Articles | Volume 10, issue 4
https://doi.org/10.5194/essd-10-2241-2018
https://doi.org/10.5194/essd-10-2241-2018
Review article
 | 
10 Dec 2018
Review article |  | 10 Dec 2018

Contiguous United States wildland fire emission estimates during 2003–2015

Shawn P. Urbanski, Matt C. Reeves, Rachel E. Corley, Robin P. Silverstein, and Wei Min Hao

Related authors

Daily black carbon emissions from fires in northern Eurasia for 2002–2015
Wei Min Hao, Alexander Petkov, Bryce L. Nordgren, Rachel E. Corley, Robin P. Silverstein, Shawn P. Urbanski, Nikolaos Evangeliou, Yves Balkanski, and Bradley L. Kinder
Geosci. Model Dev., 9, 4461–4474, https://doi.org/10.5194/gmd-9-4461-2016,https://doi.org/10.5194/gmd-9-4461-2016, 2016
Short summary
Wildfires in northern Eurasia affect the budget of black carbon in the Arctic – a 12-year retrospective synopsis (2002–2013)
N. Evangeliou, Y. Balkanski, W. M. Hao, A. Petkov, R. P. Silverstein, R. Corley, B. L. Nordgren, S. P. Urbanski, S. Eckhardt, A. Stohl, P. Tunved, S. Crepinsek, A. Jefferson, S. Sharma, J. K. Nøjgaard, and H. Skov
Atmos. Chem. Phys., 16, 7587–7604, https://doi.org/10.5194/acp-16-7587-2016,https://doi.org/10.5194/acp-16-7587-2016, 2016
Short summary
Observations and analysis of organic aerosol evolution in some prescribed fire smoke plumes
A. A. May, T. Lee, G. R. McMeeking, S. Akagi, A. P. Sullivan, S. Urbanski, R. J. Yokelson, and S. M. Kreidenweis
Atmos. Chem. Phys., 15, 6323–6335, https://doi.org/10.5194/acp-15-6323-2015,https://doi.org/10.5194/acp-15-6323-2015, 2015
Short summary
Airborne characterization of smoke marker ratios from prescribed burning
A. P. Sullivan, A. A. May, T. Lee, G. R. McMeeking, S. M. Kreidenweis, S. K. Akagi, R. J. Yokelson, S. P. Urbanski, and J. L. Collett Jr.
Atmos. Chem. Phys., 14, 10535–10545, https://doi.org/10.5194/acp-14-10535-2014,https://doi.org/10.5194/acp-14-10535-2014, 2014
Combustion efficiency and emission factors for wildfire-season fires in mixed conifer forests of the northern Rocky Mountains, US
S. P. Urbanski
Atmos. Chem. Phys., 13, 7241–7262, https://doi.org/10.5194/acp-13-7241-2013,https://doi.org/10.5194/acp-13-7241-2013, 2013

Related subject area

Atmospheric chemistry and physics
MAP-IO: an atmospheric and marine observatory program on board Marion Dufresne over the Southern Ocean
Pierre Tulet, Joel Van Baelen, Pierre Bosser, Jérome Brioude, Aurélie Colomb, Philippe Goloub, Andrea Pazmino, Thierry Portafaix, Michel Ramonet, Karine Sellegri, Melilotus Thyssen, Léa Gest, Nicolas Marquestaut, Dominique Mékiès, Jean-Marc Metzger, Gilles Athier, Luc Blarel, Marc Delmotte, Guillaume Desprairies, Mérédith Dournaux, Gaël Dubois, Valentin Duflot, Kevin Lamy, Lionel Gardes, Jean-François Guillemot, Valérie Gros, Joanna Kolasinski, Morgan Lopez, Olivier Magand, Erwan Noury, Manuel Nunes-Pinharanda, Guillaume Payen, Joris Pianezze, David Picard, Olivier Picard, Sandrine Prunier, François Rigaud-Louise, Michael Sicard, and Benjamin Torres
Earth Syst. Sci. Data, 16, 3821–3849, https://doi.org/10.5194/essd-16-3821-2024,https://doi.org/10.5194/essd-16-3821-2024, 2024
Short summary
Retrieving ground-level PM2.5 concentrations in China (2013–2021) with a numerical-model-informed testbed to mitigate sample-imbalance-induced biases
Siwei Li, Yu Ding, Jia Xing, and Joshua S. Fu
Earth Syst. Sci. Data, 16, 3781–3793, https://doi.org/10.5194/essd-16-3781-2024,https://doi.org/10.5194/essd-16-3781-2024, 2024
Short summary
Reconstructing long-term (1980–2022) daily ground particulate matter concentrations in India (LongPMInd)
Shuai Wang, Mengyuan Zhang, Hui Zhao, Peng Wang, Sri Harsha Kota, Qingyan Fu, Cong Liu, and Hongliang Zhang
Earth Syst. Sci. Data, 16, 3565–3577, https://doi.org/10.5194/essd-16-3565-2024,https://doi.org/10.5194/essd-16-3565-2024, 2024
Short summary
Visibility-derived aerosol optical depth over global land from 1959 to 2021
Hongfei Hao, Kaicun Wang, Chuanfeng Zhao, Guocan Wu, and Jing Li
Earth Syst. Sci. Data, 16, 3233–3260, https://doi.org/10.5194/essd-16-3233-2024,https://doi.org/10.5194/essd-16-3233-2024, 2024
Short summary
Characterizing clouds with the CCClim dataset, a machine learning cloud class climatology
Arndt Kaps, Axel Lauer, Rémi Kazeroni, Martin Stengel, and Veronika Eyring
Earth Syst. Sci. Data, 16, 3001–3016, https://doi.org/10.5194/essd-16-3001-2024,https://doi.org/10.5194/essd-16-3001-2024, 2024
Short summary

Cited articles

Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011. 
Anderson, K., Simpson, B., Hall, R. J., Englefield, P., Gartrell, M., and Metsaranta, J. M.: Integrating forest fuels and land cover data for improved estimation of fuel consumption and carbon emissions from boreal fires, Int. J. Wildland Fire, 24, 665–679, https://doi.org/10.1071/WF14142, 2015. 
Bechtold, W. A. and Patterson, P. L. (Eds.): The enhanced Forest Inventory and Analysis program–national sampling design and estimation procedures, Gen. Tech Rep. SRS-80, USDA, Forest Service, Southern Research Station, Asheville, North Carolina, 85 pp., available at: https://www.treesearch.fs.fed.us/pubs/20371 (last access: 27 April 2017), 2005. 
Download
Short summary
Wildfires are a major source of air pollutants in the US that trigger pollution episodes and challenge air regulators’ efforts to meet air quality standards. Improved wildfire emission estimates are needed to quantify air pollution from fires to guide decision-making activities related to the control of anthropogenic sources. To address the need of air regulators for improved wildfire emission estimates, we developed an inventory of daily US wildfire pollutant emissions for 2003–2015.
Altmetrics
Final-revised paper
Preprint