.5194/essd-13-5747-2021,https://doi.org/10.5194/essd-13-5747-2021, 2021
Short summary
Landsat-based Irrigation Dataset (LANID): 30 m resolution maps of irrigation distribution, frequency, and change for the US, 1997–2017
Yanhua Xie, Holly K. Gibbs, and Tyler J. Lark
Earth Syst. Sci. Data, 13, 5689–5710, https://doi.org/10.5194/essd-13-5689-2021,https://doi.org/10.5194/essd-13-5689-2021, 2021
Short summary
GRQA: Global River Water Quality Archive
Holger Virro, Giuseppe Amatulli, Alexander Kmoch, Longzhu Shen, and Evelyn Uuemaa
Earth Syst. Sci. Data, 13, 5483–5507, https://doi.org/10.5194/essd-13-5483-2021,https://doi.org/10.5194/essd-13-5483-2021, 2021
Short summary
A 1 km global cropland dataset from 10 000 BCE to 2100 CE
Bowen Cao, Le Yu, Xuecao Li, Min Chen, Xia Li, Pengyu Hao, and Peng Gong
Earth Syst. Sci. Data, 13, 5403–5421, https://doi.org/10.5194/essd-13-5403-2021,https://doi.org/10.5194/essd-13-5403-2021, 2021
Short summary
A 1 km global dataset of historical (1979–2013) and future (2020–2100) Köppen–Geiger climate classification and bioclimatic variables
Diyang Cui, Shunlin Liang, Dongdong Wang, and Zheng Liu
Earth Syst. Sci. Data, 13, 5087–5114, https://doi.org/10.5194/essd-13-5087-2021,https://doi.org/10.5194/essd-13-5087-2021, 2021
Short summary

Cited articles

Agumya, A. and Hunter, G. F.: A Risk-Based Approach to Assessing the “Fitness for Use” of Spatial Data, URISA Journal, 11, 33–44, 1999. 
Amrhein, C. G.: Searching for the Elusive Aggregation Effect: Evidence from Statistical Simulations, Environ. Plann. A, 27, 105–119, https://doi.org/10.1068/a270105, 1995. 
Arbia, G. and Petrarca, F.: Effects of MAUP on spatial econometric models, Letters in Spatial and Resource Sciences, 4, 173, https://doi.org/10.1007/s12076-011-0065-9, 2011. 
Aubrecht, C., Gunasekera, R., Ungar, J., and Ishizawa, O.: Consistent yet adaptive global geospatial identification of urban–rural patterns: The iURBAN model, Remote Sens. Environ., 187, 230–240, https://doi.org/10.1016/j.rse.2016.10.031, 2016. 
Azar, D., Graesser, J., Engstrom, R., Comenetz, J., Leddy, R. M., Schechtman, N. G., and Andrews, T.: Spatial refinement of census population distribution using remotely sensed estimates of impervious surfaces in Haiti, Int. J. Remote Sens., 31, 5635–5655, https://doi.org/10.1080/01431161.2010.496799, 2010. 
Short summary
Population data are essential for studies on human–nature relationships, disaster or environmental health. Several global and continental gridded population data have been produced but have never been systematically compared. This article fills this gap and critically compares these gridded population datasets. Through the lens of the fitness for use concept it provides users with the knowledge needed to make informed decisions about appropriate data use in relation to the target application.